Delivery Selfware SP3

Lot 1, August 24, 2007

Java EE management scenarios

Authors
Noel De Palma (INRIA/Sardes)
Bruno Dillenseger (Orange labs)
Benoit Pelletier (Bull SAS)

Version
1.0

Java EE management scenarios

Contents

1 Introduction
2 Java EE context

P2 TN = \ V7= Tt) 7= 1 o £ o [P PRR
2.2 TN A s —————— ettt —————————

3 Rationale
4 Scenarios

4.1 Self-management ..ot

4.1.1 Cluster architecture

4.1.2 Node hardware failure or server crash
4.1.3 Dynamic resource provisioning

4.1.4 Others scenarios

4.2 Self-benchmarking.........cooeviiiiii e

4.2.1 Introduction

4.2.2 Step one — autonomous search of saturation point

4.2.3 Step 2 — self-optimization of the system under test
5 Appendix

5.1 JONAS, the Objectweb’s application SEIVerccccccccvviiiiiiirieeeeeeeenn.

5.1.1 JONAS Features
5.1.2 JONAS Architecture
5.1.3 JONAS clustering

6 References

Java EE management scenarios

1 Introduction

This document aims at describing a set of autonemmanagement scenarios for the Java EE
cluster.

This paper is organized as follows. Section 2 relsia few definitions on the autonomic system.
Section 3 presents the Java EE context and desdtilgeJONAS application server and its cluster
mode. Afterwards, section 4 gives the motivatiamsapplying the control loop in the Java EE field.
Section 5 proposes the use cases.

Java EE management scenarios

2 Java EE context

The cluster Java EE scenarios are implemented ghrthe ObjectWeb's open-source Java EE
platform JOnAS.

2.1 Java EE standard

The Sun Java EE specification, together with itateel specifications (EJB, JMS,...), defines an
architecture and interfaces for developing andaigpd distributed Internet Java server applications
based on a multi-tier architecture. This specifiratintends to facilitate and standardize the
development, deployment, and assembling of apicatomponents; such components will be
deployable on Java EE platforms. The resulting iegfbns are typically web-based, transactional,
database-oriented, multi-user, secured, scalalld, portable. More precisely, this specification
describes two kinds of information:

. The first is the runtime environment, called a J&B server, which provides the
execution environment and the required system @esyisuch as the transaction service,
the persistence service, the Java Message SedWts®)(and the security service.

. The second is programmer and user information eMpta how an application
component should be developed, deployed, and used.

Not only will an application component be indepemtdef the platform and operating system
(since it is written in Java), it will also be immEndent of the Java EE platform.

A typical Java EE application is composed of 1)sprgation components, also called "web
components" (Servlets and JSPs), which define pication Web interface, and 2) enterprise
components, the "Enterprise JavaBeans" (EJB), wiietine the application business logic and
application data. The Java EE server provides gwr&for hosting web and enterprise components.
The container provides the component life-cycle aggment and interfaces the components with the
services provided by the Java EE server. Therénardéypes of containers; the web container handles
Servlet and JSP components, while the EJB conthismedles the Enterprise JavaBeans components.
A Java EE server can also provide an environmeantléploying Java clients (accessing EJBS); it is
called client container.

2.2 JOnAS

JONAS is an open source application server, deedlapthin the OW2 consortium.
JONAS is an enterprise class Java EE applicatimeise

« Benefiting from a mature code and the J2EE 1.4c®utification. Consequently JOnAS is
largely deployed and is robust.

* Providing some high level scalability and high #aaility mechanisms through a set of
tuning parameters at different levels (threads gatdta or connection caches) and though
end to end and powerful clustering features

* Equipped with some advanced administration tooth & the jonasAdmin JMX console,
the domains management or the shell commandsdgrrtiduction environment

« Facilitating the Enterprise Information System grtion through the JCA connectors, the
Web services or the LDAP access.

