
Scade/Lustre diagram

L

A system

Protocol specification in 42

A basic component in the 42 formalism

to Heterogeneous Embedded Systems42
Programmable Models of Computation for a Component−Based Approach

Cpt A

U

m_a

m_d
m_c

. . .

Controller

Cpt C

W

Cpt B

V

Cpt D

z

Controller

Cpt C

W

Cpt B

V

Cpt D

z

Cpt A

U

Y

X

e

a
b c

df

input port

o1

output port

ic, oc

P

L

W

Output1

_L5:int _L8:int

x

Input1

+
−

pre

_L6:int
_L7:int

and atomic code
A piece of terminating

id1
id2
id3 od3

od2
od1

....

ic1 ic2

oc2oc1

terminating

atomic

step

internal memory

Control Ports

Control Ports

Input Output
Data PortsData Ports

Input

Output

oc1.set(false);

od1.set(f(a,b));

For ic1 :

a=id1.get();

b=id2.get();

i1

.C

W
ra

p
p

e
r

210

Florence Maraninchi, Tayeb Bouhadiba (Verimag/Grenoble INP) firstname.lastname@imag.fr

C code generation

void C1(inC C1 ∗inC, outC C1 ∗outC)

void C1 reset(outC C1 ∗outC)

Op Op2

id1
id2

od1
od2

Ctl

Reference and Definition

1 Florence Maraninchi and Tayeb Bouhadiba. 42: programmable models of computation for a component-
based approach to heterogeneous embedded systems. In GPCE ’07: Proceedings of the 6th international
conference on Generative programming and component engineering, pages 53–62, Salzburg, Austria,
2007. ACM Press.

2 http://ptolemy.eecs.berkeley.edu/ptolemyII/.

a MoCC : Model of Computation and Communication.

42 Overview

42 [1] is a component-based approach to the virtual pro-

totyping of embedded systems. A component is a black

box with input and output data and control ports. Com-

ponents can be programmed in all languages as long as

they provide such an interface.

42 focuses on the “System-Level view”, i.e, the assem-

blage of components and the associated verifications.

Modeling heterogeneity

A system that needs several MoCCs is mod-

eled with several levels of hierarchy, each of

them having a specific controller.

A system

A system is made of a set of components

whose data ports are connected by oriented

wires. The wires do not express any syn-

chronization.

The semantics of the assemblage is defined

by the controller (as in Ptolemy [2]).

42 protocols

The possible uses of a component are specified by a

control-contract, called a “protocol”. It may express:

? Control sequencing

? Data dependencies

? Control information

? Conditional data dependencies

Using 42 Protocols

42 protocols are used to verify assemblages of

components and the compliance of the controller

code w.r.t the components’ protocols. The verifi-

cation may be done statically (a model- checking

problem) or dynamically.

Each time a component is activated

with ici, it consumes inputs, per-

forms an atomic computation, and

produces outputs.

(id1 and id2) op / α:=ctl (od1)

(id1 and IF α THEN id2) op2 (IF ¬α THEN od2)

The controller defines the MoCC [a]

The controller is a small program that

could be implemented in any program-

ming style. For each global activation

(e.g., X) the controller is in charge of

activating components, managing the

memory associated with each wire. It

assigns values to the global data and

control output ports (e.g., Y, O1).

Controller is :
var M : bool = true ;
for X do :{ /* defines X.
m_a , m_b , m_c: FIFO(1,int);
m_d , m_e , m_f: FIFO(4,int);
if (M) {
m_a.put ; /* reads i1.
m_a.get ; D.z;//* activates D.
m_f.put ; m_f.get ;
A.u; m_b.put; m_d.put;
m_b.get; B.v; M = M or p ;
m_c.put ; m_c.get ;/* assigns O1.
m_d.get ; C.w ; m_e.put ;
m_e.get; D.k ;
M = ! M ;
} else { ... }
Y = M;/* assigns Y.
}

42-ization of existing code

42 is not intended to be a new

language to design embedded sys-

tems. The basic components may

be implemented using any lan-

guage. The only restriction is to

be able to wrap the code in a 42-

component.

1

