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Innocent strategies as presheaves
and interactive equivalences for CCS

Tom HIRSCHOWITZ1 and Damien POUS2

Abstract

Seeking a general framework for reasoning about and comparing
programming languages, we derive a new view of Milner’s CCS [33].
We construct a category E of plays, and a subcategory V of views. We
argue that presheaves on V adequately represent innocent strategies,
in the sense of game semantics [20]. We equip innocent strategies with
a simple notion of interaction.

We then prove decomposition results for innocent strategies, and,
restricting to presheaves of finite ordinals, prove that innocent strategies
are a final coalgebra for a polynomial functor [27] derived from the
game. This leads to a translation of CCS with recursive equations.

Finally, we propose a notion of interactive equivalence for innocent
strategies, which is close in spirit to Beffara’s interpretation [1] of
testing equivalences [7] in concurrency theory. In this framework, we
consider analogues of fair testing and must testing. We show that
must testing is strictly finer in our model than in CCS, since it avoids
what we call ‘spatial unfairness’. Still, it differs from fair testing, and
we show that it coincides with a relaxed form of fair testing.

Note: This is an expanded version of our ICE ’11 paper [19]. It notably
simplifies a few aspects of the development, and corrects the mistaken
statement that fair and must testing coincide in our semantic framework.
Must testing only coincides with a relaxed variant of fair testing. This
version also subsumes a previous preprint, providing more compact proofs.

1 Overview

Theories of programming languages Research in programming lan-
guages is mainly technological. Indeed, it heavily relies on techniques which
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are ubiquitous in the field, but almost never formally made systematic.
Typically, the definition of a language then quotiented by variable renaming
(α-conversion) appears in many theoretical papers about functional program-
ming languages. Why isn’t there yet any abstract framework performing
these systematic steps for you? Because the quest for a real theory of pro-
gramming languages is not achieved yet, in the sense of a corpus of results
that actually help developing them or reasoning about them. However, many
attempts at such a theory do exist.

A problem for most of them is that they do not account for the dynamics
of execution, which limits their range of application. This is for example
the case of Fiore et al.’s second-order theories [10, 16, 17]. A problem for
most of the other theories of programming languages is that they neglect
denotational semantics, i.e., they do not provide a notion of model for a
given language. This is for example the case of Milner et al.’s bigraphs [22],
or of most approaches to structural operational semantics [36], with the
notable exception of the bialgebraic semantics of Turi and Plotkin [40]. A
recent, related, and promising approach is Kleene coalgebra, as advocated by
Bonsangue et al. [2]. Finally, higher-order rewriting [35], and its semantics in
double categories [12] or in cartesian closed 2-categories [18], is not currently
known to adequately account for process calculi.

Towards a new approach The most relevant approaches to us are bial-
gebraic semantics and Kleene coalgebra, since the programme underlying
the present paper concerns a possible alternative. A first difference, which is
a bit technical but may be of importance, is that both bialgebraic semantics
and Kleene coalgebra are based on labelled transition systems (LTSs), while
our approach is based on reduction semantics. Reduction semantics is often
considered more primitive than LTSs, and much work has been devoted to
deriving the latter from the former [39, 22, 38, 37]. It might thus be relevant
to propose a model based only on the more primitive reduction semantics.

More generally, our approach puts more emphasis on interaction be-
tween programs, and hence is less interesting in cases where there is no
interaction. A sort of wild hope is that this might lead to unexpected mod-
els of programming languages, e.g., physical ones. This could also involve
finding a good notion of morphism between languages, and possibly propose
a notion of compilation. At any rate, the framework is not set up yet, so
investigating the precise relationship with bialgebraic semantics and Kleene
coalgebra is deferred to further work.



How will this new approach look like? Compared to such long-term
goals, we only take a small step forward here, by considering a particular
case, namely Milner’s CCS [33], and providing a new view of it. This view
borrows ideas from the following lines of research: game semantics [20], and in
particular the notion of an innocent strategy, graphical games [8, 15], Krivine
realisability [28], ludics [13], testing equivalences in concurrency [7, 1], the
presheaf approach to concurrency [24, 25], and sheaves [31]. It is also, more
remotely, related to graph rewriting [9] and computads [4].

From strategies to presheaves Game semantics [20] has provided fully
complete models of programming languages. It is based on the notion of
a strategy, i.e., a set of plays in some game, satisfying a few conditions.
In concurrency theory, taking as a semantics the set of accepted plays, or
‘traces’, is known as trace semantics. Trace semantics is generally considered
too coarse, since it equates, for a most famous example, the right and the
wrong coffee machines, a.(b+ c) and ab+ ac [33].

An observation essentially due to Joyal, Nielsen, and Winskel is that
strategies, i.e., prefix-closed sets of plays, are actually particular presheaves
of booleans on the category C with plays as objects, and prefix inclusions as
morphisms. By presheaves of booleans on C we here mean functors Cop → 2,
where 2 is the preorder category 0 ≤ 1. If a play p is accepted, i.e., mapped
to 1, then its prefix inclusions q ↪→ p are mapped to the unique morphism
with domain 1, i.e., id1, which entails that q is also accepted.

Following Joyal, Nielsen, and Winskel, we observe that considering
instead presheaves (of sets) on C yields a much finer semantics. So, a play p
is now mapped to a set S(p), to be thought of as the set of ways for p to be
accepted by the strategy S. Considering the set of players as a team, S(p)
may also be thought of as the set of possible states of the team after playing
p – which is empty if the team never accepts to play p.

This presheaf semantics is fine enough to account for bisimilarity [24, 25].
Indeed, presheaves are essentially forests with edges labelled by moves. For
example, in the setting where plays are finite words on an alphabet, the
wrong coffee machine may be represented by the presheaf S defined by the
equations on the left and pictured as on the right:



S(ε) = {?},
S(a) = {x, x′},
S(ab) = {y},
S(ac) = {y′},

S(ε ↪→ a) = {x 7→ ?, x′ 7→ ?},
S(a ↪→ ab) = {y 7→ x},
S(a ↪→ ac) = {y′ 7→ x′} :

?

x x′

y y′.

a a

b c

So, in summary: the standard notion of strategy may be generalised to
account for branching equivalences, by passing from presheaves of booleans
to presheaves of sets.

Multiple players Traditional game semantics mostly emphasises two-
player games. There is an implicit appearance of three-player games in
the definition of composition of strategies, and of four-player games in the
proof of its associativity, but these games are never given a proper status.
A central idea of graphical games, and to a lesser extent of ludics, is the
emphasis on multiple-player games.

Here, there first is a base category B of positions, whose objects represent
configurations of players. Since the game represents CCS, it should be natural
that players are related to each other via the knowledge of communication
channels. So, roughly, positions are bipartite graphs with vertex sets players
and channels, and edges from channels to players indicating when the former
is known to the latter. As a first approximation, morphisms of positions
may be thought of as just embeddings of such graphs.

Second, there is a category E of plays, with a functor to B sending each
play to its initial position. Plays are represented in a more flexible way than
just sequences of moves, namely using a kind of string diagrams. This echoes
the idea [32] that two moves may be independent, and that plays should
not depend on the order in which two independent moves are performed.
Furthermore, our plays are a rather general notion, allowing, e.g., to focus
on a given player. Morphisms of plays account both for:

• prefix inclusion, i.e., inclusion of a play into a longer play, and

• position enlargement, e.g., inclusion of information about some players
into information about more players.

Now, restricting to plays above a given initial position X, and then
taking presheaves on this category EX , we have a category of strategies on
X.



Innocence A fundamental idea of game semantics is the notion of inno-
cence, which says that players have a restricted view of the play, and that
their actions may only depend on that view.

We implement this here by defining a subcategory VX ↪→ EX of views
on X, and deeming a presheaf F on EX innocent when it is determined by
its restriction F ′ to VX , in the sense that it is isomorphic to the right Kan
extension [30] of F ′ along Vop

X ↪→ Eop
X .

Given this, it is sensible to define innocent strategies to be just presheaves
on VX , and view them as strategies via the (essential) embedding V̂X ↪→ ÊX
induced by right Kan extension.

Interaction For each position X, we thus have a category SX = V̂X of
innocent strategies. In game semantics, composition of strategies is achieved
in two steps: interaction and hiding. Essentially, interaction amounts to
considering the three-player game obtained by letting two two-player games
interact at a common interface. Hiding then forgets what happens at that
interface, to recover a proper two-player game.

We have not yet investigated hiding in our approach, but, thanks to the
central status of multiple-player games, interaction is accounted for in a very
streamlined way. For any position X with two subpositions X1 ↪→ X and
X2 ↪→ X such that each player is in either X1 or X2, but none is in both,
given innocent strategies F1 ∈ SX1 and F2 ∈ SX2 , there is a unique innocent
strategy, the amalgamation [F1, F2] of F1 and F2, whose restrictions to X1

and X2 are F1 and F2.

Amalgamation in this sense models interaction in the sense of game
semantics, and, using the correspondence with presheaves on EX given by
right Kan extension, it is the key to defining interactive equivalences.

CCS Next, we define a translation of CCS terms with recursive equations
into innocent strategies. This rests on spatial and temporal decomposition
results for innocent strategies. Spatial decomposition says that giving a
strategy on a position X is the same as giving a strategy for each of its
players. Temporal decomposition says that a strategy is determined up to
isomorphism by its set of initial states, plus what remains of each of them
after each basic move. Restricting to presheaves of finite ordinals, we also
prove that innocent strategies form a final coalgebra for a polynomial functor
(in the sense of Kock [27]) derived from the game, thus hinting at links with
Kleene coalgebra. It is then easy to translate finite CCS into the language



induced by our polynomial functor, and to finally extend the translation to
CCS with recursive equations via infinite unfolding.

A natural question is then: which equivalence does this translation
induce on CCS terms? As explained in the following paragraph, we provide
some preliminary results about interactive equivalences, but essentially leave
the question open.

Interactive equivalences Returning to the development of our approach,
we then define a notion of interactive equivalence, which is close in spirit
to both testing equivalences in concurrency theory and Krivine realisability
and ludics.

The game, as sketched above, allows interacting with players which
are not part of the considered position. E.g., a player in the considered
position X may perform an input which is not part of any synchronisation.
A test for an innocent strategy F on X is then, roughly, an innocent strategy
G on a position X ′ with the same channels as X. To decide whether F
passes the test G, we consider a restricted variant of the game on the ‘union’
X ∪X ′, forbidding any interaction with the outside. We call that variant
the closed-world game.

Then F passes G iff the amalgamation [F,G], right Kan extended to
EX∪X′ and then restricted to the closed-world game, belongs to some initially
fixed class of strategies, ⊥⊥X∪X′ . Finally, two innocent strategies F and F ′

on X are equivalent when they pass the same tests.
Here are two examples for ⊥⊥. Consider a tick move, fixed in advance.

Then call successful all plays containing at least one tick, and accordingly
call successful all states reached after a successful play. One may consider:

• ⊥⊥m, consisting of strategies whose maximal states (those that admit no
strict extensions) are all successful; the tick move plays a rôle analogous
to the daimon in ludics: it is the only move which is observable from
the outside;

• ⊥⊥f , consisting of strategies in which all states on finite plays admit a
successful extension.

From the classical concurrency theory point of view on behavioural equiva-
lences, the first choice clearly mimicks must testing equivalence, while the
second mimicks fair testing equivalence [34, 3].

Consider the processes Ω and Ω|a, where Ω is a process doing infinitely
many silent transitions. These processes are intuitively quite different: the



latter can do an output on the channel a, while the former cannot. They
are however equated by standard must testing equivalence: the infinite trace
provided by Ω may prevent the output prefix from being performed. In fact,
must testing equivalence heavily relies on the potential unfairness of the
scheduler. In the literature, this peculiar behaviour actually motivates the
introduction of fair testing equivalence.

In contrast, our notion of play is more flexible than standard traces, so
that our counterpart to must testing equivalence actually distinguishes these
two processes: the infinite play where the output prefix is not performed is
not maximal, so that the corresponding unfair behaviour is not taken into
account. In other words, thanks to our notion of play, the rather natural
notion of must testing already avoids what we call ‘spatial unfairness’.
However, must testing does not coincide with fair testing in our setting,
because there are other sources of unfairness, that are not handled properly.
Technically, we prove that ⊥⊥m coincides with the set of strategies whose
states all admit a successful extension. However, the restriction to finite plays
in the definition of ⊥⊥f is required to rule out other sources of unfairness.

Summary In summary, our approach emphasises a flexible notion of
multiple-player play, encompassing both views in the sense of game semantics,
closed-world plays, and intermediate notions. Strategies are then described
as presheaves on plays, while innocent strategies are presheaves on views.
Innocent strategies admit a notion of interaction, or amalgamation, and are
embedded into strategies via right Kan extension. This allows a notion of
testing, or interactive equivalence by amalgamation with the test, right Kan
extension, and finally restriction to closed-world.

Our main technical contributions are then a translation of CCS terms
with recursive equations into innocent strategies, and the study of fair and
must equivalences in our setting.

Perspectives Our next task is clearly to tighten the link with CCS.
Namely, we should explore which equivalence on CCS is induced via our
translation, for a given interactive equivalence. We will start with ⊥⊥f . Fur-
thermore, the very notion of interactive equivalence might deserve closer
consideration. Its current form is rather ad hoc, and one could hope to see
it emerge more naturally from the game. For instance, the fixed class ⊥⊥
of ‘successful’ strategies should probably be more constrained than is done
here. Also, the paradigm of observing via the set of successful tests might



admit sensible refinements, e.g., probabilistic ones.

Another possible research direction is to tighten the link with ‘graphical’
approaches to rewriting, such as graph rewriting or computads. E.g., our
plays might be presented by a computad [14], or be the bicategory of rewrite
sequences up to shift equivalence, generated by a graph grammar in the sense
of Gadducci et al. [11]. Both goals might require some technical adjustments,
however. For computads, we would need the usual yoga of U-turns to flexibly
model our positions; e.g., zigzags of U-turns are usually only equal up to
a higher-dimensional cell, while they would map to equal positions in our
setting. For graph rewriting, the problem is that our positions are not exactly
graphs (e.g., the channels known to a player are linearly ordered).

Other perspectives include the treatment of more complicated calculi
like π or λ. In particular, calculi with duplication of terms will pose a
serious challenge. An even longer-term hope is to be able to abstract over
our approach. Is it possible to systematise the process starting from a
calculus as studied in programming language theory, and generating its
strategies modulo interactive equivalence? If this is ever understood, the
next question is: when does a translation between two such calculi preserve
a given interactive equivalence? Finding general criteria for this might have
useful implications in programming languages, especially compilation.

Notation Throughout the paper, we abusively identify n with {1 . . . n},
for readability. So, e.g., i ∈ n means i ∈ {1, . . . , n}.

FC FC ′

GD GD′

F (f)

u u′

G(g)

The various categories and functors constructed
in the development are summed up with a short
description in Table 1. There, given two functors

C F−→ E G←− D, we denote (slightly abusively) by C ↓E D
the comma category: it has as objects triples (C,D, u)
with C ∈ C, D ∈ D, and u : F (C) → G(D) in E, and as morphisms
(C,D, u)→ (C ′, D′, u′) pairs (f, g) making the square above commute. Also,
when F is the identity on C and G : 1→ C is an object C of C, this yields
the usual slice category, which we abbreviate as C/C. Finally, the category
of presheaves on any category C is denoted by “C = [Cop ,Set].

Furthermore, for any category C, we denote by ob(C) its set of objects.
For any functor F : C → D, we denote by Fop : Cop → Dop the functor
induced on opposite categories, defined exactly as F on both objects and
morphisms. Also, recall that an embedding of categories is an injective-on-
objects, faithful functor. This admits the following generalisation: a functor



Category Description of its objects“C ‘diagrams’

B ↪→ “C positions

E ↪→ (B ↓Ĉ
“C) plays

EX = (E ↓B (B/X)) plays on a position X
VX ↪→ EX views on X

SX = V̂X innocent strategies on X
W ↪→ E closed-world plays
W(X) closed-world plays on X

Table 1: Summary of categories and functors

F : C→ D is essentially injective on objects when FC ∼= FC ′ implies C ∼= C ′.
Any faithful, essentially injective on objects functor is called an essential
embedding.

2 Plays as string diagrams

We now describe our approach more precisely, starting with the category of
multiple-player plays. For the sake of clarity, we first describe this category
in an informal way, before giving the precise definition (Section 3).

2.1 Positions

Since the game represents CCS, it should be natural that
players are related to each other via the knowledge of
communication channels. This is represented by a kind
of3 finite, bipartite graph: an example position is on the
right. Bullets represent players, circles represent channels, and edges indicate
when a player knows a channel. The channels known by a player are linearly
ordered. Formally, as explained in Section 3, positions are presheaves over a
certain category C1. Morphisms of positions are natural transformations,
which are roughly morphisms of graphs, mapping players to players and
channels to channels. In full generality, morphisms thus do not have to be

3Only ‘a kind of’, because, as mentioned above, the channels known to a player are
linearly ordered.



injective, but include in particular embeddings of positions in the intuitive
sense. Positions and morphisms between them form a category B.

2.2 Moves

Plays will be defined as glueings of moves between positions. Moves are
derived from the very definition of CCS, as we now sketch. The diagrams
we draw in this section will be given a very precise combinatorial definition
in Section 3.

Let us start with the forking move, which corresponds to parallel
composition in CCS: a process (the player) forks into two sub-processes. In
the case of a player knowing two channels, the forking move is represented
by the diagram

,

(1)

to be thought of as a move from the bottom position X

(with one player p) to the top position Y

.

(with two players, which we call the ‘avatars’ of p). The left- and right-hand
borders are just channels evolving in time, not noticing that the represented
player forks into two. The surfaces spread between those vertical lines
represent links (edges in the involved positions) evolving in time. For example,
each link here divides into two when the player forks, thus representing the
fact that both of the avatars retain knowledge of the corresponding channel.
There is of course an instance πn of forking for each n, according to the
number of channels known to the player. As for channels known to a player,
the players and channels touching the black triangle are ordered: there are
different ‘ports’ for the initial player and its two avatars.



We then have a tick move ♥n, whose role is to define successful plays,
and a move for the channel creation or restriction of CCS, here νn. In the
case where the player knows two channels, they are graphically represented
as

♥ and

respectively. As expected, there is an instance of each of these two moves
for each number n of channels known to the player.

We also need a move to model CCS-like synchronisation, between two
players. For all n and m, representing the numbers of channels known to
the players involved in the synchronisation, and for all i ∈ n, j ∈ m, there is
a synchronisation τn,i,m,j , represented, in the case where one player outputs
on channel 3 ∈ 3 and the other inputs on channel 1 ∈ 2, by

.

As we shall see in Section 3, the dotted wire in the picture is actually a point
in the formal representation (i.e., an element of the corresponding presheaf).

The above four kinds of moves (forking, tick, channel creation, and
synchronisation) come from the reduction semantics of CCS. We classify
these as closed-world moves, since they correspond to the evolution of a
group of players in isolation.

We however need a more fine-grained structure for moves: moves whose
final position has more than one player (forking and synchronisation) must
be decomposed into basic moves, to get an appropriate notion of view.

We introduce two sub-moves for forking: left and right half-forking. In
the case where the player knows two channels, they are represented by the



following diagrams, respectively:

and

.

(2)

These sub-moves represent what each of the ‘avatars’ of the forking player
sees of the move. We call πln and πrn the respective instances of the left-hand
and right-hand basic moves for a player knowing n channels. Formally,
there will be injections from the left and right half-forking moves to the
corresponding forking moves.

We finally decompose synchronisation into an input move and an output
move: a.P and a.P in CCS become ι+n,i and ι−n,i here (where n is the number
of known channels, i ∈ {1 . . . n} is the index of the channel bearing the
synchronisation). Here, output on the right-hand channel and input on the
left-hand channel respectively look like

and

.

(3)

Like with forking, there will be injections from the input and output moves
to the corresponding synchronisation moves.

All in all, there are three classes of moves, which we summarise in
Table 2.

• Tick, channel creation, half-forking, and input/output moves are basic
moves: they evolve from a position with exactly one player to another
position with exactly one player. These moves are used to define views
later on.

• Forking, synchronisation, tick and channel creation moves are closed-
world moves: they correspond to the case where a group of players
evolves on its own, in isolation; they are central to the notion of
interactive equivalence.



Basic Full Closed-world

Left half-forking
Right half-forking

Forking Forking

Input
Output

Input
Output

Synchronisation

Channel creation Channel creation Channel creation

Tick Tick Tick

Table 2: Summary of classes of moves

• We need a third class of moves, called full and consisting of forking,
input, output, tick and channel creation. They allow us to focus on a
single player and all of its avatars. They appear, e.g., in the statement
of Lemma 12, which is a partial correctness criterion for closed-world
plays.

Formally, we define moves as cospans X ↪→ P ←↩ Y in the category of
diagrams (technically a presheaf category “C—see Section 3), where X is the
initial position and Y the final one. Both legs of the cospan are actually
monic arrows in “C, as will be the case for all cospans considered here.

2.3 Plays

We now sketch how plays are defined as glueings of moves. We start with
the following example, depicted in Figure 1. The initial position consists
of two players p1 and p2 sharing knowledge of a channel a, each of them
knowing another channel, resp. a1 and a2. The play consists of four moves:
first p1 forks into p1,1 and p1,2, then p2 forks into p2,1 and p2,2, and then
p1,1 does a left half-fork into p1,1,1; finally p1,1,1 synchronises (as the sender)
with p2,1. Now, we reach the limits of the graphical representation, but the
order in which p1 and p2 fork is irrelevant: if p2 forks before p1, we obtain
the same play. This means that glueing the various parts of the picture in
Figure 1 in different orders formally yields the same result (although there
are subtle issues in representing this result graphically in a canonical way).

Let us now sketch a definition of plays. Recall that moves may be seen
as cospans X ↪→M ←↩ Y , and consider an extended notion of move, which
may occur in a position not limited to players involved in the move. For



example, the moves in Figure 1 are extended moves in this sense. We may
now state:

Definition 1. A play is an embedding X0 ↪→ U in the category “C of
diagrams, isomorphic to a possibly denumerable ‘composition’ of moves in
the (bi)category Cospan(“C) of cospans in “C, i.e., obtained as a colimit:

X0 X1 . . . Xn Xn+1 Xn+2 . . .

M0 . . . Mn Mn+1 . . .

U,

where each Xi ↪→Mi ←↩ Xi+1 is an extended move.

Notation: we often denote plays just by U , leaving the embedding
X ↪→ U implicit.

Remark 1. For finite plays, one might want to keep track not only of the
initial position, but also of the final position. This indeed makes sense. Finite
plays then compose ‘vertically’, and form a double category. But infinite
plays do not really have any final position, which explains our definition.

U V

X Y.
h

kLet a morphism (X ↪→ U) → (Y ↪→ V ) of plays be
a pair (h, k) making the diagram on the right commute in“C. This permits both inclusion ‘in width’ and ‘in height’.
E.g., the play consisting of the left-hand basic move in (2)
embeds in exactly two ways into the play of Figure 1. (Only
two because the image of the base position must lie in the base position of
the codomain.) We have:

Proposition 1. Plays and morphisms between them form a category E.

There is a projection functor E→ B mapping each play X ↪→ U to its
base position X. This functor has a section, which is an embedding B ↪→ E,
mapping each position X to the ‘identity’ play X ↪→ X on X.

Remark 2 (Size). The category E is only locally small. Since presheaves on
a locally small category are less well-behaved than on a small category, we will
actually consider a skeleton of E. Because E consists only of denumerable
presheaves, this skeleton is a small category. Thus, our presheaves in the
next section may be understood as taken on a small category.



.
p1 p2aa1 a2

Figure 1: An example play

Remark 3. Plays are not very far from being just (infinite) abstract syntax
trees (or forests) ‘glued together along channels’.

2.4 Relativisation

If we now want to restrict to plays over a given base position X, we may
consider

Definition 2. Let the category EX have

• as objects pairs of a play Y ↪→ U and a morphism Y → X,

• as morphisms (Y ↪→ U) → (Y ′ ↪→ U ′) all pairs (h, k) making the
diagram



U U ′

Y Y ′

X

k

h

commute in “C.

We will usually abbreviate U ←↩ Y → X as just U when no ambiguity
arises. As for morphisms of positions, in full generality, h and k, as well as
the morphisms Y → X, do not have to be injective.

Example 1. Let X be the position . The play
in Figure 1, say Y ↪→ U , equipped with the injection Y ↪→ X mapping the
two players of Y to the two leftmost players of X, is an object of EX .

One naively could imagine that the objects EX could just consist of plays
X ↪→ U on X. However, spatial decomposition, Theorem 1, relies on our
slightly more complex definition. E.g., still in Figure 1, this allows us to

distinguish between the identity view [2] [2]
p1
↪−→ X on p1 from the identity

view [2] [2]
p2
↪−→ on p2, which would otherwise not be possible.

3 Diagrams

In this section, we define the category on which the string diagrams of the
previous section are presheaves. The techniques used here date back at least
to Carboni and Johnstone [5, 6].

3.1 First steps

Let us first consider two small examples. It is well-known that directed
graphs form a presheaf category: consider the category C freely generated
by the graph with two vertices, say ? and [1], and two edges d, c : ? → [1]
between them. One way to visualise this is to compute the category of
elements of a few presheaves on C. Recall that the category of elements of
a presheaf F on C is the comma category y ↓Ĉ F , where y is the Yoneda
embedding. Via Yoneda, it has as elements pairs (C, x) with C ∈ ob(C) and
x ∈ F (C), and morphisms (C, x)→ (D, y) morphisms f : C → D in C such
that F (f)(y) = x (which we abbreviate as y · f = x when the context is
clear).



Example 2. Consider the graph

0 1 2
e e′

with three vertices 0, 1, and 2, and two edges e and e′.

This graph is represented by the presheaf F defined by the following
equations, whose category of elements is actually freely generated by the
graph on the right:

• F (?) = {0, 1, 2},

• F ([1]) = {e, e′},

• e · d = 0,

• e · c = 1,

• e′ · d = 1,

• e′ · c = 2,

1

e e′

0 2.

d

c d

c

This latter graph is not exactly the original one, but it does represent it.
Indeed, for each vertex we know whether it is in F (?) or F ([1]), hence whether
it represents a ‘vertex’ or an ‘edge’. The arrows all go from a ‘vertex’ v to
an ‘edge’ e. They lie above d when v is the domain of e, and above c when
v is the codomain of e.

Multigraphs, i.e., graphs whose edges have a list of sources instead of
just one, may also be seen as a presheaves on the category freely generated
by the graph with

• as vertices: one special vertex ?, plus for each natural number n a
vertex, say, [n]; and

• n+ 1 edges ?→ [n], say d1, . . . , dn, and c.

It should be natural for presheaves on this category to look like multigraphs:
the elements of a presheaf F above ? are the vertices in the multigraph, the
elements above [n] are the n-ary multiedges, and the action of the di’s give
the ith source of a multiedge, while the action of c gives its target.

Example 3. Similarly, computing a few categories of elements might help
visualising. As above, consider F defined by



• F (?) = {0, 1, 2, 3, 4, 5},

• F ([1]) = F ([0]) = ∅,

• F ([2]) = {e′},

• F ([3]) = {e},

• F ([n+ 4]) = ∅,

• e · c = 0,

• e · d1 = 1,

• e · d2 = 2,

• e · d3 = 3,

• e′ · c = 1,

• e′ · d1 = 4,

• e′ · d2 = 5,

whose category of elements is freely generated by the graph:

0

e

1 2 3

e′

4 5.

c

d1

c

d2
d3

d1 d2

Now, this pattern may be extended to higher dimensions. Consider for
example extending the previous base graph with a vertex [m1, . . . ,mn; p] for
all natural numbers n, p,m1, . . . ,mn, plus edges

s1 : [m1]→ [m1, . . . ,mn; p],
. . . ,
sn : [mn]→ [m1, . . . ,mn; p], and
t : [p]→ [m1, . . . ,mn; p].

Let now C be the free category on this extended graph. Presheaves on C
are a kind of 2-multigraphs: they have vertices, multiedges, and multiedges
between multiedges.

We could continue this in higher dimensions.

3.2 Constructing the base category

Our base category follows a very similar pattern. We start from a slightly
different graph: let G0 have just one vertex ?; let G1, have one vertex ?,
plus a vertex [n] for each natural number n, plus n edges d1, . . . , dn : ?→ [n].
Let C0 and C1 be the categories freely generated by G0 and G1, respectively.



So, presheaves on C1 are a kind of hypergraphs with arity (since vertices
incident to a hyperedge are numbered). This is enough to model positions.

Now, consider the graph G2, which is G1 augmented with:

• for all n, vertices ♥n, πln, πrn, νn,

• for all n and 1 ≤ i ≤ n, vertices ι+n,i and ι−n,i,

• for all n, edges s, t : [n]→ ♥n, s, t : [n]→ πln, s, t : [n]→ πrn, s : [n]→
νn, t : [n+ 1]→ νn,

• for all n and 1 ≤ i ≤ n, edges s, t : [n]→ ι+n,i, s, t : [n]→ ι−n,i.

We slightly abuse language here by calling all these t’s and s’s the same. We
could label them with their codomain, but we refrain from doing so for the
sake of readability.

Now, let C2 be the category generated by G2 and the relations s ◦ di =
t ◦ di for all n and 1 ≤ i ≤ n (for all sensible—common—codomains).

Example 4. Again, computing a few categories of elements is in order. For
example, the category of elements of (the representable presheaf on) ι−3,3 is
the poset freely generated by the graph

td1

t td3

td2

id ι−3,3
sd1

s sd3

sd2,

to be compared with the corresponding pictures (3).

Example 5. Similarly, the category of elements of ν1 is the poset freely
generated by the graph



td1 t td2

idν1

sd1 s.

Note that only channel creation changes the number of channels known to
the player, and accordingly the corresponding morphism t has domain [n+ 1].

Presheaves on C2 are enough to model views, but since we want more,
we continue, as follows.

Let G3 be G2, augmented with:

• for all n, a vertex πn, and

• edges l : πln → πn and r : πrn → πn.

Definition 3. Let C3 be the category generated by G3, the previous relations,
plus the relations l ◦ s = r ◦ s.

The equation models the fact that a forking move should be played by just
one player. We also call s = l ◦ s = r ◦ s the common composite, which gives
a uniform notation for the initial player of full moves.

Example 6. The category of elements of π2 is the poset freely generated by
the graph

ltd1 = rtd1 lt rt ltd2 = rtd2

l idπ2 r

lsd1 = rsd1 ls = rs lsd2 = rsd2.

The two views corresponding to left and right half-forking are subcategories,
and the object idπ2 ‘ties them together’.



Presheaves on C3 are enough to model full moves; to model closed-world
moves, and in particular synchronisation, we continue as follows.

Let G4 be G3, augmented with, for all n, m, 1 ≤ i ≤ n, and 1 ≤ j ≤ m,

• a vertex τn,i,m,j , and

• edges ε : ι+n,i → τn,i,m,j and ρ : ι−m,j → τn,i,m,j (ε and ρ respectively
stand for ‘emission’ and ‘reception’).

Definition 4. Let C4 be the category generated by G4, the previous relations,
plus, for each ι+n,i

ε−→ τn,i,m,j
ρ←− ι−m,j, the relation ε ◦ s ◦ di = ρ ◦ s ◦ dj.

This equation is the exact point where we enforce that a synchronisation
involves an input and an output on the same channel, as announced in
Example 4.

Example 7. The category of elements of τ3,3,1,1 is the preorder freely gen-
erated by the graph

εtd1

εt εtd3 = ρtd1 ρt ρtd2

εtd2

ε idτ3,3,2,1 ρ

εsd1

εs εsd3 = ρsd1 ρs ρsd2

εsd2.

Again, the two views corresponding to ι+3,3 and ι−2,1 are subcategories, and the
new object τ3,3,2,1 ties them together.

3.3 Positions and moves

We have now defined the base category C = C4 on which the string diagrams
of Section 2 are presheaves. More accurately we have defined a sequence
C0 ↪→ . . . ↪→ C4 of subcategories.

Positions Positions are finite presheaves on C1, or equivalently, finite
presheaves on C4 empty except above C1.



Moves Basic moves should be essentially representable presheaves on
objects in ob(C2) \ ob(C1). Recall however that basic moves are defined as
particular cospans in “C. This is also easy: in the generating graph G2, each
such object c has exactly two morphisms s and t into it, from objects, say,

[ns] and [nt], respectively. By Yoneda, these induce a cospan [ns]
s−→ c

t←− [nt]
in “C, which is the desired cospan. (Observe, again, that only νn has ns 6= nt.)

Similarly, full moves either are basic moves, or are essentially repre-
sentable presheaves on objects in ob(C3) \ ob(C1), i.e., representables on
some πn. To define the expected cospan, first observe that by the equation

ls = rs, we obtain an arrow [n]
s−→ πln

l−→ πn, equal to rs, in “C. This will
form the first leg of the cospan. For the other, observe that for each n and
i ∈ n, we obtain, by the equations ltdi = lsdi = rsdi = rtdi and by Yoneda,
that the outermost part of

n · ? [n]

[n] n|n πrn

πln πn

[di]i∈n

[di]i∈n
t

t
r

l

t

(4)

commutes in “C, where n · ? denotes an n-fold coproduct of ?. Letting n|n be
the induced pushout, and the dashed arrow t be obtained by its universal

property, we obtain the desired cospan [n]
ls−→ πn

t←− n|n.
Finally, closed-world moves either are full moves, or are essentially

representable presheaves on some τn,i,m,j . To define the expected cospan, we
proceed as in Figure 2: compute the pushout n i |j m, and infer the dashed

arrows s′ and t′ to obtain the desired cospan n i |j m
s′−→ τn,i,m,j

t′←− n i |j m.

Remark 4 (Isomorphisms). Moves are particular cospans in “C. For certain
moves, the involved objects are representable, but not for others, like forking
or synchronisation, whose final position is not representable. In the latter
cases, our definition thus relies on a choice, e.g., of pushout in (4). Thus,
let us be completely accurate: a move is a cospan which is isomorphic to
one of the cospans chosen above, in “C·←·→·, i.e., the category of functors



? [m]

[n] n i |j m

? ι−m,j

ι+n,i τn,i,m,j

? [m]

[n] n i |j m

t

s

di

dj

di

dj

di

dj

t

s

t′

s′

Figure 2: Construction of the synchronisation move

from the category · ← · → · (generated by the graph with three objects and
an arrow from one to each of the other two) to “C.

3.4 Extended moves, plays, and relativisation

The most delicate part of our formalisation of Section 3 is perhaps the
passage from moves to extended moves. Recall from the paragraph above
Definition 1 that an extended move should be like a move occurring in a
larger position.

Moves with interfaces To formalise this idea, we first equip moves with
interfaces, as standard in graph rewriting [23]. Since moves are cospans, one
might expect that interfaces be cospans too. This may be done, but there is
a simpler, equivalent presentation. The route we follow here might have to
be generalised in order to handle more complex calculi than CCS, but let us
save the complications for later work.

Here, we define an interface for a cospan X →M ← Y to consist of a



presheaf I and morphisms X ← I → Y such that

I Y

X M

(5)

commutes, and I has dimension 0, i.e., is empty except above C0, i.e., consists
only of channels.

Definition 5. A cospan equipped with an interface is called a cospan with
interface.

Moves are particular cospans, and we now equip them with canonical
interfaces: all moves except channel creation preserve the set of channels,
the interface is then n · ?, with the obvious inclusion. For example, the less
obvious case is πn: we choose

n · ? n|n

[n] πn,

where the upper map is as in (4). For channel creation, we naturally choose

n · ? [n+ 1]

[n] νn.