« Offering some development tools through a set & fugins

Java EE management scenarios

More detailed informationn about JOnAS are giveappendix.

Java EE management scenarios

3 Rationale

Java EE clusters are more and more frequently deglavithin Enterprise Information Systems, to
cope with the growing requirements in term of doegity and availability. In many cases the sudden
expansion of such systems has led to very comptagtares which, using conventional methods can
be only monitored and controlled with difficulty. h&se distributed architectures raise new
administration issues, since they cannot be hardesbnably by hand to satisfy the required QoS:

e The N-tiers model (web/business/database tier®, dfack of several pieces of software
(OS/IvM/Java EE/application) and the distributegeats of a cluster increase roughly the
number of indicators to observe for monitoring slystem.

» The configuration and tuning capabilities providigdthe middleware components, together with
the complexity of the Java EE do require the sgiina huge number of parameters.

A system tool is required for simplifying the optergjob. It relies on advanced management features
and on autonomous behaviour capabilities to rethieenanagement costs of such architectures. The
main benefits are:

« to reduce the risk of human error in configurattma management operations

« to improve the response time to eliminate malfuomgioccurring in the system

« to improve the global availability of applicatioft®/ minimizing service interruption periods)

« to optimize global performance

The self-management is still a challenge. For msain a multi-tiers architecture, self-recovery
upon an application server failure does not sinpliyly restarting the failing server as an independe
element, but also rebuilding the connections of seaver with its front-end (eg. Apache server) and
back-end servers if any(eg. Database). This reguire knowledge of the global architecture of the
system in order to perform reconfigurations of salvelements of the system; and such an
architectural view is not provided by distributggtems

Java EE management scenarios

4 Scenarios
4.1 Self-management

4.1.1 Cluster architecture

The scenarios are implemented with the followirghéecture:

1 apache server

» 2 JONAS application server node (nodel-2) corredipgrto the Java EE middleware
* 1 MySQL database

figure 1.Cluster architecture

4.1.2 Node hardware failure or server crash

This self-healing scenario aims at demonstrating bte autonomic system deals with fail-stop
failure of the ME, eg. a node hardware failure or a Java EE middiew@ash.

The autonomic manager allows the ME to recover ftbeir failures by periodically monitoring
the status of MEs via heart-beat sensors associatiedhe MEs at different levels (OS, JVM).

When a failure of a ME is detected, a repair meidmarns thrown. If needed, for instance after a
hardware failure, a new node can be allocated ladhiddleware is installed. Afterwards the Java EE
application server is configured as the failed oflee bindings with the front-end and back-end
servers are recreated.

The following figure illustrates the scenario:

» Stepl: nominal mode, the cluster works fine witha2les for the application server tier:
nodel and node2. An application is deployed adies2 nodes and the Apache front end
performs a load-balancing of the user requests.

e Step2: nodel crashes. The clustering mechanisihe& and session replication) of the
underlying middleware (JOnAS) ensure the continwoityservice and availability of the
user session.

» Step3: the autonomic manager detects the failuneev node (node2) is gotten from the
server pool.

e Step4: the autonomic manager deploys the middlearatbe new node and configures its
from its knowledge base.

! Managed Element defined in the Selfware’s architecdocument [3]

Java EE management scenarios

» Stepb5: the autonomic manager enables the new Mbedinks with the other components
such as Apache at the front-end and MySQL at tik-bad are activated.

G

L
@
? ﬁ\,
- o @
®

@ -
@

5

figure 2.Server crash scenario

4.1.3 Dynamic resource provisioning

This Self-Optimization scenario aims at maximiziagplication performance while minimizing
the underlying resource usage (e.g. cluster nabdesgh dynamic resource provisioning.

The autonomic manager targets MEs that repres@hister of replicated MEse.g. a cluster of
JONAS application server. The Cluster ME is pedallly monitored via load sensors (e.g. CPU load,
memory consumption, or an aggregation of senst#jen the load exceeds a given maximum
threshold, the Cluster ME is resized by dynamicalliging new replicas as sub-MEs of the Cluster
ME.

