
  

Introduction to Operating Systems

Operating System Design – MOSIG 1
Instructor: Noel De Palma, Guillaume Huard 

Class Assistant: Benjamin Negreverne

Slides heavily inspired from Fabienne Boyer, Arnaud Legrand, David 
Mazieres 



  

Outline of the lectures

1. Introduction to Operating System
2. Memory management
3. Processes and threads
4. Synchronization and communication 
5. Deadlock
6. File system and secondary storage
7. Nachos OS



  

Practical informations
 Class web page: 

http://sardes.inrialpes.fr/~depalma/enseignement/
 References

 Operating System Concepts (8th ed, by Silberschatz, Galvin, and 
Gagne), Modern operating systems (2nd ed, by Tanenbaum)

 Staff email address: noel.depalma@inrialpes.fr, 
Guillaume.Huart@inrialpes.fr, Benjamin.Negrevergne@imag.fr

 Add [M1-OSD] to the subject of your emails (otherwise, we 
may not read them)

 Key dates:
 Lectures: Tuesday & Wednesday 13:30–15:00, F111
 Practical Sessions: Wednesday 15:15–18:00, F111



  

Course goals
 Introduce you to operating system concepts

 Hard to use a computer without interacting 
with OS

 Understanding the OS makes you a more 
effective programmer

 The first minutes of the lecture can be 
devoted to re-explain some parts of the 
previous lecture.

 Prepare you to take graduate OS classes 
(M1 Principles of Computer Networks, M2 
Parallel Systems, Distributed systems, . . . )



  

Programming Assignments

 Among the different practical sessions, some of 
them will be graded

 Implement projects in groups of up to 3 people
 Working code or no credit here

 33% of grade from projects
 For each project, 50% of score based on passing 

test cases
 Remaining 50% based on design and style

 33% of grade from mid-term exam
 33% of grade from final exam



  

Why study operating 
systems?

  Operating systems are a maturing field
 New hardware or “smart” devices need new OSes

  Resource consumption is an OS issue
 Many new metrics
 Battery life, CUE, PUE ... => profile and optimize

  Security is an OS issue
 Hard to achieve security without a solid foundation

  High-performance servers and web browsers are an OS 
issue

 Face many of the same issues as Oses



  

What  is an operating system (OS)

Layer between applications and hardware
Main goals

 Provide abstraction of hardware through APIs
 Manage efficient resources sharing
 Manage fair resources sharing  
 Ensure resources protection and access control

OS can be seen as a first layer of virtualization over 
hardware



  

General positioning 

A. Silberschatz, Calvin and Gagne, 2002

OS lecture

System service
middleware



  

Resources Managed by an OS
 Runtime abstraction for programs
 Processes
 Threads (Lightweight processes)
 Driver (I/O management)
 Runtime abstraction for memory
 Primary memory

– RAM ...

 Secondary memory
– Files ...

Tasks

Data



  

Task management

 Multi-processes
 Manage process lifecycle
 Manage processor allocation
 Manage process isolation

 Multi-users
 Protect from bad users



  

Data management
 Different level of abstraction (physical/logical)
 Primary memory = A byte array

 Physical/virtual 

 Secondary memory = permanent storage
 Files : an abstracted unit of storage and structure
 Block : a physical unit of storage (e.g disk block)

 Operating system
 Manage the primary memory allocation to processes

 Manage the mapping between different memory 
abstractions

 Manage the secondary memory 
 files creation/destruction/access
 Manage the mapping of file to lower level abstraction 

 Manage access control



  

OS Structure 

 Kernel
 Always in central memory

 Run in supervisor mode
 Maintains data structure for users and application

 System services
 Part of the system that can be swap in/out from memory if 

necessary

 Drivers 
 Low level hardware management 
 IT-based programming



  

OS Structure
 Minimal kernel (micro-kernel / client-server)

 Mach / Chorus / L4
 Maximize the OS functions implemented outside the kernel 
 Better extensibility et adaptability
 Better faillure isolation (separate processes)
 … But comes with overheads

 Monotlihic Kernel
 Unix, Linux, Windows XP
 Better  performances
 The OS is a set of functions.  Direct call induces less IPC 

(Inter Processus Call)



  

OS Structure



  

Micro kernel



  

OS API—system call  
Applications can invoke kernel through system calls

 Special instruction transfers control to kernel
 . . . which dispatches to one of few hundred syscall handlers

Goal: Do things app. can’t do in unprivileged mode
 Like a library call, but into more privileged kernel code



  

System call example
 Standard library implemented in terms of syscalls

 printf – in libc, has same privileges as application
 calls write – in kernel, which can send bits to 

output



  

Primitive Operating systems:
Monoprogramming (1950)

 Just a library of standard services [no protection]
 Standard interface above hardware-specific drivers, etc.