[di]i∈n

Definition 6. A move with interface is one of these cospans with interface.
The basic, full, or closed-world character is retained from the underlying
move.

Extended moves We now plug moves with interfaces into contexts, in
the following sense.

Definition 7. A context for a cospan with interface (5) is a position Z,
equipped with a morphism I → Z.

From any cospan with interface µ as in (5) and context C : I → Z, we
construct the cospan C[µ] as in:



Y Y ′

M M ′

I Z

X X ′.

C

I.e., we push the available morphisms out of I along C, and infer the dashed
arrows, which form the desired cospan.

Definition 8. An extended move is a cospan of the shape C[µ], for any
move with interface µ and context C as above.

Example 8. Recall that [2] is a position with one player knowing two
channels. Recall from Figure 2 the pushout

? [2]

[2] 2 2 |1 2,

d1

d2

p1

p2

equivalently obtained as the pushout

?+ ? ?+ [2]

[2] 2 2 |1 2.

id? + d1

[d1, d2]

p1

[a1, p2]

The base position of Figure 1 is thus 2 2 |1 2. Recall also from (4) that
2|2 denotes the position with two players both knowing two channels. Now,
we have the forking move [2] ↪→ π2 ←↩ 2|2. Equipping it with the interface

[d1, d2] : ?+?→ [2],

and putting it in the context id? + d1 : ?+?→ ?+ [2], (which happens to be
the same as the interface), we obtain



2|2 (2|2) 2 |1 2

π2 M

?+ ? ?+ [2]

[2] 2 2 |1 2.[d1, d2]

id? + d1

This formally constructs the first layer of Figure 1. Constructing the whole
play would be a little too verbose to be included here, but essentially straight-
forward.

Plays and relativisation We may now read Definition 1 again, this time
in the formal setting, to define plays. Similarly, the definition of morphisms
now makes rigorous sense, as well as Proposition 1.
Proof of Proposition 1: E is the full subcategory of the arrow category
of “C whose objects are plays. 2

Similarly, Section 2.4 now makes rigorous sense.

4 Innocent strategies as sheaves

Now that the category of plays is defined, we move on to defining innocent
strategies. There is a notion of a Grothendieck site [31], which consists of
a category equipped with a (generalised) topology. On such sites, one may
define a category of sheaves, which are very roughly the presheaves that
are determined locally w.r.t. the generalised topology. We claim that there
is a topology on each EX , for which sheaves adequately model innocent
strategies. Fortunately, in our setting, sheaves admit a simple description, so
that we can avoid the whole machinery. But sheaves were the way we arrived
at the main ideas presented here, because they convey the right intuition:
plays form a Grothendieck site, and the states of innocent strategies should
be determined locally.

In this section, we first define innocent strategies, and state the spatial
and temporal decomposition theorems. We then present our coalgebraic
interpretation of innocent strategies, i.e., we define a polynomial endofunctor



F , and show that presheaves of finite ordinals on views form a final F -
coalgebra. We then derive from this a formal language and its interpretation
in terms of innocent strategies. We finally use this language to translate
CCS with recursive equations into innocent strategies.

4.1 Innocent strategies

Definition 9. A view is a finite, possibly empty ‘composition’ [n] ↪→ V of
(extended) basic moves in Cospan(“C), i.e., a play in which all the cospans
are basic moves.

The empty case yields the view [n] ↪→ [n]; but note that empty
presheaves (with not even an initial position) are not views.

Example 9. Forking (1) has two non-trivial views, namely the (left legs of)
basic moves (2). Each of them embeds into forking:

.

Example 10. In Figure 1, the leftmost branch contains a view consisting
of three basic moves: two πl2 and an output.

Definition 10. For any position X, let VX be the full subcategory of EX
consisting of views.

More precisely, VX consists of spans U ←↩ Y → X where Y ↪→ U is a
view.

Definition 11. Let the category SX of innocent strategies on X be the
category V̂X of presheaves on VX .

A possible interpretation is that for a presheaf F ∈ V̂X and view
V ∈ VX , F (V ) is the set of possible states of the strategy F after playing V .



It might thus seem that we could content ourselves with defining only
views, as opposed to plays. However, in order to define interactive equiv-
alences in Section 5, we need to view innocent strategies as (particular)
presheaves on the whole of EX .

C D

E

F

G

H

K

α′

ε

α

The connection is as follows. Recall
from MacLane [30] the notion of right Kan
extension. Given functors F and G as on
the right, a right Kan extension RanF (G) of
G along F is a functor H : D→ E, equipped
with a natural transformation ε : HF → G,
such that for all functors K : D → E and transformations α : KF → G,
there is a unique α′ : K → H such that α = ε • (α′ ◦ idF ), where • is vertical
composition of natural transformations. Now, precomposition with F induces
a functor Cat(F,E) : Cat(D,E)→ Cat(C,E), where Cat(D,E) is the category
of functors D→ E and natural transformations between them. When E is
complete, right Kan extensions always exist (and an explicit formula for our
setting is given below), and choosing one of them for each functor C→ E
induces a right adjoint to Cat(F,E). Furthermore, it is known that when F
is full and faithful, then ε is a natural isomorphism, i.e., HF ∼= G.

Proposition 2. If F is full and faithful, then RanF is a full essential
embedding.

Proof: For essential injectivity on objects, assumeH = RanF (G), RanF (G′) =
H ′, and i : H → H ′ is an isomorphism with inverse k. We must construct
an isomorphism G ∼= G′. Let j : G → G′ be εG′ • (iF ) • ε−1G . Similarly, let
l : G′ → G be εG • (kF ) • ε−1G′ . We have

l • j = εG • (kF ) • ε−1G′ • εG′ • (iF ) • ε−1G
= εG • (kF ) • (iF ) • ε−1G
= εG • ((k • i) ◦ F ) • ε−1G
= εG • ε

−1
G

= idG.

Similarly, j • l = idG′ and we have G ∼= G′.

To see that RanF is full, observe that for any i : H → H ′, with H =
RanF (G) and H ′ = RanF (G′), j = εG′ • (iF ) • ε−1G is an antecedent of i by
RanF . Indeed, by definition, RanF (j) is the unique i′ : H → H ′ such that
εG′ • (i′F ) = j • εG. But the latter is equal to εG′ • (iF ), so i′ = i.



Finally, to show that RanF is faithful, consider G,G′ : C→ E and two
natural transformations i, j : G → G′ such that RanF (i) = RanF (j) = k.
Then, by construction of k, we have

i • εG = εG′ • (kF ) = j • εG.

But, εG being an isomorphism, this implies i = j as desired. 2

Returning to views and plays, the embedding iX : VX ↪→ EX is full, so
right Kan extension along iopX : Vop

X → Eop
X induces a full essential embedding

RaniopX
: V̂X → ÊX . The (co)restriction of this essential embedding to its

essential image thus yields an essentially surjective, fully faithful functor,
i.e., an equivalence of categories:

Proposition 3. The category SX is equivalent to the essential image of
RaniopX

.

The standard characterisation of right Kan extensions as ends [30]
yields, for any F ∈ V̂X and U ∈ EX :

RaniopX
(F )(U) =

∫
V ∈VX

F (V )EX(V,U),

i.e., giving an element of RaniopX
(F ) on a play U amounts to giving, for

each view V and morphism V → U , an element of F (V ), satisfying some
compatibility conditions. In Example 11 below, we compute an example
right Kan extension.

The interpretation of strategies in terms of states extends: for any
presheaf F ∈ ÊX and play U ∈ EX , F (U) is the set of possible states of the
strategy F after playing U . That F is in the image of RaniopX

amounts to

F (U) being a compatible tuple of states of F after playing each view of U .

Example 11. Here is an example of a presheaf F ∈ ÊX which is not inno-
cent, i.e., not in the image of RaniopX

. Consider the position X consisting
of three players, say x, y, z, sharing a channel, say a. Let Xx be the sub-
position with only x and a, and similarly for Xy, Xz, Xx,y, and Xx,z. Let
Ix = (ι−1,1 ←↩ Xx ↪→ X) be the play where x inputs on a, and similarly let
Oy and Oz be the plays where y and z output on a, respectively. Let now
Sx,y = (τ1,1,1,1 ←↩ Xx,y ↪→ X) be the play where x and y synchronise on a
(x inputs and y outputs), and similarly let Sx,z be the play where x and z
synchronise on a.



Finally, let F (Sx,y) = 2 be a two-element set, and F (Sx,z) = ∅. To
define F on other plays, the idea is to map any subplay of Sx,y and Sx,z to a
one-element set 1, and other plays to ∅. But if U is a subplay of, say, Sx,y,
then, for any epic e : U � U ′, U ′ has the same views as U , so we choose to
also map U ′ to 1. Formally, beyond F (Sx,y) = 2 and F (Sx,z) = ∅, define F
for any play U ′ by:

• if there exists a player t ∈ {y, z}, a play U , and arrows U ′
e
U

i
↪−→ Sx,t,

with e epic and i monic but not epic, then let F (U ′) = 1;

• otherwise let F (U ′) = ∅.

In particular, for any strict superplay U of Sx,y or Sx,z, F (U) = ∅, and we
have F (Ix) = F (Oy) = F (Oz) = F (idx) = F (idy) = F (idz) = 1.

This F fails to be innocent on two counts. First, since x and y accept
to input and output in only one way, it is non-innocent to accept that they
synchronise in more than one way. Formally, Sx,y has two non-trivial views,
Ix and Oy, so since F maps identity views to a singleton, F (Sx,y) should
be isomorphic to F (Ix)× F (Oy) = 1× 1 = 1. Second, since x and z accept
to input and output, it is non-innocent to not accept that they synchronise.
Formally, F (Sx,z) should also be a singleton. This altogether models the fact
that in CCS, processes do not get to know with which other processes they
synchronise.

The restriction of F to VX , i.e., F ′ = F ◦ iopX , in turn has a right Kan
extension F ′′, which is innocent. (In passing, the unit of the adjunction
Cat(iopX , Set) a RaniopX

is a natural transformation F → F ′′.) To conclude this

example, let us compute F ′′. First, F ′ only retains from F its values on views.
So, if Xx denotes the empty view on Xx, F ′(Xx) = 1, and similarly F ′(Xy) =
F ′(Xz) = 1. Furthermore, F ′(Ix) = F ′(Oy) = F ′(Oz) = 1. Finally, for
any view V not isomorphic to any of the previous ones, F ′(V ) = ∅. So,
recall that F ′′ maps any play U ←↩ Y ↪→ X to

∫
V ∈VX

F ′(V )EX(V,U). So,
e.g., since the views of Sx,y are subviews of Ix and Oy, we have F ′′(Sx,y) =
F ′(Ix) × F ′(Oy) = 1. Similarly, F ′′(Sx,z) = 1. But also, for any play U
such that all views V → U are subviews of either of Ix, Oy, or Oz, we have
F ′′(U) = 1. Finally, for any play U such that there exists a view V → U
which is not a subview of any of Ix, Oy, or Oz, we have F ′′(U) = ∅.

One way to understand Proposition 3 is to view V̂X as the syntax for
innocent strategies: presheaves on views are (almost) infinite terms in a
certain syntax (see Section 4.4 below). On the other hand, seeing them as



presheaves on plays will allow us to consider their global behaviour: see
Section 5 when we restrict to the closed-world game. Thus, right Kan
extension followed by restriction to closed-world will associate a semantics
to innocent strategies.

Remark 5. The relevant Grothendieck topology on EX says, roughly, that
a play is covered by its views. Any sheaf for this topology is determined by
its restriction to VX , for its elements on any non-view play U are precisely
amalgamations of its elements on views of U . Right Kan extension just
computes these amalgamations in the particular case of a topology derived
from a full subcategory, here views.

So, we have defined for each X the category SX of innocent strategies
on X. This assignment is actually functorial Bop → CAT, as follows (where
CAT is the large category of locally small categories). Any morphism
f : Y → X induces a functor f! : VY → VX mapping (V ←↩ Z → Y ) to
(V ←↩ Z → Y → X). Precomposition with (f!)

op thus induces a functor
Sf : V̂X → V̂Y .

Proposition 4. This defines a functor S : Bop → CAT.

Proof: A straightforward verification. 2

But there is more: for any position, giving a strategy for each player in
it easily yields a strategy on the whole position. We call this amalgamation
of innocent strategies (because the functor S is indeed a stack [42], and this
is a particular case of amalgamation in that stack). Formally, consider any
subpositions X1 and X2 of a given position X, inducing a partition of the
players of X, i.e., such that X1 ∪X2 contains all players of X, and X1 ∩X2

contains none. Then VX is isomorphic to the coproduct VX1 +VX2 . (Indeed,
a view contains in particular an initial player in X, which forces it to belong
either in VX1 or in VX2 .)

Definition 12. Given innocent strategies F1 on X1 and F2 on X2, let their
amalgamation be their copairing

[F1, F2] : Vop
X
∼= (VX1 + VX2)op ∼= Vop

X1
+ Vop

X2
→ Set.

By universal property of coproduct:

Proposition 5. Amalgamation yields an isomorphism of categories V̂X ∼=‘VX1 ×‘VX2 .



Example 12. Consider again the position X from Example 11, and let Xy,z

be the subposition with only y and z. We have VX ' (VXx + VXy,z), which
we may explain by hand as follows. A view on X has a base player, x, y, or
z, and so belongs either in VXx or in VXy,z . Furthermore, if V is a view on
x and W is a view on y, then VX(V,W ) = ∅ (and similarly for any pair of
distinct players in X).

Now, recall F ′, the restriction of F to VX . We may define Fx : Vop
Xx
→

Set to be the restriction of F ′ along the (opposite of the) embedding VXx ↪→
VX , and similarly Fy,z to be the restriction of F ′ along VXy,z ↪→ VX . We
have obviously F ′ = [Fx, Fy,z].

Analogous reasoning leads to what we call spatial decomposition. For
any X, let Pl(X) =

∑
nX([n]), i.e., the set of pairs (n, x), where x is a

player in X, knowing n channels.

Theorem 1. We have V̂X ∼=
∏

(n,x)∈Pl(X)
‘V[n].

Again, this is a particular case of amalgamation in the stack S, but we
do not need to spell out the definition here.

4.2 Temporal decomposition

Let us now describe temporal decomposition. Recall that basic moves are
left and right half-forking (2), input, output, tick, and channel creation.

Definition 13. Let M be the graph with vertices all natural numbers n, and
with edges n→ n′ all (isomorphism classes of) basic moves M : [n]→ [n′].

Recall from Remark 4 that the notion of isomorphism considered here
is that of an isomorphism of cospans in “C.

Definition 14. Let Mn be the set of edges from n in M.

For stating the temporal decomposition theorem, we need a standard [21]
categorical construction, the category of families on a given category C.
First, given a set X, consider the category Fam(X) with as objects X-
indexed families of sets Y = (Yx)x∈X , and as morphisms Y → Z families
(fx : Yx → Zx)x∈X of maps. This category is equivalently described as
the slice category Set/X. To see the correspondence, consider any family
(Yx)x∈X , and map it to the projection function

∑
x∈X Yx → X sending (x, y)

to x. Conversely, given f : Y → X, let, for any x ∈ X, Yx be the fibre of f
above x, i.e., f−1(x).



Generalising from sets X to small categories C, Fam(C) has as objects
families p : Y → ob(C) indexed by the objects of C. Morphisms (Y, p) →
(Z, q) are pairs of u : Y → Z and v : Y → mor(C), where mor(C) is the set
of morphisms of C, such that dom ◦v = p, and cod ◦v = q ◦ u. Thus, any
element y ∈ Y above C ∈ C is mapped to some u(y) ∈ Z above C ′ ∈ C, and
this mapping is labelled by a morphism v(y) : C → C ′ in C. The obtained
category is locally small.

Further generalising, for C a locally small category, we may define
Fam(C) in exactly the same way (with Y still a set), and the obtained
category remains locally small.

The temporal decomposition theorem is:

Theorem 2. There is an equivalence of categories

Sn ' Fam

Ñ ∏
M∈Mn

Scod(M)

é
.

The main intuition is that an innocent strategy is determined up to
isomorphism by (i) its initial states, and (ii) what remains of them after
each possible basic move. The family construction is what permits innocent
strategies with several possible states over the identity play.

Proof sketch: For general reasons, we have:

Fam
Ä∏

M∈Mn
Scod(M)

ä
= Fam

(∏
M∈Mn

[Vop
cod(M),Set]

)
∼= Fam

Äî∑
M∈Mn

Vcod(M)
op ,Set

óä
'

[∑
M∈Mn

Vop
cod(M), Set

]
↓ ∆,

where ∆: Set → [
∑
M∈Mn

Vop
cod(M),Set] maps any set X to the constant

presheaf mapping any object to X and any arrow to the identity.

By definition, the last category is a lax pullback

[∑
M∈Mn

Vop
cod(M), Set

] [∑
M∈Mn

Vop
cod(M), Set

]

Set
[∑

M∈Mn
Vop
cod(M), Set

]
↓ ∆

∆

in CAT.



Now, any basic move M : n→ n′ induces a functor (−◦M) : V[n′] → V[n],

mapping any view V ∈ V[n′] to V ◦M (with composition in Cospan(“C)). We
show that the square∑

M∈Mn
Vop
cod(M)

∑
M∈Mn

Vop
cod(M)

1 Vop
[n]

!

pid [n]q

[− ◦M ]M∈Mn
λ (6)

is a lax pushout in Cat, where λM,V : id [n] → M ◦ V , seen in V[n], is the
obvious inclusion, which for general reasons is mapped by the hom-2-functor
CAT(−,Set) to a lax pullback. But CAT(!, Set) = ∆ and CAT(id ,Set) = id ,
so we obtain a canonical isomorphism of lax pullbacks

S[n] = [Vop
[n],Set]

∼=

 ∑
M∈Mn

Vop
cod(M), Set

 ↓ ∆.

More detail is in Appendix A. 2

Remark 6. The theorem almost makes innocent strategies into a sketch (on
the category with positions as objects, finite compositions of extended moves
as morphisms, and the MX ’s as distinguished cones). Briefly, being a sketch
would require a bijection of sets Sn ∼=

∏
M∈Mn

Scod(M). Here, the bijection
becomes an equivalence of categories, and the family construction sneaks in.

4.3 Innocent strategies as a terminal coalgebra

Temporal decomposition gives

Sn ' Fam

Ñ ∏
M∈Mn

Scod(M)

é
,

for all n. Considering a variant of this formula as a system of equations
will lead to our interpretation of CCS. The first step is to replace Set with
FinOrd, the category of finite ordinals and monotone functions. The proof
applies mutatis mutandis and we obtain an equivalence, which, because both
categories are skeletal, is an isomorphism:

V̄[n]
∼= Famf

Ñ ∏
M∈Mn

¸�Vcod(M)

é
, (7)



where

• Famf is the same as Fam but with finite families, i.e., for any category
C, ob(Famf (C)) =

∑
I∈FinOrd(ob(C))I = (ob(C))∗ is the set of finite

words over objects of C, also known as the free monoid on ob(C);

• and for any category C, ÙC denotes the functor category [Cop ,FinOrd].

Remark 7. Recall that in the proof of Theorem 2, Fam arises from the
‘constant presheaf ’ functor ∆: Set→ “−, with − a complicated category. This
functor itself is equal to restriction along − → 1, via 1̂ ∼= Set. Replacing
Set with FinOrd thus replaces ∆ with the analogous functor FinOrd→ Ù−, viaÛ1 ∼= FinOrd, and thus Fam with Famf .

Furthermore, because FinOrd embeds into Set, the special strategies of
V̄[n] embed into S[n].

Then, taking advantage of the fact that FinOrd is a small category, we
consider its set FinOrd0 of objects, i.e., finite ordinals, and the endofunctor
F on Set/FinOrd0 defined on any family of sets X = (Xi)i∈FinOrd0 by:

(F (X))n =
∑

I∈FinOrd0

Ñ ∏
M∈Mn

Xcod(M)

éI

,

where we abusively confuse [n′] = cod(M) and the natural number n′ itself.
The isomorphism (7) becomes

ob(V̄[n]) ∼= (F (ob(Ṽ−)))n.

We may decompose F as follows. Consider the endofunctor on Set/
FinOrd0 defined by (∂X)n =

∏
M∈Mn

Xcod(M), for any familyX ∈ Set/FinOrd0.
We obviously have:

Lemma 1. F is equal to the composite (∂−)∗.

This endofunctor is polynomial [27] and we now give a characterisation
of its final coalgebra. The rest of this subsection is devoted to proving:

Theorem 3. The family ob(V̂n) formed for each n by (the objects of) V̂n
is a terminal coalgebra for F .



Consider any F -coalgebra a : X → FX.
We define by induction on N a sequence of maps fN : X → V̄[−], such

that for any view V of length less than N , and any N ′ > N , fN ′(x)(V ) =
fN (x)(V ), and similarly the action of fN (x) on morphisms is the same as
that of fN ′(x).

To start the induction, take f0(x) to be the strategy mapping id [n] to

π(a(x)), i.e., the length of a(x) ∈ ∑I∈FinOrd0((∂X)n)I , and all other views
to 0.

Furthermore, given fN , define fN+1 to be

X
a−→ FX

F (fN )−−−−→ F (V̄[−])
∼=−→ V̄[−],

where the equivalence is by temporal decomposition.
Unfolding the definitions yields:

Lemma 2. Consider any x ∈ Xn, and a(x) = (z1, . . . , zk). For any move
M : n → n′ and view V : n′ → n′′ of length at most N , and for any i ∈ k,
fN+1(x)(V ◦M) =

∑
i∈k fN (zi(M))(V ).

For any x ∈ Xn, we have a sequence f0(x) ↪→ f1(x) ↪→ . . . fN (x) ↪→
fN+1(x) ↪→ . . . which is pointwise stationary. This sequence thus has a

colimit in V̄[n], the presheaf mapping any view V of length N to fN (V ) (or
equivalently fN ′(x) for any N ′ ≥ N), which allows us to define:

Definition 15. Let f : X → V̄[−] map any x ∈ Xn to the colimit of the
fN (x)’s.

By construction, we have

Lemma 3. The following diagram commutes:

X FX

V̄[−] F (V̄[−]).

a

f F (f)∼=

Lemma 4. The set-map f is a map of F -coalgebras.

Proof: Let, for any innocent strategy S ∈ V̄[n] and i ∈ S(id [n]), S|i be
the strategy mapping any view V to the fibre over i of S(V ) → S(id [n]).
Using the notations of Lemma 2, we must show that for any i ∈ k, we have



(f(x))|i(V ◦M) = f(zi(M))(V ). But Lemma 2 entails that f(x)(V ◦M)→
f(x)(id [n]) is actually the coproduct over i′ ∈ k of all f(zi′(M))(V )

!−→ 1
i′−→

π(a(x)), so its fibre over i is indeed f(zi(M))(V ). 2

Lemma 5. The map f is the unique map X → V̄[−] of F -coalgebras.

Proof: Consider any such map g of coalgebras. It must be such that
g(x)(id [n]) = π(a(x)), and furthermore, using the same notation as before,
for any i ∈ k (g(x))|i(V ◦M) = g(zi(M))(V ), which imposes by induction
that f = g. 2

The last two lemmas directly entail Theorem 3.

4.4 Languages

In particular, the family V̂n supports the operations of the grammar

. . . n ` Fi . . . (∀i ∈ I)

n `
∑
i∈I

Fi
(I ∈ FinOrd0)

. . . n′ ` FM . . . (∀M : [n]→ [n′] ∈M)

n ` 〈M 7→ FM 〉
·

Here, n ` F denotes a presheaf of finite ordinals on Vn. The interpretation
is as follows: given presheaves F1, . . . , FI , for I ∈ FinOrd0, the leftmost rule
constructs the finite coproduct

∑
i∈I Fi of presheaves (finite coproducts exist

in V̂n because they do in FinOrd). In particular, when I is the empty ordinal,
we sum over an empty set, so the rule degenerates to

n ` ∅
·

In terms of presheaves, this is just the constantly empty presheaf.
For the second rule, if for all basic M : [n]→ [n′], we are given FM ∈

V̄[n′], then 〈M 7→ FM 〉 denotes the image under (7) of

(1, 1 7→M 7→ FM ).

Here, we provide an element of the right-hand side of (7), consisting of the

finite ordinal I = 1 = {1}, and the function mapping M to FM ∈ V̄[n′] (up
to currying). That was for parsing; the intuition is that we construct a



CCSApp

Ξ; Γ ` x(a1, . . . , an)
((x : n) ∈ Ξ and a1, . . . , an ∈ Γ)

Ξ; Γ, a ` P
Ξ; Γ ` νa.P

(a /∈ Γ)
Ξ; Γ ` P Ξ; Γ ` Q

Ξ; Γ ` P |Q

. . . Ξ; Γ ` Pi . . . (∀i ∈ I)

Ξ; Γ `
∑
i∈I

αi.Pi
(I ∈ FinOrd0 and ∀i ∈ I, bαic ∈ Γ)

Global
Ξ; ∆1 ` P1 . . . Ξ; ∆n ` Pn Ξ; Γ ` P
Γ ` rec x1(∆1) := P1, . . . , xn(∆n) := Pn in P

Figure 3: CCS syntax

presheaf with one initial state, 1, which maps any view starting with M , say
V ◦M , to FM (V ). Thus the FM ’s specify what remains of our presheaf after
each possible basic move. In particular, when all the FM ’s are empty, we
obtain a presheaf which has an initial state, but which does nothing beyond
it. We abbreviate it as 0 = 〈 7→ ∅〉.

4.5 Translating CCS

It is rather easy to translate CCS into this language. First, define CCS
syntax by the natural deduction rules in Figure 3, where Names and Vars
are two fixed, disjoint, and infinite sets of names and variables; Ξ ranges
over finite sequences of pairs (x : n) of a variable x and its arity n ∈ FinOrd0,
such that the variables are pairwise distinct; Γ ranges over finite sequences
of pairwise distinct names; there are two judgements: Γ ` P for global
processes, Ξ; Γ ` P for open processes. Rule Global is the only rule for
forming global processes, and there Ξ = (x1 : |∆1|, . . . , xn : |∆n|). Finally, α
denotes a or a, for a ∈ Names, and bac = bac = a.

First, we define the following (approximation of a) translation on open

processes, mapping each open process Ξ; Γ ` P to JP K ∈ V̂n, for n = |Γ|.
This translation ignores the recursive definitions, and we will refine it below
to take them into account. We proceed by induction on P , leaving contexts



Ξ; Γ implicit:

x(a1, . . . , ak) 7→ ∅
P |Q 7→ 〈 πln 7→ JP K,

πrn 7→ JQK,
7→ ∅ 〉

νa.P 7→ 〈νn 7→ JP K, 7→ ∅〉∑
i∈I αi.Pi 7→ 〈 (ι+n,j 7→

∑
k∈I

j
JPkK,

ι−n,j 7→
∑
k∈Ij JPkK )j∈n,

7→ ∅ 〉.

Let us explain intuitions and notation. In the first case, we assume implicitly
that (x : k) ∈ Ξ; the intuition is just that we approximate variables with
empty strategies. Next, P |Q is translated to the strategy with one initial
state, which only accepts left and right half-forking first, and then lets its
avatars play JP K and JQK, respectively. Similarly, νa.P is translated to the
strategy with one initial state, accepting only the channel creation move, and
then playing JP K. In the last case, the guarded sum

∑
i∈I αi.Pi is translated

to the strategy with one initial state, which

• accepts input on any channel a when αi = a for some i ∈ I, and output
on any channel a when αi = a for some i ∈ I;

• after an input on a, plays the sum of all JPiK’s such that αi = a; and
after an output on a, plays the sum of all JPiK’s such that αi = a.

Formally, in the definition, we let, for all j ∈ n, Ij = {i ∈ I | αi = aj} and
Ij = {i ∈ I | αi = aj}. In particular, if I = ∅, we obtain 0.

Thus, almost all translations of open processes have exactly one initial
state, i.e., map the identity view on [n] to the singleton 1. The only exceptions
are variable applications, which are mapped to the empty presheaf.

The translation extends to global processes as follows. Fixing a global
process Q = (rec x1(∆1) := P1, . . . , xk(∆k) := Pk in P ) typed in Γ with n
names, define the sequence (P i)i∈FinOrd0 of open processes (all typed in Ξ; Γ)
as follows. First, P 0 = P . Then, let P i+1 = ∂P i, where ∂ is the derivation
endomap on open processes typed in any extension Ξ; (Γ,∆) of Ξ; Γ, which
unfolds one layer of recursive definitions. This map is defined by induction
on its argument as follows:

∂(xl(a1, . . . , akl)) = Pl[bj 7→ aj ]1≤j≤kl
∂(P |Q) = ∂P |∂Q

∂(νa.P ) = νa.∂P
∂(
∑
i∈I αi.Pi) =

∑
i∈I αi.(∂Pi),

where for all l ∈ {1, . . . , k}, ∆l = (b1, . . . , bkl), and P [σ] denotes simultaneous,
capture-avoiding substitution of names in P by σ.



By construction, the translations of these open processes form a sequence
JP 0K ↪→ JP 1K . . . of inclusions in V̂n, such that for any natural number i and
view V ∈ Vn of length i (i.e., with i basic moves), JP jK(V ) is fixed after
j = (k + 1)i, at worst, i.e., for all j ≥ (k + 1)i, JP jK(V ) = JP (k+1)iK(V ).

Thus, this sequence has a colimit in V̂n, the presheaf sending any view V of
length i to JP (k+1)iK(V ). We put:

Definition 16. Let the translation of Q be JQK = colimi∈FinOrdJP iK.

Which equivalence is induced by this mapping on CCS, especially when
taking into account the interactive equivalences developed in the next section?
This is the main question we will try to address in future work.

5 Interactive equivalences

5.1 Fair testing vs. must testing: the standard case

An important part of concurrency theory consists in studying behavioural
equivalences. Since each such equivalence is supposed to define when two
processes behave the same, it might seem paradoxical to consider several
of them. Van Glabbeek [41] argues that each behavioural equivalence
corresponds to a physical scenario for observing processes.

A distinction we wish to make here is between fair scenarios, and
potentially unfair ones. An example of a fair scenario is when parallel
composition of processes is thought of as modelling different physical agents,
e.g., in a game with several players. Otherwise said, players are really
independent. On the other hand, an example of a potentially unfair scenario
is when parallelism is implemented via a scheduler.

This has consequences on so-called testing equivalences [7]. Let ♥ be a
fixed action.

Definition 17. A process P is must orthogonal to a context C, notation
P ⊥m C, when all maximal traces of C[P ] play ♥ at some point.

Here, maximal means either infinite or finite without extensions. Let
P⊥

m
be the set of all contexts must orthogonal to P .

Definition 18. P and Q are must equivalent, notation P ∼m Q, when
P⊥

m
= Q⊥

m
.



In transition systems, or automata, we have Ω ∼m Ω|a (where Ω is the
looping process, producing infinitely many silent transitions). This might be
surprising, because the context C = a.♥ |� intuitively should distinguish
these processes, by being orthogonal to Ω|a but not to Ω alone. However, it
is not orthogonal to Ω|a, because C[Ω|a] has an infinite looping trace giving
priority to Ω. This looping trace is unfair, because the synchronisation on
a is never performed. Thus, one may view the equivalence Ω ∼m Ω|a as
exploiting potential unfairness of a hypothetical scheduler.

Usually, concurrency theorists consider this too coarse, and resort to
fair testing equivalence.

Definition 19. A process P is fair orthogonal to a context C, notation
P ⊥f C, when all finite traces of C[P ] extend to traces that play ♥ at some
point.

Again, P⊥
f

denotes the set of all contexts fair orthogonal to P .

Definition 20. P and Q are fair equivalent, notation P ∼f Q, when

P⊥
f

= Q⊥
f
.

This solves the issue, i.e., Ω �f Ω|a.

In summary, the mainstream setting for testing equivalences relies on
traces; and the notion of maximality for traces is intrinsically unfair. This is
usually rectified by resorting to fair testing equivalence over must testing
equivalence. Our setting is more flexible, in the sense that maximal plays are
better behaved than maximal traces. In terms of the previous section, this
allows viewing the looping trace Ω|a|a.♥ τ−→ Ω|a|a.♥ τ−→ . . . as non-maximal.
In the next sections, we define an abstract notion of interactive equivalence
(still in the particular case of CCS but in our setting) and we instantiate it
to define and study the counterparts of must and fair testing equivalences.

5.2 Interactive equivalences

Definition 21. A play is closed-world when it is a composite of closed-world
extended moves.

Equivalently, a play is closed-world when all of its basic moves are part
of a closed-world move.

Let W ↪→ E be the full subcategory of closed-world plays, W(X) being
the fibre over X for the projection functor W→ B, i.e., the subcategory of



W consisting of closed-world plays with base X, and morphisms (idX , k)
between them4.

Let the category of closed-world behaviours on X be the category

GX = ÷W(X) of presheaves on W(X). We may now put:

Definition 22. An observable criterion consists for all positions X, of a
replete subcategory ⊥⊥X ↪→ GX .

Recall that ⊥⊥X being replete means that for all F ∈ ⊥⊥X and isomor-
phism f : F → F ′ in GX , F ′ and f are in ⊥⊥X .

An observable criterion specifies the class of ‘successful’, closed-world
behaviours. The two criteria considered below are two ways of formalising
the idea that a successful behaviour is one in which all accepted closed-world
plays are ‘successful’, in the sense that some player plays the tick move at
some point.

We now define interactive equivalences. Recall that [F,G] denotes the
amalgamation of F and G, and that right Kan extension along iopZ induces a

functor RaniopZ
: V̂Z → ”EZ . Furthermore, precomposition with the canonical

inclusion jZ : W(Z) ↪→ EZ induces a functor j∗Z : ”EZ →÷W(Z). Composing
the two, we obtain a functor Gl : SZ → GZ :

SZ = V̂Z
Ran

i
op
Z−−−−→ ”EZ j∗Z−→÷W(Z) = GZ .

Definition 23. For any innocent strategy F on X
and any pushout square P of positions as on the right,
with I consisting only of channels, let F⊥⊥P be the class
of all innocent strategies G on Y such that Gl([F,G]) ∈
⊥⊥Z .

I Y

X Z

(8)

Here, G is thought of as a test for F . Also, P denotes the whole pushout
square and F⊥⊥P denotes all the valid tests for the considered pushout square
P . From the CCS point of view, I corresponds to the set of names shared
by the process under observation (F ) and the test (G).

Definition 24. Any two innocent strategies F, F ′ ∈ SX are ⊥⊥-equivalent,
notation F ∼⊥⊥ F ′, iff for all pushouts P as in 8, F⊥⊥P = F ′⊥⊥P .

4This is not exactly equivalent to what could be noted WX , since in the latter there are
objects U ←↩ Y ↪→ X with a strict inclusion Y ↪→ X. However, both should be equivalent
for what we do in this paper, i.e., fair and must equivalences.



5.3 Fair vs. must

Let us now define fair and must testing equivalences. Let a closed-world
play be successful when it contains a ♥n. Furthermore, for any closed-world
behaviour G ∈ GX and closed-world play U ∈W(X), an extension of a state
σ ∈ G(U) to U ′ is a σ′ ∈ G(U ′) with i : U → U ′ and G(i)(σ′) = σ. The
extension σ′ is successful when U ′ is. The intuition is that the behaviour G,
before reaching U ′ with state σ′, passed through U with state σ.

