
Processes

Thanks to Fabienne Boyer and Arnaud Legrand and the
books (Silberschatz, tanenbaum)

Process (1/2)

 A process is an instance of a running program
 Eg : gcc, sh, firefox ...
 Created by the system or by an application
 Created by a parent process
 Uniquely idendified (PID)

 Correspond to two unit :
 Execution unit

 Sequential control flow (exécute une suite d'instruction)

 Addressing unit
 Each process has its own address space
 Isolation

Concurent processes

 Multiple processes can increase CPU utilization
 Overlap one process's computation with another's wait

 Multiple processes can reduce latency
 Running A then B requires 100 secs for B to complete

 Running A and B concurently improves the average response time

emacs

gcc

(Wait for input) (Wait for input)

A B 20s80s

A

B 10s

Execution context

 A process is characterized by its context
 Process' current state

 Memory image
 Code of the running program
 Static and dynamic data

 Register's state
 Program counter (PC), Stack pointer (SP) ...

 List of open files
 Environment Variables
 …

 To be saved when the process is switched off
 To be restored when the process is switched on

Running mode

 User mode
 Restricted access to process own adress space
 Limited instruction set

 Supervisor mode
 Full memory access
 Full access to the instruction set

 Interrupt, trap
 Asynchronous event
 Illegal instruction
 System call request

Process Lifecycle

new

ready running

waiting

terminatedadmitted
elected

pre-empted

IO or event waitIO or event completion

exit

●Which process should kernel run ?
● If 0 runnable, run a watchdog, if 1 runnable, run it
● If n runnable, make scheduling decision

Process management by the OS

 Process files
 Ready queue (ready process)
 Device queue (Process waiting for IO)
 Blocked Queue (Process waiting for an event)
 ...

 OS migrates processes across queues

Process Control Structure

Process state
(ready, ...)

Process ID

User ID

Registers

Address space

Open files

…

Hold a process execution context

PCB (Process Control Block):
Data required by the OS to manage
process

Process tables:
PCB [MAX-PROCESSES]

Process context switch

Running

Running

Ready / blocked

Load ctxt P1

Running

Ready / blocked

Ready

SEProcessus P0 Processus P1

Save ctxt P1
Load ctxt P0

Save ctxt P0

Interruption / trap / IO

Interruption / trap

Ready

CPU Allocation to processes

 The scheduler is the OS's part that manage CPU
Allocation

 Criteria / Scheduling Algorithm
 Fair (no starvation)
 Minimize the waiting time for processes
 Maximize the efficiency (number of jobs per unit of time)

Scheduling criteria

 Algorithm with/without Pre-emption
 A process can be interrupted if pre-emption (time sharing) or forbidden

(multiprogramming only)

 Choice of the Quantum
 Priority management

 System Process
 User process

 Very interactive
 Few interactive

Simple scheduling algorithms (1/2)

 Non-pre-emptive scheduler (multiprogramming)
 FCFS (First Come First Served)

 Fair

 Pre-emptive scheduler (multiprogramming+timesharing)
 SJF (Shortest Job First)

 Priority to shortest task
 Require to know the execution time (model estimated from previous

execution)
 Unfair but optimal in term of response time

 Round Robin (fixed quantum)
 Each processus is affected a CPU quantum (10-100 ms) before pre-

emption
 Efficient (unless the quantum is too small), fair / response time

(unless the quantum too long)

Simple scheduling algorithms (2/2)

 Round robin with static priority
 A priority is associated with a quantum number (1,2,4, etc)
 High priority induces small quantum
 Processes are elected according to their priority
 Good response time (priority to interactive process)
 Starvation possible

 Problem  low priority processes may never be elected
 Solution  "Aging" – increasing a process priority according to its age
 dynamic priority

 Round robin with dynamic priority
 An additional parameter (e.g. a duration and an interrupt count, or ages)

allows to increase/decrease a process priority.
 Fair

First-Come, First-Served (FCFS)--non pre-emptive

Process's execution time
P1 24

 P2 3
 P3 3

 Let's these processes come in this order : P1,P2,P3

 Response time of P1 = 24; P2 = 27; P3 = 30
 Mean time : (24 + 27 + 30)/3 = 27

P1 P2 P3

24 27 300

(c) Sylberschatz

First-Come, First-Served (FCFS) (2/2)

Let's these processes come in this order :
 P2 , P3 , P1 .

