Introduction to Operating Systems

Operating System
Instructor: Noel De Pa

Design — MOSIG 1

ma, Guillaume Huard

Class Assistant: Benjamin Negreverne

Slides heavily inspired from Fabienne Boyer, Arnaud Legrand, David
Mazieres



~NO O WDN -

Outline of the lectures

. Introduction to Operating System

. Memory management

. Processes and threads

. Synchronization and communication
. Deadlock

. File system and secondary storage

. Nachos OS



Practical informations

Class web page:
http://sardes.inrialpes.fr/~depalma/enseignement/

References

= Operating System Concepts (8™ ed, by Silberschatz, Galvin, and
Gagne), Modern operating systems (2™ ed, by Tanenbaum)

Staff email address: noel.depalma@inrialpes.fr,
Guillaume.Huart@inrialpes.fr, Benjamin.Negrevergne@imag.fr

= Add [M1-OSD] to the subject of your emails (otherwise, we
may not read them)

Key dates:

= Lectures: Tuesday & Wednesday 13:30-15:00, F111
= Practical Sessions: Wednesday 15:15-18:00, F111



Course goals

* Introduce you to operating system concepts

= Hard to use a computer without interacting
with OS

* Understanding the OS makes you a more
effective programmer

* The first minutes of the lecture can be

devoted to re-explain some parts of the
previous lecture.

* Prepare you to take graduate OS classes
(M1 Principles of Computer Networks, M2
Parallel Systems, Distributed systems, . . . )



Programming Assignments

Among the different practical sessions, some of
them will be graded

Implement projects in groups of up to 3 people
= Working code or no credit here
33% of grade from projects

= For each project, 50% of score based on passing
test cases

= Remaining 50% based on design and style

33% of grade from mid-term exam

33% of grade from final exam



Why study operating
systems?

" Operating systems are a maturing field
= New hardware or “smart” devices need new OSes
= Resource consumption is an OS issue

= Many new metrics
= Battery life, CUE, PUE ... => profile and optimize

= Security is an OS issue

= Hard to achieve security without a solid foundation

High-performance servers and web browsers are an OS
ISsue

= Face many of the same issues as Oses



What is an operating system (OS)

"L ayer between applications and hardware

*Main goals
* Provide abstraction of hardware through APIs

* Manage efficient resources sharing
* Manage fair resources sharing

* Ensure resources protection and access control

OS can be seen as a first layer of virtualization over
hardware



General positioning

user user
2 3

compiler assembler text editor . .. database
BBl System service

system and application programs ! middleware

operating system

1 OS lecture

computer hardware

A. Silberschatz, Calvin and Gagne, 2002



Resources Managed by an OS

Runtime abstraction for programs

Processes

j> Tasks

Threads (Lightweight processes)

Driver (I/O management)

Runtime abstraction for memory

Primary memory
- RAM ...

Secondary memory
— Files ...

j> Data



Task management

= Multi-processes

= Manage process lifecycle
= Manage processor allocation
= Manage process isolation

= Multi-users

* Protect from bad users



Data management

Different level of abstraction (physical/logical)

Primary memory = A byte array
*  Physical/virtual

Secondary memory = permanent storage
= Files : an abstracted unit of storage and structure

= Block : a physical unit of storage (e.g disk block)

Operating system
=  Manage the primary memory allocation to processes

Manage the mapping between different memory
abstractions

=  Manage the secondary memory

files creation/destruction/access
Manage the mapping of file to lower level abstraction

=  Manage access control



OS Structure

= Kernel

= Always in central memory

= Run in supervisor mode
= Maintains data structure for users and application

= System services

= Part of the system that can be swap in/out from memory if
necessary

= Drivers
= Low level hardware management
= |T-based programming



OS Structure

= Minimal kernel (micro-kernel / client-server)
= Mach /Chorus /L4

Maximize the OS functions implemented outside the kernel

Better extensibility et adaptability

Better faillure isolation (separate processes)
= ... But comes with overheads

= Monotlihic Kernel
= Unix, Linux, Windows XP
= Better performances

= The OS is a set of functions. Direct call induces less IPC
(Inter Processus Call)



OS Structure

P1 P2

LUSer

sockets scheduler

TCP flP\(dewce

r.:irwer

[dewce

driver

netwark

console

!
%
h
b1

disk



Micro kernel

Application  UNIX Device  File
IPC Server Driver Server

—5

Basic IPC, Virtual Memory, Scheduling

Hardware



OS APl—system call

*Applications can invoke kernel through system calls

= Special instruction transfers control to kernel
. . . which dispatches to one of few hundred syscall handlers

*Goal: Do things app. can’t do in unprivileged mode

= Like a library call, but into more privileged kernel code

.""-..

e user application

apen ()
user

mode
: { system call interface
kernel
mode A
. open { )
L]
- Implementatian
i - » of open{)
system ca

returm



System call example

= Standard library implemented in terms of syscalls
= printf — in libc, has same privileges as application

= calls write — In kernel, which can send bits to
output -

#include <=stdic.h=
It main ()

(]
primtf ("Greetings"); |-
L]

retUm <

USer

L
mode ; _
standard C library ———————
lkerrel . ]
mode
write ()
I e N
r/ write ) ™y
. system cal J

~




Primitive Operating systems:
Monoprogramming (1950)

= Just a library of standard services [no protection]
= Standard interface above hardware-specific drivers, etc.