Definition 25. The fair criterion ⊥⊥f contains all closed-world behaviours
G such that any state σ ∈ G(U) for finite U admits a successful extension.

Now call an extension of σ ∈ G(U) strict when U → U ′ is not surjective,
or, equivalently, when U ′ contains more moves than U . For any closed-world
behaviour G ∈ GX , a state σ ∈ G(U) is G-maximal when it has no strict
extension.

Definition 26. Let the must criterion ⊥⊥m consist of all closed-world be-
haviours G such that for all closed-world U and G-maximal σ ∈ G(U), U is
successful.

As explained in the introduction and Section 5.1, unlike in the standard
setting, this definition of must testing equivalence distinguishes between the
processes Ω and Ω|a. Indeed, take the CCS context C = a.♥ | �, which
we can implement by choosing as a test the strategy T = Ja.♥K on a single
player knowing one channel a. Taking I to consist of the sole channel a, the
pushout Z as in Definition 23 consists of two players, say x for the observed
strategy and y for the test strategy, sharing the channel a. Now, assuming
that Ω loops deterministically, the global behaviour G = Gl([JP K, T ]) has
exactly one state on the identity play, and again exactly one state on the
play π1 consisting of only one fork move by x. Thus, G reaches a position
with three players, say x1 playing Ω, x2 playing a, and y playing a.♥. The
play with infinitely many silent moves by x1 is not maximal: we could insert
(anywhere in the sequence of moves by x1) a synchronisation move by x2
and y, and then a tick move by the avatar of y. Essentially: our notion of
play is more fair than just traces.

To get more intuition about must testing equivalence in our setting, we
prove that it actually coincides with the testing equivalence generated by
the following criterion:

Definition 27. The spatially fair criterion ⊥⊥sf contains all closed-world
behaviours G such that any state σ ∈ G(U) admits a successful extension.



This criterion is almost like the fair criterion, except that we do not
restrict to finite plays. The key result to show the equivalence is:

Theorem 4. For any innocent strategy F on X, any state σ ∈ Gl(F )(U)
admits a Gl(F )-maximal extension.

The proof is in Appendix B. Thanks to the theorem, we have:

Lemma 6. For all F ∈ SX , Gl(F ) ∈ ⊥⊥mX iff Gl(F ) ∈ ⊥⊥sfX .

Proof: Let G = Gl(F ).

(⇒) By Theorem 4, any state σ ∈ G(U) has a G-maximal extension
σ′ ∈ G(U ′), which is successful by hypothesis, hence σ has a successful
extension.

(⇐) Any G-maximal σ ∈ G(U) admits by hypothesis a successful
extension which may only be on U byG-maximality, and hence U is successful.
2 (Note that U is not necessarily finite in the proof of the right-to-left
implication, so that the argument does not apply to the fair criterion.)

Now comes the expected result:

Theorem 5. For all F, F ′ ∈ SX , F ∼⊥⊥m F ′ iff F ∼⊥⊥sf F ′.

Proof: (⇒) Consider two innocent strategies F and F ′ on X, and an
innocent strategy G on Y (as in the pushout (8)). We have, using Lemma 6:

Gl(F ‖ G) ∈ ⊥⊥sf iff Gl(F ‖ G) ∈ ⊥⊥m

iff Gl(F ′ ‖ G) ∈ ⊥⊥m

iff Gl(F ′ ‖ G) ∈ ⊥⊥sf

(⇐) Symmetric. 2

Intuitively, must testing only consider spatially fair schedulings, in the
sense that all players appearing in a play should be given the opportunity
to play: no one should starve.

However, this is not the only source of unfairness, so that must test-
ing and fair testing differ. To see this, consider the CCS process P =
νb.rec x(a, b) := b|(b.(x(a, b)) + a) in x(a, b), that can repeatedly perform
synchronisations on the private channel b, until it chooses to perform an
output on a. We have JΩK ∼sf JP K while JΩK 6∼f JP K. Indeed, since the
choice between doing a synchronisation on b or an output on a is done by a
single player, the infinite play where the output on a is never performed is



maximal: no player starve, we just have a player that repeatedly chooses
the same branch, in an unfair way.

We leave for future work the investigation of such unfair scenarios and
their correlation to the corresponding behaviours in classical presentations
of CCS.

A Temporal decomposition

This section is a proof of Theorem 2. Let us first review the general
equivalences mentioned in the proof sketch. The product of a family of
presheaf categories is isomorphic to the category of presheaves over the
corresponding coproduct of categories:

Lemma 7. We have
∏
M∈Mn

Scod(M)
∼= [
∑
M∈Mn

Vop
cod(M),Set].

Furthermore, let the functor ∆: Set→ “C map any set X to the constant
presheaf mapping any C ∈ C to X. We have:

Lemma 8. For any small category C, Fam(“C) ' (“C ↓ ∆).

Proof: A generalisation of the more well-known SetX ' Set/X. 2

Corollary 1. We have:

Fam

Ñ ∏
M∈Mn

Scod(M)

é
' ([

∑
M∈Mn

Vop
cod(M),Set] ↓ ∆).

We now construct the lax pushout (6). A first step is the construction,
for each move [n] ↪→M ←↩ [n′], of a functor (− ◦M) : V[n′] → V[n] given by

precomposition with M in Cospan(“C). This functor maps any V1 : [n′] ↪→ V1
to the view V1 ◦M , i.e., the view [n] ↪→ V ′1 defined by the colimit

[n] [n′]

M V1

V ′1 .



This of course relies on the choice of such a colimit for every V and V1. Any
morphism f : V1 → V2 in V[n′], letting V ′2 = V2 ◦ V , is mapped to the dashed
arrow induced by universal property of pushout in

[n] [n′]

V V1

V ′1

V2

V ′2 .

f

f ◦ V

Once the choice has been made on objects, the arrow map is determined
uniquely.

This family of functors allows us to decompose V[n] as follows:

Lemma 9. The diagram

∑
M∈Mn

Vop
cod(M)

∑
M∈Mn

Vop
cod(M)

1 Vop
[n]

!

pid [n]q

[− ◦M ]M∈Mn
λ (9)

is a lax pushout, where λM,V : id [n] → M ◦ V , seen in V[n], is the obvious
inclusion.

Proof: For any category C, taking such a lax pushout of idC with 1 just
adds a terminal object to C. The rest is an easy verification. A dual result
of course holds with V[n], reversing the direction of λ. 2

Now, it is well-known that, in any small 2-category K, any contravariant
hom-2-functor, i.e., 2-functor of the shape K(−, X) for X ∈ K, maps
weighted colimits in K to weighted limits in Cat. For an introduction to
weighted limits and colimits in the case of enrichment over Cat, see Kelly [26].
Here, for any 2-category P , and 2-functors G : P → K and J : P op → Cat,
any colimit L = J ? G of G weighted by J with unit ξ : J → K(G(−), L) in



[P op ,Cat] is mapped, for any object X ∈ K, by the hom-2-functor K(−, X)
to a limit of K(G(−), X) : P op → Cat weighted by J in Cat, with unit
K(ξ,X) : J → Cat(K(L,X),K(G(−), X)), in Cat. In particular, lax pushouts
are mapped to lax pullbacks. As usual, considering a larger universe, we
may replace Cat with CAT and obtain the same results with K = Cat.

Recalling our lax pushout (9) and taking the hom-categories to Set, we
obtain a lax pullback

[
∑
M∈Mn

Vop
cod(M), Set] [

∑
M∈Mn

Vop
cod(M),Set]

Set S[n]

!∗ λ∗

in CAT, i.e., a comma category. But observe that restriction along ! is
precisely ∆: Set → [

∑
M∈Mn

Vop
cod(M), Set], so we have indeed shown that

S[n] is a comma category [
∑
M∈Mn

Vop
cod(M),Set] ↓ ∆.

B Maximal extensions

This section is a proof of Theorem 4.

Lemma 10. For any position X, the category W(X) of closed-world plays
is a preorder.

Proof: Easy. 2

In the following, we consider the quotient poset.

Lemma 11. In W(X), any non-decreasing chain admits an upper bound.

Recall M, the graph of all basic moves, and the set Mn of edges from
n, for each n. Let now, for each n, Mf

n be the analogous set with full moves,
i.e., the set of isomorphism classes of full moves from [n].

Lemma 12. For each play U ∈ EX , the coproduct of all s maps from full
moves Ö ∑

n∈FinOrd

∑
M∈Mf

n

U(M)

è
→

∑
n∈FinOrd

U [n], (10)

is injective.



Recall here that for forking, we have also called s the common composite
l ◦ s = r ◦ s (see the discussion following Definition 3).
Proof: By induction on U . 2

Lemma 13. Any non-decreasing sequence in the poset W(X) admits its
colimit in “C as an upper bound.

Proof: Consider any increasing sequence U1 ↪→ U2 ↪→ . . . of plays in
W(X). Let U be its colimit in “C. We want to prove that U is a play.

First, observe that U satisfies joint injectivity of s-maps as in Lemma 12:
indeed, if we had a player p and two full moves M and M ′ such that
s(M) = s(M ′) = p, then all of M , M ′, and p would appear in some U i,
which, being a play, has to satisfy joint injectivity.

For each n, Un comes with a sequence of compatible (closed-world)
extended moves

X = Xn
0 ↪→Mn

1 ←↩ Xn
1 ↪→ . . .←↩ Xn

i−1 ↪→Mn
i ←↩ Xn

i ↪→ . . .

which are also (by the colimit cocone) morphisms above U in “C. For
each i ≥ 1, taking the colimit of the i first moves yields a finite play
X ↪→ Uni ←↩ Xn

i . By convention, letting Un0 = X extends this to i ≥ 0.
Similarly, we may consider all the given plays infinite, by accepting not only
extended moves, but also identity cospans.

We consider the poset of pairs (N,n) ∈ {(0, 0)} ]∑N∈FinOrd∗ N , with
lexicographic order, i.e., (N,n) ≤ (N ′, n′) when N < N ′ or when N = N ′

and n ≤ n′.
We will construct by induction on (N,n) a sequence of composable

closed-world moves, with colimit U ′, such that for all (N,n), UnN−n+1 ⊆ U ′
in W(X)/U . More precisely, we construct for each (N,n) an integer KN,n

and a sequence

X = XN,n
0 ↪→MN,n

1 ←↩ XN,n
1 ↪→ . . .←↩ XN,n

KN,n−1 ↪→MN,n
KN,n

←↩ XN,n
KN,n

,

(again, if KN,n = 0, we mean the empty sequence) such that

• for all (N ′, n′) < (N,n), we have KN ′,n′ ≤ KN,n and the sequence

(MN ′,n′

i )i∈KN′,n′ is a prefix of (MN,n
i∈KN,n

);

• and the colimit, say UN,n, of (MN,n
i )i∈KN,n

is such that for all (N ′, n′) ≤
(N,n), Un

′
N−n′+1 ⊆ UN,n in W(X)/U .



For the base case, we let K0,0 = 0, which forces M0,0 to be the empty
sequence on X.

For the induction step, consider any (N,n) 6= (0, 0), and let (N0, n0)
be the predecessor of (N,n). The induction hypothesis gives a KN0,n0 and

a sequence (MN0,n0
i )i∈KN0,n0

satisfying some hypotheses, among which the
existence of a diagram

X UnN−n Xn
N−n Mn

N−n+1 Xn
N−n+1

X UN0,n0 XN0,n0

KN0,n0

above U .
Now, if Mn

N−n+1 → U factors through UN0,n0 , then we put KN,n =

KN0,n0 and (MN,n
i )i∈KN,n

= (MN0,n0
i )i∈KN0,n0

, and all induction hypotheses
go through.

Otherwise, Mn
N−n+1 is played by players in Xn

N−n which are not in the
joint image of all s maps (10) in UN0,n0 , otherwise s maps in U could not
be jointly injective, contradicting Lemma 12. Technically, the diagram

Xn
N−n →Mn

N−n+1 ← Xn
N−n+1

is obtained by pushing some (non-extended) closed-world move Y →M ← Y ′

along some morphism I → Z from an interface I, and the induced morphism
Y → Xn

N−n → UnN−n → UN0,n0 factors through XN0,n0

KN0,n0
. We consider the

subposition Z ′ ⊆ XN0,n0

KN0,n0
making

I Y

Z ′ XN0,n0

KN0,n0

a pushout; Z ′ consists of the players in XN0,n0

KN0,n0
that are not in the image of

Y , plus their names, plus possibly missing names from I.
Then, pushing Y →M ← Y ′ along I → Z ′, we obtain an extended move

XN0,n0

KN0,n0
↪→M ′ ←↩ X ′. We let KN,n = KN0,n0 + 1 and define (MN,n

i )i∈KN,n

to be the extension of (MN0,n0
i )i∈KN0,n0

by M ′. This induces a unique
map UN,n → U by universal property of UN,n as a colimit. All induction
hypotheses go through; in particular, UnN−n+1 is a union UnN−n ∪Mn

N−n+1 in



W(X)/U , and actually a union UnN−n∪M ; similarly, UN,n = UN0,n0 ∪M ; so,
since we have UnN−n ⊆ UN0,n0 by induction hypothesis, we obtain UnN−n+1 ⊆
UN,n.

The sequences MN,n induce by union a possibly infinite sequence of
closed-world extended moves, i.e., a closed-world play U ′, such that for all
(N,n), UnN−n+1 ⊆ U ′, hence, for all n, Un ⊆ U ′ ⊆ U , i.e., U ′ ∼= U . Thus, U
is indeed a play. 2

We are almost ready for proving Theorem 4. We just need one more
lemma. Consider any innocent strategy F on X, play U ∈W(X), and any
state σ ∈ Gl(F )(U). Consider now the poset Fσ of Gl(F )-extensions of σ
(made into a poset by choosing a skeleton of W(X)), where σ′ ∈ F (U ′) ≤
σ′′ ∈ F (U ′′) iff U ′ ≤ U ′′. This poset is not empty, since it contains σ.
Furthermore, we have:

Lemma 14. Any non-decreasing sequence in Fσ admits an upper bound.

Proof: Any such sequence, say (σi)i∈FinOrd, induces a non-decreasing
sequence of plays in W(X), say (Ui)i, which by Lemma 13 admits its colimit,
say U ′, as an upper bound. Now, any view inclusion j : V ↪→ U ′, factors
through some Ui, and we let σj = (σi)|V (this does not depend on the choice
of i). This assignment determines (by innocence of F and by construction
of the right Kan extension as an end) an element σ′ ∈ F (U ′), which is an
upper bound for (σi)i∈FinOrd. 2

Proof of Theorem 4: Consider any innocent strategy F on X, play
U ∈W(X), and any state σ ∈ Gl(F )(U). Consider as above the poset Fσ of
Gl(F )-extensions of σ. By the last lemma, we may apply Zorn’s lemma to
choose a maximal element of Fσ, which is a Gl(F )-maximal extension of σ.
2
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[15] André Hirschowitz, Michel Hirschowitz, and Tom Hirschowitz.
Contraction-free proofs and finitary games for linear logic. Electronic
Notes in Theoretical Computer Science, 249:287–305, 2009.
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UNTYPING TYPED ALGEBRAS
AND COLOURING CYCLIC LINEAR LOGIC

DAMIEN POUS

CNRS (LIG, UMR 5217, Grenoble)

Abstract. We prove “untyping” theorems: in some typed theories (semirings, Kleene
algebras, residuated lattices, involutive residuated lattices), typed equations can be derived
from the underlying untyped equations. As a consequence, the corresponding untyped
decision procedures can be extended for free to the typed settings. Some of these theorems
are obtained via a detour through fragments of cyclic linear logic, and give rise to a
substantial optimisation of standard proof search algorithms.

Introduction

Motivations. The literature contains many decidability or complexity results for various
algebraic structures. Some of these structures (rings, Kleene algebras [22], residuated lat-
tices [31]) can be generalised to typed structures, where the elements come with a domain
and a codomain, and where operations are defined only when these domains and codomains
agree according to some simple rules. Although such typed structures are frequently en-
countered in practice (e.g., rectangular matrices, heterogeneous binary relations, or more
generally, categories), there are apparently no proper tools to easily reason about these.

This is notably problematic in proof assistants, where powerful decision procedures are
required to let the user focus on difficult reasoning steps by leaving administrative details to
the computer. Indeed, although some important theories can be decided automatically in
Coq or HOL (e.g., Presburger arithmetic [29], elementary real algebra [15], rings [14]), there
are no high-level tools to reason about heterogeneous relations or rectangular matrices.

In this paper, we show how to extend the standard decision procedures from the untyped
structures to the corresponding typed structures. In particular, we make it possible to use
standard tools to reason about rectangular matrices or heterogeneous relations, without
bothering about types (i.e., matrix dimensions or domain/codomain information). The
approach we propose is depicted below: we study “untyping” theorems that allow one to
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prove typed equations as follows: 1) erase type informations, 2) prove the equation using
standard, untyped, decision procedures, and 3) derive a typed proof from the untyped one.

untyped setting: â
decide

b̂

rebuild types

��
typed setting:

erase types

OO

a ? b

Besides the theoretical aspects, an important motivation behind this work comes from a Coq
library [5] in which we developed efficient tactics for partial axiomatisations of relations: the
ideas presented here were used and integrated in this library to extend our tactics to typed
structures, for free.

Overview. We shall mainly focus on the two algebraic structures we mentioned above,
since they raise different problems and illustrate several aspects of these untyping theorems:
Kleene algebras [21] and residuated lattices [19].

• The case of Kleene algebras is the simplest one. The main difficulty comes from
the annihilating element (0): its polymorphic typing rule requires us to show that
equational proofs can be factorised so as to use the annihilation laws at first, and
then reason using the other axioms.
• The case of residuated structures is more involved: due to the particular form of
axioms about residuals, we cannot rely on standard equational axiomatisations of
these structures. Instead, we need to exploit an equivalent cut-free sequent proof
system (first proposed by Ono and Komori [31]), and to notice that this proof system
corresponds to the intuitionistic fragment of cyclic linear logic [40]. The latter logic
is much more concise and the corresponding proof nets are easier to reason about,
so that we obtain the untyping theorem in this setting. We finally port the result
back to residuated lattices by standard means.

The above sequent proof systems have the sub-formula property, so that they yield decision
procedures, using proof search algorithms. As an unexpected application, we show that
the untyping theorem makes it possible to improve these algorithms by reducing the set of
proofs that have to be explored.

Outline. We introduce our notations and make the notion of typed structure precise in §1.
We study Kleene algebras and residuated lattices in §2 and §3, respectively. The optimisation
of proof search is analysed in §4; we conclude with related work, and directions for future
work in §5.

1. Notation, typed structures

Let X be an arbitrary set of variables, ranged over using letters x, y. Given a signature
Σ, we let a, b, c range over the set T (Σ+X ) of terms with variables. Given a set T of objects
(ranged over using letters n,m, p, q), a type is a pair (n,m) of objects (which we denote by
n→ m, following categorical notation), a type environment Γ : X → T 2 is a function from
variables to types, and we will define type judgements of the form Γ ` a : n→ m, to be read
“in environment Γ, term a has type n→ m, or, equivalently, a is a morphism from n to m”.



By Γ ` a, b : n → m, we mean that both a and b have type n → m; type judgements will
include the following rule for variables:

Γ(x) = (n,m)

Γ ` x : n→ m
Tv

Similarly, we will define typed equality judgements of the form Γ ` a = b : n → m: “in
environment Γ, terms a and b are equal, at type n→ m”. Equality judgements will generally
include the following rules, so as to obtain an equivalence relation at each type:

Γ(x) = (n,m)

Γ ` x = x : n→ m
v

Γ ` a = b : n→ m
Γ ` b = c : n→ m

Γ ` a = c : n→ m
t

Γ ` a = b : n→ m

Γ ` b = a : n→ m
s

By taking the singleton set as set of objects (T = {∅}), we recover standard, untyped
structures: the only typing environment is ∅̂ : x 7→ (∅, ∅), and types become uninformative
(this corresponds to working in a one-object category; all operations are total functions).
To alleviate notations, since the typing environment will always be either ∅̂ or an abstract
constant value Γ, we shall leave it implicit in type and equality judgements, by relying on
the absence or the presence of types to indicate which one to use. For example, we shall
write ` a = b : n → m for Γ ` a = b : n → m, while ` a = b will denote the judgement
∅̂ ` a = b : ∅ → ∅.

The question we study in this paper is the following one: given a signature and a set of
inference rules defining a type judgement and an equality judgement, does the implication
below hold, for all a, b, n,m?{

` a, b : n→ m

` a = b
entails ` a = b : n→ m .

In other words, in order to prove an equality in a typed structure, is it safe to remove all
type annotations, so as to work in the untyped underlying structure?

2. Kleene algebras

We study the case of residuated lattices in §3; here we focus on Kleene algebras. In order
to illustrate our methodology, we actually give the proof in three steps, by considering
two intermediate algebraic structures: monoids and semirings. The former admit a rather
simple and direct proof, while the latter are sufficient to expose concisely the main difficulty
in handling Kleene algebras.

2.1. Monoids.



Definition 2.1. Typed monoids are defined by the signature {·2, 10}, together with the
following inference rules, in addition to the rules from §1.

` 1 : n→ n
To

` a : n→ m ` b : m→ p

` a · b : n→ p
Td

` 1 = 1 : n→ n
o

` a = a′ : n→ m ` b = b′ : m→ p

` a · b = a′ · b′ : n→ p
d

` a : n→ m

` 1 · a = a : n→ m
od

` a : n→ m ` b : m→ p ` c : p→ q

` (a · b) · c = a · (b · c) : n→ q
da

` a : n→ m

` a · 1 = a : n→ m
do

In other words, typed monoids are just categories: 1 and · correspond to identities and
composition. Rules (o) and (d) ensure that equality is reflexive at each type (point (i)
below) and preserved by composition. As expected, equalities relate correctly typed terms
only (ii):

Lemma 2.2.
(i) If ` a : n→ m, then ` a = a : n→ m.
(ii) If ` a = b : n→ m, then ` a, b : n→ m.

Moreover, in this setting, type judgements enjoy some form of injectivity (types are not
uniquely determined due to the unit (1), which is typed in a polymorphic way):

Lemma 2.3. If ` a : n→ m and ` a : n′ → m′, then we have n = n′ iff m = m′.

We need another lemma to obtain the untyping theorem: all terms related by the untyped
equality admit the same type derivations.

Lemma 2.4. If ` a = b; then for all n,m, we have ` a : n→ m iff ` b : n→ m.

Theorem 2.5. If ` a = b and ` a, b : n→ m, then ` a = b : n→ m.

Proof. We reason by induction on the derivation ` a = b; the interesting cases are the
following ones:

• the last rule used is the transitivity rule (t): we have ` a = b, ` b = c, ` a, c :
n → m, and we need to show that ` a = c : n → m. By Lemma 2.4, we have
` b : n → m, so that by the induction hypotheses, we get ` a = b : n → m and
` b = c : n→ m, and we can apply rule (t).

• the last rule used is the compatibility of · (d): we have ` a = a′, ` b = b′,
` a · b, a′ · b′ : n → m, and we need to show that ` a · b = a′ · b′ : n → m. By
case analysis on the typing judgements, we deduce that ` a : n→ p, ` b : p→ m,
` a′ : n→ q, ` b′ : q → m, for some p, q. Thanks to Lemmas 2.3 and 2.4, we have
p = q, so that we can conclude using the induction hypotheses ( ` a = a′ : n → p
and ` b = b′ : p→ m), and rule (d).

Note that the converse of Theorem 2.5 ( ` a = b : n→ m entails ` a = b) is straightforward,
so that we actually have an equivalence.



2.2. Non-commutative semirings.

Definition 2.6. Typed semirings are defined by the signature {·2,+2, 10, 00}, together with
the following rules, in addition to the rules from Def. 2.1 and §1.

` 0 : n→ m
Tz

` a, b : n→ m

` a+ b : n→ m
Tp

` a = a′ : n→ m ` b = b′ : n→ m

` a+ b = a′ + b′ : n→ m
p

` 0 = 0 : n→ m
z

` a : n→ m

` a+ 0 = a : n→ m
pz

` a, b : n→ m

` a+ b = b+ a : n→ m
pc

` a, b, c : n→ m

` (a+ b) + c = a+ (b+ c) : n→ m
pa

` a : n→ m ` b, c : m→ p

` a · (b+ c) = a · b+ a · c : n→ p
dp

` a : n→ m

` a · 0 = 0 : n→ p
dz

` a : n→ m

` 0 · a = 0 : p→ m
zd

` a : n→ m ` b, c : p→ n

` (b+ c) · a = b · a+ c · a : p→ m
pd

In other words, typed semiring are categories enriched over a commutative monoid: each
homset is equipped with a commutative monoid structure (typing rules (Tz,Tp) and rules
(p,pz,pc,pa)), composition distributes over these monoid structures (rules (dp,dz,pd,zd)).

Lemma 2.2 is also valid in this setting: equality is reflexive and relates correctly typed
terms only. However, due to the presence of the annihilator element (0), Lemmas 2.3 and 2.4
no longer hold: 0 has any type, and we have ` x · 0 · x = 0 while x · 0 · x only admits Γ(x)
as a valid type. Moreover, some valid proofs cannot be typed just by adding decorations:
for example, 0 = 0 ·a ·a = 0 is a valid untyped proof of 0 = 0; however, this proof cannot be
typed if a has a non-square type. Therefore, we have to adopt another strategy: we reduce
the problem to the annihilator-free case, by showing that equality proofs can be factorised
so as to use rules (pz), (dz), and (zd) at first, as oriented rewriting rules.

Definition 2.7. Let a be a term; we denote by a↓ the normal form of a, obtained with the
following convergent rewriting system:

a+ 0→ a 0 + a→ a 0 · a→ 0 a · 0→ 0

We say that a is strict if a↓ 6= 0.

This normalisation procedure preserves types and equality; moreover, on strict terms,
we recover the injectivity property of types we had for monoids:

Lemma 2.8. If ` a : n→ m, then ` a↓ : n→ m and ` a = a↓ : n→ m.

Lemma 2.9. For all strict terms a such that ` a : n → m and ` a : n′ → m′, we have
n = n′ iff m = m′.

We can then define a notion of strict equality judgement, where the annihilation laws
are not allowed:

Definition 2.10. We let _ `+ _ = _ : _ → _ denote the strict equality judgement
obtained by removing rules (dz) and (zd), and replacing rules (dp) and (pd) with the



following variants, where the factor has to be strict.
` a : n→ m ` b, c : m→ p a↓ 6= 0

`+ a · (b+ c) = a · b+ a · c : n→ p
dp+

` a : n→ m ` b, c : p→ n a↓ 6= 0

`+ (b+ c) · a = b · a+ c · a : p→ m
pd+

Using the same methodology as previously, one easily obtain the untyping theorem for
strict equality judgements.

Lemma 2.11. If `+ a = b; then for all n,m, we have ` a : n→ m iff ` b : n→ m.

Proposition 2.12. If `+ a = b and ` a, b : n→ m, then `+ a = b : n→ m.

Note that the patched rules for distributivity, (dp+) and (pd+) are required in order to
obtain Lemma 2.11: if a was not required to be strict, we would have `+ 0 · (x+ y) =
0 · x+ 0 · y, and the right-hand side can be typed in environment Γ = {x 7→ (3, 2), y 7→
(4, 2)} while the left-hand side cannot.

We now have to show that any equality proof can be factorised, so as to obtain a strict
equality proof relating the corresponding normal forms:

Proposition 2.13. If ` a = b, then we have `+ a↓ = b↓.

Proof. We first show by induction that whenever ` a = b, a is strict iff b is strict (†). Then
we proceed by induction on the derivation ` a = b, we detail only some cases:

(d) we have `+ a↓ = a′↓ and `+ b↓ = b′↓ by induction; we need to show that
`+ (a · b)↓ = (a′ · b′)↓. If one of a, a′, b, b′ is not strict, then (a · b)↓ = (a′ · b′)↓ = 0,
thanks to (†), so that we are done; otherwise, (a · b)↓ = a↓ ·b↓, and (a′ · b′)↓ = a′↓ ·b′↓,
so that we can apply rule (d).

(dz) trivial, since (a · 0)↓ = 0.
(dp) we need to show that `+ (a · (b+ c))↓ = (a · b+ a · c)↓; if one of a, b, c is not

strict, both sides reduce to the same term, so that we can apply Lemma 2.2(i)
(which holds in this setting); otherwise we have (a · (b+ c))↓ = a↓ · (b↓ + c↓) and
(a · b+ a · c)↓ = a↓ · b↓ + a↓ · c↓, so that we can apply rule (dp+).

We finally obtain the untyping theorem by putting all together:

Theorem 2.14. In semirings, for all a, b, n,m such that ` a, b : n→ m, we have ` a = b
iff ` a = b : n→ m.

Proof. The reverse implication is straightforward; we prove the direct one. By Lemma 2.8,
using the transitivity and symmetry rules, it suffices to show ` a↓ = b↓ : n → m. This is
clearly the case whenever `+ a↓ = b↓ : n→ m, which follows from Props. 2.13 and 2.12.



2.3. Kleene algebras.

Kleene algebras are idempotent semirings equipped with a star operation [21]; they
admit several important models, among which binary relations and regular languages (the
latter is complete [25, 22]; since equality of regular languages is decidable, so is the equational
theory of Kleene algebras). Like previously, we type Kleene algebras in a natural way,
where star operates on “square” types: types of the form n → n, i.e., square matrices or
homogeneous binary relations.

Definition 2.15. We define typed Kleene algebras by the signature {·2,+2, ?1, 10, 00}, to-
gether with the following rules, in addition that from Defs. 2.1 and 2.6, and §1, and where
` a ≤ b : n→ m is an abbreviation for ` a+ b = b : n→ m.

` a : n→ n

` a? : n→ n
Ts

` a = b : n→ n

` a? = b? : n→ n
s

` a : n→ m

` a+ a = a : n→ m
pi

` a : n→ n

` 1 + a · a? = a? : n→ n
sp

` a · b ≤ b : n→ m

` a? · b ≤ b : n→ m
sl

` b · a ≤ b : n→ m

` b · a? ≤ b : n→ m
sr

The untyped version of this axiomatisation is that from Kozen [22]: axiom (pi) corresponds
to idempotence of +, the three other rules define the star operation (we omitted the mirror
image of axiom (sp), which is derivable from the other ones [5]). Note that due to rules (sl)
and (sr), we are no longer in a purely equational setting; indeed, the algebra of regular
events is not finitely based [36].

The proof of the untyping theorem for Kleene algebras is obtained along the lines of the
proof for non-commutative semirings. We just highlight the main differences here, complete
proofs are available as Coq scripts [33]. First, it is a simple exercise to check that the
following lemma holds:

Lemma 2.16. For all n, we have ` 0? = 1 : n→ n.

This allows us to extend the rewriting system from Def. 2.7 with the rule 0? → 1, so that
the annihilator can also be removed in this setting. In particular, we obtain:

Lemma 2.17. If ` a : n→ m, then ` a↓ : n→ m and ` a = a↓ : n→ m.

Lemma 2.18. For all strict terms a such that ` a : n → m and ` a : n′ → m′, we have
n = n′ iff m = m′.

Let _ `+ _ = _ : _ → _ denote the strict equality judgement obtained like previously
(Def. 2.10), and where we moreover adapt rules (sl) and (sr) so that b is required to be
strict:

`+ a · b ≤ b : n→ m b↓ 6= 0

`+ a? · b ≤ b : n→ m
sl+

`+ b · a ≤ b : n→ m b↓ 6= 0

`+ b · a? ≤ b : n→ m
sr+

These patched rules (sl+) and (sr+) are required to obtain the following counterpart to
Lemma 2.11: otherwise, we would have `+ a? · 0 ≤ 0, where the right-hand side has any
type while the type of the left-hand side is constrained by a.

Lemma 2.19. If `+ a = b; then for all n,m, we have ` a : n→ m iff ` b : n→ m.



Proof. Similar to the proof of Lemma 2.11. Recall that `+ a ≤ b is an abbreviation for
`+ a+ b = b; the rule (sl+) is handled as follows. Suppose that `+ a? · b+ b = b was
obtained using this rule:

• if ` a? · b+ b : n→ m, then we necessarily have ` b : n→ m;
• conversely, if ` b : n→ m then we have ` a · b+ b : n→ m by induction. Therefore,
there exists p such that ` a : n → p and ` b : p → m. Since b was required to
be strict, we can use Lemma 2.18 to deduce n = p, ` a : n → n, and finally,
` a? · b+ b : n→ m.

Rule (sr+) is handled symmetrically, and rule (sp) is straightforward.

The untyping theorem for strict equality follows easily:

Proposition 2.20. If `+ a = b and ` a, b : n→ m, then `+ a = b : n→ m.

Proof. Like for Theorem 2.5 and Prop. 2.12, we proceed by induction on the untyped deriva-
tion to add type annotations. We detail the case of rule (sl+): suppose that `+ a? · b ≤ b
was obtained using the untyped version of rule (sl+), and ` a? · b+ b, b : n→ m. Necessar-
ily, ` a : n→ n and ` a · b+ b : n→ m, so that we have ` a · b ≤ b : n→ m by induction.
We conclude using the typed version of rule (sl+): ` a? · b ≤ b : n→ m.

We finally have to prove that Kleene algebra equality proofs can be factorised using the
strict equality judgement:

Proposition 2.21. If ` a = b, then we have `+ a↓ = b↓.

Proof. By induction on the derivation, like for Prop. 2.13. We detail only the rules involving
Kleene star:

• (sp): if a↓ = 0 then (1 + a · a?)↓ = (a?)↓ = 1 so that we can apply (o); otherwise,
(1 + a · a?)↓ = 1 + a↓ · a↓? and (a?)↓ = a↓

?: we can apply (sp).
• (sl): suppose that ` a? · b ≤ b was obtained using this rule, we have to show that
`+ (a? · b)↓ ≤ b↓. If b↓ = 0 then (a? · b)↓ = 0 and we use rule (z). Otherwise b is
strict, and either a↓ = 0, in which case (a? · b)↓ = 1 · b↓, and we can use rules (od)
and (pi) to get `+ 1 · b↓ ≤ b↓; or a is also strict. In the latter case, we use the
induction hypothesis: `+ (a · b)↓ ≤ b↓, i.e., `+ a↓ · b↓ ≤ b↓, and we conclude using
rule (sl+).
• (sr): symmetric to the previous case.

(Note that we implicitly use the fact that normalisation commutes with sum, so that we
have `+ a↓ ≤ b↓ iff `+ (a+ b)↓ = b↓.)

Theorem 2.22. In Kleene algebras, for all a, b, n,m such that ` a, b : n → m, we have
` a = b iff ` a = b : n→ m.

2.4. Non-commutative rings.

Before moving to residuated structures, we briefly discuss the case of non-commutative
rings. Indeed, although rings are quite similar to semirings, they cannot be handled in the
same way.



Definition 2.23. We define typed rings by the signature {·2,+2,−1, 10, 00}, together with
the following rules, in addition that from Defs. 2.1 and 2.6, and §1.

` a : n→ m

` −a : n→ m
Ti

` a = b : n→ m

` −a = −b : n→ m
i

` a : n→ m

` a+ (−a) = 0 : n→ m
pi

Due to the axiom (pi), we cannot define a simple function to remove annihilators and
obtain a factorisation system. Indeed, we have ` a = b iff ` a+ (−b) = 0, so that
strictness amounts to provability; we no longer have a simple syntactical criterion. However,
unlike terms of Kleene algebras, terms of non-commutative rings can easily be put in normal
form (by expanding the underlying polynomials and ordering monomials lexicographically—
assuming that the set of variables is ordered). This allows us to obtain the untyping theorem
by reasoning about the normalisation function.