 Response time : P1 = 30; P2 = 3; P3 = 6
 Mean time : (30 + 3 + 6)/3 = 13
 Better than the precedent case
 Schedule short processes before

P1P3P2

63 300

(c) Sylberschatz

Shortest-Job-First (SJR)

 Associate to each process its execution time
 Two possibilities :

 Non pre-emptive – When a CPU is allocated to a process, it cannot be pre-
empted

 Pre-emptive – if a new process comes with a shorter execution time that the
running one, this last process is pre-empted

 Alternate solution : Shortest-Remaining-Time-First (SRTF) algorithm

 SJF is optimal / mean response time

Process Come in Exec. time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

 SJF (non pre-emptive)

 Mean response time = (7 + 8 + 12 + 16)/4 = 10,75

Example: Non Pre-emptive SJF

P1 P3 P2

73 160

P4

8 12

Pre-emptive SJF (Shortest Remaining
Time Next)

Process Come in Exec time.
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

 SJF (pre-emptive)

 Mean response time = (16 + 7 + 5 + 11)/4 = 8,25

P1 P3P2

42 110

P4

5 7

P2 P1

16

Round Robin (Quantum = 20ms)

Process Exec Time.
P1 53
 P2 17
 P3 68
 P4 24

 Efficiency and mean response worse than SJF

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Multiple level scheduling algorithm

 The set of ready processes too big to fit in memory

 Part of these processes are swapped out on the disk. This increase
their activation time

 The elected process is always choosen from those that are in memory

 In parallel, another scheduling algorithm is used to manage the
migration of ready process between disk and memory

Two level scheduling

new

ready RAM running

blocked

terminated

admitted

elected

interrupted

I/O, event ...

Swap out

end

ready disk

swap in swap
out End I/O...

 Process SVC overview

int fork (void);
 Create new process that is exact copy of current one
 Returns process ID of new process in “parent”
 Returns 0 in “child”

int waitpid (int pid, ...);
 pid – process to wait for, or -1 for any
 Returns process ID or -1 on error

Hierarchy of processes
 run the pstree -p command

Process SVC overview

 void exit (int status);
 Current process ceases to exist
 status shows up in waitpid (shifted)
 By convention, status of 0 is success, non-zero error

 int kill (int pid, int sig);
 Sends signal sig to process pid
 SIGTERM most common value, kills process by default (but application

can catch it for “cleanup”)
 SIGKILL stronger, kills process always

 When a parent process terminates before its child, there
are two options:
 Cascading termination (VMS).
 Re-parent the orphan (UNIX).

Process SVC overview

 int execve (const char *prog, const char **argv,
char **envp;)
 prog – full pathname of program to run
 argv – argument vector that gets passed to main
 envp – environment variables, e.g., PATH, HOME

 Generally called through a wrapper functions
 int execvp (char *prog, char **argv);

 Search PATH for prog, use current environment

Fork and Exec

 The fork system call creates a copy of the PCB
 Open files and memory mapped files are thus similar
 Open files are thus opened by both father and child. They should both

close the files
 The pages of many read only memory segments are shared (text, r/o data)
 Many others are lazily copied (copy on write)

 The exec system call replaces the address space, the
registers, the program counter by the one of the program
to exec.
 Open files are thus inherited

Why fork

 Most calls to fork followed by execvp
 Real win is simplicity of interface

 Tons of things you might want to do to child:
 Yet fork requires no arguments at all
 Without fork, require tons of different options
 Example: Windows CreateProcess system call

Bool CreateProcess(
LPCTSTR IpApplicationName, //pointer to a name to executable module
LPTSTR IpCommandLine, // pointer to a command line string
LPSECURITYATTRIBUTES lpProcessAttributes, //process security attr
LPSECURITYATTRIBUTES lpThreadAttributes, // thread security attr
BOOL bInheritHandles, //creation flag
DWORD dwCreationFlags, // creation flags
LPVOID IpEnvironnement, // pointer to new environment block
LPCTSTR lpCurrentDirectory, // pointer to crrent directory name
LPSTARTUPINFO lpStartupInfo, //pointer to STARTUPINFO
LPPROCESSINFORMATION lpProcessInformaton // pointer to PROCESSINFORMATION);

