
Processes

 “Heavy weight” control flow

 Context switch
 Non negligible cost
 A lot of data to be saved/restored
 Cause cache miss and TLB miss (see virtual memory lecture)

 Isolated address space
 Sharing data is painful

▲ Shared memory
▲ Message passing
▲ ...

 Thread concept

Thread concept

 Lightweigh process
 Light context
 A shared part : memory, open file …
 A private part : stack, registers, ...

 Schedulable execution context
 More efficient context switch

 Ease the programming of concurent applications
 Multiple execution flow in a same adress space
 Immediate data sharing

 Simple programs use one thread per process
 But can also have multi-threaded programs
 Multiple threads running in same process's address space

Single-threaded et multi-threaded
Process

A.Sylberschatz

Why Thread

 Responsiveness
 Do not block the whole program when only a part of it should be blocked
 Allows program to overlap I/O and computation (same benefit as OS

running emacs & gcc simultaneously)

 Resource sharing
 Lighter-weight abstraction than processes (IPC, shmem)
 All threads in one process share memory, file descriptors, etc

 Economy
 Allocating memory, resources and context switching for process is costly

 Scalability
 A single process can only use a single CPU at a time
 Allows one process to use multiple CPUs or cores

Thread history

 Adress Space
 Execution flow

 2 notions tied together with the process concept
 Threads dissociate these two notions

 Differents kind of thread
 User-level threads
 Kernel-supported
 Mixed solutions

 VS P VS T

Advantages and disadvantage of User-
level threads

 Parallelism (-)
 No real parallelism between the threads within a process

 Efficiency (+)
 Quick context switch

 Blocking system call (-)
 The process is blocked in the kernel
 All thread are blocked until the system call (I/O) is not terminated

 Kernel-supported pro and cons

 Blocking system call (+)
 When a thread is blocked dur to a SVC call, the tread in the same virtual

space are not

 Real Parallelism (+)
 N threads in the same virtual space can run on K processors

 Efficiency (-)
 More expensive context switch / user level threads

 Every management operation goes throught the kernel
 Require more memory

Hybrid solution for light context switch
(sol 1)

 Take the best of the above implementations
 Light context switch of user level thread
 Avoid blocking all threads when invoking a system call

 Follows the principles of user level threads
 Context switch managed at user level

 Kernel modification to manage system call to avoid
blocking
 When a thread uses a blocking svc, the kernel does not preempt the

processor
 Signals used to managed the end to the blocking svc
 Two cooperating scheduler : user and system level

Hybrid solution for light context switch

User-level threads

Processes

User space

Kernel space

A B

scheduler scheduler

scheduler

Blocking
call

Hybrid solution for light context switch to
enable real parallelism (sol 2)

 User threads implemented on kernel threads
 Multiple kernel level threads per process
 Thread creation, destruction still library fonctions

 Sometimes called n:m threading
 Have n user threads per m kernel threads
 (simple user level threads are n:1, kernel thread are 1:1)

 A pool of user threads mapped on a pool of kernel threads

Hybrid solution for light context switch to
enable real parallelism (sol 2)

User-level threads

Kernel-supported threads

User space

Kernel space
BA1 A2

scheduler scheduler

scheduler

Tread model : many to many

A. Sylberschatz

Threads Java

 User-level / Kernel-supported, depending on the JVM
implementation

 Creation
 Thread class extension
 Implementation of the Runnable interface

POSIX Threads : Pthreads API

 int thread create (tid, attr, void (*fn) (void *), void *);
 Create a new thread, run fn with arg

 void thread exit ();
 Destroy current thread

 void thread join (tid thread);
 Wait for thread thread to exit

 Plus lots of support for synchronization [next week]

int pthread_create (
pthread_t *tid,
pthread_attr *attr,
void* (*start_routine)(void *),
void *arg);

Posix thread creation

 Create a thread
 Run the start_fct with arg as arguments
 Tid : Id of the created thread

#include <pthread.h>

void * ALL_IS_OK = (void *)123456789L;

char *mess[2] = { "thread1", "thread2" };

void * writer(void * arg)
{ int i, j;

 for(i=0;i<10;i++) {
 printf("Hi %s! (I'm %lx)\n", (char *) arg, pthread_self());
 j = 800000; while(j!=0) j--;
 }

 return ALL_IS_OK;
}

Example 1/2

int main(void)
{ void * status;
 pthread_t writer1_pid, writer2_pid;

 pthread_create(&writer1_pid, NULL, writer, (void *)mess[1]);
 pthread_create(&writer2_pid, NULL, writer, (void *)mess[0]);

 pthread_join(writer1_pid, &status);
 if(status == ALL_IS_OK)
 printf("Thread %lx completed ok.\n", writer1_pid);

 pthread_join(writer2_pid, &status);
 if(status == ALL_IS_OK)
 printf("Thread %lx completed ok.\n", writer2_pid);

 return 0;
}

Example 2/2

Fork(), exec()

 What happens if one thread of a program calls
fork()?

 Does the new process duplicate all threads ? Or
is the newprocess single-threaded ?

 Some UNIX systems have chose to have two
versions of fork()

 What happens if one thread of a program calls
exec()?

 Generally, the new program replace the entire
process, including all threads.

Critical section problem

int count = 0;

void loop(void *ignored) {

 int i ;

 for (i=0 ; i<10 ; i++) count++;
}

int main () {

 tid id = thread_create (&tid, NULL,loop, NULL);

 loop (); thread_join (id);

 printf("%d",count);

}

What is the output of this program ?

Critical section problem

 Need solution to critical section problem
 Place count++ in critical section

 Protect critical sections from concurrent
execution

 n processes all competing to use some shared
data

 Each process has a code segment, called critical
section, in which the shared data is accessed.

 Problem ensure that when one process is
executing in its critical section, no other process
is allowed to execute in its critical section.

Desired properties

 Mutual Exclusion
 Only one thread can be in critical section at a

time
 Progress

 Say no process currently in critical section (C.S.)
 One of the processes trying to enter will

eventually get in
 Bounded waiting

 Once a thread T starts trying to enter the critical
section, there is a bound on the number of
times other threads get in

Mutual exclusion (next lecture)

 pthread_mutex_t : lock type
 pthread_mutex_init : lock init
 pthread_mutex_lock : lock the mutex
 pthread_mutex_unlock : unlock the mutex

pthread_mutex_t mon_mutex;
pthread_mutex_init(&mon_mutex,NULL);
pthread_mutex_lock(&mon_mutex);
… critical section
pthread_mutex_unlock(&mon_mutex);
//fin du programme
pthread_mutex_destroy(&mon_mutex);

Conditions (next lecture)

 pthread_cond_t : condition type
 pthread_cond_init : condition initialization
 pthread_cond_wait : block the thread on a

condition and unlock the mutex
 pthread_cond_signal : wake the thread on the

condition et relock the mutex
Beware the signaled thread do not take control immediately ...