Let 〈a〉 denote the normal form of the term a (we do not define formally this standard
function here since we are mainly interested in the methodology).

Proposition 2.24. For all a, b, n,m, we have
(i) ` a = b iff 〈a〉 = 〈b〉;
(ii) if ` a : n→ m, then ` 〈a〉 : n→ m;
(iii) if ` a : n→ m, then ` 〈a〉 = a : n→ m.

Proof. (i) Standard: this is the correctness and completeness of the untyped decision
procedure: two expressions are equal if and only if they share the same normal form.

(ii) By a straightforward induction on the typing derivation.
(iii) Also by induction on the typing derivation, it amounts to replaying the standard

correctness proof and checking that it is actually well-typed.

The untyping theorem follows immediately:

Corollary 2.25. In non-commutative rings, for all a, b, n,m such that ` a, b : n→ m, we
have ` a = b iff ` a = b : n→ m.

Proof. If ` a = b then 〈a〉 = 〈b〉 by the point (i) above, which entails ` 〈a〉 = 〈b〉 : n→ m
by reflexivity since ` 〈a〉 : n→ m by (ii), from which we deduce ` a = b : n→ m by (iii).
The converse implication is straightforward, as in the previous sections.

3. Residuated lattices

We now move to our second example, residuated lattices. These structures also admit binary
relations as models; they are of special interest to reason algebraically about well-founded re-
lations. For example, residuation is used to prove Newman’s Lemma in relation algebras [9].
We start with a simpler structure.

A residuated monoid is a tuple (X,≤, ·, 1, \, /), such that (X,≤) is a partial order,
(X, ·, 1) is a monoid whose product is monotonic (a ≤ a′ and b ≤ b′ entail a · b ≤ a′ · b′), and
\, / are binary operations, respectively called left and right divisions, characterised by the
following equivalences:

a · b ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b



x ` x
v

ε ` 1
Io

l ` a l′ ` a′

l; l′ ` a · a′
Id

l; b ` a
l ` a/b

Ir
b; l ` a
l ` b\a

Il

l; l′ ` a
l; 1; l′ ` a

Eo
l; b; c; l′ ` a
l; b · c; l′ ` a

Ed
k ` b l; c; l′ ` a
l; c/b; k; l′ ` a

Er
k ` b l; c; l′ ` a
l; k; b\c; l′ ` a

El

Figure 1. Gentzen proof system for residuated monoids.

Such a structure can be typed in a natural way, by using the following rules for left and
right divisions:

` c : n→ m ` a : n→ p

` a\c : p→ m
Tl

` c : n→ m ` b : p→ m

` c/b : n→ p
Tr

Although we can easily define a set of axioms to capture equalities provable in residuated
monoids [19], the transitivity rule (T) becomes problematic in this setting (there is no coun-
terpart to Lemma 2.4). Instead, we exploit a characterisation due to Ono and Komori [31],
based on a Gentzen proof system for the full Lambek calculus [26]. Indeed, the “cut” rule
corresponding to this system, which plays the role of the transitivity rule, can be elimi-
nated. Therefore, this characterisation allows us to avoid the problems we encountered with
standard equational proof systems. In some sense, moving to cut-free proofs corresponds to
using a factorisation system, like we did in the previous section (Prop. 2.13).

3.1. Gentzen proof system for residuated monoids.

Let l, k, h range over lists of terms, let l; k denote the concatenation of l and k, and let ε
be the empty list. The Gentzen proof system is presented on Fig. 1; it relates lists of terms
to terms. It is quite standard [19]: there is an axiom rule (V), and, for each operator, an
introduction and an elimination rule. The axiom rule can be generalised to terms (i), the
cut rule is admissible (ii), and the proof system is correct and complete w.r.t. residuated
monoids (iii).

Proposition 3.1.
(i) For all a, we have a ` a.
(ii) For all l, k, k′, a, b such that l ` a and k; a; k′ ` b, we have k; l; k′ ` b.
(iii) For all a, b, we have a ` b iff a ≤ b holds in all residuated monoids.

Proof. Point (i) is easy; see [31, 30, 19] for cut admissibility and completeness.

Type decorations can be added to the proof system in a straightforward way (see Fig. 2).
However, using this proof system, we were able to prove the untyping theorem only for the
unit-free fragment: we needed to assume that terms have at most one type, which is not
true in the presence of 1. This proof was rather involved, so that we did not manage to
circumvent this difficulty in a nice and direct way. Instead, as hinted in the introduction,
we move to the following more symmetrical setting.



Γ(x) = (n,m)

x ` x : n→ m
v

ε ` 1 : n→ n
Io

l; l′ ` a : n→ m

l; 1; l′ ` a : n→ m
Eo

l ` a : n→ m l′ ` a′ : m→ p

l; l′ ` a · a′ : n→ p
Id

l; b; c; l′ ` a : n→ m

l; b · c; l′ ` a : n→ m
Ed

` b : p→ m l; b ` a : n→ m

l ` a/b : n→ p
Ir

` l′ : m→ q k ` b : n→ m l; c; l′ ` a : p→ q

l; c/b; k; l′ ` a : p→ q
Er

` b : n→ p b; l ` a : n→ m

l ` b\a : p→ m
Il

` l : p→ m k ` b : m→ n l; c; l′ ` a : p→ q

l; k; b\c; l′ ` a : p→ q
El

Figure 2. Typed Gentzen proof system for residuated monoids.

3.2. Cyclic MLL.

The sequent proof system for residuated monoids (Fig. 1) actually corresponds to a non-
commutative version of intuitionistic multiplicative linear logic (IMLL) [13]: the product (·)
is a non-commutative tensor (⊗), and left and right divisions (\, /) are the corresponding
left and right linear implications ((,›). Moreover, it happens that this system is just
the intuitionistic fragment of cyclic multiplicative linear logic (MLL) [40]. The untyping
theorem turned out to be easier to prove in this setting, which we describe below.

We assume a copy X⊥ of the set of variables (X ), and we denote by x⊥ the corresponding
elements which we call dual variables. From now on, we shall consider terms with both kinds
of variables: T (Σ +X +X⊥). We keep an algebraic terminology to remain consistent with
the previous sections; notice that using terminology from logic, a term is a formula and a
variable is an atomic formula.

Definition 3.2. Typed MLL terms are defined by the signature {⊗2,`2, 10,⊥0}, together
with the following typing rules:

Γ(x) = (n,m)

` x : n→ m
Tv

` 1 : n→ n
T1

` a : n→ m ` b : m→ p

` a⊗ b : n→ p
T⊗

Γ(x) = (n,m)

` x⊥ : m→ n
Tv⊥

` ⊥ : n→ n
T⊥

` a : n→ m ` b : m→ p

` a` b : n→ p
T`

Tensor (⊗) and par (`) are typed like the previous dot operation; bottom (⊥) is typed like
the unit (1); dual variables are typed by mirroring the types of the corresponding variables.
We extend type judgements to lists of terms as follows:

` ε : n→ n
Te

` a : n→ m ` l : m→ p

` a; l : n→ p
Tc

(be careful not to confuse ` a, b : n → m, which indicates that both a and b have type
n → m, with ` a; b : n → m, which indicates that the list a; b has type n → m). Linear



` 1 : n
1

` l : n

` ⊥; l : n
⊥

` l; a : n ` b; k : n

` l; a⊗ b; k : n
⊗

` a; b; l : n

` a` b; l : n
`

Γ(x) = (n,m)

` x⊥;x : m
A

` a : n→ m ` l; a : m

` a; l : n
E

Figure 3. Typed proof system for Cyclic MLL.

negation is defined over terms and lists of terms as follows:

(x)⊥ , x⊥ 1⊥ , ⊥ (a⊗ b)⊥ , b⊥ ` a⊥ (a; l)⊥ , l⊥; a⊥

(x⊥)⊥ , x ⊥⊥ , 1 (a` b)⊥ , b⊥ ⊗ a⊥ ε⊥ , ε

Note that since we are in a non-commutative setting, negation has to reverse the arguments
of tensors and pars, as well as lists. Negation is involutive and mirrors type judgements:

Lemma 3.3. For all l, l⊥⊥ = l; for all l, n,m, ` l : n→ m iff ` l⊥ : m→ n.

If we were using a two-sided presentation of MLL, judgements would be of the form l ` k :
m → n, intuitively meaning “l ` k is derivable in cyclic MLL, and lists l and k have type
m→ n”. Instead, we work with one-sided sequents to benefit from the symmetrical nature
of MLL. At the untyped level, this means that we replace l ` k with ` l⊥; k. According to
the previous intuitions, the list l⊥; k has a square type n → n: the object m is hidden in
the concatenation, so that it suffices to record the outer object (n). Judgements finally take
the form ` l : n, meaning “the one-sided MLL sequent ` l is derivable at type n→ n”.

Definition 3.4. Typed cyclic MLL is defined by the sequent calculus from Fig. 3.

Except for type decorations, the system is standard: the five first rules are the logical rules
of MLL [13]. Rule (E) is the only structural rule, this is a restricted form of the exchange
rule, yielding cyclic permutations: sequents have to be thought of as rings [40]. As before,
we added type decorations in a minimal way, so as to ensure that derivable sequents have
square types, as explained above:

Lemma 3.5. For all l, n, if ` l : n then ` l : n→ n.

We now give a graphical interpretation of the untyping theorem, using proof nets. Since
provability is preserved by cyclic permutations, one can draw proof structures by putting
the terms of a sequent on a circle [40]. For example, a proof π of a sequent ` l0, . . . , li will
be represented by a proof net whose interface is given by the left drawing below.

l0
l1

l2

li

. . .

l0

li

. . .
l2

l1

n2

n0

n1

π π

Suppose now that the corresponding list admits a square type: ` l : n → n, i.e., ∀j ≤
i, ` lj : nj → nj+1, for some n0, . . . , ni+1 with n = n0 = ni+1. One can add these
type decorations as background colours, in the areas delimited by terms, as we did on the
right-hand side.
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li k1
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a⊗ b

π
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a` b

π′π

⊗

Figure 4. Proof nets for Cyclic MLL.

The logical rules of the proof system (Fig. 3) can then be represented by the proof net
constructions from Fig. 4 (thanks to this sequent representation, the exchange rule (E) is
implicit). Since these constructions preserve planarity, all proof nets are planar [3], and the
idea of background colours makes sense. Moreover, they can be coloured in a consistent
way, so that typed derivations correspond to proof nets that can be entirely and consistently
coloured. Therefore, one way to prove the untyping theorem consists in showing that any
proof net whose outer interface can be coloured can be coloured entirely. As an example, we
give an untyped derivation below, together with the corresponding proof net. Assuming that
Γ(x) = n → m and Γ(y) = m → p, the conclusion has type p → p, and the outer interface
of the proof net can be coloured (here, with colours p and n). The untyping theorem will
ensure that there exists a typed proof; indeed, the whole proof net can be coloured in a
consistent way.

` x⊥;x
A

` y; y⊥
E,A

` x⊥; (x⊗ y); y⊥
⊗

` x⊥; (x⊗ y) ` y⊥
`

` y; y⊥
E,A

` x⊥; ((x⊗ y) ` y⊥)⊗ y; y⊥
⊗

` ⊥;x⊥; ((x⊗ y) ` y⊥)⊗ y; y⊥
⊥

` y⊥;⊥;x⊥; ((x⊗ y) ` y⊥)⊗ y
E

` y⊥ `⊥` x⊥; ((x⊗ y) ` y⊥)⊗ y
`

n

`

⊗

`

`

p

p
p

m

⊗

We now embark in the proof of the untyping theorem for cyclic MLL; the key property
is that the types of derivable sequents are all squares:

Proposition 3.6. If ` l and ` l : n→ m, then n = m.

Proof. We proceed by induction on the untyped derivation ` l, but we prove a stronger
property: “the potential types of all cyclic permutations of l are squares”, i.e., for all h,k such
that l = h; k, for all n,m such that ` k;h : n→ m, n = m. The most involved case is that
of the tensor rule. Using symmetry arguments, we can assume that the cutting point belongs
to the left premise: the conclusion of the tensor rule is ` l; l′; a⊗ b; k, we suppose that the
induction hypothesis holds for l; l′; a and b; k, and knowing that ` l′; a⊗ b; k; l : n→ m, we
have to show n = m. Clearly, we have ` l′; a : n→ p, ` b; k : p→ q, and ` l : q → m for
some p, q. By induction on the second premise, we have p = q, so that ` l′; a; l : n → m.
Since the latter list is a cyclic permutation of l; l′; a, we can conclude with the induction
hypothesis on the first premise.



Theorem 3.7. In cyclic MLL, if ` l : n→ n, then we have ` l iff ` l : n.

Proof. The right-to-left implication is straightforward; for the direct implication, we proceed
by induction on the untyped derivation. The previous proposition is required in the case
of the tensor rule: we know that ` l; a, ` b; k, and ` l; a⊗ b; k : n → n, and we have
to show that ` l; a⊗ b; k : n. Necessarily, there is some m such that ` l; a : n → m and
` b; k : m → n; moreover, by Prop. 3.6, n = m. Therefore, we can apply the induction
hypotheses (so that ` l; a : n and ` b; k : n) and we conclude with the typed tensor rule.

3.3. Intuitionistic fragment.

To deduce that the untyping theorem holds in residuated monoids, it suffices to show
that the typed version of the proof system from §3.1 corresponds to the intuitionistic frag-
ment of the proof system from Fig. 3. This is well-known for the untyped case, and type
decorations do not add particular difficulties. Therefore, we just give a brief overview of the
extended proof.

The idea is to define the following families of input and output terms (Danos-Regnier
polarities [37, 4]), and to work with sequents composed of exactly one output term and an
arbitrary number of input terms.

i ::= x⊥
∣∣ ⊥ ∣∣ i` i

∣∣ i⊗ o ∣∣ o⊗ i
o ::= x

∣∣ 1
∣∣ o⊗ o ∣∣ i` o

∣∣ o` i

Negation (−⊥) establishes a bijection between input and output terms. Terms of residuated
monoids (IMLL formulae) are encoded into output terms as follows.

ba · bc , bac ⊗ bbc ba/bc , bac` bbc⊥ bxc , x

b1c , 1 ba\bc , bac⊥ ` bbc
This encoding is a bijection between IMLL terms and MLL output terms; it preserves typing
judgements:

Lemma 3.8. For all a, n,m, we have ` a : n→ m iff ` bac : n→ m.

(Note that we heavily rely on overloading to keep notation simple.) The next proposition
shows that we actually obtained a fragment of typed cyclic MLL; it requires the lemma
below: input-only lists are not derivable. The untyping theorem for residuated monoids
follows using Thm. 3.7.

Lemma 3.9. If ` l, then l contains at least one output term.

Proposition 3.10. If ` l, a : n→ m, then l ` a : n→ m iff ` blc⊥; bac : m.

Proof. The forward implication is proved by an induction on the sequent derivation. For
the reverse direction, we actually prove the following stronger property, by induction on the
untyped MLL derivation:

“for all h, a, k, n,m such that we have ` bhc⊥; bac; bkc⊥, ` h; k : n → m,
and ` a : n→ m, we have h; k ` a : n→ m”.

This generalisation is required to handle the exchange rule. We detail only the key cases:



• If the tensor rule was used last, on the output term (which was thus of the form
ba · bc = bac ⊗ bbc):

` bhc⊥; bac ` bbc; bkc⊥

` bhc⊥; bac ⊗ bbc; bkc⊥
⊗

Since ` a · b : n → m, and ` h; k : n → m, we have p, q such that ` a : n → p,
` b : p → m, ` h : n → q and ` k : q → m. Therefore, by Lemmas 3.3 and 3.8,
we have ` bhc⊥; bac : q → p, whence p = q by Prop. 3.6. We can thus apply the
induction hypothesis to the two premises to obtain h ` a : n→ p and k ` b : p→ m
(using an empty sequence in both cases). We conclude using rule (Id) from Fig. 1.
• If the tensor rule was used last, on one of the input terms, say on b in h = h1; b;h2,
with bbc⊥ = c⊗ d:

` bh2c⊥; c ` d; bh1c⊥, bac, k⊥

` bh2c⊥; c⊗ d; bh1c⊥; bac; bkc⊥
⊗

Since bhc⊥2 ; c is provable and bhc⊥2 contains only input terms, c is necessarily an
output term by Lemma 3.9. Therefore there is only one possibility ensuring bbc =
d⊥ ` c⊥: the term b must be of the form d′/c′, with bd′c = d⊥ and bc′c = c.

We have ` h1; d
′/c′;h2; k : n → m and ` a : n → m, i.e., ` h1 : n → p,

` d′ : p → q, ` c′ : r → q, ` h2 : r → s, and ` k : s → m for some p, q, r, s.
We first notice that the provable sequent bh2c⊥; c has type s→ q, so that s = q by
Prop. 3.6. By induction, we then deduce h2 ` c′ : r → q and h1; d′; k ` a : n → m,
and we conclude using rule (Er) from Fig. 1.

Corollary 3.11. In residuated monoids, if ` l, a : n → m, then we have l ` a iff l ` a :
n→ m.

3.4. Residuated lattices: additives.

The Gentzen proof system we presented for residuated monoids (Fig. 1) was actually
designed for residuated lattices [31], obtained by further requiring the partial order (X,≤)
to be a lattice (X,∨,∧). Binary relations fall into this family, by considering set-theoretic
unions and intersections. The previous proofs scale without major difficulty: on the logical
side, this amounts to considering the additive binary connectives (⊕,&). By working in
multiplicative additive linear logic (MALL) without additive constants, we get an untyping
theorem for involutive residuated lattices [39]; we deduce the untyping theorem for residuated
lattices by considering the corresponding intuitionistic fragment (see [33] for proofs).

On the contrary, and rather surprisingly, the theorem breaks if we include additive con-
stants (0,>), or equivalently, if we consider bounded residuated lattices. The corresponding
typing rules are given below, together with the logical rule for top (there is no rule for zero).

` 0 : n→ m
T0 ` > : n→ m

T>
` l : m→ n

` >; l : n
>



The sequent x⊥ ⊗>; y⊥;>⊗ x gives a counter-example. This sequent basically admits the
two following untyped proofs:

` y⊥;>
E,>

` x;x⊥
E,A

` >
>

` x;x⊥ ⊗>
⊗

` y⊥;>⊗ x;x⊥ ⊗>
⊗

` x⊥ ⊗>; y⊥;>⊗ x
E

` >
>

` x;x⊥
E,A

` >; y⊥
>

` x;x⊥ ⊗>; y⊥
⊗

` > ⊗ x;x⊥ ⊗>; y⊥
⊗

` x⊥ ⊗>; y⊥;>⊗ x
E,E

However, this sequent admits the square type m → m whenever Γ(x) = (n,m) and
Γ(y) = (p, q), while the above proofs cannot be typed unless n = q or n = p, respec-
tively. Graphically, these proofs correspond to the proof nets below (where the proof net
construction for rule (>) is depicted on the left-hand side); these proof nets cannot be
coloured unless n = q or n = p.

⊗m

lil1

⊗
n n

q pm m

nn
⊗

mm p

⊗
q

. . .

>

n

This counter-example for MALL also gives a counter-example for IMALL: the above proofs
translate to intuitionistic proofs of y · (>\x) ` > · x, which is also not derivable in the typed
setting, unless n = q or n = p.

The problem is actually even stronger: while S · (>\R) ⊆ > · R holds for all homoge-
neous binary relations R,S (by the above untyped proofs, for example), this law does not
hold for arbitrary heterogeneous relations (see Remark 3.12 below). This shows that we
cannot always reduce the analysis of typed structures to that of the underlying untyped
structures. Here, the equational theory of heterogeneous binary relations does not reduce
to the equational theory of homogeneous binary relations.

Remark 3.12. The containment S · (>\R) ⊆ > · R does not necessarily hold for all het-
erogeneous binary relations R,S, although it holds for all heterogeneous binary relations on
non-empty sets.

Proof. Let A,B,C,D be four sets, let R ⊆ B × C be a binary relation from B to C, and
let S ⊆ D×A be a binary relation from D to A. To be precise, we denote by >X,Y the full
relation between sets X and Y (X × Y ), and the containment from the statement can be
rewritten as

S · (>B,A\R) ⊆ >D,B ·R .

For all relations T ⊆ B ×A, the relation T\R is characterised as follows:

T\R = {(i, j) ∈ A× C | ∀k ∈ B, (k, i) ∈ T → (k, j) ∈ R} .

• if B is the empty set, then R = >D,B · R = ∅, and by the above characterisation,
we have >B,A\R = A×C. Therefore, we can contradict the containment by taking
any non-empty relation for S. (Note that this cannot happen in an homogeneous
setting: we have A = B = C = D so that taking the empty set for B forces both R
and S to be empty.)



• if B is not empty, then we have

>B,A\R = {(i, j) ∈ A× C | ∀k ∈ B, (k, i) ∈ >B,A → (k, j) ∈ R}
= {(i, j) ∈ A× C | ∀k ∈ B, (k, j) ∈ R}
⊆ {(i, j) ∈ A× C | ∃k ∈ B, (k, j) ∈ R}
= {(i, j) ∈ A× C | ∃k ∈ B, (i, k) ∈ >A,B ∧ (k, j) ∈ R}
= >A,B ·R ;

Therefore, since S ⊆ >D,A, we can conclude:

S · (>B,A\R) ⊆ >D,A · >A,B ·R ⊆ >D,B ·R .

We do not know whether relations on empty sets are required to get such a counter-example
in the model of binary relations. In other words, for the signature of bounded residuated
lattices, does the equational theory of heterogeneous binary relations on non-empty sets
reduce to the equational theory of homogeneous binary relations?

4. Improving proof search for residuated structures.

The sequent proof systems we mentioned in the previous section have the sub-formula
property, so that provability is decidable in each case, using a simple proof search algo-
rithm [30]. Surprisingly, the concept of type can be used to cut off useless branches. Indeed,
recall Prop. 3.6: “the types of any derivable sequent are squares”. By contrapositive, given an
untyped sequent l, one can easily compute an abstract ‘most general type and environment’
(n → m,Γ), such that Γ ` l : n → m holds (taking N as the set of objects, for example);
if n 6= m, then the sequent is not derivable, and proof search can fail immediately on this
sequent.

We did some experiments with a simple prototype [33]: we implemented focused [2] proof
search for cyclic MALL, i.e., a recursive algorithm composed of an asynchronous phase which
is deterministic and a synchronous phase, where branching occurs (e.g., when applying the
tensor rule (⊗)). The optimisation consists in checking that the most general type of the
sequent is square before entering the synchronous phases. The overall complexity remains
exponential (provability is NP-complete [32]—PSPACE-complete with additives [20]) but
we get an exponential speed-up: we can abort proof search immediately on approximately
two sequents out of three.

The experimental results are given on Fig. 5 and 6—raw data is available from [33].
We generate (pseudo) random sequents in normal form with respect to the laws of neutral
elements for multiplicative constants (1 and ⊥), with a given number of leaves (variables,
dual variables or constants), and where variables are picked in a set of the specified size.
E.g., a⊗⊥; b⊥ is a sequent with three leaves and two variables, which can also be considered
as a sequent with three leaves and four variables, where two variables are not used.

Each point of Fig. 5 was obtained by timing focused proof search with and without
optimisation, on a set of 100 000 sequents with the given characteristics: fixed number of
variables and varying size on the left-hand side, fixed size and varying number of variables on
the right-hand side. While the optimisation introduces a small amount of overhead for very
small sequents or sequents with few variables, we gain more than one order of magnitude
for larger sequents. One can also notice that the more variables are available, the more
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Figure 5. Searching times for focused proof search with and without optimisation.
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Figure 6. Distribution of searching times.

efficient the optimisation is: indeed, sequents with a lot of different variables tend to have
non-square types more easily, so that they can be ruled out more frequently.

We did not report standard deviation in Fig. 5 since it does not make sense in this
setting: we have an unbounded set of potential values, and the actual complexity of proof
search is highly stochastic. Instead, we computed the distribution of searching times: Fig. 6
shows the proportion of sequents that are solved in a given amount of time, among sequents
with a fixed size and number of variables—here, 30 leaves and 20 variables. While 60%
of the sequents are solved in less that 10−5s (with or without optimisation), some of them
require much more time: up to five minutes without optimisation, and up to three seconds
with the optimisation. All in all, the overhead which is paid on ‘easily solved’ sequents gets
compensated by the drastic improvement on ‘harder’ sequents.



5. Conclusions and directions for future work

We proved untyping theorems for several standard structures, allowing us to extend
decidability results to the typed settings, and to discover an optimisation of proof search for
cyclic linear logic. All results have been formally checked [33] with the Coq proof assistant.

The untyping theorem for typed Kleene algebras is quite important in the ATBR Coq
library [5]: it allows one to use our tactic for Kleene algebras in typed settings, and, in
particular, with heterogeneous binary relations. The underlying decision procedure being
quite involved, we can hardly imagine proving its soundness with respect to typed settings
in a direct way. Even writing a type-preserving version of the algorithm seems challenging.

At another level, we used the untyping theorem for semirings in order to formalise
Kozen’s completeness proof [22] for Kleene algebras. Indeed, this proof heavily relies on
matrix constructions, so that having adequate lemmas and tactics for working with possibly
rectangular matrices was a big plus: this allowed us to avoid the ad-hoc constructions Kozen
used to inject rectangular matrices into square ones.

5.1. References and related work.

The relationship between residuated lattices and substructural logics is due to Ono and
Komori [31]; see [11] for a thorough introduction. Cyclic linear logic was suggested by Girard
and studied by Yetter [40]. To the best of our knowledge, the idea of adding types to the
above structures is new. The axiomatisation of Kleene algebras is due to Kozen [22].

Our typed structures can be seen as very special cases of partial algebras [6], where
the domain of partial operations is defined by typing judgements. Similarly, one could
use many-sorted algebras [16] to mimic types using sorts. Several encodings from partial
algebras to total ones were proposed in the literature [28, 7]. Although they are quite
general, these results do not apply here: these encodings do not preserve the considered
theory since they need to introduce new symbols and equations; as a consequence, ordinary
untyped decision procedures can no longer be used after the translation. Dojer has shown
that under some conditions, convergent term rewriting systems for total algebras can be used
to prove existence equations in partial algebras [8]. While it seems applicable to semirings,
this approach does not scale to Kleene algebras or residuated lattices, for which decidability
does not arise from a term rewriting system.

The idea of proving typed equations from untyped ones also appears in the context of
“Pure Type Systems” (PTSs), where one can use either an untyped conversion rule, or a
typed equality judgement. Whether these two possible presentations were equivalent was
open for some time [12]; Adams has shown that this is the case for “functional” PTSs [1],
Herbelin and Siles recently generalised the result to all PTSs [38]. Although the types we use
here are quite basic (i.e., a type is just a pair of abstract objects), our use of cut-free proof
systems and factorisation systems is reminiscent to their use of the Church-Rosser property.
Note however that unlike in functional programming languages, where one usually relies on a
Hindley-Milner type inference algorithm [17, 27] to rule out ill-typed programs, no inference
algorithm is required with the algebraic theories presented here: such an algorithm would
always succeed since an untyped proof systematically yields a typed proof.

Closer to our work is that of Kozen, who first proposed the idea of untyping typed Kleene
algebras, in order to avoid the aforementioned matrix constructions [24]. He provided a
different answer, however: using model-theoretic arguments, he proved an untyping theorem
for the universal theory of “1-free Kleene algebras”. The restriction to 1-free expressions is



required, as shown by the following counter-example: ` 0 = 1 ⇒ a = b is a theorem of
semirings, although there are non trivial typed semirings where 0 = 1 holds at some types
(e.g., empty matrices), while a = b is not universally true at other types.

5.2. Handling other structures.

Action algebras [35, 18] are a natural extension of the structures we studied in this
paper: they combine the ingredients from residuated lattices and Kleene algebras. In this
setting, left and right divisions make it possible to obtain a variety rather than a quasi-
variety: inference rules (sl) and (sr), about the star operation, can be replaced by the
following equational axioms:

` (a\a)? = a\a
sl’

` (a/a)? = a/a
sr’

Although we do not know whether the untyping theorem holds in this case, we can think
of two strategies to tackle this problem: 1) find a cut-free extension of the Gentzen proof
system for residuated lattices and adapt our current proof—such an extension is left as an
open question in [18], it would possibly entail decidability of the equational theory of action
algebras; 2) find a “direct” proof of the untyping theorem for residuated monoids, without
using a Gentzen proof system, so that the methodology we used for Kleene algebras can
be extended. Also note that we necessarily have to exclude the annihilator element (0):
with divisions, top (>) can be defined as 0/0, so that the counter-example for bounded
residuated lattices (§3.4) applies. Consistently, there is no way to remove this element using
a factorisation system: expressions like a · > cannot be simplified.

Kleene algebras with tests [23] are another extension of Kleene algebras, which is useful
in program verification. Their equational theory is decidable, but one cannot rely on a fac-
torisation system to remove annihilators in this setting: like for rings (§2.4), the complement
operation of the Boolean algebra is problematic. Moreover, like for Kleene algebras, there
are no known notions of normal form in Kleene algebras with tests, so that the approach
we described in §2.4 is not possible. Nonetheless, the untyping theorem is likely to hold for
these structures since the Boolean algebras of tests are inherently homogeneous.

Finally, although our methodology for semirings can be adapted to handle the cases of
allegories and distributive allegories [10] (see [33] for proofs), the case of division allegories—
where left and right divisions are added—remains open.

5.3. Towards a generic theory.

The typed structures we focused on can be described in terms of enriched categories,
and the untyping theorems can be rephrased as asserting the existence of faithful functors to
one-object categories. It would therefore be interesting to find out whether category theory
may help to define a reasonable class of structures for which the untyping theorem holds. In
particular, how could we exclude the counter-example with additive constants in MALL?

For structures that are varieties, another approach would consist of using term rewriting
theory to obtain generic factorisation theorems (Lemma 2.13, which we used to handle the
annihilating element in semirings, would become a particular case). This seems rather
difficult, however, since these kind of properties are quite sensitive to the whole set of
operations and axioms that are considered.
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component-based systems?
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Abstract. We take a fresh look at the expressivity of BIP, a recent in-
�uential formal component model developed by J. Sifakis et al. We intro-
duce a process calculus, called CAB, that models composite components
as the combination of a glue (using BIP terminology) and subcompo-
nents, and that constitutes a conservative extension of BIP with more dy-
namic forms of glues. We study the Turing completeness of CAB variants
that di�er only in their language for glues. We show that limiting the glue
language to BIP glues su�ces to obtain Turing-completeness, whereas re-
moving priorities from the control language loses Turing-completeness.
We also show that adding a simple form of dynamic component creation
in the control language without priorities is enough to regain Turing com-
pleteness. These results complement those obtained on BIP, highlighting
in particular the key role of priorities for expressivity.

1 Introduction

Component-based software engineering is by now well entrenched in various ar-
eas, from embedded systems to Web applications, and is supported by numerous
standards, including UML. Its central tenet is that complex systems can be built
by composing, or gluing together possibly independently developed components.

In their paper on glue expressiveness [3] Bliudze and Sifakis have proposed
to look at the expressive power of glues or composition operators in an e�ort
to assess the relative merits of di�erent component frameworks with respect
to their composition capabilities. In essence, the criterion they use to compare
two sets G1 and G2 of composition operators is whether it is possible, given a
family of primitive components B and an equivalence relation ∼ between these
components, to �nd, for a given operator g1 ∈ G1, a corresponding operator
g2 ∈ G2 such that all their compositions are equivalent, i.e. ∀B1, . . . , Bn ∈ B :
g1(B1, . . . , Bn) ∼ g2(B1, . . . , Bn). As a notable result, they showed that their
BIP component framework, whose glues feature multiparty synchronization and
priorities, is universal with respect to a family of operators de�ned by inference
rules in a subset of the GSOS format.

This work, however, leaves open a number of questions, in particular regard-
ing the form glues can take, and their intrinsic expressivity. Indeed, the notion of

? Research partially funded by ANR Project PiCoq, Fondation de Coopération Scien-
ti�que Digiteo Triangle de la Physique, and Minalogic Project Mind.



glue in [3] is essentially a static one. One may legitimately argue in favor of more
dynamic forms of composition, e.g. to allow the creation of new components or
the replacement of existing ones to accommodate di�erent forms of software up-
date. Even without considering full dynamic recon�guration, one may take into
account changes in con�guration or interconnection between components, e.g. to
accommodate di�erent modes of operation, where the notion of mode is loosely
understood as a collection of execution states [9]. It thus appears bene�cial to
consider not just static glues but glue processes in their own right.

In the paper, we adopt this view: we model component assemblages as terms
in a process calculus, called CAB (for Components And Behaviors). A component
assemblage (or composite component) in CAB takes the form l[C1; . . . ;Cn�B],
where l is the name of the composite, C1, . . . , Cn are the subcomponents of the
composite, i.e. the components that are glued together (using BIP terminology)
in the assemblage, and B is the glue � a term in a simple process calculus which
we call the glue language. By construction, we recover BIP glues as essentially
single state processes of our glue language.

With this view of glues as terms of a glue language, new expressivity questions
arise, such as:

1. What is the expressivity of the resulting process calculus (in particular, if
we restrict the glue language to terms corresponding to BIP glues only)?

2. What is the expressivity of the calculus if we remove the possibility of spec-
ifying priority constraints in the glue language ?

3. What is the expressivity of the calculus if we add more dynamic forms of
control, such as component creation, in the glue language ?

In this paper we (begin to) answer these questions using classical Turing-
completeness as our benchmark for expressivity. Following BIP, the CAB calculus
is parametric over a family P of primitive components. So if we considered a large
enough family, these questions would be trivial. Instead, we restrict our primitive
components to be given by terms from the glue language itself � which form a
strict non-Turing-complete subset of CCS � so as to characterize the intrinsic
expressivity of the glue language. The questions then become non-trivial, and we
obtain answers that may even appear surprising. Indeed, we �rst show that even
with the restricted glue language consisting of static BIP glues only, the resulting
variant of CAB is Turing-complete. Second, we show that this expressivity is
lost if one restricts oneself to a subset of the glue language without priority
constraints. These results con�rms the expressive power of priorities, which was
pointed out but not necessarily as clearly apparent in earlier works on BIP and
process calculi with priorities. Finally, as a �rst answer to the last question,
we show that we recover Turing-completeness if we add a very simple form of
component creation in our glue language without priorities.

To summarize, our contributions are the following:

� We introduce a new process calculus, CAB, that extends the BIP framework
with dynamic composition (or glue) capabilities.



� We demonstrate the expressiveness of priorities in the BIP framework by
showing that BIP glues, composing simple CCS processes, is enough to ob-
tain a Turing-complete language, and that Turing completeness is lost if we
remove priorities.

� We show that Turing-completeness can be retained if we introduce more dy-
namic aspects in the language, namely a simple form of component creation.

The paper is organized as follows. Section 2 introduces the CAB process
calculus and de�nes its operational semantics in SOS style. Section 3 proves
our �rst result: CAB, restricted to a control language consisting of BIP glues, is
Turing-complete. Section 4 proves our two other results: dropping priorities from
CAB results in a non Turing-complete language; adding component creation to
the control language without priorities is enough to regain Turing-completeness.
Section 5 concludes the paper and discusses some related works.

2 CAB: syntax and semantics

We introduce in this section the CAB process calculus. In order to explain its
constructs, as well as to make its relationship with the BIP framework clear, we
begin by recalling the de�nition of the latter.