 Process creation
 Done by cloning an existing process

 =>Duplicate the process
 Fork() system call

 Return 0 for the child process
 Retour the child's pid to the father
 Return -1 if error

#include <unistd.h>

pid_t fork(void)

r = fork();
if (r==-1) … /* error */
else if (r==0) … /* child's code */
else … /* father's code */

Fork example

fork();
fork();
fork();

 How many processes are created ?

for (i=0; i<3;i++){
 fork();
}

int i = 0;
switch((i=fork()) {

case -1 : perror(“fork“); break;
case 0 : i++; printf(“child I :%d“,i); break;
default : printf(“father I :%d“,i);

}

 What are the possible different traces

Fork example

 Reminder : main function definition
 int main(int argc, char *argv[]);

 Execvp call
 Replace the process's memory image
 int execvp(const char *ref, const char *argv[])

 ref : file name to load
 argv : process parameters

 execvp calls main(argc, argv) on the process to launch

Exec example

Example

char * argv[3];

argv[0] = “ls “;
argv[1] = “-al “;
argv[2] = 0;
execvp(“ls“, argv);

Father/child synchronization

 The father process wait for the terminaison of one of its child
 pid_t wait(int *status)

 The father wait for the terminaison of one of its child
 pid_t : dead child's pid or -1 if no child
 status : information on the child's death

 pid_t waitpid(pid_t pid, int *status, int option)
 Waint for a specific child's death
 Option : non blocking … see man

Example wait

#include <sys/types.h>
#include <sys/wait.h>

main(){
 int spid, status;
 switch(spid = fork()){

case -1 : perror(…); exit(-1);
case 0 : // child's code

break;
default : // the father wait for this child's terminaison

if (waitpid(spid,&status,0)==-1) {perror(…);exit(-1);}
…

 }
}

Example : minishell

pid t pid;
char **av;
void doexec() {
 execvp(av[0], av);
 perror(av[0]);
 exit(1);
}
/* ... main loop: */
for (;;) {
 parse_next_line_of_input(&av, stdin);
 switch (pid = fork()) {
 case -1: perror("fork"); break;
 case 0:
 doexec();
 default:
 waitpid(pid, NULL, 0);
 break;
 }
}

I/O redirection

 All file is adressed through a descriptor
 0, 1 et 2 correspond to standard input, standard output, and

standard error
 The file descriptor number is return by the open system call

I/O redirection

 Basic operation
 int open(const char *ref, int mode);

 O_RDONLY, O_WRONLY, O_RDWR …
 int creat(const char *ref,mode_t droit);
 int close(int desc)
 ssize_t read(int desc, void *ptr,size_t nb_octet);
 ssize_t write(int desc, void *ptr, size_t nb_octet);

I/O redirection

 Descriptor duplication
 dup(int desc); dup2(int desc_src, int

desc_dest);
 Used to redirect standard I/O

#include <stdio.h>
#include <unistd.h>
int f;
/* redirect std input to the file */

…
close(STDIN_FILENO); // close std input
dup(f); // dupliquate f on the first free descriptor (i.e. 0)
close(f); // free f
…

dup2(f,STDIN_FILENO);
close(f);

Cooperation between processes

 Independent process cannot affect or be affected by the
execution of another process

 Cooperating process can affect or be affected by the
execution of another process. Advantages:
 Information sharing
 Computation speed-up
 Modularity
 Convenience

Process Interaction

 How can processes interact in real time?
 (1) Through files but it’s not really “real time”.
 (2) Through asynchronous signals or alerts but again, it’s not really
 “real time”.
 (3) By sharing a region of physical memory
 (4) By passing messages through the kernel

Process A

Process B

Process A

kernel

12

Process A

Process B

Process A

kernel

1

2
shared

Asynchronous notification (Signal)