The cluster resizing consists in first to allocateew node and to install the Java EE middleware.
Afterwards, one sub-ME of the cluster is introspdcto replicate it on the new node as a newly
deployed sub-ME.

Symmetrically, if the overall load of a Cluster N&=below a given minimum threshold that means
that the underlying cluster nodes are under-utlliZehus, the Cluster ME is dynamically resized by
removing one or more of its replicated sub-MEs, daehllocating the underlying nodes if no more
used.

The following figure illustrates the scenario:

% The ‘cluster ME’ ter mis introduced in the Selfe@rarchitecture document [3]

Java EE management scenarios

« Stepl: nominal mode, the cluster works fine witha2les for the application server tier:
nodel and node2. An application is deployed adiws? nodes and the Apache front end
performs a load-balancing of the user requests. dbster load is monitored through
probes on each ME.

e Step2: the cluster cpu load reaches the maximuesltioid. An event is send to the
autonomic manager.

e Step3: the autonomic manager decides to increaselubter size. A new node (node3) is
allocated from the server pool.

e Step4: the middleware is deployed and configurethemew node3.
e Stepb: the cluster of 3 nodes is now operationdlthe global load in under the limit.

e Step6: the requests load decreases and thus thal dlmad reaches the minimum
threshold. An event is notified to the autonomicager.

« Step 7: the autonomic managers decides to dectbaseluster size. The node3 is
removed. Though the clustering mechanisms of theedying middleware, there is no
session loss and no interruption of service.

e Step 8: the cluster is come back to the initizé svith 2 nodes..

Java EE management scenarios

10

Java EE management scenarios

figure 3.Self-sizing scenario

4.1.4 Others scenarios

These scenarios are given for information and woa'implemented in the Selfware context.

Dynamic load-balancing

This Self-Optimization scenario aims at maximizimgplication performance by optimizing the
underlying resource usage (ie. cluster nodes) gtralynamic load-balancing tuning.

The autonomic manager targets MEs that belong @uater of replicated MEs, ie. a cluster of
JONnAS application server. Each ME is periodicallpnitored via load sensors (e.g. CPU load,
memory consumption). When the load exceeds a gimarimum threshold for a node while still
being below for another node of the same Cluster #& load-balancing factors of each cluster node
is adjusted for sending less requests to the cageld node and more to the others.

Dynamic deployment

This Self-Optimization scenario aims at maximizimgplication performance by optimizing the
deployment over a JOnAS cluster. The deploymernimigation algorithm manipulates the application
(Java EE module) and thus is finer grain that thgnamic resource provisioning’ scenario which
relies on the more efficient JOnAS instances nunibergetting the better performance with the
minimum of resources.

The autonomic manager targets MEs that belong @uater of replicated MEs, ie. a cluster of
JONnAS application server. Each ME is periodicallpnitored via load sensors (e.g. CPU load,
memory consumption, Java EE application load). Wthercpu load and the application load exceeds
a given maximum threshold for a node while stiking below for another node which doesn’t host
the same application the deployment topology isisidd. The number of nodes hosting the
overloaded application is increased. Symmetrictilg,number of nodes hosting the others application
may be reduced.

Dynamic Selection of Component Implementations

This Self-Optimization scenario aims at maximizaggplication performance or improving QoS
attributes by selecting the best Java EE compangatémentation at runtime.

Each component has multiple implementations, eaehoptimized for a certain execution context
(IT resources, requests load, requests type, $gcur).