The BIP framework. We rely on the description of the BIP framework pro-
vided by [2,3]. A BIP component is simply a labeled transition system (LTS),
whose labels are ports1.

De�nition 1. A component is an LTS B = (Q,P,→) where

1. Q is a set of states
2. P is a set of ports
3. →⊆ Q×P ×Q is a set of transitions. We use q

a−→ q′ to denote (q, a, q′) ∈→.

Components can be composed (glued) to form systems. A composition is
given by a set of rules (the glue) that enforce synchronization and priority con-
straints among them.

De�nition 2. A BIP system S that glues together n components Bi = (Qi, Pi,
→i) where ports and states are pairwise disjoint, is an LTS S = (Q,P,→S)
where Q =

∏n
i=1Qi, P =

⋃n
i=1 Pi and where →S is a relation derivable as the

least relation satisfying a �nite set of rules2 obeying the following format:

r :
{Bi

ai−→ B′i}i∈I {Bj 6
bkj−→| k ∈ [1..mj ]}j∈J

(B1, . . . , Bn)
a−→S (B′1, . . . , B

′
n)

(1)

1 This is a di�erence with the de�nition in [3], where labels are de�ned to be sets of
ports. We have adopted labels as simple ports in this paper to simplify the presenta-
tion. Our results are not impacted by this decision, however, for our processes only
have a �xed �nite number of distinct ports, so that we can always bijectively map a
set of ports onto a single port.

2 The �niteness of the set of rules de�ning a glue seems implicit in [3].



where I and J are sets of indexes in [1, n], B′i = Bi if I 6∈ I, and I 6= ∅ (i.e.
there is at least one positive premise).

Note that by de�nition there is at most one positive premise for each Bi in a
rule in BIP format. The key features of the BIP framework are: (i) the ability
to build hierarchical components; (ii) the concept of an explicit entity (the glue)
responsible for the composition of components; (iii) the support of multipoint
synchronizations, manifested by the positive premises in glue rules; (iv) The
presence of priority constraints, given by the negative premises in glue rules.

The CAB calculus. As indicated in the introduction, we retain for CAB the
general structure of composite components suggested by the BIP framework: a
component in CAB takes the form l[C1; . . . ;Cn�B], where l is the name of the
component, C1, . . . , Cn are its subcomponents and B is the glue. In contrast to
glues in BIP, a glue in CAB can evolve over time, corresponding to changes in
the synchronization and priority constraints among components, and is given by
a term of a process calculus we call the glue language. We adopt in this paper a
very simple glue language featuring:

� Action pre�x α.B, where α is an action, and B a continuation glue. The
presence of action pre�x in our glue language allows the de�nition of dynamic
glues.

� Parallel composition B1 ‖ B2, where B1 and B2 are two glues. The parallel
composition of glues can be interpreted as an and operator combining the
synchronization and priority constraints embodied by B1 and B2. It is im-
portant to note that the two branches B1 and B2 in a parallel composition
B1 ‖ B2 do not interact.

� Recursion recX.B, where X is a process variable, and B a glue. This allows
the de�nition of glues with cyclic behaviors.

Formally, let NP = {a, b, c . . . } and NC = {h, k, l . . . } be denumerable sets of
ports names and components names respectively. The CAB calculus is paramet-
ric over a set P of primitive components de�ned as labeled transition systems
with labels in NP . We de�ne CAB(P) processes as follows:

De�nition 3 (CAB). The set of CAB(P) processes is described by the follow-
ing grammar, where P denotes an element of P:

S ::= l[C �B] | l[P ] Act ::= ∅ | {evt}
C ::= 0 | S | C;C evt ::= l : a | evt, evt
B ::= 0 | 〈Act, Tag,Act〉.B | B ‖ B | recX.B | X Tag ::= τ | a

In order to simplify notation we write l : a instead of l : {a}, and a instead of
l : a when it is clear from the context which component is providing event a. We
abbreviate α.0 to α. We de�ne S.nm = l if S = l[P ] or S = l[C � B] for some
P,C,B (i.e. the function nm returns the name of an individual component S).

Actions in our glue language di�er from those in classical process calculi, such
as CCS, for they play di�erent roles: they embody synchronization and priority



Rec
B{X/recX.B} α−→ B′

recX.B
α−→ B′

Par1
B

α−→ B′

B ‖ B2
α−→ B′ ‖ B2

Par2
B

α−→ B′

B2 ‖ B
α−→ B2 ‖ B′

Act 〈pr, tag, syn〉.B 〈pr,tag,syn〉−−−−−−−−→ B

Tau
Ci

τ−→ C′i

l[C1; . . . ;Ci; . . . ;Cm �B]
τ−→ l[C1; . . . ;C′i; . . . ;Cm �B]

Beh
Ci1

a1−→ C′i1 . . . Cin
an−−→ C′in B

〈pr,tag,{li1 :a1,...,lin :an}〉−−−−−−−−−−−−−−−−−→ B′ C1 . . . Cm ` pr

l[C1; . . . ;Cm �B]
tag−−→ l[C′1; . . . ;C

′
m �B′]

where I = {i1, . . . , in} ⊆ [1,m],∀i ∈ I, Ci.nm = li and ∀j ∈ [1,m]r I, C′j = Cj

Fig. 1: A labeled transition system semantics for CAB(P).

constraints that apply to subcomponents in a composition, and they provide a
form of label renaming. An action is a triplet of the form 〈pr, tag, syn〉, where
pr is a priority constraint (i.e. events in subcomponents which would preempt
the synchronization syn), syn is a synchronization constraint (i.e. events to be
synchronized between subcomponents), and tag is an event made visible by the
composite as a result of a successful syn synchronization.

Hence a glue B of the form 〈{l : a}, t, {l1 : c1, l2 : c2}〉.B′ speci�es a syn-
chronization constraint between two subcomponents l1 and l2: if the �rst one
is ready to perform event c1, and the other is ready to perform event c2, then
the composition is ready to perform event t, provided that subcomponent l is
not ready to perform event a. When the event t of the composite is performed
(implying the two subcomponents l1 and l2 have performed events c1 and c2,
respectively), a new glue B′ is then put in place to control the behavior of the
composite. Note that tag t can be either τ (which denotes an internal event)
or a port (an event). Hence a tag t = τ results in a synchronization between
subcomponents that takes place silently, with no implication from the environ-
ment of the composite. A tag t 6= τ subjects the evolution of the composite to
the availability of an appropriate synchronization on t in the environment of the
composite.

The operational semantics of CAB(P) is de�ned as the least labeled transition
relation derivable by the inference rules in Figure 1. Rules for parallel composi-
tion and recursion are de�ned as usual. Rules Beh and Tau de�ne the evolution
of an aggregation of components inside a composite named l. Rule Beh stipu-
lates that if a glue B is ready to perform an action 〈pr, tag, {l1 : a1, . . . , ln : an}〉
and components named l1, . . . , ln are ready to perform a1, . . . , an respectively,
then their composition is ready to perform action tag, provided priority con-
straint pr is satis�ed. Having a priority constraint satis�ed is de�ned as follows.



Let pr = {lj1 : cj1 , . . . , ljk : cjk} with J = {j1 . . . jm} ⊆ [1,m], we say that

C1 . . . Cm ` pr i� for every i ∈ J , Si 6
ci−→ with Si.nm = li and Si ∈ {C1, . . . , Cm}.

If pr = ∅ we are not imposing any priority policy on the synchronization. Simi-
larly, with an action of the form 〈pr, tag, ∅〉 there is no synchronization require-
ment, but the environment of the composite must be ready to perform tag in
order for the system to evolve.

Notation 1 We denote with !α.P the process recX. α.(P ‖ X). We use −→ to

denote the relation
τ−→. We use

∏n
i=1Bi to denote B1 ‖ . . . ‖ Bn3.

Encoding BIP. The operational semantics, and in particular rule Beh, above
was de�ned so as to mimic very closely the capabilities of glues in BIP. We now
clarify the relationship between CAB(P) and BIP systems de�ned over a set P of
components. We can encode a BIP glue G in CAB(P) as follows. By de�nition,
G is given by a �nite set of rules r that obey the format given in De�nition 2.
Let r be such a rule:

r :
{Ci

ai−→ C ′i}i∈I {Cj 6
ckj−→| k ∈ [1..mj ]}j∈J

(C1, . . . , Cn)
tag−−→ (C ′1, . . . , C

′
n)

where I and J are set of indexes in [1, n]. The encoding JrK of rule r in CAB(P)
is de�ned as:

JrK =!〈{hj : ckj | k ∈ [1,mj ]}j∈J , tag, {hi : ai}i∈I〉

A BIP composition S with glue rules r1, . . . , rp and components C1, . . . , Cn ∈ P
can thus be encoded as follows:

JSK = l[h1[C1]; . . . ;hn[Cn]�

p∏
i=1

JriK]

By construction, we obtain:

Theorem 2. BIP systems de�ned over a set P of components can be encoded
in CAB(P): any BIP system S is strongly bisimilar to its encoding JSK.

3 Turing-completeness of CAB

In this section as in the rest of the paper, we work within CAB(∅), which,
for simplicity, we denote CAB. We show the Turing-completeness of CAB by
proving we can encode Minsky machines into it. This gives us a result on the
intrinsic expressive power of the CAB glue language, in the sense that it does not
depend on the presence of primitive components: we only construct component
systems using glue language terms. Note that this is equivalent to considering

3 The parallel operator ‖ is commutative and associative modulo strong bisimilarity.



M-Inc
i : INC(rj) m′j = mj + 1 m′1−j = m1−j

(i,m0,m1) −→M (i+ 1,m′0,m
′
1)

M-Dec
i : DECJ(rj , s) mj 6= 0 m′j = mj − 1 m′1−j = m1−j

(i,m0,m1) −→M (i+ 1,m′0,m
′
1)

M-Jmp
i : DECJ(rj , s) mj = 0

(i,m0,m1) −→M (s,m0,m1)
M-Halt

i : HALT

(i,m0,m1) 9M

Fig. 2: Semantics of Minsky machines

only primitive components which are labeled transition systems de�ned by CAB
terms of the form l[0�B], where B is a term with actions of the form 〈∅, a, ∅〉. For
reference, these primitive processes are given by terms of the following grammar,
whose operational semantics is given by rules Rec, Par1, Par2, and Act in
Figure 1:

B ::= 0 | 〈∅, a, ∅〉.B | B ‖ B | recX.B | X

Minsky Machines. Minsky machines [10] provide a Turing-complete model
of computation. A Minsky machine is composed of a set of sequential, labeled
instructions, and at least two registers. Registers rj (j ∈ {0, 1}) can hold arbitrar-
ily large natural numbers. Instructions (1 : I1), . . . , (n : In) can be of two kinds:
INC(rj) adds 1 to register rj and proceeds to the next instruction; DECJ(rj , s)
jumps to instruction s if rj is zero, otherwise it decreases register rj by 1 and
proceeds to the next instruction. A Minsky machine includes a program counter
p indicating the label of the instruction being executed. In its initial state, the
machine has both registers initialized to m0 and m1 respectively, and the pro-
gram counter p is set to the �rst instruction. The Minsky machine stops whenever
the program counter is set to the HALT instruction. A con�guration of a Minsky
machine is a tuple (i,m0,m1); it consists of the current program counter and
the values of the registers. Formally, the reduction relation over con�gurations
of a Minsky machine , denoted −→M, is de�ned in Figure 2.

The encoding. The encoding of Minsky machines in CAB, denoted J·K1, is
given in Figure 3. We now give some intuitions on it. Given a Minsky machine
M , we encode it as a system m. m contains three components: the two registers
r0 and r1, and the program counter. The instructions of the machine are encoded
in the glue of m. Numbers inside registers are encoded in the glue as the parallel
composition of as many occurrences of the unit process 〈∅, uj , ∅〉 as the number to
be encoded. An increment simply adds an occurrence of the unit process 〈∅, uj , ∅〉
to the register. The decrement and jump is encoded as the parallel composition



JRj = mK1 = rj [0�

m∏
1

〈∅, uj , ∅〉 ‖!〈∅, zj , ∅〉 ‖!〈∅, incj , ∅〉.〈∅, uj , ∅〉]

Instructions (i : Ii)
J(i : INC(rj))K1 =!〈∅, τ, {pi, incj , nexti+1}〉
J(i : DECJ(rj , s))K1 =!〈∅, τ, {pi, uj , nexti+1}〉 ‖!〈rj : uj , τ, {pi, zj , nexts}〉)
J(i : HALT)K1 = 〈∅, halt, pi〉

Fig. 3: Encoding of Minsky machines into CAB.

of the two branches. The decrement branch simply removes one occurrence of
the unit process 〈∅, uj , ∅〉, if such occurrence is available. The jump branch is
guarded by the priority rj : uj . In other words, to be able to execute the jump,
it is necessary to check that the register is indeed empty. If this is the case
the program counter is updated accordingly. More formally, the encoding of a
con�guration in the Minsky machine is de�ned as follows:

De�nition 4. Let M be a Minsky machine and (k,m0,m1) one of its con�gu-
rations. The encoding of Jk,m0,m1K1 is de�ned as

m[JR0 = m0K1; JR1 = m1K1; pr[0�

n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0� 〈∅, pk, ∅〉 ‖
n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉]�
n∏
i=1

Ji : IiK1]

where the encoding of registers and instructions is de�ned in Figure 3.

Notice that in order to synchronize at the same time pi and nexti we have
to duplicate the component representing the program counter. This does not
introduce non determinism as only one instance of the action 〈∅, pi, ∅〉 is available
at every step.

The correctness of the encoding follows by a case analysis on the type of
instruction performed when the program counter reaches k. This is formalized
by the following Lemma.

Lemma 1. LetM be a Minsky machine and (k,m0,m1) one of its con�guration
then (k,m0,m1) −→M (k′,m′0,m

′
1) i� Jk,m0,m1K1 −→ Jk′,m′0,m′1K1.

Proof (Sketch). Here we show only that if (k,m0,m1) −→M (k′,m′0,m
′
1) then

Jk,m0,m1K1 −→ Jk′,m′0,m′1K1 when the k-th instruction is a decrement on reg-
ister m0 > 0. The other cases and the other direction are similar or simpler.

Then, from De�nition 4, we have that

m[JR0 = m0K1; JR1 = m1K1; pr[0�

n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0� 〈∅, pk, ∅〉 ‖
n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉]�
n∏
i=1

Ji : IiK1]



where the k-th instruction is encoded as

!〈∅, τ, {pk, u0, nextk+1}〉 ‖!〈r0 : u0, τ, {pk, z0, nexts}〉)

and m′0 = m0 − 1, k′ = k + 1. In this case, the only possible evolution is the
one that synchronizes the program counter pk, the unit u0 inside register r0 and
nextk+1, evolving into the system:

m[JR0 = m0 − 1K1; JR1 = m1K1; pr[0� 〈∅, pk+1, ∅〉 ‖
n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0�

n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉]�
n∏
i=1

Ji : IiK1]

Now, it is easy to see that the system above corresponds to Jk′,m′0,m′1K1. ut

By means of the previous lemma, we can state the operational correspondence
between M and its encoding JMK1.

Theorem 3. Let M be a Minsky machine and JMK1 as de�ned in De�nition 4.

Then M halts with registers Ri = m′i for i ∈ [0, 1] i� JMK1
halt−−→ and locations

ri for i ∈ [0, 1] is JRi = m′iK1.

It is important to notice that our encoding relies on elementary components
of the form l[0�B], which are glued together by glue terms which are essentially
in BIP format, as discussed in Section 2. The above theorem gives us actually
a stronger result which says that the subset of CAB where glues are restricted
to be in BIP format, and where primitive components correspond to labeled
transition systems given by elementary components of the form l[0 � B], is
Turing-complete.

4 Expressivity of CAB variants

We have shown that CAB is Turing powerful. We now investigate the sources of
expressiveness in the language. The �rst thing we show is that in the encoding
given in Section 3 the presence of priorities is essential. Indeed we can prove
that if we consider a fragment of CAB without priorities the resulting language
is not Turing powerful anymore. This can be proven by providing an encoding
into Petri nets, a well known non Turing-powerful model.

4.1 CAB without priorities

A Petri net (see e.g. [6]) is a tuple N = (P, T,m0), where P and T are �nite sets
of places and transitions, respectively. A �nite multiset over the set S of places
is called a marking, and m0 is the initial marking. Given a marking m and a
place p, we say that the place p contains m(p) tokens in the marking m if there



are m(p) occurrences of p in the multiset m. A transition is a pair of markings
written in the form m′ ⇒ m′′. The marking m of a Petri net can be modi�ed by
means of transitions �ring: a transition m′ ⇒ m′′ can �re if m(p) ≥ m′(p) for
every place p ∈ S; upon transition �ring the new marking of the net becomes
n = (m \ m′) ] m′′ where \ and ] are the di�erence and union operators for
multisets, respectively. This is written as m→ n.

We denote the fragment of CAB without priorities as CAB−p. This fragment
is obtained by replacing production 〈Act, Tag,Act〉 with 〈∅, Tag,Act〉 in De�ni-
tion 3. Before presenting the encoding into Petri Nets, we introduce some more
terminology: we de�ne a notion of top level actions in the glue of a component.

De�nition 5 (top). Let l[C �B] be a system in CAB. top(B) is de�ned induc-
tively on the structure of the glue B as follows:

top(0) = top(X) ::= ∅ top(〈pr, tag, syn〉.B) ::= {〈pr, tag, syn〉}
top(recX.B) ::= top(B) top(B1 ‖ B2) ::= top(B1) ∪ top(B2)

We also de�ne how to build the graph of precedence of a glue B:

De�nition 6. Let l[C �B] be a system in CAB. The graph of B, denoted with
G(B) = (Nodes(B), Edges(B)), is a directed graph, inductively de�ned as:

G(0) ::= Nodes(B) = {0},
Edges(B) = ∅

G(〈act〉.B1) ::= Nodes(B) = {〈act〉} ∪Nodes(B1),
Edges(B) = {〈act〉 → x | x ∈ top(B1)} ∪ Edges(B1)

G(B1 ‖ B2) ::= Nodes(B) = Nodes(B1) ∪Nodes(B2),
Edges(B) = Edges(B1) ∪ Edges(B2)

G(recX.B1) ::= Nodes(B) = Nodes(B1)
Edges(B) = Edges(B1) where every time we encounter

X we add an edge to the nodes in top(B1)

Let n ∈ Nodes(B), we denote with Adj(n) the list of nodes adjacent to n.

The idea is that every system is a Petri Net and the marking represents the
components that are ready to interact at a given instant. Transitions mimic the
semantics of CAB−p systems. The construction of the Petri Net is inductive
on the hierarchy of components: let S = lS [S1; . . . ;Sm � BS ] be a system in
CAB−p. We assume that k is the maximum number of levels of nesting in S. We
decorate every location in S with the corresponding level of nesting in S, from
1 the innermost, to k the outermost level.

Let PN (Si) = (P (Si), T (Si),m0(Si)) be the Petri Net for the subsystem Si
for all i ∈ [1,m]. PN (S) is built by taking:

� as set of places, the set of all places of the subnets for S1 . . . Sn plus all the
nodes in the graph of the behavior BS :

P (S) =

n⋃
i=1

P (Si) ∪ {[lkS : 〈∅, tag, syn〉] | 〈∅, tag, syn〉 ∈ Nodes(BS)};



Notice that there is a bijection between nodes in the graphs of glues and the
places in the Petri Net. Hence for every node n in the graph of glue located
at l in level j there exists a distinctive place [lj : n] and vice-versa.

� as set of transitions all the transitions of subnets PN (S1) . . .PN (Sn) plus
for all nodes 〈∅, tag, syn〉 in Nodes(BS) where tag = τ we add a set of
transitions that:

• Take as precondition, recursively on the part syn of the nodes considered,
all the places [lj : 〈∅, t, s〉] for j ∈ [1, k − 1] and such that l : t appears
in the synchronization part syn in one of the nodes. Notice that, this
accounts in considering in a single transition all the components involved
in a τ step: i.e. the places involved in the precondition correspond to all
the leafs in the derivation tree of the τ step.

• Take as postcondition all the places built from nodes in the adjacent list
of all the nodes obtained by places in the preconditions.

For instance, consider the system

l3[l2[l1[0� 〈∅, a, ∅〉.0]� 〈∅, b, {l1 : a}〉.0]� 〈∅, τ, {l2 : b}〉.0]

here there is a single transition that takes as precondition the places: {[l3 :
〈∅, τ, {l2 : b}〉], [l2 : 〈∅, b, {l1 : a}〉], [l3 : 〈∅, a, ∅〉]} and as post condition the
places {[l1 : 0], [l2 : 0], [l3 : 0]}

� as initial marking, the initial marking of all subnets plus the nodes corre-
sponding to the top level actions in BS :

m0(S) = ]ni=1m0(Si) ] {[lkS : n] | n ∈ top(BS)}

The correctness of the above construction follows by induction on the nesting
of components.

Theorem 4. Let S = lS [S1; . . . ;Sm�BS ] be a system in CAB−p, and PN (S) =
(P (S), T (S),m0(S)) the corresponding Petri Net. Then S −→ S′ i� there exists
a marking m′ such that m0(S)⇒ m′ and m′ is a marking that takes all the top
level actions in S′.

Proof. Here we show only the correctness direction, soundness is similar. Let
S = lS [S1; . . . ;Sm�BS ] be a system in CAB−p, andm0(S) the initial marking in
the Petri Net constructed as described above. The proof proceeds by induction on
the nesting of components in S. If S −→ S′ then we have that either rule Beh or
Tau has been used. The case of Tau follows by inductive hypothesis. Instead if
the τ step comes from Beh , we have that there exists an action 〈∅, τ, {a1 . . . an}〉
at top level in BS . Moreover we have Ci1 . . . Cin components that are o�ering
actions a1 . . . an respectively. Hence at top level in these components we have an
action 〈∅, aij , syn〉 for j ∈ [1, n]. Therefore, by construction we have a token in
all these places and the transition can �re, moving all tokens in the successors
of the action: i.e. in all the nodes of the adjacency list, that by construction
corresponds to the new action at top level in S′. ut



4.2 Recovering expressiveness

We, now, introduce a new construct to CAB−p to recover the loss of expressive-
ness due to the absence of priorities. We consider an operator that adds new
components inside a system. To this aim, we add to De�nition 3 the following
production:

B ::= new S

with this operational semantics:

New new S
new S−−−−→ 0 Cre

B
new S−−−−→ B′

l[C �B]
τ−→ l[C;S �B′]

Thanks to the interplay between the creation of new components and re-
cursion we can re-obtain Turing equivalence. The result, similarly to the one
in Section 3, is obtained by resorting to an encoding of Minsky machines. We
proceed by giving some intuitions on the encoding given in Figure 4. Registers
are encoded as a hierarchy of components that handle both the representation
of the number and a mechanism to increment or decrement. The nesting of
these components represents the number contained. At every instant, the mech-
anism controlling the register is placed in the innermost position. Thus, whenever
an increment takes place, a new component is created inside the deepest level
and all the control is transfered to the newly created object: this is the role of
a[0� 〈∅, actj , ∅〉] which activates the current instance. On the contrary, in case
of a decrement, the current instance is deactivated: i.e. it remains as garbage
but it cannot be used anymore and a signal is passed to the upper component
so to activate decrements and increments at the proper level of nesting. Notice,
that in order to communicate with the active instance, it is necessary to equip
every level of the nesting with a process Fwd. This process is responsible for for-
warding increment and decrement events to reach the component that controls
the simulation of the computation. Without loss of generality, we assume that
registers are initialized to zero. The following de�nition formalizes the encoding
of a Minsky machine M :

De�nition 7. Let M be a Minsky machine with registers initialized to 0 and
program counter set to 1: its encoding JMK2 is

m[JR0 = 0K2; JR1 = 0K2; pr[0�

n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0� 〈∅, p1, ∅〉 ‖
n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉]�
n∏
i=1

Ji : IiK2]

where the encoding of registers and instructions is de�ned in Figure 4. 4

4 Notice that the interplay of recursion and creation of new components is implicit
in the de�nition of INC and Level. The same thing could have been written as:
!recX〈∅, incj , actj〉.new a[a[0� 〈∅, actj , ∅〉]� Fwd ‖ DEC ‖ X].



JRj = 0K2 ::= rj [a[0� 〈∅, actj , ∅〉 ‖!〈∅, zeroj , ∅〉.〈∅, actj , ∅〉]� Fwd ‖ Z ‖ INC]
Fwd ::= !〈∅, incj , incj〉 ‖!〈∅, decj , decj〉
Z ::= !〈∅, zj , actj〉.〈∅, τ, zeroj〉
INC ::= !〈∅, incj , actj〉.new Level
Level ::= a[a[0� 〈∅, actj , ∅〉]� Fwd ‖ DEC ‖ INC]
DEC ::= 〈∅, decj , actj〉.〈∅, actj , ∅〉

Instructions (i : Ii)
J(i : INC(rj))K2 =!〈∅, τ, {pi, incj , nexti+1}〉
J(i : DECJ(rj , s))K2 =!〈∅, τ, {pi, decj , nexti+1}〉 ‖!〈∅, τ, {pi, zj , nexts}〉)
J(i : HALT)K2 = 〈∅, halt, pi〉

Fig. 4: Encoding of Minsky machines into CAB without priorities.

Similarly as before, the correctness of the encoding follows by a case analysis
on the type of instruction performed when the program counter reaches k. Notice
that, depending on the speci�c computation there can be components as a[a[0�
0] � Fwd ‖ INC] ��oating� in the system. Nevertheless this garbage can be
ignored as it is never re-used: i.e. it cannot interact with the rest of the system.

Lemma 2. LetM be a Minsky machine and (k,m0,m1) one of its con�guration
then (k,m0,m1) −→M (k′,m′0,m

′
1) i� Jk,m0,m1K2 −→ Jk′,m′0,m′1K2.

Proof (Sketch). Here we show only that if (k,m0,m1) −→M (k′,m′0,m
′
1) then

Jk,m0,m1K2 −→ Jk′,m′0,m′1K2 when the k-th instruction is a decrement on reg-
ister m0 > 0. The other cases and the other direction are similar or simpler.

We �rst de�ne Jk,m0,m1K2, for the sake of simplicity we will not consider
the occurrences of garbage objects, taking for grant that those will not interfere
with the computation.

Jk,m0,m1K2 ::= m[JR0 = m0K2; JR1 = m1K2; pr[0�

n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0� 〈∅, pk, ∅〉 ‖
n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉]�
n∏
i=1

Ji : IiK2]

where

JRj = mjK2 ::= rj [a[0� 〈∅, actj , ∅〉 ‖!〈∅, zeroj , ∅〉.〈∅, actj , ∅〉],
C[. . . C[a[a[0� 〈∅, actj , ∅〉]� Fwd ‖ DEC ‖ INC]] . . . ]� Fwd ‖ Z ‖ INC]

and C[•] = a[a[0 � 0], • � Fwd ‖ DEC ‖ INC] is repeated mj times. The
k-th instruction is encoded as

!〈∅, τ, {pk, dec0, nextk+1}〉 ‖!〈r0 : u0, τ, {pk, z0, nexts}〉)



and m′0 = m0 − 1, k′ = k + 1. In this case, the only possible evolution is the
one that synchronizes the program counter pk, the message dec0 inside register
r0 and nextk+1, evolving into the system:

m[JR0 = m0 − 1K2; JR1 = m1K2; pr[0� 〈∅, pk+1, ∅〉 ‖
n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉];

pr[0�

n∏
i=1

!〈∅, nexti, ∅〉.〈∅, pi, ∅〉]�
n∏
i=1

Ji : IiK2]

Notice that the message on dec0 will start a chain of synchronizations between
components a[. . . ] through the Fwd event to reach the deepest component and
then activate the real decrement. It is easy to conclude that the system above
corresponds to Jk′,m′0,m′1K2. ut

The previous lemma allows us to conclude:

Theorem 5. Let M be a Minsky machine and JMK2 as de�ned in De�nition 7.

Then M halts with registers Ri = m′i for i ∈ [0, 1] i� JMK2
halt−−→ and locations

ri for i ∈ [0, 1] is JRi = m′iK2.

5 Final Remarks

We have taken in this paper a decidedly process algebraic view of glues in
component-based systems, introducing an alternate view, and an extension, of
the BIP framework in the form of the CAB process calculus. We have studied
the expressiveness of CAB, which gave us a way to characterize the intrinsic
(i.e. not relatively to a prede�ned family of components) expressive power of
its glue language. We have shown that, while being very simple, the calculus is
Turing-complete thanks mainly to the presence of priorities. As a matter of fact,
we have shown that the fragment of CAB where priorities have been removed is
only as expressive as Petri nets, which is a testament to the gain in expressive
power obtained through the use of priorities. However expressiveness can be re-
covered in a calculus without priorities if dynamic operators are added to the
language.

We have already discussed in the introduction the relations with the BIP
framework and seen how the present paper brings new light on BIP expres-
siveness. Here we relate our paper to other works studying the expressiveness
of multiparty synchronization or priority. Multiparty synchronization has been
proposed in several process calculi. One of the �rst proposals is CSP [7] where
synchronization can take place among all processes that share a channel with the
same name. A recent work by Laneve and Vitale [8] has shown that a calculus
able to synchronize on n channels is strictly more expressive than one that can
only synchronize up to n − 1 channels. [5] shows a similar result in the con-
text of a concurrent logic calculus. In the current paper we have mostly shown
the bene�t of priorities for expressiveness. However we suspect that multiparty



synchronization is also important for expressiveness. In our two encodings of
Minsky machines in Section 3 and in Section 4, we rely decisively on 3-way
synchronization; whether it is absolutely required is a question for further study.

Several works tackle the problem of adding priority mechanisms in a process
calculus [4]. In [11] it has been shown that CCS enriched with a form of priority
guards is strictly more expressive than CCS: essentially, it is possible to model the
leader election problem in CCS with priorities, which is not the case with plain
CCS. Analogously, [12] shows that a core calculus similar to CCS, if extended
with several kinds of priorities, can model the leader election problem while
the core calculus can not. Both these studies state the impossibility to encode
the calculus with priorities in the plain calculus. In contrast, we show in this
paper an absolute increase in expressiveness from Petri Nets to Minsky machines.
Closer to the present work is the paper in [1], where the authors show that CCS
without restriction, and with replication instead of recursion, can be encoded
into Petri Nets while the same calculus enriched with priorities and a weak form
of restriction is Turing-powerful. Compared to [1] we are considering recursive
processes instead of replicated ones thus the drop of expressiveness when not
using priorities is stronger in our case.

As for future work, we plan to investigate other, more involved, forms of dy-
namic con�guration of components. Moreover we are interested in understanding
if our result of Turing completeness can be related to the ability of simulating
all recursively enumerable LTSs thus making unnecessary the presence of the
parameter P in the full calculus CAB(P).
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Abstract. We present in this paper a fine-grained rollback primitive
for the higher-order π-calculus (HOπ), that builds on the reversibility
apparatus of reversible HOπ [9]. The definition of a proper semantics for
such a primitive is a surprisingly delicate matter because of the potential
interferences between concurrent rollbacks. We define in this paper a
high-level operational semantics which we prove sound and complete with
respect to reversible HOπ backward reduction. We also define a lower-
level distributed semantics, which is closer to an actual implementation
of the rollback primitive, and we prove it to be fully abstract with respect
to the high-level semantics.

1 Introduction

Motivation and contributions. Reversible computing, or related notions, can be
found in many areas, including hardware design, program debugging, discrete-
event simulation, biological modeling, and quantum computing (see [2] and the
introduction of [10] for early surveys on reversible computing). Of particular in-
terest is the application of reversibility to the study of programming abstractions
for fault-tolerant systems. In particular, most fault tolerance schemes based on
system recovery techniques [1], including rollback/recovery schemes and transac-
tion abstractions, imply some form of undo. The ability to undo any single action
in a reversible computation model provides an ideal setting to study, revisit, or
imagine alternatives to these different schemes. This is in part the motivation
behind the recent development of the reversible process calculi RCCS [4] and
ρπ [9], with [5] showing how a general notion of interactive transaction emerges
from the introduction of irreversible (commit) actions in RCCS. However, these
calculi provide very little in the way of controlling reversibility. The notion of
irreversible action in RCCS only prevents a computation from rolling back past a
certain point. Exploiting the low-level reversibility machinery available in these
models of computation for fault-recovery purposes would require more extensive
control on the reversal of actions, including when they can take place and how
far back (along a past computation) they apply.

We present in this paper the study of a fine-grained rollback control primi-
tive, where potentially every single step in a concurrent execution can be undone.
Specifically, we introduce a rollback construct for an asynchronous higher-order



π-calculus (HOπ [11]), building on the machinery of ρπ, the reversible higher-
order π-calculus presented in [9]. We chose HOπ as our substrate because we find
it a convenient starting point for studying distributed programming models with
inherently higher-order features such as dynamic code update, which we aim to
combine with abstractions for system recovery and fault tolerance. Surprisingly,
finding a suitable definition for a fine-grained rollback construct in HOπ is more
difficult than one may think, even with the help of the reversible machinery from
[9]. There are two main difficulties. The first one is in actually pinning down the
intended effect of a rollback operation, especially in presence of concurrent roll-
backs. The second one is in finding a suitably distributed semantics for rollback,
dealing only with local information and not relying on complex atomic transi-
tions involving a potentially unbounded number of distinct processes.

We show in this paper how to deal with these difficulties by making the
following contributions: (i) we define a high-level operational semantics for a
rollback construct in an asynchronous higher-order π-calculus, which we prove
maximally permissive, in the sense that it makes reachable all past states in a
given computation; (ii) we present a low-level semantics for the proposed rollback
construct which can be understood as a fully distributed variant of our high-level
semantics, and we prove it to be fully abstract with respect to the high-level one.

Paper Outline. In Section 2, we informally present our rollback calculus, which
we call roll-π, and illustrate the difficulties that may arise in defining a fine-
grained rollback primitive. In Section 3, we formalize roll-π and its high-level
operational semantics. In Section 4, we present a distributed operational seman-
tics for roll-π, and we prove that it is fully abstract with respect to the high-level
one. Section 5 discusses related work and concludes the paper. The interested
reader can find proofs of the main results in [8].

2 Informal presentation

To define roll-π and its rollback construct, we rely on the same support for
reversibility as in ρπ [9]. Let us review briefly its basic mechanisms.

Reversibility in ρπ. We attach to each process P a unique tag κ (either simple,
written as k, or composite, denoted as 〈hi, h̃〉 · k). The uniqueness of tags for
processes is achieved thanks to the following structural congruence rule that
defines how tags and parallel composition commute.

k :
n∏
i=1

τi ≡ νh̃.
n∏
i=1

(〈hi, h̃〉 · k : τi) with h̃ = {h1, . . . , hn} n ≥ 2 (1)

In equation (1),
n∏
i=1

is n-ary parallel composition and ν is the restriction operator,

both standard from the π-calculus. Each thread τi is either a message, of the form
a〈P 〉 (where a is a channel name), or a receiver process (also called a trigger),



of the form a(X) . P . A forward computation step (or forward reduction step,
noted with arrow�) consists of the reception of a message by a receiver process,
and takes the following form (note that ρπ is an asynchronous calculus).

(κ1 : a〈P 〉) | (κ2 : a(X) . Q)� νk. k : Q{P /X} | [M ; k] (2)

In this forward step, κ1 identifies a thread consisting of message a〈P 〉 on channel
a, and κ2 identifies a thread consisting of a trigger process a(X).Q that expects
a message on channel a. The result of the message input yields, as usual, an
instance Q{P /X} of the body of the trigger Q with the formal parameter X
instantiated by the received value, i.e., the process P (ρπ is higher-order). Mes-
sage input also has two side effects: (i) the tagging of the newly created process
Q{P /X} by a fresh tag k, and (ii) the creation of a memory [M ; k], which records
the original two threads, M = (κ1 : a〈P 〉) | (κ2 : a(X) .Q), together with tag k.