 A process may send a SIGINT, SIGSTOP, SIGTERM,
SIGKILL signal to CTRL-C, suspend (CTRL-Z), terminate or
kill a process using the kill function:

int kill (int pid, int sig);

 A lot of signals …
 Some signals cannot be blocked (SIGSTOP and SIGKILL)

 Upon reception of a signal, a given handler is called. This
handler can be obtained and modified using the signal
function:
 typedef void (*sighandler t)(int); // handler
 sighandler t signal(int signum, sighandler t handler); // set a handler

Example

int main(void) {
 signal(SIGTSTP, handler);
 /* if control-Z */
 signal(SIGINT, handler);
 /* if control-C */
 signal(SIGTERM, handler);
 /* if kill processus */
 while (1) {
 sleep(DELAI);
 printf(".");
 fflush(stdout);
 }
printf("fin");
exit(EXIT_SUCCESS);
}

void handler(int signal_num) {
 printf("Signal %d => ", signal_num);
 switch (signal_num) {
 case SIGTSTP:
 printf("pause");
 break;
 case SIGINT:
 case SIGTERM:
 printf("End of the program");
 exit(EXIT_SUCCESS);
 break;
 }
}

- Signal handling is vulnerable to race conditions: another signal (even of the same type)
can be delivered to the process during execution of the signal handling routine.
- The sigprocmask() call can be used to block and unblock delivery of signals.

Shared memory segment

 A process can create a shared memory segment using:
 int shmget(key t key, size t size, int shmflg);
 The returned value identifies the segment and is called the shmid
 The key is used so that process indeed get the same segment.

 The original owner of a shared memory segment can
assign ownership to another user with shmctl().
 It can also revoke this assignment.

 Once created, a shared segment should be attached to a
process address space using
 void *shmat(int shmid, const void *shmaddr, int shmflg);

 It can be detached using int shmdt(const void *shmaddr);
 Can also be done with the mmap function
 Example

Example

int shmid;
key t key;
char *shm, *s;
key = 5678;
/* Locate the segment */
if ((shmid = shmget(key, SHMSZ, 0666))< 0) {
perror("shmget");
exit(1);
}
/* Attach the segment */
if ((shm = shmat(shmid, NULL, 0)) ==
(char *) -1) {
perror("shmat");
exit(1);
}

char c;
int shmid;
key t key;
char *shm, *s;
key = 5678;
/* Create the segment */
if ((shmid = shmget(key, SHMSZ,
IPC_CREAT | 0666)) < 0) {
perror("shmget");
exit(1);
}
/* Attach the segment */
if ((shm = shmat(shmid, NULL, 0)) ==
(char *) -1) {
perror("shmat");
exit(1);
}

Pipe

 Communication mechanism between processes
 Fifo structure
 Limited capacity
 Producer/consumer synchronization

pipe

1 0

Pipes

 int pipe (int fds[2]);
 Returns two file descriptors in fds[0] and fds[1]
 Writes to fds[1] will be read on fds[0]
 When last copy of fds[1] closed, fds[0] will return EOF
 Returns 0 on success, -1 on error

 Operations on pipes
 read/write/close – as with files
 When fds[1] closed, read(fds[0]) returns 0 bytes
 When fds[0] closed, write(fds[1]):
 Kills process with SIGPIPE, or if blocked
 Fails with EPIPE

Example

void doexec (void) {
 int pipefds[2];

 pipe (pipefds);
 switch (fork ()) {
 Case -1: perror ("fork"); exit (1);
 case 0:
 dup2 (pipefds[1], 1);
 close (pipefds[0]); close (pipefds[1]);
 execvp(...);
 break;
 default:
 dup2 (pipefds[0], 0);
 close (pipefds[0]); close (pipefds[1]);
 break;
 }
/* ... */
}

IPC

 Mechanism for processes to communicate and to synchronize
their actions

 Message system for processes to communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send(message) message size fixed or variable
 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive
 Implementation of communication link shared memory,

hardware bus ...