11

Java EE management scenarios

4.2 Self-benchmarking
4.2.1 Introduction

About benchmarking

The context of the scenarios proposed hereaftdrasof load testing campaigns. Load testing
campaigns consist in generating a flow of cliemfuests on a system under test in order to assess it
performance and sustainable throughput. As showrfidayre 4, a load testing infrastructure is
typically composed of:

« one or several load injectors sending requests sgstem under test (SUT) and waiting for

responses to measure the corresponding respores tim

e probes measuring the usage of computing resousteshe SUT side, to help detecting

performance problems, as well as at the load iigjeaide, in order to check that it is performing
as expected,;

* a supervision user interface to deploy, control ammhitor the distributed set of load injectors

and probes;

 a storage space to gather all measures (e.g.ea®hlsg files or a database);

« tools for post-mortem analysis and report genematio

deploy and invoke target
control injectors system
and probes

resource probe(s)}- system under test

resource probe l-

collect all
data

monitoring observed data:

(statistic data)]« resources usage (CPU, memory...)
+ performance (response time, error,

figure 4. Big picture of a typical load testing infrastructure.

The traffic generated by the load injectors are momly modeled through the definition of virtual
users, i.e. programs that emulate the behavioeafusers, through successions of requests and thin
times (time spent by a user between 2 consecuégeests). For a given SUT, there are often a
number of different typical usages, thus resultingdefining a number of different virtual users
exhibiting different behaviors. In the case of vagiplications, some users may just consult available
information, while others will strongly interact cdutrigger complex processes, resulting in different
usage of computing resources and thus differenaainpn performance. For instance, some behaviors
induce database write operations while others don't

Performance benchmarking aims at comparing andirrgnk variety of options such as
configuration parameters or alternative implemeaaiat of hardware or software implementations,
from a performance point of view. Benchmarking eglon load testing campaigns where the SUT
must be tuned for optimal performance in order btaim a meaningful ranking, since comparing
results from an optimally configured SUT with rdsufrom a badly configured alternative would
make no sense.

12

Java EE management scenarios

Self-benchmarking

It typically takes a lot of manpower, skills anché to carry a load test campaign out. The test
infrastructure is a complex combination of the Iagdction system, probe system, and SUT involving
a tremendous number of parameters that are likektrongly interact with each other (e.g. size of
buffers, pools of database connections, size anidypof caches, network configuration, multi-
threading policy...). Testers must be experts iergwlement of the global system (hardware,
software, operating system, middleware, networkiggants and protocols...) in order to handle
troubleshooting and performance optimization. Ireerpirical and iterative process, tests are redeate
again and again with different parameters arrangé&nand different configurations until sufficient
confidence and satisfaction about results are riéen, we see that testers behave like a
feedback/control loop, observing the SUT and thadlanjection system on the one hand, and
modifying the SUT and load injection configuration the other hand as a reaction to observations.

Self-benchmarking and the scenarios detailed hereadnsist in considering that the tremendous
complexity of the whole computing system used tmeachmarking campaign justifies an autonomic
computing approach, that is: try to use computiog/gr to autonomously deal with the computing
system complexity. In other words, self-benchmaglghall carry out test campaigns by autonomously
controlling the load injection system and the SWhfiurations, with the objective of maximizing
performancg Self-optimization and self-configuration featugee typically involved in this process.

4.2.2 Step one — autonomous search of saturation point

The first step in benchmarking generally consistsaarching the approximate performance limit
of the SUT in a given configuration. For example,tiie context of application servers; the tester
would typically try to find out the maximum numbefrusers that the SUT may sustain with regard to
given saturation criteria. Common criteria are esged in terms of response time, request rejection,
error occurrence, or computing resource shortaggmmon way of looking for the saturation limit is
to run a variable (generally growing) number ofuéd users and look for the saturation point. Aeoth
way of varying the load injection is to change pineportion between the different virtual user faesl
(i.e. of different behaviors). During this experim& search, the tester plays an empirical feedback
role on the load injection system: according to distance between the observation and the given
saturation criteria, the tester more or less irsgedor possibly decreases) the load.