 Simplifying assumptions : Monoprogramming
 System runs one program at a time
 No bad users or programs (often bad assumption)

 Problem: Poor utilization
 . . . of hardware (e.g., CPU idle while waiting for disk)
 . . . of human user (must wait for each program to finish)



  

Mono-programming

Processor

Hardware I/O

I/O Request I/O termination

time

20 millisec



  

Multi-programming (1960/1970)
 Multiple tasks in memory at the same time 
 Run more than one process at once

– Need a basic scheduler

– When one process blocks on I/O run another 

    process

 Problem: What can ill-behaved process do?
 Go into infinite loop and never relinquish CPU

 Advantages
 Better CPU utilization

 Disadvantage
 Still not very efficient
 Need Protection

OS

Task 2

Task 3

Task 4

Task 1



  

Multi-programming

OS

Task 1

Task 2

Task 3

I/O End I/O

time

Proc Allocation.



  

Time sharing (1970)

Run more than one process at once
 The cpu is shared between processes 
 Time slices
 CPU pre-emption (on I/O or end of the  time slice) and context 

switch
Processes can be in memory or swapped on disk

 Total memory usage greater than in machine (must virtualize 
the memory)

 Improve the number of managed processes

Better resource management and better mean 
response time



  

Time sharing (1970)

Issues
 Fair CPU sharing (Need policy)
 Total memory usage greater than in machine (must 

virtualize)
 Super-linear slowdown with increasing demand 

(thrashing)
 Protect process’s memory from one another 

(Memory isolation)
 Protect users (access control)



  

Mono/multi programming/time sharing

T1 T2 T3

Mono-programming
I/O

T1 T2 T3

Multi-programming

T1 T2 T1

T1 T2 T3

Time sharing

T1 T2 T1

Pre-emption

T3



  

Protection 

 A task must not read/write in the memory zone of 
another task

 A task must not impact the kernel memory excepts 
using SVC

 A task must not read/write I/O data of another task

 Need isolation (memory …)



  

Evolutions  from the 70's
 Hardware evolutions

 Personal computer and laptop 
 Specialized architecture: Real time, embeded, mobile device
 Multi-processors
 Virtualization

 Networking evolutions
 Ethernet (30 Gb swiched network ...), Internet (broadband ...)

 Distributed systems
 Cluster / Grid / Cloud

 Many new criteria to optimize 
 Consistency, Performances, Availability, Security, Energy 

consumption
 Many levels to optimize



  

Real time system
 Time constraint

 Bounded execution time

 Hard real-time systems
 Strong SLA guarantee
 Few or no secondary memory
 No or Short context switch
 Specific OS (Plane, robotics ...) 

 Soft real-time systems
 Used for multimedia or virtual reality
 Soft time constraint—no SLA guaratee
 Task priority
 Specific memory management



  

Mobile systems

 Phone, Personal Digital Assistants (PDAs)
 Specific OS (e.g android, windows CE)
 More and more powerfull (Cpu, memory ...)
 Constraints 

 Subject to disconnection
 Small screen
 Energy consumption



  

Parallel multiprocessor system (1/2)

 SMP (Symetric Multi Processeurs)
 Classical OS with multi-processor support (DB, Web, NFS, 

…)
 Standard Processors
 Full memory sharing 

 Parallel system machine
 Specialized Architectures

 Specific processors for vectorial operations 
 Specialized network
 Full or partial memory sharing 



  

Clustered systems 

 Multiple nodes (hundred and more)
 Homogeneous
 Shared disk or share nothing 

 Fast network interconnection (SCI, Ethernet, …)
 LAN

 2 characteristics :
 Scalability through partitionning or load balancing
 High availability through master/slave or active 

replication



  

Grid

 Thousand of nodes and more 
 Cluster interconnexions through internet
 Heterogeneous nodes
 Grid5000

 Grid OS for ressources reservation, Task 
scheduling and protection

 Mainly parallele calculus



  

Cloud computing
 Deliver IT ressources and service on demand over the 

network
 Virtualized OS and network
 Auto-scalability (scale up/scale down)
 Pay as you use: Low and fast deployment cost 
 IT is managed by the cloud provider

 3 layers
 IaaS (EC2, microsoft AZURE) : provides VM
 PaaS (Google Apps) : provides application servers
 SaaS (Salesforces) : provides applications

 3 infrastructures
 Public, Private, Hybrid


