
Processes

 “Heavy weight” control flow

 Context switch
 Non negligible cost
 A lot of data to be saved/restored
 Cause cache miss and TLB miss (see virtual memory lecture)

 Isolated address space
 Sharing data is painful

▲ Shared memory
▲ Message passing
▲ ...

 Thread concept

Thread concept

 Lightweigh process
 Light context
 A shared part : memory, open file …
 A private part : stack, registers, ...

 Schedulable execution context
 More efficient context switch

 Ease the programming of concurent applications
 Multiple execution flow in a same adress space
 Immediate data sharing

 Simple programs use one thread per process
 But can also have multi-threaded programs
 Multiple threads running in same process's address space

Single-threaded et multi-threaded
Process

A.Sylberschatz

Why Thread

 Responsiveness
 Do not block the whole program when only a part of it should be blocked
 Allows program to overlap I/O and computation (same benefit as OS

running emacs & gcc simultaneously)

 Resource sharing
 Lighter-weight abstraction than processes (IPC, shmem)
 All threads in one process share memory, file descriptors, etc

 Economy
 Allocating memory, resources and context switching for process is costly

 Scalability
 A single process can only use a single CPU at a time
 Allows one process to use multiple CPUs or cores

Thread history

 Adress Space
 Execution flow

 2 notions tied together with the process concept
 Threads dissociate these two notions

 Differents kind of thread
 User-level threads
 Kernel-supported
 Mixed solutions

 VS P VS T

Advantages and disadvantage of User-
level threads

 Parallelism (-)
 No real parallelism between the threads within a process

 Efficiency (+)
 Quick context switch

 Blocking system call (-)
 The process is blocked in the kernel
 All thread are blocked until the system call (I/O) is not terminated

 Kernel-supported pro and cons

 Blocking system call (+)
 When a thread is blocked dur to a SVC call, the tread in the same virtual

space are not

 Real Parallelism (+)
 N threads in the same virtual space can run on K processors

 Efficiency (-)
 More expensive context switch / user level threads

 Every management operation goes throught the kernel
 Require more memory

Hybrid solution for light context switch
(sol 1)

 Take the best of the above implementations
 Light context switch of user level thread
 Avoid blocking all threads when invoking a system call

 Follows the principles of user level threads
 Context switch managed at user level

 Kernel modification to manage system call to avoid
blocking
 When a thread uses a blocking svc, the kernel does not preempt the

processor
 Signals used to managed the end to the blocking svc
 Two cooperating scheduler : user and system level

Hybrid solution for light context switch

User-level threads

Processes

User space

Kernel space

A B

scheduler scheduler

scheduler

Blocking
call

Hybrid solution for light context switch to
enable real parallelism (sol 2)

 User threads implemented on kernel threads
 Multiple kernel level threads per process
 Thread creation, destruction still library fonctions

 Sometimes called n:m threading
 Have n user threads per m kernel threads
 (simple user level threads are n:1, kernel thread are 1:1)

 A pool of user threads mapped on a pool of kernel threads

Hybrid solution for light context switch to
enable real parallelism (sol 2)

User-level threads

Kernel-supported threads

User space

Kernel space
BA1 A2

scheduler scheduler

scheduler

Tread model : many to many

A. Sylberschatz

Threads Java

 User-level / Kernel-supported, depending on the JVM
implementation

 Creation
 Thread class extension
 Implementation of the Runnable interface

POSIX Threads : Pthreads API

 int thread create (tid, attr, void (*fn) (void *), void *);
 Create a new thread, run fn with arg

 void thread exit ();
 Destroy current thread

 void thread join (tid thread);
 Wait for thread thread to exit

 Plus lots of support for synchronization [next week]

int pthread_create (
pthread_t *tid,
pthread_attr *attr,
void* (*start_routine)(void *),
void *arg);

Posix thread creation

 Create a thread
 Run the start_fct with arg as arguments
 Tid : Id of the created thread

#include <pthread.h>

void * ALL_IS_OK = (void *)123456789L;

char *mess[2] = { "thread1", "thread2" };

void * writer(void * arg)
{ int i, j;

 for(i=0;i<10;i++) {
 printf("Hi %s! (I'm %lx)\n", (char *) arg, pthread_self());
 j = 800000; while(j!=0) j--;
 }

 return ALL_IS_OK;
}

Example 1/2

int main(void)
{ void * status;
 pthread_t writer1_pid, writer2_pid;

 pthread_create(&writer1_pid, NULL, writer, (void *)mess[1]);
 pthread_create(&writer2_pid, NULL, writer, (void *)mess[0]);

 pthread_join(writer1_pid, &status);
 if(status == ALL_IS_OK)
 printf("Thread %lx completed ok.\n", writer1_pid);

 pthread_join(writer2_pid, &status);
 if(status == ALL_IS_OK)
 printf("Thread %lx completed ok.\n", writer2_pid);

 return 0;
}

Example 2/2

Fork(), exec()

 What happens if one thread of a program calls
fork()?

 Does the new process duplicate all threads ? Or
is the newprocess single-threaded ?

 Some UNIX systems have chose to have two
versions of fork()

 What happens if one thread of a program calls
exec()?

 Generally, the new program replace the entire
process, including all threads.

Critical section problem

int count = 0;

void loop(void *ignored) {

 int i ;

 for (i=0 ; i<10 ; i++) count++;
}

int main () {

 tid id = thread_create (&tid, NULL,loop, NULL);

 loop (); thread_join (id);

 printf("%d",count);

}

What is the output of this program ?

Critical section problem

 Need solution to critical section problem
 Place count++ in critical section

 Protect critical sections from concurrent
execution

 n processes all competing to use some shared
data

 Each process has a code segment, called critical
section, in which the shared data is accessed.

 Problem ensure that when one process is
executing in its critical section, no other process
is allowed to execute in its critical section.

Desired properties

 Mutual Exclusion
 Only one thread can be in critical section at a

time
 Progress

 Say no process currently in critical section (C.S.)
 One of the processes trying to enter will

eventually get in
 Bounded waiting

 Once a thread T starts trying to enter the critical
section, there is a bound on the number of
times other threads get in

Mutual exclusion (next lecture)

 pthread_mutex_t : lock type
 pthread_mutex_init : lock init
 pthread_mutex_lock : lock the mutex
 pthread_mutex_unlock : unlock the mutex

pthread_mutex_t mon_mutex;
pthread_mutex_init(&mon_mutex,NULL);
pthread_mutex_lock(&mon_mutex);
… critical section
pthread_mutex_unlock(&mon_mutex);
//fin du programme
pthread_mutex_destroy(&mon_mutex);

Conditions (next lecture)

 pthread_cond_t : condition type
 pthread_cond_init : condition initialization
 pthread_cond_wait : block the thread on a

condition and unlock the mutex
 pthread_cond_signal : wake the thread on the

condition et relock the mutex
Beware the signaled thread do not take control immediately ...