Our first scenario is about defining, implementargd experimenting a load testing infrastructure
featuring autonomous search of saturation pointshsvn byfigure 5, this infrastructure is composed
of:

« the system under test, which will actually be atirtidrs web application;

« the load injection system, made of one or sevefBlI' M traffic generators depending on the

required load level;

e probes measuring computing resources usage atlfieicluding for instance typical system
probes (CPU, memory, network...) as well as pogsjistbbes related to specific software
elements involved in the multi-tiers environmenT{HP front-end, servlet server, EJB container,
EJBs, database...);

 aload injection controller, replacing the {useterfiace, tester} pair by autonomously controlling
the traffic level (number of virtual users) andtmntents (virtual user behavior), observing the
overall system (load injection and SUT) through sugas produced by probes (resource usage)
and injectors (response times, errors, throughpat),controlling the load injection.

Then, it appears clearly that our load injectiostesn involves a control loop, in conformance
with Selfware's architectural approach to autonosyistems. Since the concept of saturation may be
practically characterized in a number of ways, dhghitecture of our self-regulated injection system
also exhibits a component dedicated to provideisoldte the saturation criteria and feedback (load
injection) policy.

® Of course, the concept of performance may be isedist mapped to a variety of criteria, such asuesj
throughput, rejection or error rate, response timamber of users, etc.

13

Java EE management scenarios

control (feedbac) | injection [TeQUeSts 1 system
»| system under test

probes [I@i

response times, errars consumption measurements of
computing resourct

y
[o
| load injection controller |

saturation criteria | | load injection policy |

figure 5. Self-regulated load injection for autonomic search of system performance saturation

4.2.3 Step 2 — self-optimization of the system under test

This scenario is dedicated to the self-optimizatdrihe tested system. As a matter of fact, the
ultimate goal of benchmarking is to qualify theiom@l performance of a system and to compare it to
other similar but different (in configuration or ilementation) system. Therefore, finding the optima
settings of the tested system, in other words dpdinit, is key to the autonomic benchmarking
principle.

This second step includes step one since benchmganequires to reach the maximum
performance (i.e. the saturation limit). For instnthe result of step one could be the conclugian
the SUT in a given configuration sustains a nundfexctive virtual users representing a given mix of
a number of behaviors. Then, the question is: & thsult the best the SUT can deliver, or is it
improvable by tuning the SUT? In other words, thster will try to optimize the SUT and rerun the
load test until s/he has the conviction that theiimam performance has been reached. This is, of
course, a matter of estimation, whose accuracyrkspen the skill and experience of the testergesinc
the combinatory of tuning parameters, and the cexifyl of interactions between them are so huge
that a full exploration of the solution space i$ Imemanly feasible.

This second scenario also consists in replacingesier by a second control loop introducing a
self-optimization of the SUT. Synchronization mbst achieved between self-optimization and self-
regulated load injection processes in order torrste in a consistent way optimization phases and
saturation search phases. The resulting archieedseefigure 6) adds a configuration controller,
observing the maximum system performance (i.e.eaeli at the saturation limit) reached for current
configuration, and generating new possible systenfigurations. SUT-specific configuration rules
must be provided in order to identify possible tilegparameters and their possible values. A general
controller component orchestrates the configuratimmtroller and the load injection controller.

14

Java EE management scenarios

_configuration (feedback)

control (feedbac) | iniection [TE€QUESES 1 system
»| system under test

response times, errors consumption measurements of
computing resourct

[o - .
| injection controller | | configuration controller |

| saturation criteria - -
configuration rules |

| injection policy general controller |

figure 6. Autonomic benchmarking: self-optimization of a system under test and autonomic search of
performance saturation

15

Java EE management scenarios

5 Appendix

5.1 JONAS, the Objectweb’s application server

JONAS is an open source application server, degdlaythin the ObjectWeb consortium.

