Noél De Palma
UJF
Thanks to Fabienne Boyer and Arnaud Legrand

= Memory is a ressource required by all processes

= Every program need to be loaded in memory to
be running

* Problem

* Address translation

= Symbol — Logical address — physical address
= Memory allocation and exhaustion

= Memory sharing
= Memory protection

Sourch compiler . Relocatm loader :ﬂbSOhD
file I \._ Object _/ (_ Objet

symbol logical address physical address

A 4

data

Machine

result l

compiler

Relocatable

Source ’ - Library
Object
. Llnkef
. compiler /~ Relocatable X Relocatable
r : f
ource Object logical address Object
Physical Address | load
compiler Object e
Source >

relogeable
logical address

Absolute
Object

* Translation between logical and physical adresses

= Determine where process will reside in memory
= Translate all references within program
= Established once for all
* Monoprogramming
= One program in memory
= Easy
* Multiprogramming
= N program in memory

= Compiler and linker do not know the implantation of
processes in memory

* Need to track op-code that must be updated

Text

Compile

v

Data

Symbol
table

Relocation
table

v

load

Text

Compile
prgl

Compile
prg2

—

—

Textl

Datal

TS1

TRI1

Text2

Data2

TS2

TR2

linker

Textl

Text2

Datal

Data2

TS1

TS2

TRI1

TR2

loader

v

Text

Symbol table

Section Relative @ | Symbol name

undef

Relocation table (track the addresses that must be updated in the code)

Hole Addresse Symbol Section | Symbol name

= Remaining problems

= How to to enforce protection ?
= How to move program once in memory ?
= What if no contiguous free region fits programs

= (Can we separate linking from memory
management problems ?

= Separate linking problem from memory
management

= Give each program its own virtual address
space

* Linker works on virtual addresses
* Virtual address translation done at runtime

= Relocate each load/store to its physical
address

= Require specific hardware (MMU)

P2

I | .
PO
0 0
Addresses
translation
2m-1
21
Virtual memory Physical memory

Ideally we want to enable n > m and non contiguous allocation

= Programs can be relocated while running
= Ease swap in/swap out
= Enforce protection

= Prevent one app from messing with another's
memory

" Programs can see more memory than exist

= Most of a process's memory will be idle
= Write idle part to disk until needed

=Contiguous allocation of variable size

*Two special privileged registers: base and bound

*On each load/store:

*Check 0 <= virtual address < bound, else trap to kernel

*Physical address = virtual address (plus) base

registre registre de
d'etendue base

adresse oul
—‘-
programime
non

arrét du processus

ZSULN | | Stgn | dnajiuow

Moving a process in memory
= Change base register
Context switch
= OS must re-load base and bound register
Advantages
= Cheap in terms of hardware: only two registers
= Cheap in terms of cycles: do add and compare in parallel
Disadvantages
= Still contiguous allocation
= Growing a process is expensive or impossible

= Hard to share code or data

= Non contiguous allocation

= Split a program in differents non contiguous
segments of variable size

* Let processes have many base/bound regs

= Address space built from many segments

= (Can share/protect memory on segment
granularity

* Must specify segment as part of virtual address

0x1000

Ox3000

0x5000

0xe000

Feal memory

Text seqg
r/o

0x2000

OxBOOO

0x6000

= Each process has a segment table

= Each VA indicates a segment and offset:

* Top bits of addr select segment, low bits
select offset

fault

Virtual addr Fi mem
3 0x100Q
i
Seqit
=3 Seg table 128
Prot| base |

>[rJoxi

= 4-bit segment number (1st digit), 12 bit offset (last 3)
Where is 0x02407 0x11087? 0x265c? 0x30027?

0x16007
Seq base bound
A AR Lalaly Tl e
] Dxda00 widff
2 0x3000 o i

logical

Qx4 000

Ox3000

Dx2 000

0x0700

Qx0000

physical

--Illlahillll:I IIIII -

Illll-hannn---lll

= Advantages
= Multiple segments per process
= Allows sharing

= Disadvantages

= N byte segment needs n contiguous bytes of
physical memory

" Fragmentation

= Fragmentation => inability to use free memory

= Qvertime:

= Variable-sized pieces = many small holes (external
fragmentation)

'h———_F ' 'I

oy L8 DTl
geoo _
Pintos 27 - fragmentation

Bmacs

} Jnused

{“intarnal

[ragmentatian™)

= Virtual memory is divided into small pages
= Pages are fixed size
= Page is contiguous

