
  

Linking and virtual memory

Noël De Palma
UJF

Thanks to Fabienne Boyer and Arnaud Legrand



  

Introduction

 Memory is a ressource required by all processes
 Every program need to be loaded in memory to 

be running
 Problem

 Address translation
 Symbol → Logical address → physical address

 Memory allocation and exhaustion
 Memory sharing 
 Memory protection
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Lifecycle of a program assembled 
from multiple part
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Load-time translation 
 Translation between logical and physical adresses 

 Determine where process will reside in memory
 Translate all references within program
 Established once for all

 Monoprogramming
 One program in memory
 Easy

 Multiprogramming 
 N program in memory
 Compiler and linker do not know the implantation of 

processes in memory
 Need to track op-code that must be updated



Simple program binary structure
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Complex program binary structure 
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Data structure

Hole Addresse  Symbol name Symbol Section

Relocation table (track the addresses that must be updated in the code)
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Load-time translation 
summary

 Remaining problems
 How to to enforce protection ?
 How to move program once in memory ?
 What if no contiguous free region fits programs 
 Can we separate linking from memory 

management problems ?



  

Virtual memory

 Separate linking problem from memory 
management

 Give each program its own virtual address 
space
 Linker works on virtual addresses
 Virtual address translation done at runtime

 Relocate each load/store to its physical 
address

 Require specific hardware (MMU)



  

Virtual memory
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Virtual memory expected benefits

 Programs can be relocated while running
 Ease swap in/swap out  

 Enforce protection
 Prevent one app from messing with another's 

memory
 Programs can see more memory than exist

 Most of a process's memory will be idle
 Write idle part to disk until needed



  

1st idea : Base + bound registers
Contiguous allocation of variable size
Two special privileged registers: base and bound
On each load/store:
Check 0 <= virtual address < bound, else trap to kernel
Physical address = virtual address (plus) base



  

Base + bounds register

 Moving a process in memory
 Change base register

 Context switch
 OS must re-load base and bound register

 Advantages
 Cheap in terms of hardware: only two registers
 Cheap in terms of cycles: do add and compare in parallel

 Disadvantages
 Still contiguous allocation 
 Growing a process is expensive or impossible
 Hard to share code or data



  

Segmentation

 Non contiguous allocation
 Split a program in differents non contiguous 

segments of variable size
 Let processes have many base/bound regs

 Address space built from many segments
 Can share/protect memory on segment 

granularity
 Must specify segment as part of virtual address



  

Segmentation



  

Segmentation mechanisms
 Each process has a segment table

 Each VA indicates a segment and offset:
• Top bits of addr select segment, low bits 

select offset 



  

Segmentation example

 4-bit segment number (1st digit), 12 bit offset (last 3)
 Where is 0x0240? 0x1108? 0x265c? 0x3002? 

0x1600?



  

Segmentation trade offs

 Advantages 
 Multiple segments per process
 Allows sharing

 Disadvantages
 N byte segment needs n contiguous bytes of 

physical memory
 Fragmentation



  

Remember fragmentation problem

 Fragmentation => inability to use free memory
 Overtime:

 Variable-sized pieces = many small holes (external 
fragmentation)



  

Paging
 Virtual memory is divided into small pages

 Pages are fixed size
 Page is contiguous

 Map virtual pages to physical block
 Non contiguous allocation
 Each process has a separate mapping
 MMU 

 OS gains control on certain operations
 Read only pages trap to OS on write
 OS can change the mapping 



  

Paging

 Page table
 Global or per process



  

Virtual address translation



  

Problem :  translation speed

 Require extra memory references on each load/store
 Cache recently used translations
 Locality principle

 High probability that the next required address is close 
 Translation Lookahead Buffer (TLB)

 Fast (small) associative memory which can perform 
a parallel search

 Typical TLB
 Hit time : 1 clock cycle
 Miss rate 1%

 TLB management : hardware or software



  

TLB

 What to do when switch address space ?

 Flush the TLB

 Tag each entry with the process's id

 In general, OS must manually keep TLB valid

 Invalidates a page translation in TLB



  

Problem : page table size

 Flat page tables are huge
 Example 

 4GB of virtual memory (32 bits address)
 4KB pages
 20bits page number, 12 bits offset 
 1MB page size :<



  

Multilevel Page Tables

 Reduce the size of page table in memory
 Structured page tables in 2 or more levels

 All the page tables are not present in memory all the 
time

 Some page tables are stored on disk and fetched if 
necessary 

 Based on a demand paging mechanism



  

Example: two level pages



  

Example: Two level pages



  

On Demand Paging

 Virtual memory > physical memory
 Some pages are not present in memory (X)
 Stored on disk
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Page fault

 Access to an absent page
 Presence bit
 Page fault (Trap to OS)

 Page fault management
 Find a free frame 

 If there is a free frame; use it
 Select a page to replace
 Save the replaced page on disk if necessary (dirty page)

 Load the page from disk in the physical block
 Update page table
 Restart instruction

 Require a presence bit, a dirty bit, a disk @ in the page table
 Different page replacement algorithms



  

On Demand Paging



  

Page replacement algorithms

 Working set model
 Algorithms

 Optimal
 FIFO
 Second chance
 LRU



  

Working set model
 Disk much, much slower than memory

 Goal: Run at memory, not disk speeds
 90/10 rule: 10% of memory gets 90% of memory refs

 So, keep that 10% in real memory, the other 90% on disk



  

Optimal page replacement

 What is optimal (if you knew the future)?
 Replace page that will not be used for longest 

period of time
 Example

 Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
 4 physicals pages: 1

2
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2
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FiFo

 Evict oldest page in system
 Example

 Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
 4 physicals frames:
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LRU page replacement

 Approximate optimal with least recently used
 Because past often predicts the future

 Example
 Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
 4 physicals frames:
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LRU implementation

 Expensive
 Need specific hardware

 Approximate LRU in software
 The aging algorithm

 Add a counter for each page (the date)
 On a page access, all page counters are 

shifted left, inject 1 for the accessed 
page, else 0

 On a page fault, remove the page with 
the lowest counter



  

Aging : example
Accès Date

Page0
Date
Page1

Date
Page2

Ordre
pages /date

000 000 000

Page 0 100 000 000 P0,P1=P2

Page 1 010 100 000 P1,P0,P2

Page 2 001 010 100 P2,P1,P0

Page 1 000 101 010 P1,P2,P0

P0 is the oldest



  

Second chance 

 Simple FIFO modification
 Use an access bit R for each page

 R = 0 : page not referenced 
 Periodically reset by hardware

 Inspect the R bit of the oldest page
 If 0 : replace the page
 If 1 : clear the bit, put the page at the end of 

the list



  

Page buffering

 Naïve paging
 Page replacement : 2 disk IO per page fault

 Reduce the IO on the critical path
 Keep a pool of free frames

 Fetch the page in the already free page



  

Paging

 Separate linking from memory concern
 Simplifies allocation, free and swap
 Eliminate external fragmentation
 May leverage internal fragmentation