JOnAS J2EE Application Server
- WEB Container EJB Container
g &
Serviets EJBs
] T\ JSPs
f - o N % = o8
. |E N -
- -
o — in
client o | w | “ H
HHHEHH :
81s|5|5 | 3| EIS
Q11111

5.1.1 JONnAS Features

JONAS is a pure Java, open source, applicatioresdts high modularity allows to it to be used
as:

« a Java EE server, for deploying and running EARlieaons (i.e. applications composed of
both web and ejb components),

» an EJB container, for deploying and running EJB ponents (e.g. for applications without web
interfaces or when using JSP/Servlet engines that@t integrated as a JOnAS container),

« a Web container, for deploying and running JSPsSatdlets (e.g. for applications without EJB
components).

System Requirements

JONAS is available for JDK 1.4 and JDK 5. It hasrbesed on many operating systems (Linux,
AIX, Windows, Solaris, HP-UX, etc.), and with difent Databases (Oracle, PostgreSQL, MySQL,
SQL server, Access, DB2, Versant, Informix, Intesdyzetc.).

Java Standard Conformance

JONAS supports the deployment of applications aomiftg to Java EE 1.4 specification. Its
current integration of Tomcat or Jetty as a Webtaioer ensures conformity to Servlet 2.4 and JSP
2.0 specifications. The JOnAS server relies onnapléments the following Java APIs: EJB 2.1,
JTATM 1.0.1, JDBC 3.0, Java EE CA 1.5, JMX 1.2, JNI2.1, JMS 1.1, JavaMail 1.3, Servlet 2.4,
JSP 2.0, JAAS 1.0, JACC 1.0, Web Services 1.1, BRG 1.1, SAAJ 1.2, JAXR 1.0, Java EE
Management 1.0, JAF 1.0, JAXP 1.2 specificatio®sAIS is architectured in terms of services.

16

Java EE management scenarios

Key Features

JONAS provides the following important advanceduess:

 Management JOnAS server management uses JMX and providesSR/Struts-based
management console. It provides high level fundiities for monitoring and managing clusters
of JONAS servers.

« ServicesJONAS's service-based architecture providesifgr lmodularity and configurability of
the server. It allows the developer to apply a comgmt-model approach at the middleware
level, and makes the integration of new moduley éag. for open source contributors). It also
provides a way to start only the services needeal particular application, thus saving valuable
system resources. JOnAS services are manageatlgthiMX.

« Scalability. JOnAS integrates several optimization mechanfemscreasing server scalability.
This includes a pool of stateless session beammoh of message-driven beans, a pool of
threads, a cache of entity beans, activation/passivof entity beans, a pool of connections (for
JDBC, JMS, Java EE CA), storage access optimiza{isimared flag, isModified).

 Clustering JONnAS clustering solutions, both at the WEB aniB Hevels, provide load
balancing, high availability, and failover support.

« Distribution: JOnAS works with several distributed processimyirenments, due to the
integration of the CAROL (Common Architecture foMR ObjectWeb Layer) ObjectWeb
project, which allows simultaneous support of saveommunication protocols:
¢ RMI using the Sun proprietary protocol JRMP
* RMilon lIOP
e CMI, the "Cluster aware" distribution protocol @JAS
« IRMI, an open source RMI protocol implementation
¢ JONAS benefits from transparent local RMI call oyitiation.

« Support of "Web ServicedDue to the integration of AXIS, JOnAS allows J&E& components
to access "Web services" (i.e., to be "Web SerVicksnts), and allows Java EE components to
be deployed as "Web Services" endpoints. Standaeb \Services clients and endpoints
deployment, as specified in Java EE 1.4, is supdort

» Support of JDO By integrating the ObjectWeb implementation ofQJDSPEEDO, and its
associated Java EE CA Resource Adapter, JOnASda®the capability of using JDO within
Java EE components.

» Early support of EJB3Even before the EJB3 specification (part of J&ia5, the new Java EE
specification) is finalized, JOnAS already provi@éesEJB3 container. This one is available as a
Java EE CA Resource Adapter, which may be deplayedOnAS 4. It is developed as a
standalone ObjectWeb project, named EasyBeans.cBbmwiner makes EJB development far
more easy.