= Simplifying assumptions : Monoprogramming
= System runs one program at a time
* No bad users or programs (often bad assumption)
= Problem: Poor utilization
= . ..of hardware (e.g., CPU idle while waiting for disk)

= . ..of human user (must wait for each program to finish)

hardware



Mono-programming

I/O Request I/O terminatjon

Hardware 1/0 \ D0 i

-

Processor 77777} 7

time

v



Multi-programming (1960/1970)

= Multiple tasks in memory at the same time

= Run more than one process at once
— Need a basic scheduler 0S

— When one process blocks on I/O run another

process Task -
= Problem: What can ill-behaved process do?

= Go into infinite loop and never relinquish CPU Task 2
= Advantages Task 3

= Better CPU utilization

= Disadvantage Task 4
= Still not very efficient

= Need Protection



Multi-programming

/0
Proc Allocation.

3

Task 3

Task 2

Task 1

Vi

Vi

1

v

time



Time sharing (1970)

*Run more than one process at once
= The cpu is shared between processes

. Time slices

=  CPU pre-emption (on I/O or end of the time slice) and context
switch

"Processes can be in memory or swapped on disk

= Total memory usage greater than in machine (must virtualize
the memory)

= Improve the number of managed processes

"Better resource management and better mean
response time



Time sharing (1970)

'[ssues

= Fair CPU sharing (Need policy)

= Total memory usage greater than in machine (must
virtualize)

= Super-linear slowdown with increasing demand
(thrashing)

* Protect process’s memory from one another
(Memory isolation)

* Protect users (access control)



Mono/multi programming/time sharing

T1 T2 T3
/O Mono-programming
s I T3 T T2 T
Multi-programming
T T2 T4 T2 T1_ T3

[ ml H

M 2

i
Pre-emption M

Time sharing



Protection

= A task must not read/write in the memory zone of
another task

= Atask must not impact the kernel memory excepts
using SVC

= A task must not read/write I/O data of another task

=» Need isolation (memory ...)



Evolutions from the 70's

= Hardware evolutions
* Personal computer and laptop

= Specialized architecture: Real time, embeded, mobile device
* Multi-processors
* Virtualization
" Networking evolutions
= Ethernet (30 Gb swiched network ...), Internet (broadband ...

" Distributed systems
* Cluster/ Grid / Cloud

= Many new criteria to optimize
= Consistency, Performances, Availability, Security, Energy
consumption

" Many levels to optimize



Real time system

= Time constraint
* Bounded execution time

= Hard real-time systems
= Strong SLA guarantee
= Few or no secondary memory
= No or Short context switch
= Specific OS (Plane, robotics ...)

= Soft real-time systems
= Used for multimedia or virtual reality
= Soft time constraint—no SLA guaratee
= Task priority
= Specific memory management



Mobile systems

* Phone, Personal Digital Assistants (PDAs)
= Specific OS (e.g android, windows CE)
= More and more powerfull (Cpu, memory ...)

= Constraints
= Subject to disconnection

= Small screen

* Energy consumption



Parallel multiprocessor system (1/2)

= SMP (Symetric Multi Processeurs)

= Classical OS with multi-processor support (DB, Web, NFS,
...)

= Standard Processors

* Full memory sharing

= Parallel system machine
= Specialized Architectures
= Specific processors for vectorial operations
= Specialized network
= Full or partial memory sharing



Clustered systems

= Multiple nodes (hundred and more)
*= Homogeneous
= Shared disk or share nothing

= Fast network interconnection (SCI, Ethernet, ...)
= LAN

= 2 characteristics :
= Scalability through partitionning or load balancing

= High availability through master/slave or active
replication



Grid

* Thousand of nodes and more
= Cluster interconnexions through internet

* Heterogeneous nodes
= Grid5000

= Grid OS for ressources reservation, Task
scheduling and protection

= Mainly parallele calculus



Cloud computing

= Deliver IT ressources and service on demand over the
network

* Virtualized OS and network
= Auto-scalability (scale up/scale down)

= Pay as you use: Low and fast deployment cost

* |T is managed by the cloud provider

= 3 layers
* |[aaS (EC2, microsoft AZURE) : provides VM
= PaaS (Google Apps) : provides application servers
= SaaS (Salesforces) : provides applications

= 3 infrastructures

= Public, Private, Hybrid