In ρπ, a forward reduction step such as (2) above is systematically associated
with a backward reduction step (noted with arrow  ) of the form:

(k : Q) | [M ; k] M (3)

which undoes the communication between threads κ1 and κ2. When necessary to
avoid confusion, we will add a ρπ subscript to arrows representing ρπ reductions.

Given a configuration M , the set of memories present in M provides us
with an ordering :> between tags in M that reflects their causal dependency: if
memory [κ1 : P1 | κ2 : P2; k] occurs in M , then κi > k. Also, k > 〈hi, h̃〉 · k, and
we define the relation :> as the reflexive and transitive closure of the > relation.
We say that tag κ has κ′ as a causal antecedent if κ′ :> κ.

Reversibility in roll-π. The notion of memory introduced in ρπ is in some way a
checkpoint, uniquely identified by its tag. In roll-π, we exploit this intuition to
introduce an explicit form of backward reduction. Specifically, backward reduc-
tion is not allowed by default as in ρπ, but has to be triggered by an instruction
of the form roll k, whose intent is that the current computation be rolled back to
a state just prior to the creation of the memory bearing the tag k. To be able to
form an instruction of the form roll k, one needs a way to pass the knowledge of
a memory tag to a process. This is achieved in roll-π by adding a bound variable
to each trigger process, which now takes the form a(X) .γ P , where γ is the
tag variable bound by the trigger construct and whose scope is P . A forward
reduction step in roll-π therefore is:

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)� νk. k : Q{P,k/X,γ} | [M ; k] (4)

where the only difference with (2) lies in the fact that the newly created tag k
is passed as an argument to the trigger body Q. We write a(X) . P in place of
a(X) .γ P if the tag variable γ does not appear free in P .

Now, given the above intent for the rollback primitive roll, how does one de-
fine its operational semantics? As hinted at in the introduction, this is actually
a subtler affair than one may expect. A big difference with ρπ, where commu-
nication steps are undone one by one, is that the k in roll k may refer to a



communication step far in the past. So the idea behind a roll k is to restore the
content of a memory [M ; k] and to delete all its forward history. Consider the
following attempt at a rule for roll:

(Naive)
N I k complete(N | [M ; k] | (κ : roll k))

N | [M ; k] | (κ : roll k) M | N k

The different predicates and the  operator used in the rule are defined formally
in the next section, but an informal explanation should be enough to understand
how the rule works. Briefly, the assertion N I k states that all the active threads
and memories in N bear tags κ that have k as causal antecedent, i.e., k :> κ (N
does not contain unrelated processes). The assertion complete(Mc) states that
configuration Mc gathers all the threads (inside or outside memories) whose tags
have as a causal antecedent the tag of a memory in Mc itself, i.e., if a memory
in Mc is of the form [M ′; k′] (the communication M ′ created a process tagged
with k′), then a process or a memory containing a process tagged with k′ has to
be in Mc (Mc contains every related process). The premises of rule Naive thus
asserts that the configuration Mc = N | [M ; k] | κ : roll k, on the left hand side
of the reduction in the conclusion of the rule, gathers all (and only) the threads
and memories which have originated from the process tagged by k, itself created
by the interaction of the message and trigger recorded in M . Being complete,
Mc is thus ready to be rolled back and replaced by the configuration M which
is at its origin. Rolling back Mc has another effect, noted as N k in the right
hand side of the conclusion, which is to release from memories those messages
or triggers which do not have k as a causal antecedent, but which participated
in communications with causal descendants of k.

For instance, the configuration M0 = M1 | (κ2 : c(Y ) .δ Y ), where M1 =
(κ0 : a〈P 〉) | (κ1 : a(X) .γ c〈roll γ〉), has the following forward reductions (where
M2 = (k : c〈roll k〉) | (κ2 : c(Y ) .δ Y )):

M0 � νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y ) .δ Y )

� νk, l. [M1; k] | [M2; l] | (l : roll k) = M3

Applying rule Naive (and structural congruence, defined later) on M3 we get:

M3  M1 | [M2; l] k = M1 | (κ2 : c(Y ) .δ Y ) = M0

where (κ2 : c(Y ) .δ Y ) is released from memory [M2; l] because it does not have
k as a causal antecedent.

Rule Naive looks reasonable enough, but difficulties arise when concurrent
rollbacks are taken into account. Consider the following configuration:

M = (k1 : τ1) | (k2 : a〈0〉) | (k3 : τ3) | (k4 : b〈0〉)

where1 τ1 = a(X) .γ d〈0〉 | (c(Y ) . roll γ) and τ3 = b(Z) .δ c〈0〉 | (d(U) . roll δ).

1 We assume parallel composition has precedence over trigger.
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Fig. 1. Concurrent rollback anomaly

The most interesting reductions of M are depicted in Figure 1. Forward
reductions are labelled by the name of the channel used for communication,
while backward reductions are labelled by the executed roll instruction. The
main processes and short-cuts are detailed below:

M1 = νl2, h3, h4. σ1 | [σ2; l2] | (κ3 : c〈0〉) | (κ4 : τ4)

M2 = νl1, h1, h2. [σ1; l1] | (κ1 : d〈0〉) | (κ2 : τ2) | σ2
M ′′ = νl1 . . . l4, h1 . . . h4. [σ1; l1] | [σ2; l2] | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2)

σ1 = (k1 : τ1) | (k2 : a〈0〉) σ2 = (k3 : τ3) | (k4 : b〈0〉) τ2 = c(Y ) . roll l1

σ3 = (κ2 : τ2) | (κ3 : c〈0〉) σ4 = (κ1 : d〈0〉) | (κ4 : τ4) τ4 = d(U) . roll l2

The anomaly here is that there is no way from M1 or M2 to get back to the
original configuration M , despite the fact that M ′′ has two roll instructions which
would seem sufficient to undo all the reductions which lead from M to M ′′. Note
that M1 and M2 are configurations which could both have been reached from
M . Thus rule Naive is not unsound, but incomplete or insufficiently permissive,
at least with respect to what is possible in ρπ: if we were to undo actions in M ′′

step by step, using ρπ’s backward reductions, we could definitely reach all of M ,
M1, and M2. Note that the higher-order aspects do not matter here.

The main motivation to have a complete rule comes from the fact that, in an
abstract semantics, one wants to be as liberal as possible, and not unduly restrict
implementations. If we were to pick the Naive rule as our semantics for rollback,
then a correct implementation would have to enforce the same restrictions with
respect to states reachable from backward reductions, restrictions which, in the
case of rule Naive, are both complex to characterize (in terms of conflicting
rollbacks) and quite artificial since they do not correspond to any clear execution
policy. In the next section, we present a maximally permissive semantics for
rollback, using ρπ as our benchmark for completeness.

3 The roll-π calculus and its high-level semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually disjoint sets: the set N of names, the set K of keys, the



P,Q ::= 0 | X | νa. P | (P | Q) | a〈P 〉 | a(X) .γ P | roll k | roll γ
M,N ::= 0 | νu.M | (M | N) | κ : P | [µ; k] | [µ; k]•

κ ::= k | 〈h, h̃〉 · k
µ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) .γ Q))

a ∈ N X ∈ VP γ ∈ VK u ∈ I h, k ∈ K

Fig. 2. Syntax of roll-π

set VK of tag variables, and the set VP of process variables. The set I = N ∪K
is called the set of identifiers. We note N the set of natural integers. We let
(together with their decorated variants): a, b, c range over N ; h, k, l range over
K; u, v, w range over I; δ, γ range over VK; X,Y, Z range over VP . We note ũ a
finite set of identifiers {u1, . . . , un}.

Syntax. The syntax of the roll-π calculus is given in Figure 2 (we often add bal-
anced parenthesis around roll-π terms to disambiguate them). Processes, given
by the P,Q productions in Figure 2, are the standard processes of the asyn-
chronous higher-order π-calculus, except for the presence of the roll primitive
and the extra bound tag variable in triggers. A trigger in roll-π takes the form
a(X) .γ P , which allows the receipt of a message of the form a〈Q〉 on channel a,
and the capture of the tag of the receipt event with tag variable γ.

Processes in roll-π cannot directly execute, only configurations can. Configu-
rations in roll-π are given by the M,N productions in Figure 2. A configuration
is built up from tagged processes and memories.

In a tagged process κ : P the tag κ is either a single key k or a pair of the
form 〈h, h̃〉 · k, where h̃ is a set of keys with h ∈ h̃. A tag serves as an identifier
for a process. As in ρπ [9], tags and memories help capture the flow of causality
in a computation.

A memory is a configuration of the form [µ; k], which keeps track of the
fact that a configuration µ was reached during execution, that triggered the
launch of a process tagged with the fresh tag k. In a memory [µ; k], we call
µ the configuration part of the memory, and k the tag of the memory. The
configuration part µ = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q) of a memory records the
message a〈P 〉 and the trigger a(X).γQ involved in the message receipt, together
with their respective thread tags κ1, κ2. A marked memory is a configuration of
the form [µ; k]•, which just serves to indicate that a rollback operation targeting
this memory has been initiated.

We note P the set of roll-π processes, and C the set of roll-π configurations.
We call agent an element of the set A = P ∪ C. We let (together with their
decorated variants) P,Q,R range over P; L,M,N range over C; and A,B,C
range over A. We call thread, a process that is either a message a〈P 〉, a trigger
a(X) .γ P , or a rollback instruction roll k. We let τ and its decorated variants
range over threads.



Free identifiers and free variables. Notions of free identifiers and free variables
in roll-π are usual. Constructs with binders are of the following forms: νa. P
binds the name a with scope P ; νu.M binds the identifier u with scope M ; and
a(X) .γ P binds the process variable X and the tag variable γ with scope P .
We note fn(P ), fn(M), and fn(κ) the set of free names, free identifiers, and
free keys, respectively, of process P , of configuration M , and of tag κ. Note in
particular that fn(κ : P ) = fn(κ) ∪ fn(P ), fn(roll k) = {k}, fn(k) = {k} and
fn(〈h, h̃〉 · k) = h̃ ∪ {k}. We say that a process P or a configuration M is closed
if it has no free (process or tag) variable. We note Pcl, Ccl and Acl the sets of
closed processes, configurations, and agents, respectively.

Initial and consistent configurations. Not all configurations allowed by the syn-
tax in Figure 2 are meaningful. For instance, in a memory [µ; k], tags occurring
in the configuration part µ must be different from the key k; if a tagged process
κ1 : roll k occurs in a configuration M , we expect a memory [µ; k] to occur in M
as well. In the rest of the paper, we only will be considering well-formed, or con-
sistent, closed configurations. A configuration is consistent if it can be derived
using the rules of the calculus from an initial configuration. A configuration is
initial if it does not contain memories, all the tags are distinct and simple (i.e.,
of the form k), and the argument of each roll is bound by a trigger.

We do not give here a syntactic characterization of consistent configurations
as it is not essential to understand the developments in this paper (the interested
reader may find some more details in [9], where a syntactic characterization of
ρπ consistent configurations is provided).

Remark 1. We have no construct for replicated processes or guarded choice in roll-π:

as in HOπ, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

if terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Operational semantics

The operational semantics of the roll-π calculus is defined via a reduction relation
→, which is a binary relation over closed configurations (→ ⊂ Ccl × Ccl), and a
structural congruence relation ≡, which is a binary relation over processes and
configurations (≡ ⊂ P2 ∪ C2). We define evaluation contexts as “configurations
with a hole ·”, given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole ·. A congru-
ence on processes or configurations is an equivalence relation R that is closed
for general contexts: P RQ =⇒ C[P ]RC[Q] or M RN =⇒ C[M ]RC[N ].

The relation ≡ is defined as the smallest congruence on processes and con-
figurations that satisfies the rules in Figure 3. We note t =α t′ when terms



(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.ParN) A | 0 ≡ A (E.NewN) νu.0 ≡ 0 (E.NewC) νu. νv.A ≡ νv. νu.A

(E.NewP) (νu.A) | B ≡ νu. (A | B) (E.α) A =α B =⇒ A ≡ B

(E.TagN) κ : νa. P ≡ νa. κ : P

(E.TagP) k :

n∏
i=1

τi ≡ νh̃.
n∏
i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n ≥ 2

Fig. 3. Structural congruence for roll-π

t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A stands for
νu1. . . . νun. A. We note

∏n
i=1Ai for A1 | . . . | An (there is no need to indi-

cate how the latter expression is parenthesized because the parallel operator
is associative by rule E.ParA). In rule E.TagP, processes τi are threads. Re-
call the use of the variable convention in these rules: for instance, in the rule
(νu.A) | B ≡ νu. (A | B) the variable convention makes implicit the condition
u 6∈ fn(B). The structural congruence rules are the usual rules for the π-calculus
(E.ParC to E.α) without the rule dealing with replication, and with the addi-
tion of two new rules dealing with tags: E.TagN and E.TagP. Rule E.TagN is
a scope extrusion rule to push restrictions to the top level. Rule E.TagP allows
to generate unique tags for each thread in a configuration. An easy induction on
the structure of terms provides us with a kind of normal form for configurations
(by convention

∏
i∈I Ai = 0 if I = ∅, and [µ; k]◦ stands for [µ; k] or [µ; k]•):

Lemma 1 (Thread normal form). For any configuration M , we have

M ≡ νũ.
∏
i∈I

(κi : ρi) |
∏
j∈J

[µj ; kj ]
◦

with ρi = 0, ρi = roll ki, ρi = ai〈Pi〉, or ρi = ai(Xi) .γi Pi.

We say that a binary relation R on closed configurations is evaluation-closed
if it satisfies the inference rules:

(R.Ctx)
M R N

E[M ] R E[N ]
(R.Eqv)

M ≡M ′ M ′ R N ′ N ′ ≡ N
M R N

The reduction relation → is defined as the union of two relations, the forward
reduction relation � and the backward reduction relation  : → = � ∪  .
Relations � and  are defined to be the smallest evaluation-closed binary re-
lations on closed configurations satisfying the rules in Figure 4 (note again the
use of the variable convention: in rule H.Com the key k is fresh).

The rule for forward reduction H.Com is the standard communication rule
of the higher-order π-calculus with three side effects: (i) the creation of a new



(H.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)� νk. (k : Q{P,k/X,γ}) | [µ; k]

(H.Start) (κ1 : roll k) | [µ; k] (κ1 : roll k) | [µ; k]•

(H.Roll)
N I k complete(N | [µ; k])

N | [µ; k]•  µ | N k

Fig. 4. Reduction rules for roll-π

memory to record the configuration that gave rise to it; (ii) the tagging of the
continuation of the message receipt with the fresh key k; (iii) the passing of
the newly created tag k as a parameter to the newly launched instance of the
trigger’s body Q.

Backward reduction is subject to the rules H.Roll and H.Start. Rule
H.Roll is similar to rule Naive defined in the previous section, except that
it relies on the presence of a marked memory instead of on the presence of the
process κ : roll k to roll back a given configuration. Rule H.Start just marks a
memory to enable rollback.

The definition of rule H.Roll exploits several predicates and relations which
we define below.

Definition 1 (Causal dependence). Let M be a configuration and let TM be
the set of tags occurring in M . The binary relation >M on TM is defined as the
smallest relation satisfying the following clauses:

– k >M 〈hi, h̃〉 · k;
– κ′ >M k if κ′ occurs in µ for some memory [µ; k]◦ that occurs in M .

The causal dependence relation :>M is the reflexive and transitive closure of
>M .

Relation κ :>M κ′ reads “κ is a causal antecedent of κ′ according to M”. When
configuration M is clear from the context, we write κ :> κ′ for κ :>M κ′.

Definition 2 (κ dependence). Let M ≡ νũ.
∏
i∈I κi : ρi |

∏
j∈J [µj ;κj ]

◦.
Configuration M is κ-dependent, written M I κ, if ∀i ∈ I ∪ J, κ :>M κi.

We now define the projection operation on configurations M κ, that captures
the parallel composition of all tagged processes that do not depend on κ occurring
in memories in M .

Definition 3 (Projection). Let M ≡ νũ.
∏
i∈I(κi : ρi) |

∏
j∈J [µj ;κj ]

◦, with
µj = κ′j : Rj | κ′′j : Tj. Then:

M κ = νũ. (
∏
j′∈J′

κ′j′ : Rj′) | (
∏

j′′∈J′′

κ′′j′′ : Tj′′)

where J ′ = {j ∈ J | κ 6:> κ′j} and J ′′ = {j ∈ J | κ 6:> κ′′j }.



Finally we define the notion of complete configuration, used in the premise
of rule H.Roll.

Definition 4 (Complete configuration). A configuration M contains a tag-
ged process κ : P , written κ : P ∈M , if M ≡ νũ. (κ : P ) | N or M ≡ νũ. [κ : P |
κ1 : Q; k]◦ | N .

A configuration M is complete, noted complete(M), if for each memory
[µ; k]◦ that occurs in M , one of the following holds:

1. There exists a process P such that k : P ∈M .

2. There is h̃ such that for each hi ∈ h̃ there exists a process Pi such that
〈hi, h̃〉 · k : Pi ∈M .

Barbed bisimulation. The operational semantics of the roll-π calculus is com-
pleted classically by the definition of a contextual equivalence between configu-
rations, which takes the form of a barbed congruence. We first define observables
in configurations. We say that name a is observable in configuration M , noted
M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a 6∈ ũ. Keys are not observable: this is
because they are just an internal device used to support reversibility. We note
⇒, �∗,  ∗ the reflexive and transitive closures of →, �, and  , respectively.

One of the aims of this paper is to define a low-level semantics for roll-π, and
show that it is equivalent to the high-level one. We want to use weak barbed
congruence for this purpose. Thus we need a definition of barbed congruence
able to relate roll-π configurations executed under different semantics. These se-
mantics will also rely on different runtime syntaxes. Thus, we define a family of
relations, each labeled by the semantics to be used on the left and right compo-
nents of its elements. We also label sets of configurations with the corresponding
semantics, thus highlighting that the corresponding runtime syntax has to be
included. However, contexts do not include runtime syntax, since we never add
contexts at runtime.

Definition 5 (Barbed bisimulation and congruence). A relation s1Rs2 ⊆
Ccls1 × Ccls2 on closed consistent configurations is a strong (resp. weak) barbed
simulation if whenever M s1Rs2N

– M ↓a implies N ↓a (resp. N ⇒s2↓a)

– M →s1 M ′ implies N →s2 N ′, with M ′s1Rs2N ′ (resp. N ⇒s2 N ′ with
M ′s1Rs2N ′)

A relation s1Rs2 ⊆ Ccls1 × Ccls2 is a strong (resp. weak) barbed bisimulation if

s1Rs2 and (s1Rs2)−1 are strong (resp. weak) barbed simulations. We call strong
(resp. weak) barbed bisimilarity and note s1∼s2 (resp. s1≈s2) the largest strong
(resp. weak) barbed bisimulation with respect to semantics s1 and s2.

We say that two configurations M and N are strong (resp. weak) barbed
congruent, written s1∼cs2 (resp. s1≈cs2), if for each roll-π context C such that
C[M ] and C[N ] are consistent, then C[M ] s1∼s2 C[N ] (resp. C[M ] s1≈s2 C[N ]).



3.3 Soundness and completeness of backward reduction in roll-π

We present in this section a Loop Theorem, that establishes the soundness of
backward reduction in roll-π, and we prove the completeness (or maximal per-
missiveness) of backward reduction in roll-π.

Theorem 1 (Loop Theorem - Soundness of backward reduction). For
any (consistent) configurations M and M ′ with no marked memories, if M  ∗

M ′, then M ′ �∗ M .

To state the completeness result for backward reduction in roll-π, we define
a family of functions φe : Croll-π → Cρπ, where e ∈ N , mapping a roll-π configu-
ration to a ρπ configuration. Function φe is defined by induction as follows:

φe(νu.A) = νu. φe(A) φe(A | B) = φe(A) | φe(B) φe(κ : P ) = κ : φe(P )

φe([µ; k]◦) = [φe(µ); k] φe(0) = 0 φe(X) = X

φe(roll k) = e〈0〉 φe(roll γ) = e〈0〉 φe(a〈P 〉) = a〈φe(P )〉
φe(a(X) .γ P ) = a(X) . φe(P )

Note that roll instructions are transformed not into 0 but into a thread e〈0〉: this
is to ensure a consistent roll-π configuration is transformed into a consistent ρπ
configuration (recall that 0 is not a thread, thus it may be collected by structural
congruence and there would be no thread corresponding to the roll k process).

We now state that roll-π is maximally permissive: any subset of roll primitives
in evaluation context may successfully be executed, unlike in the naive example
of Section 2. Let M = νũ. [µ; k] | (k : P ) | N be a ρπ configuration and S =
{k1, . . . , kn} a set of keys. We note M  S M

′ if M  ρπ M
′, M ′ = νũ. µ | N ,

and ki :> k for some ki ∈ S (here k is the key of the memory [µ; k] consumed by
the reduction). If M ′ 6 S , we say that M ′ is final with respect to S. We note ∗S
the reflexive and transitive closure of  S . We assume here that reductions are
name-preserving, i.e., existing keys are not α-converted (cf. [9] for a discussion
on the topic).

Theorem 2 (Completeness of backward reduction). Let M be a (con-
sistent) roll-π configuration such that M ≡ νũ.

∏n
i=1 κi : roll ki | M1, let

S = {k1, . . . , kn}, and let e ∈ N \ fn(M). Then for all T ⊆ S, if φe(M) ∗T N
and N is final with respect to T , there exists M ′ such that N = φe(M

′), and
M  ∗roll-π M

′.

4 A distributed semantics for roll-π

The semantics defined in the previous section captures the behavior of rollback,
but its H.Roll rule specifies an atomic action involving a configuration with an
unbounded number of processes and relies on global checks on this configuration,
for verifying that it is complete and κ-dependent. This makes it arduous to
implement, especially in a distributed setting.



(L.Com)
µ = (κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) .γ Q)�LL νk. (k : Q{P,k/X,γ}) | [µ; k]

(L.Start) (κ1 : roll k) | [µ; k] LL (κ1 : roll k) | [µ; k]• | rl k

(L.Span) rl κ1 | [κ1 : P |M ; k]◦  LL [bκ1 : Pc |M ; k]◦ | rl k

(L.Branch)
〈hi, h̃〉 · k occurs in M

rl k |M  LL

∏
hi∈h̃

rl 〈hi, h̃〉 · k |M

(L.Up) rl κ1 | (κ1 : P ) LL bκ1 : Pc (L.Stop) [µ; k]◦ | bk : Pc LL µ

Fig. 5. Reduction rules for LL

(E.Gb1) νk. rl k ≡LL 0 (E.Gb2) νk.
∏
hi∈h̃

rl 〈hi, h̃〉 · k ≡LL 0

(E.TagPFr) bk :

n∏
i=1

τic ≡LL νh̃.
n∏
i=1

b(〈hi, h̃〉 · k : τi)c h̃ = {h1, . . . , hn} n ≥ 2

Fig. 6. Additional structural laws for LL

We thus present in this section a low-level (written LL) semantics, where
the conditions above are verified incrementally by relying on the exchange of rl
notifications. We show that the LL semantics captures the same intuition as the
one introduced in Section 3 by proving that given a (consistent) configuration,
its behaviors under the two semantics are weak barbed congruent according to
Definition 5.

To avoid confusion between the two semantics, we use a subscript LL to
identify all the elements (reductions, structural congruence, . . . ) referred to the
low-level semantics presented here, and HL (for high-level) for the semantics
described in Section 3.

The LL semantics→LL of roll-π is defined as for the HL one (cf. Section 3.2),
as →LL = �LL ∪  LL, where relations �LL and  LL are defined to be the
smallest evaluation-closed binary relations on closed LL configurations satisfying
the rules in Figure 5. The notion of structural congruence used in the definition
of evaluation-closed is here the smallest congruence on LL processes and config-
urations that satisfies the rules in Figure 3 and in Figure 6.

LL configurations differ from HL configurations in two aspects. First, tagged
processes (inside or outside memories) can be frozen, denoted bκ : Pc, to indicate
that they are participating to a rollback (rollback is no longer atomic). Second,



LL configurations include notifications of the form rl κ, used to notify a tagged
process with key κ to enter a rollback.

Let us describe the LL rules. Communication rule L.Com is as before. The
main idea for rollback is that when a memory pointed by a roll is marked (rule
L.Start), a notification rl k is generated. This notification is propagated by
rules L.Span and L.Branch. Rule L.Span also freezes threads inside memories,
specifying that they will be eventually removed by the rollback. Rule L.Branch
(where the predicate “κ occurs in M” means that either M = κ : P or M =
[µ; k′]◦ with κ : P ∈ M) is used when the target configuration has been split
into multiple threads: a notification has to be sent to each of them. Rule L.Up
is similar to L.Span, but it applies to tagged processes outside memories. It also
stops the propagation of the rl notification. The main idea is that by using rules
L.Span, L.Branch, and L.Up one is able to tag all the causal descendants of
a marked memory. Finally, rule L.Stop rolls back a single computation step
by removing a frozen process and freeing the content of the memory created
with it. In the LL semantics a rollback request is thus executed incrementally,
while it was atomic in the HL semantics (rule H.Roll). The LL semantics also
exploits an extended structural congruence, adding axioms E.Gb1 and E.Gb2
to garbage collect rl notifications when they are no more needed, and extending
axiom E.TagP to deal with frozen threads (axiom E.TagPFr).

We now show an example to clarify the semantics (each reduction is labeled
by the name of the axiom used to derive it). Let M0 = M1 | (κ2 : c(Y ) .δ Y ),
where M1 = (κ0 : a〈P 〉) | (κ1 : a(X) .γ c〈roll γ〉). We have:

M0 � νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y ) .δ Y )

(L.Com) � νk, l. [M1; k] | [M2; l] | (l : roll k)

(L.Start)  νk, l. [M1; k]• | [M2; l] | (l : roll k) | rl k
(L.Span)  νk, l. [M1; k]• | [M ′2; l] | (l : roll k) | rl l
(L.Up)  νk, l. [M1; k]• | [M ′2; l] | b(l : roll k)c

(L.Stop)  νk. [M1; k]• |M ′2
(L.Stop)  M1 | (κ2 : c(Y ) .δ Y )

where:

M2 = (k : c〈roll k〉) | (κ2 : c(Y ) .δ Y ) M ′2 = b(k : c〈roll k〉)c | (κ2 : c(Y ) .δ Y )

One can see that the rollback operation starts with the application of the rule
L.Start, whose effects are (i) to mark the memory aimed by a roll process, and
(ii) to generate a notification rl k to freeze its continuation. Since the continuation
of the memory [M1; k] is contained in the memory [M2; l] then the rule L.Span
is applied. So, the part of the memory containing the tag k gets frozen and
a freeze notification rl l is generated. The notification eventually reaches the
process l : roll k and freezes it (rule L.Up). Now, since there exists a memory
whose continuation is a frozen process, we can apply the rule L.Stop, and free
the configuration part of the memory (M ′2). Again, we have that the continuation



of [M1; k] is a frozen process and by applying the rule L.Stop we can free the
configuration M1, obtaining the initial configuration. In general, a rollback of a
step whose memory is tagged by k is performed by executing a top-down visit
of its causal descendants, freezing them, followed by a bottom-up visit undoing
the steps one at the time.

We can now state the correspondence result between the two semantics.

Theorem 3 (Correspondence between HL and LL). For each roll-π HL
consistent configuration M , M HL≈cLL M .

Proof. The proof is quite long and technical, and relies on a several additional
semantics used as intermediate steps from HL to LL. It can be found in [8]. ut

This result can be easily formulated as full abstraction. In fact, the encoding
j from HL configurations to LL configurations defined by the injection (HL
configurations are a subset of LL configurations) is fully abstract.

Corollary 1 (Full abstraction). Let j be the injection from HL (consistent)
configurations to LL configurations and let M , N be two HL configurations. Then
we have j(M) LL≈cLL j(N) iff M HL≈cHL N .

Proof. From Theorem 3 we have M HL≈cLL j(M) and N HL≈cLL j(N). The
thesis follows by transitivity. ut

The results above ensure that the loss of atomicity in rollback preserves
the reachability of configurations yet does not make undesired configurations
reachable.

5 Related work and conclusion

We have introduced in this paper a fine-grained undo capability for the asyn-
chronous higher-order π-calculus, in the form of a rollback primitive. We present
a simple but non-trivial high-level semantics for rollback, and we prove it both
sound (rolling back brings a concurrent program back to a state that is a proper
antecedent of the current one) and complete (rolling back can reach all an-
tecedent states of the current one). We also present a lower-level distributed
semantics for rollback, which we prove to be fully abstract with respect to the
high-level one. The reversibility apparatus we exploit to support our rollback
primitive is directly taken from our reversible HOπ calculus [9].

Undo or rollback capabilities in programming languages have been the sub-
ject of numerous previous works and we do not have the space to review them
here; see [10] for an early survey in the sequential setting. Among the recent
works that have considered undo or rollback capabilities for concurrent program
execution, we can single out [3] where logging primitives are coupled with a no-
tion of process group to serve as a basis for defining transaction abstractions,
[12] which introduces a checkpoint abstraction for functional programs, and [7]
which extends the actor model with constructs to create globally-consistent



checkpoints. Compared to these works, our rollback primitive brings immedi-
ate benefits: it provides a general semantics for undo operations which is not
provided in [3]; thanks to the fine-grained causality tracking implied by our re-
versible substrate, our roll-π calculus does not suffer from uncontrolled cascading
rollbacks (domino effect) which may arise with [12], and, in contrast to [7], pro-
vides a built-in guarantee that, in failure-free computations, rollback is always
possible and reaches a consistent state (soundness of backward reduction).

Our low-level semantics for rollback, being a first refinement towards an im-
plementation, is certainly related to distributed checkpoint and rollback schemes,
in particular to the causal logging schemes discussed in the survey [6]. A thor-
ough analysis of this relationship must be left for further study, however, as it
requires a proper modeling of site and communication failures, as well as an
explicit model for persistent data.
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Termination in a π-calculus with Subtyping
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Abstract

We present a type system to guarantee termination of π-calculus
processes that exploits input/output capabilities and subtyping, as
originally introduced by Pierce and Sangiorgi, in order to analyse the
usage of channels.

We show that our system improves over previously existing pro-
posals by accepting more processes as terminating. This increased
expressiveness allows us to capture sensible programming idioms. We
demonstrate how our system can be extended to handle the encoding
of the simply typed λ-calculus, and discuss questions related to type
inference.

1 Introduction

Although many concurrent systems, such as servers, are supposed to run
forever, termination is an important property in a concurrent setting. For
instance, one would like a request to a server to be eventually answered;
similarly, the access to a shared resource should be eventually granted. Ter-
mination can be useful to guarantee in turn lock-freedom properties [8].

In this work, we study termination in the setting of the π-calculus: con-
current systems are specified as π-calculus processes, and we would like to
avoid situations in which a process can perform an infinite sequence of inter-
nal communication steps. Despite its conciseness, the π-calculus can express
complex behaviours, such as reconfiguration of communication topology, and
dynamic creation of channels and threads. Guaranteeing termination is thus
a nontrivial task.

More specifically, we are interested in methods that provide termination
guarantees statically. There exist several type-based approaches to guar-
antee termination in the π-calculus [5, 15, 12, 3, 4]. In these works, any
typable process is guaranteed to be reactive, in the sense that it cannot

1



enter an infinite sequence of internal communications: it eventually termi-
nates computation, or ends up in a state where an interaction with the
environment is required.

The type systems in the works mentioned above have different expres-
sive powers. Analysing the expressiveness of a type system for termination
amounts to studying the class of processes that are recognised as terminat-
ing. A type system for termination typically rules out some terminating
terms, because it is not able to recognise them as such (by essence, an
effective type system for termination defines an approximation of this un-
decidable property). When improving expressiveness, one is interested in
making the type system more flexible: more processes should be deemed as
terminating. An important point in doing so is also to make sure that (at
least some of) the ‘extra processes’ make sense from the point of view of
programming.

Type systems for termination in the π-calculus. Existing type sys-
tems for termination in the π-calculus build on simple types [13], whereby
the type of a channel describes what kind of values it can carry. Two ap-
proaches, that we shall call ‘level-based’ and ‘semantics-based’, have been
studied to guarantee termination of processes. We discuss below the first
kind of methods, and return to semantics-based approaches towards the end
of this section. Level-based methods for the termination of processes orig-
inate in [5], and have been further analysed and developed in [3]. They
exploit a stratification of names, obtained by associating a level (given by
a natural number) to each name. Levels are used to insure that at every
reduction step of a given process, some well-founded measure defined on
processes decreases.

Let us illustrate the level-based approach on some examples. In this
paper, we work in the asynchronous π-calculus, and replication can occur
only on input prefixes. As in previous work, adding features like synchrony
or the sum operator to our setting does not bring any difficulty.

According to level-based type systems, the process !a(x).b〈x〉 is well-
typed provided lvl(a), the level of a, is strictly greater than lvl(b). Intuitively,
this process trades messages on a (that ‘cost’ lvl(a)) for messages on b (that
cost less). Similarly, !a(x).(b〈x〉 | b〈x〉) is also well-typed, because none of
the two messages emitted on b will be liable to trigger messages on a ad
infinitum. More generally, for a process of the form !a(x).P to be typable,
we must check that all messages occurring in P are transmitted on channels
whose level is strictly smaller than lvl(a) (more accurately, we only take into



account those outputs that do not occur under a replication in P — see
Section 2).

This approach rules out a process like !a(x).b〈x〉 | !b(y).a〈y〉 (which gen-
erates the unsatisfiable constraint lvl(a) > lvl(b) > lvl(a)), as well as the
other obviously ‘dangerous’ term !a(x).a〈x〉 — note that neither of these
processes is diverging, but they lead to infinite computations as soon as
they are put in parallel with a message on a.

The limitations of simple types. The starting point of this work is the
observation that since existing level-based systems rely on simple types, they
rule out processes that are harmless from the point of view of termination,
essentially because in simple types, all names transmitted on a given channel
should have the same type, and hence, in our setting, the same level as well.

If we try for instance to type the process P0
def
= !a(x).x〈t〉, the constraint

is lvl(a) > lvl(x), in other words, the level of the names transmitted on a
must be smaller than a’s level. It should therefore be licit to put P0 in
parallel with a〈p〉 | a〈q〉, provided lvl(p) < lvl(a) and lvl(q) < lvl(a). Existing
type systems enforce that p and q have the same type for this process to
be typable: as soon as two names are sent on the same channel (here, a),
their types are unified. This means that if for some reason (for instance, if
the subterm !p(z).q〈z〉 occurs in parallel) we must have lvl(p) > lvl(q), the
resulting process is rejected, although it is terminating.

We would like to provide more flexibility in the handling of the level
of names, by relaxing the constraint that p and q from the example above
should have the same type. To do this while preserving soundness of the
type system, it is necessary to take into account the way names are used
in the continuation of a replicated input. In process P0 above, x is used
in output in the continuation, which allows one to send on a any name (of
the appropriate simple type) of level strictly smaller than lvl(a). If, on the

other hand, we consider process P1
def
= !b(y).!y(z).c〈z〉, then typability of the

subterm !y(z).c〈z〉 imposes lvl(y) > lvl(c), which means that any name of
level strictly greater than lvl(c) can be sent on b. In this case, P1 uses the
name y that is received along b in input. We can remark that divergent
behaviours would arise if we allowed the reception of names having a bigger
(resp. smaller) level in P0 (resp. P1).