= Map virtual pages to physical block
= Non contiguous allocation

= Each process has a separate mapping
= MMU

= OS gains control on certain operations

= Read only pages trap to OS on write
= OS can change the mapping

physical

ccC
g memnmory

ellacs

-

= Page table

= Global or per process

logical
address

physical
address

v

d

page table

fO000 . .. 0000

f1111 ... 1111

physical
memory

= Require extra memory references on each load/store

= (Cache recently used translations

* Locality principle
= High probability that the next required address is close

= Translation Lookahead Buffer (TLB)

= Fast (small) associative memory which can perform
a parallel search

= Typical TLB
= Hittime : 1 clock cycle

= Missrate 1%
= TLB management : hardware or software

logical

address
_>| p d |

page frame
number number

physical
address

|] d |

TLB miss

f

physical
memory

page table

= What to do when switch address space ?

. Flush the TLB
. Tag each entry with the process's id

* In general, OS must manually keep TLB valid

= Invalidates a page translation in TLB

= Flat page tables are huge

= Example

= 4GB of virtual memory (32 bits address)
= 4KB pages

= 20bits page number, 12 bits offset

"= 1MB page size <

= Reduce the size of page table in memory
= Structured page tables in 2 or more levels

= All the page tables are not present in memory all the
time

= Some page tables are stored on disk and fetched if
necessary

= Based on a demand paging mechanism

outer-page
table

page of
page table

page table

Linear Address

4-KByte Page

Physical Address

31 22 21 12 11 0
Directory Table Offset
A12
10 A 10 Page Table =
Page Directory
—» Page-Table Entry 7?
—= Directory Entry -
'
30+ 1024 PDE x 1024 PTE — 220 Pages

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

* Virtual memory > physical memory

= Some pages are not present in memory (X)

= Stored on disk

Virtual

memory
0-4K

4-8K

8-12K
12-16K
16-20K
20-24K

— X | [}

Physical

memory
0-4K

4-8K
8-12K

= Access to an absent page

- Presence bit
- Page fault (Trap to OS)

= Page fault management

. Find a free frame

If there is a free frame; use it
Select a page to replace
Save the replaced page on disk if necessary (dirty page)

: Load the page from disk in the physical block
. Update page table
. Restart instruction

= Require a presence bit, a dirty bit, a disk @ in the page table

= Different page replacement algorithms

On Demand Paging

page is on
./ backing store

trap

bring in
table : missing page

physical
Memory

= Working set model
= Algorithms

= Optimal

* FIFO

= Second chance
* LRU

= Disk much, much slower than memory
. Goal: Run at memory, not disk speeds
= 90/10 rule: 10% of memory gets 90% of memory refs

- So, keep that 10% in real memory, the other 90% on disk

>

S2oU2J2jaJ JO #

Aemory addre

Disk

= What is optimal (if you knew the future)?

= Replace page that will not be used for longest
period of time

= Example

= Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
= 4 physicals pages:

6 pages faults

4
2
3
5

1
2
3
5

AW | =

= Evict oldest page in system

= Example
= Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
= 4 physicals frames:

115155 (5]|4 1|4

212 (1|11]1]5
10 page faults

313(13(2(2(2]2

414141413 |13|3

= Approximate optimal with least recently used
= Because past often predicts the future

= Example
= Reference string : 1,2,3,4,1,2,5,1,2,3,4,5,2,3
= 4 physicals frames:

8 page faults

SN Wi |-
SN i | —
W N[N | —
W Bl | —
W | B[| WD

= Expensive
= Need specific hardware

= Approximate LRU in software
" The aging algorithm

= Add a counter for each page (the date)

= On a page access, all page counters are
shifted left, inject 1 for the accessed
page, else 0

= On a page fault, remove the page with
the lowest counter

Acceés Date Date Date Ordre
Page0 Page1 Page2 pages /date
000 000 000

Page 0 100 000 000 P0,P1=P2

Page 1 010 100 000 P1,P0,P2

Page 2 001 010 100 P2,P1,P0

Page 1 000 101 010 P1,P2,P0

PO 1s the oldest

= Simple FIFO modification

= Use an access bit R for each page

= R =0:page not referenced
= Periodically reset by hardware

= Inspect the R bit of the oldest page

= |f O : replace the page

= If 1 : clear the bit, put the page at the end of
the list

= Nalve paging
= Page replacement : 2 disk 10 per page fault
= Reduce the 10 on the critical path

= Keep a pool of free frames
= Fetch the page in the already free page

= Separate linking from memory concern
= Simplifies allocation, free and swap

= Eliminate external fragmentation

= May leverage internal fragmentation