Three critical Java EE aspects were implementdg mathe JOnAS server:

e Java EECA Enterprise Information Systems (EIS) can be gasitcessed from JOnAS
applications. By supporting the Java Connector Aecture, JOnAS allows deployment of any
Java EE CA-compliant Resource Adapter (connecishich makes the corresponding EIS
available from the Java EE application componednts.example, Bull GCOS mainframes can
be accessed from JONAS using their associated HooXectors. Moreover, with Java EE 1.4,
resource adapters are now the "standard" way p JDBC drivers and JMS implementation, to
Java EE platforms. A JDBC Resource Adapter is alklwith JOnAS, which provides JDBC
PreparedStatement pooling and can be used in plattee JOnAS DBM service. A JORAM
JMS Resource Adapter is also available. The JOn2EEearly container is also available as a
Resource Adapter.

* JMS JMS implementations can be easily plugged intoAI® They run as a JOnAS service or
through a resource adapter in the same JVM (Java&ViMachine) or in a separate JVM.
JONAS provides administration facilities that hithee JMS proprietary administration APIs.

17

Java EE management scenarios

Currently, two JMS implementations can be usedJ®BAM open source JMS implementation
from Objectweb, and Websphere MQ. JORAM managenseparticularly strongly integrated
within the JOnAS management console. Clusterindigorations involving load balacing and
high availability at the JMS level are also avdgaihanks to JORAM HA features.

e JTA The JONAS platform supports distributed transamdithat involve multiple components
and transactional resources. The JTA transactiomppast is provided through JOTM, a
Transaction Monitor that has been developed onmgaeimentation of the CORBA Transaction
Service (OTS). Originally this transaction moniteas JOnAS internal; it has been extracted to
be available as a standalone project, JOTM.

5.1.2 JONAS Architecture

JONAS is designed with services in mind. A serviggically provides system resources to
containers. Most of the components of the JOnASicgijpn server are pre-defined JOnAS services.
However, it is possible and easy for an advancethBuser to define a service and to integratetdt in
JONAS. Because Java EE applications do not nedgsseed all services, it is possible to define, at
JONAS server configuration time, the set of sewvitat are to be launched at server start.

The JONnAS architecture is illustrated in the foliogvfigure, showing WEB and EJB containers
relying on JOnAS services (this figure only misgesHA service). Two thin clients are also shown in
this figure, one of which is the JOnAS administratconsole (called JonasAdmin).

HIML Clients
Appli.ear B

RMI Clients

T{!I'I'ICJ.K |S—| dDRP"l
Jetty MEDOR

i ’_\ .
i | CAROL/Jonathan =

" JONAS JZEE Server

18

Java EE management scenarios

5.1.3 JONAS clustering

The Java EE clusters aim at providing scalabilitg high availability to the applications. It relies:
« A load balancing mechanism for distributing theugsgfs over multiple servers and thus increase
the processing capacities
* Areplication mechanism of the essential data betwibe servers
* A transparent fail-over mechanism enabling to dwaaother server without service disruption,
thus ensuring continuity of service.

To achieve these objectives, JOnAS provides a fkaddation for the clustering as illustrated in
the following figure.

Java client

Apache
HTTP LB

Weh LB

Apachd]|mod_ix

JOnAS

I\’Iﬂgt Dormain & claster mngt

aster node

HTTP session load balancing

In a JONAS cluster, load balancing at this levehddhieved by dispatching HTTP requests from
APACHE server(s) over a set of available JOnAS \Welntainers (TOMCAT). As a result, more
requests can be processed concurrently.

The MOD_JK plug-in provides communication betwed?®CHE and TOMCAT servers.

HTTP session replication

In a general matter, HTTP session replication esssgervice availability and continuity of service
at the SERVLET or JSP level.

Session replication implies that the current sendtate - any data inside the HTTP session - is
replicated across multiple application instances.