Contributions of this work. These observations lead us to introduce a
new type system for termination of mobile processes based on Pierce and
Sangiorgi’s system for input/output types (i/o-types) [11]. I/o-types are



based on the notion of capability associated to a channel name, which makes
it possible to grant only the possibility of emitting (the output capability)
or receiving (the input capability) on a given channel. A subtyping relation
is introduced to express the fact that a channel for which both capabilities
are available can be coerced to a channel where only one is used. Intuitively,
being able to have a more precise description of how a name will be used can
help in asserting termination of a process: in P0, only the output capability
on x is used, which makes it possible to send a name of smaller level on a;
in P1, symmetrically, y can have a bigger level than expected, as only the
input capability on y is transmitted.

The overall setting of this work is presented in Section 2, together with
the definition of our type system. This system is strictly more expressive
than previously existing level-based systems. We show in particular that our
approach yields a form of ‘level polymorphism’, which can be interesting in
terms of programming, by making it possible to send several requests to a
given server (represented as a process of the form !f(x).P , which corresponds
to the typical idiom for functions or servers in the π-calculus) with arguments
that must have different levels, because of existing dependencies between
them.

In order to study more precisely the possibility to handle terminating
functions (or servers) in our setting, we analyse an encoding of the λ-calculus
in the π-calculus. We have presented in [3] a counterexample showing that
existing level-based approaches are not able to recognise as terminating the
image of the simply-typed λ-calculus (STλ) in the π-calculus (all processes
computed using such an encoding terminate [13]). We show that this coun-
terexample is typable in our system, but we exhibit a new counterexample,
which is not. This shows that despite the increased expressiveness, level-
based methods for the termination of π-calculus processes fail to capture
terminating sequential computation as expressed in STλ.

To accommodate functional computation, we exploit the work presented
in [4], where an impure π-calculus is studied. Impure means here that one
distinguishes between two kinds of names. On one hand, functional names
are subject to a certain discipline in their usage, which intuitively arises from
the way names are used in the encoding of STλ in the π-calculus. On the
other hand, imperative names do not obey such conditions, and are called
so because they may lead to forms of stateful computation (for instance, an
input on a certain name is available at some point, but not later, or it is
always available, but leads to different computations at different points in
the execution).



In [4], termination is guaranteed in an impure π-calculus by using a
level-based approach for imperative names, while functional names are dealt
with separately, using a semantics-based approach [15, 12]. We show that
that type system, which combines both approaches for termination in the
π-calculus, can be revisited in our setting. We also demonstrate that the
resulting system improves in terms of expressiveness over [4], from several
points of view.

Several technical aspects in the definition of our type systems are new
with respect to previous works. First of all, while the works we rely on for
termination adopt a presentation à la Church, where every name has a given
type a priori, we define our systems à la Curry, in order to follow the ap-
proach for i/o-types in [11]. As we discuss below, this has some consequences
on the soundness proof of our systems. Another difference is in the presen-
tation of the impure calculus: [4] uses a specific syntactical construction,
called def, and akin to a let .. in construct, to handle functional names.
By a refinement of i/o-types, we are able instead to enforce the discipline
of functional names without resorting to a particular syntactical construct,
which allows us to keep a uniform syntax.

We finally discuss type inference, by focusing on the case of the localised
π-calculus (Lπ). Lπ corresponds to a certain restriction on i/o-types. This
restriction is commonly adopted in implementations of the π-calculus. We
describe a sound and complete type inference procedure for our level-based
system in Lπ. We also provide some remarks about inference for i/o-types
in the general case.

Paper outline. Section 2 presents our type system, and shows that it
guarantees termination. We study its expressiveness in Section 3. Section 4
discusses type inference, and we give concluding remarks in Section 5. For
lack of space, several proofs are omitted from this version of the paper.

2 A Type System for Termination with Subtyping

2.1 Definition of the Type System

Processes and types. We work with an infinite set of names, ranged
over using a, b, c, . . . , x, y, . . . . Processes, ranged over using P,Q,R, . . . , are
defined by the following grammar (? is a constant, and we use v for values):

P ::= 0
∣∣ P1|P2

∣∣ a〈v〉 ∣∣ (νa)P
∣∣ a(x).P

∣∣ !a(x).P v ::= ?
∣∣ a .



The constructs of restriction and (possibly replicated) input are binding,
and give rise to the usual notion of α-conversion. We write fn(P ) for the set
of free names of process P , and P [b/x] stands for the process obtained by
applying the capture-avoiding substitution of x with b in P .

We moreover implicitly assume, in the remainder of the paper, that all
the processes we manipulate are written in such a way that all bound names
are pairwise distinct and are different from the free names. This may in
particular involve some implicit renaming of processes when a reduction is
performed.

The grammar of types is given by:

T ::= ]kT
∣∣ ikT ∣∣ okT ∣∣ U ,

where k is a natural number that we call a level, and U stands for the unit

type having ? as only value. A name having type ]kT has level k, and
can be used to send or receive values of type T , while type ikT (resp. okT )
corresponds to having only the input (resp. output) capability.

Figure 1 introduces the subtyping and typing relations. We note ≤
both for the subtyping relation and for the inequality between levels, as
no ambiguity is possible. We can remark that the input (resp. output)
capability is covariant (resp. contravariant) w.r.t. ≤, but that the opposite
holds for levels: input requires the supertype to have a smaller level.

Γ ranges over typing environments, which are partial maps from names
to types – we write Γ(a) = T if Γ maps a to T . dom(Γ), the domain of Γ,
is the set of names for which Γ is defined, and Γ, a : T stands for the typing
environment obtained by extending Γ with the mapping from a to T , this
operation being defined only when a /∈ dom(Γ).

The typing judgement for processes is of the form Γ ` P : w, where
w is a natural number called the weight of P . The weight corresponds to
an upper bound on the maximum level of a channel that is used in output
in P , without this output occurring under a replication. This can be read
from the typing rule for output messages (notice that in the first premise, we
require the output capability on a, which may involve the use of subtyping)
and for parallel composition. As can be seen by the corresponding rules,
non replicated input prefix and restriction do not change the weight of a
process. The weight is controlled in the rule for replicated inputs, where we
require that the level of the name used in input is strictly bigger than the
weight of the continuation process. We can also observe that working in a
synchronous calculus would involve a minor change: typing a synchronous
output a〈v〉.P would be done essentially like typing a〈v〉 |P in our setting
(with no major modification in the correctness proof for our type system).



As an abbreviation, we shall omit the content of messages in prefixes,
and write a and a for a(x) and a〈?〉 respectively, when a’s type indicates
that a is used to transmit values of type U.

Example 1 The process !a(x).x〈t〉 | a〈p〉 | a〈q〉 | !p(z).q〈z〉 from Section 1 can
be typed in our type system: we can set a : ]3o2T, p : ]2T, q : o1T . Subtyping
on levels is at work in order to typecheck the subterm a〈q〉. We provide a
more complex term, which can be typed using similar ideas, in Example 15
below.

Subtyping ≤ is the least relation that is reflexive, transitive, and satisfies
the following rules:

]kT ≤ ikT ]kT ≤ okT

T ≤ S k1 ≤ k2

ik2T ≤ ik1S

T ≤ S k1 ≤ k2

ok1S ≤ ok2T

Typing values

Γ ` ? : U
Γ(a) = T

Γ ` a : T

Γ ` a : T T ≤ U
Γ ` a : U

Typing processes

Γ ` 0 : 0

Γ ` a : okT Γ ` v : T

Γ ` a〈v〉 : k

Γ ` a : ikT Γ, x : T ` P : w

Γ ` a(x).P : w

Γ ` a : ikT Γ, x : T ` P : w k > w

Γ ` !a(x).P : 0

Γ, a : T ` P : w

Γ ` (νa)P : w

Γ ` P1 : w1 Γ ` P2 : w2

Γ ` P1|P2 : max(w1, w2)

Figure 1: Typing and Subtyping Rules



a(x).P | a〈v〉 −→ P [v/x] !a(x).P | a〈v〉 −→ !a(x).P | P [v/x]

P −→ P ′

P |Q −→ P ′|Q
P −→ P ′

(νa)P −→ (νa)P ′
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

Figure 2: Reduction of Processes

Reduction and termination. The definition of the operational seman-
tics relies on a relation of structural congruence, noted ≡, which is the
smallest equivalence relation that is a congruence, contains α-conversion,
and satisfies the following axioms:

P |(Q|R) ≡ (P |Q)|R P |Q ≡ Q|P P |0 ≡ P

(νa) 0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P

(νa) (P |Q) ≡ P | (νa)Q if a /∈ fn(P )

Note in particular that there is no structural congruence law for replication.
Reduction, written −→, is defined by the rules of Figure 2.

Definition 2 (Termination) A process P diverges if there exists an infi-
nite sequence of processes (Pi)i≥0 such that P = P0 and for any i, Pi −→
Pi+1. P terminates (or P is terminating) if P does not diverge.

2.2 Properties of the Type System

We first state some (mostly standard) technical properties satisfied by our
system.

Lemma 3 If Γ ` P : w and w 6= 0 then for any w′ ≥ w, Γ ` P : w′.

Proposition 4 (Narrowing) If Γ, x : T ` P : w and T ′ ≤ T , then Γ, x :
T ′ ` P : w′ for some w′ ≤ w.

Lemma 5 If P ≡ Q, then Γ ` P : w iff Γ ` Q : w.

Lemma 6 If Γ, x : T ` P : w, Γ ` b : T ′ and T ′ ≤ T then Γ ` P [b/x] : w′,
for some w′ ≤ w.



Proof (sketch). This is a consequence of Lemma 4, as we replace x by a
name of smaller type.

Theorem 7 (Subject reduction) If Γ ` P : w and P −→ P ′, then
Γ ` P ′ : w′ for some w′ ≤ w.

Proof (sketch). By induction over the derivation of P −→ P ′. The
most interesting case corresponds to the case where P =!a(x).P1 | a〈v〉 −→
P ′ =!a(x).P1 | P1[v/x]. By typability of P , we have Γ ` !a(x).P1 : 0. Let
Ta = Γ(a). Typability of P gives Γ, x : T ` P1 : w1 for some T and w1

such that Ta ≤ ikT and w1 < k ≤ lvl(a). Typability of a〈v〉 gives Ta ≤ ok
′
U

for some k′ ≥ lvl(a), with w = k′ and Γ ` v : U . The two constraints
on Ta entail T ≤ U , and hence, by Lemma 6, Γ ` P1[v/x] : w2 for some
w2 ≤ w1 ≤ lvl(a) ≤ k′. We then conclude Γ ` P ′ : w2.

Termination. Soundness of our type system, that is, that every typable
process terminates, is proved by defining a measure on processes that de-
creases at each reduction step. A typing judgement Γ ` P : w yields
the weight w of process P , but this notion is not sufficient (for instance,
a | a | a −→ a, and the weight is preserved). We instead adapt the approach
of [1], and define the measure as a multiset of natural numbers. This is done
by induction over the derivation of a typing judgement for the process. We
will use D to range over typing derivations, and write D : Γ ` P : w to
mean that D is a derivation of Γ ` P : w.

To deduce termination, we rely on the multiset extension of the well-
founded order on natural numbers, that we write >mul. M2 >mul M1 holds
if M1 = N ] N1, M2 = N ] N2, N being the maximal such multiset (] is
multiset union), and for all e1 ∈ N1 there is e2 ∈ N2 such that e1 < e2. The
relation >mul is well-founded. We write M1 ≥mul M2 if M1 >mul M2 or
M1 = M2.

Definition 8 Suppose D : Γ ` P : w. We define a multiset of natural



numbers, noted M(D), by induction over D as follows:

If D : Γ ` 0 then M(D) = ∅ If D : Γ ` a〈b〉 : k then M(D) = {lvl(a)}

If D : Γ ` !a(x).P : 0 then M(D) = ∅

If D : Γ ` a(x).P : w, then M(D) =M(D1), where D1 : Γ, x : T ` P : w

If D : Γ ` (νa)P : w, then M(D) =M(D1), where D1 : Γ, a : T ` P : w

If D : Γ ` P1|P2 : max(w1, w2), then M(D) =M(D1) ]M(D2), where Di : Γ ` Pi, i = 1, 2

Given Γ and P , we define MΓ(P ), the measure of P with respect to Γ, as
follows:

MΓ(P ) = min(M(D), D : Γ ` P : w for some w) .

Note that in the case of output in the above definition, we refer to lvl(a),
which is the level of a according to Γ (that is, without using subtyping). We
have that if Γ ` P : w, then ∀k ∈MΓ(P ), k ≤ w.

Lemma 9 Suppose Γ ` P : w, Γ(x) = T , Γ(v) = T ′ and T ′ ≤ T . Then
MΓ(P ) ≥mul MΓ(P [v/x]).

Proof. Follows from Lemma 6, and by definition of MΓ(·). �

Lemma 10 If Γ ` P : w and P ≡ Q, then Γ ` Q : w′ for some w′ and
MΓ(P ) = MΓ(Q).

We are now able to derive the essential property of MΓ(·):

Lemma 11 If Γ ` P : w and P −→ P ′, then MΓ(P ) >mulMΓ(P ′).

Theorem 12 (Soundness) If Γ ` P : w, then P terminates.

Proof. Suppose that P diverges, i.e., there is an infinite sequence(Pi)i∈N ,
where Pi −→ Pi+1, P = P0. According to Theorem 7 every Pi is typable.
Using Lemma 11 we have MΓ(Pi) >mul MΓ(Pi+1) for all i, which yields a
contradiction. �



Remark 13 (à la Curry vs à la Church) Our system is presented à la
Curry. Existing systems for termination [5, 4] are à la Church, while the
usual presentations of i/o-types [11] are à la Curry. The latter style of
presentation is better suited to address type inference (see Section 4). This
has however some technical consequences in our proofs. Most importantly,
the measure on processes (Definition 8) would be simpler when working à la
Church, because we could avoid to consider all possible derivations of a given
judgement. We are not aware of Church-style presentations of i/o-types.

3 Expressiveness of our Type System

For the purpose of the discussions in this section, we work in a polyadic
calculus. The extension of our type system to handle polyadicity is rather
standard, and brings no particular difficulty.

3.1 A More Flexible Handling of Levels

Our system is strictly more expressive than the original one by Deng and
Sangiorgi [5], as expressed by the two following observations (Lemma 14 and
Example 15):

Lemma 14 Any process typable according to the first type system of [5] is
typable in our system.

Proof. The presentation of [5] differs slightly from ours. The first system
presented in that paper can be recast in our setting by working with the
# capability only (thus disallowing subtyping), and requiring type ]kT for
a in the first premise of the rules for output, finite input and replicated
input. We write Γ `D P : w for the resulting judgement. We establish
that Γ `D P : w implies Γ ` P : w by induction over the derivation of
Γ `D P : w. �

We now present an example showing that the flexibility brought by sub-
typing can be useful to ease programming. We view replicated processes as
servers, or functions. Our example shows that it is possible in our system to
invoke a server by passing names having different levels, provided some form
of coherence (as expressed by the subtyping relation) is guaranteed. This
form of “polymorphism on levels” is not available in previous type systems
for termination in the π-calculus.

Example 15 (Level-polymorphism) Consider the following definitions
(in addition to polyadicity, we accommodate the first-order type of natural



numbers, with corresponding primitive operations):

F1 = !f1(n, r).r〈n ∗ n〉
F2 = !f2(m, r).(νs)

(
f1〈m+ 1, s〉 | s(x).r〈x+ 1〉

)
Q = !g(p, x, r).(νs)

(
p〈x, s〉 | s(y).p〈y, r〉

)
F1 is a server, running at f1, that returns the square of a integer on a
continuation channel r (which is its second argument). F2 is a server that
computes similarly (m+1)2 +1, by making a call to F1 to compute (m+1)2.
Both F1 and F2 can be viewed as implementations of functions of type int

-> int.
Q is a “higher-order server”: its first argument p is the address of a

server acting as a function of type int -> int, and Q returns the result
of calling twice the function located at p on its argument (process Q thus
somehow acts like Church numeral 2).

Let us now examine how we can typecheck the process

F1 | F2 | Q | g〈f1, 4, t1〉 | g〈f2, 5, t2〉 .

F2 contains a call to f1 under a replicated input on f2, which forces lvl(f2) >
lvl(f1). In the type systems of [5], this prevents us from typing the processes
above, since f1 and f2 should have the same type (and hence in particular the
same level), both being used as argument in the outputs on g. We can type
this process in our setting, thanks to subtyping, for instance by assigning the
following types: g : okg(ok2T,U, V ), f2 : ]k2T, f1 : ]k1T , with k1 < k2.

It can be shown that this example cannot be typed using any of the sys-
tems of [5]. It can however be phrased (and hence recognised as terminating)
in the “purely functional π-calculus” of [4], that is, using a semantics-based
approach — see also Section 3.3. It should however not be difficult to present
a variation on it that forces one to rely on levels-based type systems.

3.2 Encoding the Simply-Typed λ-calculus

We now push further the investigation of the ability to analyse terminating
functional behaviour in the π-calculus using our type system, and study an
encoding of the λ-calculus in the π-calculus.

We focus on the following parallel call-by-value encoding, but we believe
that the analogue of the results we present here also holds for other encod-
ings. A λ-term M is encoded as [[M ]]p, where p is a name which acts as a



parameter in the encoding. The encoding is defined as follows:

[[λx.M ]]p
def
= (νy) (!y(x, q).[[M ]]q | p〈y〉) [[x]]p

def
= p〈x〉

[[M N ]]p
def
= (νq, r)

(
[[M ]]q | [[N ]]r | q(f).r(z).f〈z, p〉

)
We can make the following remarks:

• A simply-typed λ-term is encoded into a simply-typed process (see [13]).
Typability for termination comes into play in the translation of λ-
abstractions.

• The target of this encoding is Lπ, the localised π-calculus in which
only the output capability is transmitted (see also Section 4.1).

[3] provides a counterexample to typability of this encoding for the first
type system of [5] (the proof of this result also entails that typability accord-
ing to the other, more expressive, type systems due to Deng and Sangiorgi
also fails to hold). Let us analyse this example:

Example 16 (From [3]) The λ-term M1
def
= f (λx.(f u (u v)) can

be typed in the simply typed λ-calculus, in a typing context containing the
hypotheses f : (σ −→ τ) −→ τ −→ τ, v : σ, u : σ −→ τ .

Computing [[M1]]p yields the process:

(νq, r)
(νy)

(
r〈y〉
| !y(x, q′).(νq1, r1, q2, r2, q3, r3)(

q2〈f〉 | r2〈u〉 | q2(f2).r2(z2).f2〈z2, q1〉 [[f u]]q1
| q3〈u〉 | r3〈v〉 | q3(f3).r3(z3).f3〈z3, r1〉 [[u v]]r1
| q1(f1).r1(z1).f1〈z1, q

′〉
) )

 [[λx. (f u (u v))]]r

| q〈f〉 | q(f ′).r(z).f ′〈z, p〉

If we try and type this term using the first type system of [5], we can
reason as follows:

1. By looking at the line corresponding to [[f u]]q1, we deduce that the
types of f and f2 are unified, and similarly for z2 and u.

2. Similarly, the next line ([[u v]]r1) implies that the types of f3 and u are
unified.



3. The last line above entails that the types assigned to f and f ′ must be
unified, and the same for the types of z and y (because of the output
r〈y〉).

If we write ]k〈T1, T2〉 for the type (simple) assigned to f , we have by
remark 1 that u has type T1, and the same holds for y by remark 3. In order
to typecheck the replicated term, we must have lvl(y) > lvl(f3) = lvl(u) by
remark 2, which is impossible since y and u have the same type.

While [[M1]]p cannot be typed using the approach of [5], it can be using
the system of Section 2. Indeed, in that setting y and u need not have the
same levels, so that we can satisfy the constraint lvl(y) > lvl(u). The last
line above generates an output f〈y, p〉, which can be typed directly, without
use of subtyping. To typecheck the output f〈u, q1〉, we “promote” the level
of u to the level of y thanks to subtyping, which is possible because only the
output capability on u is transmitted along f .

It however appears that our system is not able to typecheck the image
of STλ, as the following (new) counterexample shows:

Example 17 We first look at the following rather simple π-calculus process:

(νu)
(

!u(x).x | (νv) (!v.u〈t〉 | u〈v〉)
)
.

This process is not typable in our type system, although it terminates. In-
deed, we can assign a type of the form ]konU to u, and ]mU to v. Type-
checking the subterm !v.u〈t〉 imposes k < m, and type-checking !u(x).x im-
poses k > n. Finally, type-checking u〈v〉 gives m ≤ n, which leads to an
inconsistency.

We can somehow ‘expand’ this process into the encoding of a λ-term:
consider indeed

M2
def
=

(
λu. ((λv.(u v)) (λy.(u t)))

)
(λx. (x a)) .

We do not present the (rather complex) process corresponding to [[M2]]p. We
instead remark that there is a sequence of reductions starting from [[M2]]p
and leading to

!y1(u, q1).
(

!y3(v, q4).u〈v, q4〉 | !y5(y, q5).u〈t, q5〉 | y3〈y5, q1〉
)
| !y2(x, q2).x〈a, q2〉 | y1〈y2, p〉 .

These first reduction steps correspond to ‘administrative reductions’ (which
have no counterpart in the original λ-calculus term). We can now perform



some communications that correspond to β-reductions, and obtain a process
which contains a subterm of the form

u〈v, p〉 | !v(y, q5).u〈t, q5〉 | !u(x, q2).x〈a, q2〉 .

Some channel names appear in boldface in order to stress the similarity with
the process seen above: for the same reasons, this term cannot be typed. By
subject reduction (Theorem 7), a typable term can only reduce to a typable
term. This allows us to conclude that [[M2]]p is not typable in our system.

3.3 Subtyping and Functional Names

In order to handle functional computation as expressed by STλ, we extend
the system of Section 2 along the lines of [4]. The idea is to classify names
into functional and imperative names. Intuitively, functional names arise
through the encoding of STλ. For termination, these are dealt with using
an appropriate method — the ‘semantics-based’ approaches discussed in
Section 1, and introduced in [15, 12]. For imperative names, we resort to
(an adaptation of) the rules of Section 2.

Our type system is à la Curry, and the kind of a name, functional or
imperative, is fixed along the construction of a typing derivation. Typing
environments are of the form Γ • f : okT — the intuition is that we isolate
a particular name, f . f is the name which can be used to build replicated
inputs where f is treated as a functional name. The typing rules are given on
Figure 3. There are two rules to typecheck a restricted process, according
to whether we want to treat the restricted name as functional (in which
case the isolated name changes) or imperative (in which case the typing
hypothesis is added to the Γ part of the typing environment).

The typing rules of Figure 3 rely on i/o-capabilities and the isolated
name to enforce the usage of functional names as expressed in [12]. In [4],
a specific syntactical construct is instead used: we manipulate processes of
the form def f = (x)P1 in P2 (that can be read as (νf) (!f(x).P1 |P2)),
where f does not occur in P1 and occurs in output position only in P2.

Let us analyse how our system imposes these constraints. In the rule
for restriction on a functional name, the name g, that occurs in ‘isolated
position’ in the conclusion of the rule, is added in the ‘non isolated’ part of
the typing environment in the premise, with a type allowing one to use it in
output only.

In the rules for input on an imperative name (replicated or not), the
typing environment is of the form Γ • − in the premise where we typecheck



Γ, x : T • − ` P : w k ≥ w
Γ • f : okT ` !f(x).P : 0

Γ, f : okT ` a : onU Γ, f : okT ` v : U

Γ • f : okT ` a〈v〉 : n

Γ ` c : inT Γ, x : T, f : okU • − ` P : w n > w

Γ • f : okU ` c(x).P : 0

Γ ` c : inT Γ, x : T, f : okU • − ` P : w n > w

Γ • f : okU ` !c(x).P : 0

Γ • f : okT ` P1 Γ • f : okT ` P2

Γ • f : okT ` P1|P2

Γ, g : okT • f : onU ` P : w

Γ • g : okT ` (νf)P : w

Γ, c : ]nT • f : okU ` P : w

Γ • f : okU ` (νc)P : w

Figure 3: Typing Rules for an Impure Calculus

the continuation process: this has to be understood as Γ • d : okT , for some
dummy name d that is not used in the process being typed. We write ‘−’
to stress the fact that we disallow the construction of replicated inputs on
functional names. The functional name f appears in the aforementioned
premise in the ‘non isolated’ part of the typing environment, with only
the output rights on it. Forbidding the creation of replicated inputs on
functional names under input prefixes is necessary because of diverging terms
like the following (c is imperative, f is functional):

c(x).!f(y).x〈y〉 | c〈f〉 | f〈v〉 .

Note also that typing non replicated inputs (on imperative names) in-
volves the same constraints as for replicated inputs, like in [4]: the relaxed
control over functional names requires indeed to be more restrictive on all
usages of imperative names.

The notation Γ • − is also used in the rule to type a replicated input on
a functional name, and we can notice that in this case f cannot be used at



all in the premise, to avoid recursion.

In addition to the gain in expressiveness brought by subtyping, we can
make the following remark:

Remark 18 (Expressiveness) As in [4], our system allows one to type-
check the encoding of a STλ term, by treating all names as functional, and
assigning them level 0.

Moreover, our type system makes it possible to typecheck processes where
several replicated inputs on the same functional name coexist, provided they
occur ‘at the same level’ in the term. For instance, a term of the form
(νf) (!f(x).P | !f(y).Q | R) can be well-typed with f acting as a functional
name. This is not possible using the def construct of [4].

Another form of expressiveness brought by our system is given by typability
of the following process: !u(x).x | !v.u〈t〉 | u〈v〉 | c(y).u〈c〉. Here, name c
must be imperative while name v must be functional, and both are emitted
on u. This is impossible in [4], where every channel carries either a functional
or an imperative name. In our setting, only the output capability on c is
transmitted along u, so in a sense c is transmitted ‘as a functional name’.

Because of the particular handling of restrictions on functional names,
the analogue of Lemma 5 does not hold for this type system: typability is
not preserved by structural congruence. Accordingly, the subject reduction
property is stated in the following way:

Theorem 19 (Subject reduction) If Γ • f : okT ` P : w and P −→ P ′,
then there exist Q and w′ ≤ w s.t. P ′ ≡ Q and Γ • f : okT ` Q : w′.

Theorem 20 (Soundness) If Γ • f : okT ` P : w, then P terminates.

Proof (sketch). The proof has the same structure as the corresponding
proof in [4]. An important aspect of that proof is that we exploit the ter-
mination property for the calculus where all names are functional without
looking into it. To handle the imperative part, we must adapt the proof
along the lines of the termination argument for Theorem 12.

4 Type Inference

We now study type inference, that is, given a process P , the existence of Γ,
w such that Γ ` P : w. There might a priori be several such Γ (and several
w: see Lemma 3). Type inference for level-based systems has been studied



in [2], in absence of i/o-types. We first present a type inference procedure
in a special case of our type system, and then discuss this question in the
general case.

4.1 Type Inference for Termination in the Localised π-calculus

In this section, we concentrate on the localised π-calculus, Lπ, which is
defined by imposing that channels transmit only the output capability on
names: a process like a(x).x(y).0 does not belong to Lπ, as it makes use
of the input capability on x. From the point of view of implementations,
the restriction to Lπ makes sense. For instance, the language JoCaml [10]
implements a variant of the π-calculus that follows this approach: one can
only use a received name in output. Similarly, the communication primi-
tives in Erlang [9] can also be viewed as obeying to the discipline of Lπ:
asynchronous messages can be sent to a PiD (process id), and one cannot
create dynamically a receiving agent at that PiD: the code for the receiver
starts running as soon as the PiD is allocated.

Technically, Lπ is introduced by allowing the transmission of o-types
only. We write Γ `Lπ P : w if Γ ` P : w can be derived in such a way
that in the derivation, whenever a type of the form ηkη′k

′
T occurs, we have

η′ = o (types of the form ikT and ]kT appear only when typechecking input
prefixes and restrictions). Obviously, typability for `Lπ entails typability
for ` , hence termination. It can also be remarked that in restricting to Lπ,
we keep an important aspect of the flexibility brought by our system. In
particular, the examples we have discussed in Section 3 — Example 15, and
the encoding of the λ-calculus — belong to Lπ.

We now describe a type inference procedure for `Lπ . For lack of space,
we do not provide all details and proofs.

We first check typability when levels are not taken into account. For
this, we rely on a type inference algorithm for simple types [14], together
with a simple syntactical check to verify that no received name is used in
input. When this first step succeeds, we replace ]T types with oT types ap-
propriately in the outcome of the procedure for simple types (a type variable
may be assigned to some names, as, e.g., to name x in process a(x).b〈x〉).

What remains to be done is to find out whether types can be decorated
with levels in order to ensure termination. As mentioned above, we suppose
w.l.o.g. that we have a term P in which all bound names are pairwise distinct,
and distinct from all free names. We define the following sets of names:

• names(P ) stands for the set of all names, free and bound, of P ;



• bn(P ) is the set of names that appear bound (either by restriction or
by input) in P ;

• rcv(P ) is the set of names that are bound by an input prefix in P
(x ∈ rcv(P ) iff P has a subterm of the form a(x).Q or !a(x).Q for
some a,Q);

• res(P ) stands for the set of names that are restricted in P (a ∈ res(P )
iff P has a subterm of the form (νa)Q for some Q).

We have bn(P ) = rcv(P ) ] res(P ) (where ] stands for disjoint union), and
names(P ) = bn(P ) ] fn(P ). Moreover, for any x ∈ rcv(P ), there exists a
unique a ∈ fn(P )∪ res(P ) such that P contains the prefix a(x) or the prefix
!a(x): we write in this case a = father(x) (a ∈ fn(P ) ∪ res(P ), because we
are in Lπ).

We build a graph as follows:

• For every name n ∈ fn(P ) ∪ res(P ), create a node labelled by n, and
create a node labelled by son(n). Intuitively, if n has type ]kS of okS,
son(n) has type S. In case type inference for simple types returns a
type of the form α, where α is a type variable, for n, we just create
the node n.

• For every x ∈ rcv(P ), let a = father(x), add x as a label to son(a).

Example 21 We associate to the process P = a(x).(νb)x〈b〉 | !a(y).(c〈y〉 | d(z).y〈z〉)
the following set of 8 nodes with their labels:
{a}, {son(a), x, y}, {b}, {son(b)}, {c}, {son(c), y}, {d}, {son(d), z}.

The next step is to insert edges in our graph, to represent the constraints
between levels.

• For every output of the form n〈m〉, we insert an edge labelled with
“≥” from son(n) to m.

• For every subterm of P of the form !a(x).Q, and for every output of
the form n〈m〉 that occurs in Q without occurring under a replication

in Q, we insert an edge a
>−→ n.

Example 22 The graph associated to process !c(z).b〈z〉 | a〈c〉 | a〈b〉 has
nodes

{a}, {son(a)}, {b}, {son(b)}, {c}, {son(c), z} ,



and can be depicted as follows: a b c
<oo

son(a)

≥
::tttttttttt

≥
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son(b)
≥ // {son(c), z}

The last phase of the type inference procedure consists in looking for an
assignment of levels on the graph: this is possible as long as there are no

cycles involving at least one
>−→ edge in the graph.

At the beginning, all nodes of the graph are unlabelled; we shall label
them using natural numbers.

1. We go through all nodes of the graph, and collect those that have no
outgoing edge leading to an unlabelled node in a set S.

2. If S is not empty, we label every node n in S as follows: we start by
setting n’s label to 0.

We then examine all outgoing edges of n. For every n
≥−→ m, we replace

n’s label, say k, with max(k, k′), where k′ is m’s label, and similarly

for n
>−→ m edges, with max(k, k′ + 1).

We then empty S, and start again at step 1.

3. If S = ∅, then either all nodes of the graph are labelled, in which case
the procedure terminates, or the graph contains at least one oriented

cycle. If this cycle contains at least one
>−→ edge, the procedure stops

and reports failure. Otherwise, the cycle involves only
≥−→ edges: we

compute the level of each node of the cycle along the lines of step 2
(not taking into account nodes of the cycle among outgoing edges),
and then assign the maximum of these labels to all nodes in the cycle.
We start again at step 1.

This procedure terminates, since each time we go back to step 1, strictly
more nodes are labelled.

Example 23 On the graph of Example 22, the procedure first assigns level
0 to nodes a, b and {son(c), z}. In the second iteration, S = {son(b), c}; level
0 is assigned to son(b), and 1 to c. Finally, level 1 is assigned to son(a).
This yields the typing b : o0o0T, c : ]1o0T, a : o0o1o0T for the process of
Example 22.

As announced above, for lack of space we have described only the main
steps of our type inference procedure. Establishing that the latter has the



desired properties involves the introduction of an auxiliary typing judgement
(that characterises `Lπ ), and explaining how types are reconstructed at the
end of the procedure. This finally leads to the following result:

Theorem 24 There is a type inference procedure that given a process P ,
returns Γ, w s.t. Γ `Lπ P : w iff there exists Γ′, w′ s.t. Γ′ `Lπ P : w′.

4.2 Discussion: Inferring i/o-Types

If we consider type inference for the whole system of Section 2, the situation
is more complex. We start by discussing type inference without taking the
levels into account. If a process is typable using simple types (that is, with
only types of the form ]T ), one is interested in providing a more informative
typing derivation, where input and output capabilities are used.

For instance, the process a(x).x〈t〉 can be typed using different assign-
ments for a: ioT , ]oT , i]T , and ]]T — if we suppose t : T . Among these,
ioT is the most informative (intuitively, types featuring ‘less #’ seem prefer-
able because they are more precise). Moreover, it is a supertype of all other
types, thus acting as a ‘candidate’ if we were to look for a notion of princi-
pal typing. Actually, in order to infer i/o-types, one must be able to com-
pute lubs and glbs of types, using equations like glb(iT, iU) = i glb(T,U),
glb(iT, oU) = ]glb(T,U), and glb(oT, oU) = o lub(T,U). The contravari-
ance of o suggests the introduction of an additional capability, that we shall
note ↑, which builds a supertype of input and output capabilities (more
formally, we add the axioms iT ≤↑ T and oT ≤↑ T ).

[7] presents a type inference algorithm for (an enrichment of) i/o-types,
where such a capability ↑ is added to the system of [11] (the notations are
different, but we adapt them to our setting for the sake of readability). The
use of ↑ can be illustrated on the following example process:

Q1
def
= a(t).b(u).

(
!t(z).u〈z〉 | c〈t〉 | c〈u〉

)
.

To typecheck Q1, we can see that the input (resp. output) capability on
t (resp. u) needs to be received on a (resp. b), which suggests the types
a : iiT, b : ioT . Since t and u are emitted on the same channel c, and
because of contravariance of output, we compute a supertype of iT and oT ,
and assign type o ↑ T to c.

Operationally, the meaning of ↑ is “no i/o-capability at all” (note that
this does not prevent from comparing names, which may be useful to study
behavioural equivalences [6]): in the typing we just described, since we only
have the input capability on t and the output capability on u, we must



renounce to all capabilities, and t and u are sent without the receiver to be
able to do anything with the name except passing it along. Observe also that
depending on how the context uses c, a different typing can be introduced.
For instance, Q1 can be typed by setting a : i]T, b : ioT, c : ooT . This typing
means that the output capability on u is received, used, and transmitted on
c, and both capabilities on t are received, the input capability being used
locally, while the output capability is transmitted on c.