IPC

 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of

comunicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can

accommodatefixed or variable?
 Is a link unidirectional or bi-directional?
 Detailled during practical sessions

Direct link

 Processes must name each other explicitly:
 send (P, message) send a message to process P
 receive(Q, message) receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link.
 The link may be unidirectional, but is usually bi-directional

Indirect communication

 Messages are directed and received from mailboxes (also referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox
 Properties of communication link

 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox
 send(A, message) send a message to mailbox A
 receive(A, message) receive a message from mailbox A

Socket

 A socket is defined as an endpoint for communication
 Basic message passing API
 Identified by an IP address and port
 The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8
 Communication consists between a pair of sockets and is

bidirectionnal

Socket

• Connected mode (TCP) :
– Communication problem are managed automatically

• Message lost, duplication, delivery order

– Connexion and reliability overhead

• Non connected mode (UDP) :
– Consume less system's resources

– Message can be lost or duplicated

– Manage error by hand

 Socket layer

Client Server

n° port :2345
@ IP : 193.168.20.1

n° port :80
@ IP : 193.168.20.2

 Transport layer(TCP, UDP)

@ IP : 193.168.20.1 @ IP : 193.168.20.2
Network layer (IP)

@ Ethernet @ Ethernet
Binding layer

Session layer - Application

The socket API

• Socket creation: socket(..., protocol)
• Open the dialogue :

– client : connect(...)

– serveur : bind(..), listen(...), accept(...)

• Data transfert :
– Connected mode : read(...), write(...), send(...), recv(...)

– Not connected mode : sendto(...), recvfrom(...), sendmsg(...), recvmsg(...)

• Close the dialogue :
– close(...), shutdown(...)

Client/Server in not connected mode

Blocked until the reception os the response

Blocked until the reception of the request
send request

Client Serveur

socket()

bind()

sendto()

recvfrom()

close()

socket()

bind()

sendto()

recvfrom()

close()

Socket creation

Assign n°port - @ IP

Request processing

send response

Response processing

Close the socket

Client/Server in connected mode

Establish the connexion

Blocked until the reception of the response

Blocked until the reception of the request
send request

Client Server
socket()

connect()

write()

read()

close()

socket()

bind()

write()

read()

close()

Socket creation

Request processing

Send response

Response processing

Close the socket

listen()

accept()

Server model

• Simple
• Master/slave

– On demand creation of processes/threads

– Pool of processes/threads

• Duplicated
– Request load balancer

– Primary/secondary replication

– Active replication

Publish/Subscribe (1)

 Anonymous sender/receiver
 Sender send a message (subject-based or content-based)
 Receiver subscribe (to a subject or to a content)

 Communication 1-N
 Multiple receivers can subscribe

Remote Procedure Call

 Allow to call procedure in other address space
 Easy to program : RPC call looks like local procedure

call

caller

call

called

return

f(a, b)

client serveur

RPC [Birrel & Nelson 84]

skel

call

réseau

caller

call

Stub

return

communication
Protocol

Communication
Protocol

called

return

A

E

B

D

C

Remote Method Invocation (RMI)

Method_1

Method_n

state

Server objetClient objet

call

Communication system

skelstub

reference

Object Reference+method+arguments

Resultt or exception

Java RMI
Server side

• 0 – When the object is created, a stub and a
skeleton (with communication) are created on
server side

• 1 – The server object register through the RMI's
registry (method rebind of the naming class).
The object stub is registered in the registry.

• 2 – The registry is ready to provide remote
reference to object server

Java RMI
Architecture

JVM Client
JVM Serveur

ClientClientClientClient

SkeletonSkeletonSkeletonSkeleton

rmiregistryrmiregistryrmiregistryrmiregistry

ServeurServeurServeurServeur

NamingNamingNamingNaming

stubstubstubstub

stubstubstubstub

Java RMI
Client side

• 4 – The client object use the Naming class to locate
the server object in the registry (lookup method)

• 5 - The registry provides the stub to the server
object

• 6 – install the stub object and return its reference to
the client

• 7 – The client calls the remote object through the
stub

Java RMI
Architecture

JVM Client
JVM Serveur

NamingNamingNamingNaming

ClientClientClientClient

StubStubStubStub
SkeletonSkeletonSkeletonSkeleton

rmiregistryrmiregistryrmiregistryrmiregistry

ServeurServeurServeurServeur

NamingNamingNamingNamingstubstubstubstub