It is the responsibility of the application to clseowhich data to store inside the session to ensure
that a failover happens transparently without aughson of the entire solution.

In a JONAS cluster, the session replication, cadlttdo-all replication, happens inside the Web
Containers (TOMCAT) that use a proprietary TCP dgs®tocol.

19

Java EE management scenarios

JNDI clustering

The CMI protocol provided with JOnAS, embeds itsnoreplicated registry. The fat clients can
use a servers list in the lookup requests enstmitly the load-balancing and the high availability o
the JNDI accesses.

EJB load balancing

In a general matter, load balancing at this lesedchieved by dispatching EJB invocations from
the clients over a set of available EJB Containfss.a result, more requests can be processed
concurrently.

For a Stateless Session Bean (SSB), the load lnadatakes place for either the home or the
business methods (remote interface). For a Stdte&SEssion Bean (SFSB), the load balancing takes
place only for the home interface.

In a JONAS cluster environment, the cluster hasveage, through the JGroups protocol, of the
distribution of the EJBs.

The CMI protocol, implemented on top of RMI, supsoEJB invocations for fat Java clients or
Web applications running within the Web containers.

An answer to a lookup (or create for the SSB) special stub containing stubs to each instance
known in the cluster. The stub can issue each rdathl on the home (remote for SSB) of the EJB to
a new instance and uses a weighted round robimitdgofor distributing the load.

Session Full EJB replication

This solution enables failover at EJB level.
This means state replication for State Full SesBeans (SFSB).

Only the state of the EJB is replicated, not thanbitself. The "state" contains enough information
for the nodes to be able to re-create the bean.

An Entity Bean (EB) cannot be replicated. Howevee, state of an SFSB can contain a reference
to an Entity Bean (EB).

JMS clustering

Through JORAM, the JMS provider integrated with ASnand its distributed architecture, the
JMS objects requests can be balanced among sel@RMAM servers. Furthermore, fail-over is
provided with the JORAM HA relying on one mastesfidves architecture

JDBC clustering

Through the Sequoia project (formet ObjectWeb C_QBoject) the writing JDBC requests are
multicasted to several database nodes ensuringavigifability and the reading JDBC requests are
load-balanced. Furthermore, an extra cache layedDBC controller) increases the reading
performances.

Clustering management

The jonasAdmin console enables to perform clugberations such as deployment or monitoring
from a management dedicated node called the mastier.

Clustering architecture example

An example of a typical JOnAS cluster architeciargiven in the following figure.

20

Java EE management scenarios

sampleCluster2Domain

T MK

node3/jb3

nodel/jbl
\ —_

-
o :

node2/jb2 B/ noded/jba
-~ 7 ' -~

myCluster

java client

* master node management node enabling to administrate treasifrom a centralized console
» db node database node, here it's is a HSQL instance dddukinto a JOnAS

« cd: cluster daemon, bootstrap of a JOnAS node for¢émote control

« apache/mod_jk HTTP server with the plugin enabling the loathbaing of the HTTP flow

* nodel-2 JOnAS nodes of the web level

* node3-4: JONAS nodes of the ejb level

« myCluster. logical cluster gathering the 4 JOnAS nodes, rilesd in domain.xml

« sampleCluster2Domaindomain name of the configuration

« java client: fat client

« CMI : RMI protocol for the cluster mode ensuring thidJ replication and the EJB clustering
* HA : SFSB replication

e HTTP session HTTP session replication

21

Java EE management scenarios

6 References

1 Ada Diaconescu, Automatic Performance OptimisatibComponent-Based Enterprise
Systems via Redundancy, 2006

2 Sara Bouchenak, Fabienne Boyer, Noel De PalmaigDidagimont, Sylvain Sicard, and
Christophe Taton, JADE: A Framework for Autonomiafhhgement of Legacy Systems,
2006

3 Selfware Architecture, 2007

22