The first typing, which involves ↑, is the one that is computed by the
procedure of [7]. It is “minimal”, in the terminology of [7]. Depending on
the situations, a typing like the second one (or the symmetrical case, where
the input capability is transmitted on c) might be preferable.

If we take levels into account, and try and typecheckQ1 (which contains a
replicated subterm), the typings mentioned above can be adapted as follows:
we can set a : i0]1T, b : i0o0T, c : o0o1T , in which case subtyping on levels is
used to deduce u : o1T in order to typecheck c〈u〉. Symmetrically, we can
also set a : i0i1T, b : i0]0T, c : o0i0T , and typecheck c〈t〉 using subsumption
to deduce t : i0T .

It is not clear to us how levels should be handled in relation with the ↑
capability. One could think that since ↑ prevents any capability to be used
on a name, levels have no use, and one could simply adopt the subtyping
axioms ikT ≤↑ T and okT ≤↑ T . This would indeed allow us to typecheck
Q1.

Further investigations on a system for i/o-types with ↑ and levels is left
for future work, as well as the study of inference for such a system.

5 Concluding Remarks

In this paper, we have demonstrated how Pierce and Sangiorgi’s i/o-types
can be exploited to refine the analysis of the simplest of type systems for
termination of processes presented in [5]. Other, more complex systems are
presented in that work, and it would be interesting to study whether they
would benefit from the enrichment with capabilities and subtyping. One
could also probably refine the system of Section 2 by distinguishing between
linear and replicated input capabilities, as only the latter must be controlled
for termination (if a name is used in linear input only, its level is irrelevant).

The question of type inference for our type systems (differently from
existing proposals, these are presented à la Curry, which is better suited for
the study of type inference) can be studied further. It would be interesting to
analyse how the procedure of Section 4.1 could be ported to programming



languages that obey the discipline of Lπ for communication, like Erlang
or JoCaml. For the moment, we only have preliminary results for a type
inference procedure for the system of Section 2, and we would like to explore
this further. Type inference for the system of Section 3.3 is a challenging
question, essentially because making the distinction between functional and
imperative names belongs to the inference process (contrarily to the setting
of [4], where the syntax of processes contains this information).
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Abstract. We present a method for ensuring termination of lambda-
calculi with references. This method makes it possible to combine term
rewriting measure-based techniques for termination of imperative lan-
guages with traditional approaches to termination in purely functional
languages, such as logical relations. More precisely, the method lifts
any termination proof for the purely functional simply-typed lambda-
calculus to a termination proof for the lambda-calculus with references.
The method can be made parametric on the termination technique em-
ployed for the functional core.

1 Motivations

This paper studies strong normalisation in λref, a call-by-value λ-calculus with
(higher-order) references. It is well-known that, even in the simply-typed calcu-
lus, the problem is difficult, because references allow one to program loops “via
the memory”. We refer to Boudol’s [Bou07] for a discussion on existing works in
this direction.

Boudol [Bou07] has proposed a type and effect system for a calculus whose
core is very similar to λref; the system guarantees termination by means of the
realisability technique. That work is revisited and generalised in [Ama09], where
the closely related technique of reducibility candidates is exploited to establish
soundness of the type and effect system. In both these works, the type and effect
system relies on a stratification of memory into regions; the stratification is used
to control interactions between the functional and the imperative constructs, in
order to prevent “loops via the memory”. The stratification plays also a key
role in the structure of the soundness proof, to support the induction argument.
Boudol’s approach has also been investigated by Tranquilli [Tra10], who proposes
an analysis of the stratification imposed by the type and effect system, by means
of a monadic translation. The target of this translation, in the general case, is
a lambda-calculus with recursive types. Tranquilli however shows that when
applying the translation to well-typed source terms, one can avoid the use of
recursive types. By combining this observation with a simulation result, the
author concludes that well-typed terms terminate.

In this paper, we propose a different proof strategy for strong normalisation
in λref. Our approach is adapted from [DHS10], where we introduced a type



system for termination of mobile processes. The crux in defining types in that
work is to distinguish between functional and imperative channels, and to ex-
ploit a stratification of imperative channel names. Soundness of the type system
is established by defining a projection of an impure calculus, that is, a calcu-
lus featuring imperative and functional features, into a purely functional core
calculus (in the context of the π-calculus, the functional subcalculus is given,
intuitively, by the image of the encoding of the λ-calculus in the π-calculus).
The proof then relies on termination of the functional core, which is treated like
a “black box” in the proof: since our projection function preserves divergences,
and the target calculus is terminating, we can reason by contradiction to show
that the source of the translation only consists of terminating terms.

In the present paper we show that we can transport the strategy from [DHS10]
onto λref. In contrast with π-calculus, λref is purely sequential and higher-order
(it involves substitutions of variables with terms); both these features have a
substantial impact on the details of the technique. In this sense, another goal
of the paper is to show that the technique in [DHS10] is not specific to a con-
current scenario, and can be used on different kinds of impure languages. The
“black box” property for the purely functional subcalculus in [DHS10] remains:
the technique for λref is essentially parametric on the method employed for en-
suring termination of the pure λ-calculus (realisability, reducibility candidates
or other methods). The present paper is devoted to the presentation of our tech-
nique in a rather simple setting, where the core functional language is the simply
typed λ-calculus.

With respect to [DHS10], several modifications have to be made in order
to handle λref. Many of them are related to the definition of the projection
function, which in the present work maps λ-terms with references to purely
functional terms. In the π-calculus the projection acts on prefixed terms, simply
by replacing some of them with the inactive process 0; this crucially relies on
the operators of parallel composition and 0 of the process calculus. In the λ-
calculus the situation is more intricate. Consider for instance a λref term of
the form T = (λz. ?) (ref M), where ? is the unique element of type 1 (the
unit type), and ref M denotes the allocation of a reference holding the value
of M (the – slightly more involved – syntax and operational semantics of λref
will be introduced formally below). The idea is to project T into some purely
functional term T ′, in such a way that: (i) if T is typable in our type and effect
system, then T ′ is typable according to simple types; (ii) the projection function
is defined compositionally on the structure of terms, and preserves divergences.
In a call-by-value strategy, if the evaluation of M terminates, the evaluation of
T yields ?. In order to preserve divergences, because of a potential divergence in
M , we cannot define T ′ by simply erasing the subterm ref M . Instead, we set

T ′
def
= (λx1.λx2. x1) ? M ′, where M ′ is the purely functional term obtained by

applying recursively the projection to M . This way, T ′ diverges if M ′ does so,
and eventually returns ?, in case M ′ converges. This shows how the projection
acts at an operational level. In the proof, we also take care of condition (i)



above, by defining the translation both on terms and on types, in such a way as
to preserve typability.

Building on the projection function, we derive soundness of the type and
effect system by contradiction: suppose a well-typed λref term T diverges, then
its projection T ′ is diverging too, which contradicts the fact that T ′ belongs to
a terminating calculus. Termination of T ′ is obtained by an external argument,
namely the strong normalisation proof for the functional subcalculus (here, the
simply typed call by value λ-calculus).

Other technical differences with respect to the technique in the setting of the
π-calculus [DHS10] are discussed later in the paper.

Comparison with [Bou07,Ama09,Tra10]. As we hinted above, the question we
address in this paper has been studied in a very similar setting in other works.
In contrast with the works by Boudol and Amadio, where soundness of the type
system is obtained by a ‘semantic’ approach (be it realisability or reducibility
candidates), which is applied to the whole (impure) calculus, we somehow factor
out the imperative part of the calculus, which allows us to lift a termination
proof of λST to a termination proof of λref.

Tranquilli [Tra10] proceeds similarly, in two steps: a translation into a purely
functional calculus, followed by a termination argument about the latter. How-
ever, technically, our approach and his differ considerably, in particular because
we project into a subcalculus, using a translation function which seems unrelated
to Tranquilli’s.

Outline. We introduce λref and its type and effect system in Section 2. Section 3
is devoted to the soundness proof, where we present in particular the projection
function on λref. In Section 4, we discuss how the proof can be extended to
calculi richer than simple types.

2 λref: a λ-calculus with References

2.1 Syntax and semantics for λref

We now define the calculi we manipulate in this work. The standard, simply-
typed, λ-calculus with the constant ? and the base type 1 is called λST in the
following. The reduction relation in λST is full β-reduction, and is denoted using
_.

λref is a call-by-value λ-calculus extended with imperative operations (read,
write and update) acting on a store (sometimes called a memory in the fol-
lowing). The store is stratified into regions, which are referred to using natural
numbers, i.e., we suppose that the store is divided into a finite number of re-
gions, and that there exists an enumeration of these regions. Constructs of the
language involving imperative operations are annotated by a region — thus, by
a natural number. For instance, derefn(M) is the operator that reads the value
stored at the address which is returned by the evaluation of M ; n denotes the
fact that this address belongs to the region n of the memory.



M ::= (M M)
∣∣ x ∣∣ λx.M ∣∣ ?∣∣ refn M ∣∣ derefn(M)

∣∣ M:=nM
∣∣ u(n,T )

T ::= 1

∣∣ T refn
∣∣ T →n T

V ::= λx.M
∣∣ x ∣∣ u(n,T )

∣∣ ?
R ::= (λx.M) V∣∣ derefn(u(n,T ))

∣∣ refn V ∣∣ u(n,T ):=nV

E ::= [ ]
∣∣ V E

∣∣ E M∣∣ derefn(E)
∣∣ refn E

∣∣ E:=nM ∣∣ V :=nE

Fig. 1. Syntax for terms, types, values, redexes and evaluation contexts

To define terms of λref, we rely on a set of addresses, which are distinct
from the variables used in the syntax of the standard λ-calculus. Addresses are
written u(n,T ): they are explicitly associated both to a region n and to a type T
(types are described below). These annotations are not mandatory in order to
obtain the results we state in this paper, but they improve the readability of our
proofs. Note in passing that values of different types can be stored in the same
region. We suppose that there exists an infinite number of addresses for a given
pair consisting of a type and a region.

Stores, ranged over using δ, are formally defined as partial mappings from ad-
dresses to values. The (finite) support of δ is written supp(δ), ∅ is the empty store
(supp(∅) = ∅), and δ〈u(n,T )  V 〉 denotes the store δ′ defined by δ′(u(n,T )) = V
and δ′(v) = δ(v) for every v ∈ supp(δ) such that v 6= u(n,T ).

Figure 1 presents the grammar definitions for (respectively) terms, types,
values, redexes and evaluation contexts.

The standard λ-calculus syntax is extended with the unit value (?), addresses
and three imperative operators. refn M stands for the creation of a new cell
in the store, at region n, and containing the result of the evaluation of M ;
derefn(M) yields the value that is stored at the address given by the evaluation
of M (in region n); finally, M:=nN updates the value stored at the address given
by the evaluation of M with the value of N .

Types extend the simple types of λST with unit (1) and a reference type:
T refn is the type of an address in region n containing values of type T . To
record the latent effect of a function, arrow types are annotated with regions:
intuitively, T1 →n T2 is the type of a function taking arguments of type T1,
returning a term of type T2, and such that evaluation of the body accesses
regions in the memory lower than the region n.

Stratification. We impose a well-formedness condition on types that reflects the
stratification of the store: a term acting at region n cannot be stored in a region
smaller than n + 1. For this, we define reg(T ), an integer describing the set of



regions associated to a type T , by:

reg(1) = 0 reg(T refn) = max(n, reg(T ))

reg(T1 →n T2) = max(n, reg(T2))

Definition 1 (Well-formed types) A type T is well-formed if for all its sub-
types of the form T ′ refn, we have reg(T ′) < n.

In the following, we shall implicitly assume that all types we manipulate are well-
formed. Well-formedness of types is the condition that ensures the termination
of the imperative part of a term. This in particular ensures that each time we
reduce a redex derefn(u(n,T )), the obtained value does not create new operations
acting at region n.

Comparison with [Bou07]. The type system we present in the next section is
actually very close to the one given in [Bou07], which in turn is close to the one
of [Ama09].

In our presentation, regions, defined in [Bou07] as abstract parts of the
store, are denoted by natural numbers. The two presentations are equivalent.
In [Bou07], when the stratification condition (which is inductively defined on
sets of regions) is met, a partial order between regions can be extracted, and
thus integers can be assigned to regions so that each typable term can be given
a well-formed type using our definitions. Conversely, from a set of regions in-
dexed by natural numbers we can derive easily a set of corresponding abstract
regions satisfying the stratification condition.

Another difference between the two settings is that our well-formedness con-
dition for types is actually looser than the one found in [Bou07], allowing us to
typecheck more terms. Indeed, in Definition 1, in the case of an arrow type, we
do not impose the well-formedness condition in the type of the argument, making
terms like (λx.(deref2(x) u(3,1))) (ref2 λy.?) acceptable in our setting, while
they are not in [Bou07]. In this example, x has type 1 ref3 →0

1 (detailed typing
rules can be found in the following section), which gives type (1 ref3 →0

1) ref2
for ref2 λy.?. Note that this example is phrased using natural numbers for re-
gions: it is not difficult to translate it into Boudol’s framework, and insert the
term in an appropriate context in order to enforce that the (abstract) region
corresponding to 3 dominates the region corresponding to 2.

We think that the works [Bou07] and [Ama09] can easily be adapted with
this small refinement in our definition of well-formedness in order to obtain the
same expressiveness as our system.

2.2 Types and Reduction

Typing. Figure 2 defines two typing judgements, of the form Γ `M : (T, n) for
terms and Γ ` δ for stores. Our type system is presented à la Church, and we
write Γ (x) = T when variable x has type T according to type environment Γ .



Typing rules for terms

(App)
Γ `M : (T1 →n T2,m) Γ ` N : (T1, k)

Γ `M N : (T2,max(m,n, k))

(Abs)
Γ `M : (T2, n) Γ (x) = T1

Γ ` λx.M : (T1 →n T2, 0)

(Ref)
Γ `M : (T1,m)

Γ ` refn M : (T1 refn,max(n,m))
(Var)

Γ (x) = T1

Γ ` x : (T1, 0)

(Uni)
Γ ` ? : (1, 0)

(Add)
Γ ` u(n,T1) : (T1 refn, 0)

(Asg)
Γ `M : (T1 refn,m) Γ ` N : (T1, k)

Γ `M:=nN : (1,max(m,n, k))

(Drf)
Γ `M : (T refn,m)

Γ ` derefn(M) : (T,max(m,n))

Typing rules for stores

(Emp)
Γ ` ∅

(Sto)
Γ ` δ Γ ` V : (T, 0)

Γ ` δ〈u(n,T )  V 〉

Fig. 2. λref: Type and Effect System

In a typing judgement Γ `M : (T, n), n defines a bound on the effect of the
evaluation of M , which intuitively corresponds to the highest region accessed
when evaluating M . Effects can be thought of as sets of regions (the part of
the store manipulated by the evaluation of a term), and are denoted by a single
natural number, which stands for the maximum region in the effect.

As explained above, in type T1 →n T2, n refers to the effect of the body
of the function. As a consequence, in rule (App), the effect of the application
M N where M has type T1 →n T2 is the maximum between the effect of M , the
effect of N , and n. Indeed the maximum region accessed during the evaluation
of M N is accessed during either the evaluation of M to some function λx.M2,
or the evaluation of N to some value V1, or during the evaluation of M2{V1/x},
whose effect is n.

We notice that values have an effect 0: values cannot reduce and, as explained
above, the effect of a term stands for the maximum region accessed during its
evaluation.

We extend typing to evaluation contexts by treating the hole as a term vari-
able which can be given any type and has effect 0.



(β)
(λx.M V, δ) 7→ (M{V/x}, δ)

(ref)
u(n,T ) /∈ supp(δ) Γ ` V : (T, )

(refn V, δ) 7→ (u(n,T ), δ〈u(n,T )  V 〉)

(deref)
δ(u(n,T )) = V

(derefn(u(n,T )), δ) 7→ (V, δ)

(store)
Γ ` V : (T, )

(u(n,T ):=nV, (δ)) 7→ (?, δ〈u(n,T )  V 〉)

(context)
(M, δ) 7→ (M ′, δ′)

(E[M ], δ) 7→ (E[M ′], δ′)

Fig. 3. λref: Reduction Rules

Reduction. The execution of programs is given by a reduction relation, written
7→, relating states (a state is given by a pair consisting of a term and a store), and
which is defined on Figure 3. We write 7→n

F for a functional reduction, obtained
using rule (β); n refers to the effect of the β-redex, that is, in this call-by-value
setting, the region that decorates the type of the function being triggered. In
other words, we suppose in rule (β) that Γ ` λx.M : (TV →n T,m) holds for
some TV , T , m. We introduce similarly imperative reductions, noted 7→n

I , for
reductions obtained using rules (ref), (deref) or (store) (in these cases, the
accessed region n appears explicitly in the rules of Figure 3). We will call a
reduction according to 7→n

F (resp. 7→n
I ) “a functional reduction on level n” (resp.

“an imperative reduction on level n”).

Definition 2 We define an infinite computation starting from M as an infinite
sequence (Mi, δi)0≤i such that M0 = M , δ0 = ∅ and ∀i, (Mi, δi) 7→ (Mi+1, δi+1).

We say that a term M diverges when there exists an infinite sequence starting
from M and that M terminates when it does not diverge.

The following result will be useful to prove Proposition 5. It says that we can
replace a term inside an evaluation context with a term of the same type but
with a smaller effect and preserve typability. The effect of the whole term can
decrease (in the case where E = [ ] for instance).

Lemma 3 If


Γ ` E[M ] : (T, n)
Γ `M : (T0,m)
Γ `M ′ : (T0,m

′)
m′ ≤ m

then Γ ` E[M ′] : (T, n′) with n′ ≤ n.

Our type and effect system enjoys the two standard properties of subject
substitution and subject reduction. Notice that in the statement of Lemma 4, the



effect associated toM{V/x} is the same as the one associated toM . This holds as
the term V is a value and thus does not introduce new operations on the memory
which are not handled by the type system. Should we have used a call-by-name
setting, the statement of this proposition would have been: “If Γ ` M : (T, n),
Γ (x) = T ′ and Γ ` N : (T ′,m) then Γ `M{N/x} : (T,max(m,n))”.

Lemma 4 (Subject substitution)
If Γ `M : (T, n), Γ (x) = T ′ and Γ ` V : (T ′,m) then Γ `M{V/x} : (T, n).

We only sketch proofs for some results. The proof for Lemma 4, as well as
detailed proofs for all other results, can be found in [Dem10].

Proposition 5 (Subject reduction)
Γ `M : (T, n), Γ ` δ and (M, δ) 7→ (M ′, δ′) entail that Γ ` δ′ and Γ `M ′ :

(T, n′) for some n′ ≤ n.

Proof (Sketch). The proof is done by induction on the derivation of (M, δ) 7→
(M ′, δ′). If the rule (context) is used, we rely on Lemma 3. If the rule (beta)
is used, we use the subject substitution. Cases (ref) and (store) are easy. Case
(deref) is done using the hypothesis that δ is well-typed.

3 Termination of λref Programs

3.1 Defining a projection from λref to λST

The technique of projection and simulation works as follows. First, we define a
projection function, parametrised upon a region p (we will refer to a “projection
on level p”), which strips a λref term from its imperative constructs (and some
of its functional parts), in order to obtain a λST term.

Then, we prove a simulation result (Lemma 14 below), stating that when a
well-typed state (M, δ) reduces to (M ′, δ′) by a functional reduction on level p,
the projection on level p of M reduces in at least one step to the projection on
level p of M ′ and when (M, δ) reduces to (M ′, δ′) by another type of reduction
then either the projections on level p of M and M ′ are equal, or the projection
of M reduces in at least one step to the projection of M ′. This result is what
makes the projection function divergence preserving, as announced in Section 1.

With these results at hand, we suppose, toward a contradiction, the existence
of a diverging process M0, and we show the existence of a region p such that an
infinite computation starting from M0 contains an infinite number of functional
reductions on level p. Using the simulation lemma, we obtain by projection a
diverging λST term (as a functional reduction on level p is mapped to at least
one step of reduction), which contradicts strong normalisation of λST.

Before turning to the formal definition of the projection function, let us
explain informally how it acts on derefn(M) — we already gave some ideas
about the projection of refnM in Section 1. Again, the purpose of the projection
is to remove the imperative command. Because we cannot just throw away M



(this would invalidate the simulation lemma), we apply the projection function
recursively to M . Once the projected version of M is executed, we replace the
result with a value of the appropriate type, which we call a generic value.

More precisely, generic values are canonical terms that are used to replace a
given subterm once we know that no divergence can arise due to the evaluation
of the subterm (this would correspond either to a divergence of the subterm, or
to a contribution to a more general divergence). They are defined as follows:

Definition 6 Given a type T without the ref construct, the generic value VT of
type T is defined by: VT refn = V1 = ?, and VT1→nT2

= λx.VT2
(x being of type

T1).

In order to program the evaluation of a projected subterm and its replacement
with a generic value, the definition of projection makes use of the following
(families of) projectors:

Π(1,2) = λx.λy. x Π(1,3) = λx.λy.λz. x .

In the following, we shall use these projectors in a well-typed fashion (that is,
we pick the appropriate instance in the corresponding family).

Finally, in order to present the definition of the projection function, we need
a last notion, that conveys the intuition that a given term M can be involved in
a reduction on level p. This can be the case for two reasons. Either M is able to
perform (maybe after some preliminary reduction steps) a reduction on level p,
in which case, by the typing rules, the effect of M is greater than p, or M is a
function that can receive some arguments and eventually perform a reduction on
level p, in which case the type system ensures that its type T satisfies reg(T ) ≥ p.

Definition 7 Suppose Γ ` M : (T, n). We say that M is related to p if either
n ≥ p or reg(T ) ≥ p. In the former (resp. latter) case, we say that M is related
to p via its effect (resp. via its type).

We extend this notion to evaluation contexts by treating the hole like a term
variable, for a given typing derivation for a context (this is useful in particular
in the statement of Lemma 13).

Notice that a term containing a subterm whose effect is p is not necessarily
related to p: for instance, we can derive Γ ` (λx.?) λy.deref3(u(3,1)) : (1, 0) for
an appropriate Γ , but this term is not related to 3 — one can easily check that
this term cannot be used to trigger a reduction on level 3.



Definition 8 Given a typable M of type T , we define the projection on level p
of M , written prpΓ (M), as follows:

If M is not related to p:
prpΓ (M) = VT

Otherwise:
prpΓ (M1 M2) = prpΓ (M1) prpΓ (M2)

prpΓ (x) = x
prpΓ (λx.M1) = λx.prpΓ (M1)

prpΓ (refn M1) = (Π(1,2) ? prpΓ (M1))
prpΓ (derefn(M1)) = (Π(1,2) VT prpΓ (M1))
prpΓ (M1:=nM2) = (Π(1,3) ? prpΓ (M1) prpΓ (M2))

prpΓ (u(n,T1)) = ?

We extend this definition to evaluation contexts in the following way: we
always propagate the projection inductively in a context E, without checking if
the context is related to p or not. For instance, prpΓ (E1 M) = prpΓ (E1) prpΓ (M)
even if (E1 M) is not related to p.

The projection function maps λref terms to λST terms, where λST is the
simply typed λ-calculus: this is stated in Lemma 10.

Definition 9 We extend the projection function to act on types as follows:

prpΓ (1) = 1 prpΓ (T refn) = 1 prpΓ (T1 →n T2) = prpΓ (T1)→ prpΓ (T2) .

Observe that for any type T , prpΓ (T ) is a simple type, and VT is a simply-
typed λ-term of type prpΓ (T ).

Lemma 10 Take p ∈ N, and suppose Γ ` M : (T, n). Then prpΓ (M) belongs to
λST, and has type prpΓ (T ).

Proof (Sketch). We reason by induction on the typing judgement in λref. If M is
not related to p, the result follows directly from the remarks above. Otherwise,
we reason by cases on the last rule used to type M and conclude using the
induction hypothesis.

3.2 Simulation Result

In order to reason about the transitions of projected terms, the first step is to
understand how projection interacts with the decomposition of a term into an
evaluation context and a redex.

The lemma below explains how the projection function is propagated within
a term of the form E[M ]. There are, intuitively, two possibilities, depending only
on the context and on the level (p) of the projection:

– either E is such that prpΓ (E[M ]) = prpΓ (E)[prpΓ (M)] for all M , that is, the
projection is always propagated in the hole to M ,



– or it is not the case and the context is such that, if the effect of M is too
small, the projection inserts a generic value before reaching the hole in E.
In this case prpΓ (E[M ]) = prpΓ (E1)[V ], where E1 is an ‘initial part’ of E, and
this equality holds independently from M (as long as, like said above, the
effect of M is sufficiently small in some sense).

In the former case, the projection is propagated inductively inside the context
to the hole, no matter the effect of M , whereas in the latter case, if the effect of
M is small enough, the projection does not stop before reaching the hole in E.

Lemma 11 Take p ∈ N, and consider a well-typed context E. We have:

1. Either for all well-typed process M , prpΓ (E[M ]) = prpΓ (E)[prpΓ (M)],
2. or there exist E1 and E2 6= [] s.t. E = E1[E2] and, for all M , if k stands for

the effect of M , we are in one of the two following cases:
(a) If k ≥ p, then prpΓ (E[M ]) = prpΓ (E)[prpΓ (M)].
(b) If k < p, then prpΓ (E[M ]) = prpΓ (E1)[VT ′′ ] (where T ′′ is the type of E2).

Proof (Sketch). We proceed by structural induction on E and distinguish two
cases:

1. Either the context is not related to p. This means that E1 = [ ] and E2 = E.
If k < p then the whole projection gives a generic value. If k ≥ p then we
discuss on the structure of E, use the induction hypothesis and the definition
of projection.

2. If the context is related to p we discuss on the structure of the context and
use the induction hypothesis, constructing at each step the outer context
E1. When we reach a context not related to p, we conclude using case 1.

The properties we now establish correspond to the situation, in the previous
lemma, where M is an imperative redex acting on region p. The typing rules of
Figure 2 insure that firing the redex yields a term which is not related to p via
its effect: depending on the kind of imperative operator that is executed, this
term might either be related to p via its type, or not related to p at all.

In the latter case, we are able to show that the projected versions of the
two terms are related by _+ (the transitive closure of reduction in λST), which
allows us to establish a simulation property.

Fact 12 If E2 is not related to p, then:

1. If E2 = (V3 E3) then V3 is not related to p.
2. If E2 = (E3 M3) then E3 is not related to p.

Lemma 13 If Γ ` E2 : (T ′′,m) and E2 is not related to p, then for any
well-typed M,M ′,

1. prpΓ (E2)[(Π(1,2) VT M)] _+ VT ′′ ;
2. prpΓ (E2)[(Π(1,3) VT M M ′)] _+ VT ′′ .



Proof (Sketch). We proceed by structural induction on E2. Fact 12 is necessary:
for instance, if E2 = E3 M3, we have

prpΓ (E2)[(Π(1,2) VT N)] = (prpΓ (E3)[(Π(1,2) VT N)] prpΓ (M3))

with E3 of type T3 → T ′′. Thus, we use Fact 12 and the induction hypothesis
on E3 to get prpΓ (E3)[(Π(1,2) VT N)] _+ VT3→T ′′ , from which we conclude.

Lemmas 11 and 13 allow us to derive the desired simulation property for
λref, the main point being that a functional reduction on level p is projected
into one reduction in the target calculus (case 4 below).

Lemma 14 (Simulation) Consider p ∈ N, and suppose Γ `M : (T,m).

1. If (M, δ) 7→n
I (M ′, δ′) and n < p, then prpΓ (M) = prpΓ (M ′).

2. If (M, δ) 7→p
I (M ′, δ′), then prpΓ (M) _+ prpΓ (M ′).

3. If (M, δ) 7→n
F (M ′, δ′) and n < p, then prpΓ (M) = prpΓ (M ′).

4. If (M, δ) 7→p
F (M ′, δ′), then prpΓ (M) _ prpΓ (M ′).

Proof (Sketch). The structure of the proof is as follows. For cases 1 and 2, terms
are decomposed in the same way but the arguments invoked are different. In
case 1, we use the definition of projection on terms not related to p to conclude;
in case 2, projection yields an “actual term” (not a generic value) and we use
Lemma 13 to conclude.

For both cases, the proof for rules (ref) and (deref) differ, as in the former
case the more complex term appears before the reduction (we have refn V which
reduces to u(n,T )) whereas in the latter case the more complex term appears after
the reduction (we have derefn(u(n,T )) which reduces to V ).

Cases 3 and 4 are treated along the lines of cases 1 and 2, except that
Lemma 13 is not required.

3.3 Deriving soundness

To obtain soundness, we need to show that a diverging term performs an infinite
number of functional reductions on level p, for some p. For this we introduce
a measure that decreases along imperative reductions on level p and does not
increase along reductions on level < p. The measure is given by counting the ac-
tive imperative operators of a term, which are the imperative operators (reference
creations, dereferencings and assignments) that do not occur under a λ.

Definition 15 Take M in λref. The number of active imperative operators on
region p in M , written Aop(M) is defined inductively as follows:

Aop(x) = Aop(λx.M) = Aop(u(n,T )) = 0 Aop(M N) = Aop(M)+Aop(N)

Aop(derefn(M)) = Aop(refn M) = Aop(M) if n 6= p
Aop(derefp(M)) = Aop(refp M) = 1 + Aop(M)

Aop(M:=nN) = Aop(M) + Aop(N) if n 6= p
Aop(M:=pN) = 1 + Aop(M) + Aop(N)



Aop(M) and the effect of M are related as follows:

Lemma 16 If Γ `M : (T,m) and m < p then Aop(M) = 0.

We are finally able to show that Aop(M) yields the measure we need.

Lemma 17 If Γ `M : (T,m) then:

1. if (M, δ) 7→n
F (M ′, δ′) with n < p then Aop(M ′) ≤ Aop(M),

2. if (M, δ) 7→n
I (M ′, δ′) with n < p then Aop(M ′) ≤ Aop(M),

3. and if (M, δ) 7→p
I (M ′, δ′) then Aop(M ′) < Aop(M).

Proof (Sketch). We examine each reduction rule and use Lemma 16 to observe
that new imperative operators on region p can only be generated by functional
reductions on level ≥ p or by imperative reductions on level > p, and that every
imperative reduction on level p erases one active imperative operator on region
p.

The following lemma states that there exists a maximum region p on which
an infinite number of reductions takes place. With the previous result, we are
able to show that an infinite number of functional reductions take place on level
p.

Lemma 18 Suppose that Γ ` M : (T, l), and that there exists (Mi, δi)i∈N, an
infinite reduction sequence starting from M . Then:

1. For all i, Mi is typable.
2. There exist p and io s.t.

(a) if i > i0 and (Mi, δi) 7→n
I (Mi+1, δi+1) then n ≤ p,

(b) if i > i0 and (Mi, δi) 7→n
F (Mi+1, δi+1) then n ≤ p,

(c) There exists an infinite set of indexes I s.t. for each i ∈ I, either
(Mi, δi) 7→p

F (Mi+1, δi+1) or (Mi, δi) 7→p
I (Mi+1, δi+1).

(d) There are infinitely many i ∈ I s.t. (Mi, δi) 7→p
F (Mi+1, δi+1).

Proof (Sketch).

1. Follows from Proposition 5.
2. The set of different regions is finite, so we easily find a p satisfying 2a, 2b

and 2c. Lemma 17 ensures that 2d holds.

Theorem 19 (Soundness) If Γ `M : (T,m) then M terminates.

Proof. Consider, by absurd, an infinite computation {Mi}i starting from M =
M0. By Lemma 18, all the Mi’s are well-typed, and there is a maximal p s.t.
for infinitely many i, (Mi, δi) 7→p

F (Mi+1, δi+1) and an index i0 exists such that
every reduction on an index greater than i0 is performed on region n ≤ p.
Consider the sequence (prpΓ (Mi))i>i0 . By Lemma 14, we obtain that for every
i > i0, prpΓ (Mi) _∗ prpΓ (Mi+1). Moreover, prpΓ (Mi) _+ prpΓ (Mi+1) for an infinite
number of i. Thus prpΓ (Mi0) is diverging. This contradicts the termination of λST.



Remark 20 (Raising the effect) The results we present in this paper still
hold if we add the rule:

(Sub)
Γ `M : (T, n) n ≤ n′

Γ `M : (T, n′)

to the type system.
This rule allows us to be more liberal when typing term and to reach a greater

expressiveness. For instance, it allows one to store at the same address functions
whose bodies do not have the same effect.

Example 21 (Landin’s trick) The standard example of diverging term in λref,
known as Landin’s trick, is given by:

(λf.[(λt.(deref1(f) ?)) (f:=1λz.(deref1(f) z))]) (ref1 λx.x) .

In order to try and type this term, we are bound to manipulate non well-
formed types.

In the call by value setting of λref, a first address u(1,1→11) (we use Remark 20
here, as the identity has no effect) is created when evaluating the argument
(ref1 λx.x) and instantiates f in the body of the outer function. Then u(1,1→11)

is instantiated by the function λz.(deref1(f) z) whose type is 1 →1
1 then the

term enters a loop. It is easy to see that the type of u(1,1→11) (which is also the
type of f) is (1→1

1) ref1 and is not well-formed, as reg(1→1
1) = 1 6< 1.

On the other hand, consider the following terminating term:

(λf.[(λt.(deref1(f) ?)) (f:=1λz.(Π
(1,2) I (λy.deref1(f) y)) z]) (ref1 λx.x)

where I = λt. t. This term is close to the example given above, except that
λz.(deref1(f) z) is replaced with λz.(Π(1,2) I (λy.deref1(f) y) z. This new
subterm, stored at address f , contains a dereferencing of f . Yet the term ter-
minates because the read in memory never comes in redex position; the term
(λz.(Π(1,2) I (λy.deref1(f) y)) z) reduces to (Π(1,2) I (λy.deref1(f) y)) which,
in turn, reduces in two steps to I.

Here the type system asigns to (Π(1,2) I (λy.deref1(f) y)) the type 1 →0
1

and the effect 0. Thus the type of x is 1→0
1 ref1, which is well-formed.

4 Parametricity

As is the case in [DHS10] for the π-calculus, the method we have presented
for the λ-calculus with references is parametric with respect to a terminating
purely functional core, and does not examine the corresponding termination
proof. Other core calculi could be considered. Moreover, if the functional calculus
corresponds to a subset of the simply typed terms, then the result holds directly.

We believe that it is possible to extend our work to polymorphic types,
although this extension is not trivial if we consider adding region polymorphism:



for instance, we would have to guarantee that a type like (∀A.A →0 A) refn
cannot have its A component instantiated with a type containing a region strictly
greater than n.

Another idea is to apply this termination technique to a language containing
both references and a recursion operator on integers. By restricting the use of the
latter (in order not to create loops based on recursion), we think that one could
be able to build a type system ensuring termination. Yet, this system would
involve more technical difficulties than the one we presented here, as one would
have to ensure that the two features do not collaborate to create divergences.

By taking as functional core a λ-calculus with complexity bounds (such as,
for instance, [ABM10]), we believe that one can use our technique in order to
lift complexity bounds for impure languages. The main idea is to rely on the
projection function to provide bounds on the number of reductions a terminating
typed term can make.

Note, to conclude, that references can be encoded in a standard way in the
π-calculus (as well as the call-by-value λ-calculus). One could then wonder if
the method presented in [DHS10] can recognise as terminating the subset of π-
processes corresponding to encodings of λref terms. The question is challenging,
as weight-based methods for termination in π [DS06] cannot be used to prove
termination of the encoding of λST.
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