
Projet PiCoq

Deliverable D123
December 2012

1 Task 1

Task 1.1 is devoted to finding mathematical frameworks for programming lan-
guage theory, which would be equipped with (1) mathematical tools to generate
them, (2) semantical models, and (3), in a longer-term perspective, notions of
morphism which would initiate a general approach to compilation.

Pous and Hirschowitz have proposed a new game model of Milner’s Calculus
of Communicating Systems (CCS), in which they have defined an analogue
of fair testing equivalence (Natarajan and Cleaveland; Brinksma et al.). These
results are published in conference and journal versions (see below for the journal
version).

Hirschowitz has proved that this semantic fair testing equivalence is fully
abstract for standard fair testing equivalence. This work has been rejected from
a conference, and will be resubmitted for publication.

What is promising is that a novel algebraic setting has been used as a tool
in the proof of full abstraction, which seems very efficient to bridge the gap
between syntax and semantics. If this setting could be generalized to more
languages (e.g., the -calculus or the -calculus), it might match the main goal of
Task 1.1 (2). Current work investigates such generalizations. To date, we have
defined an instance of the algebraic framework for the -calculus.

New publications (appended at the end of this report):

• “Innocent Strategies as Presheaves and Interactive Equivalences for CCS”,
by Tom Hirschowitz and Damien Pous.

2 Task 2

During the last year, Damien Pous developed a new algorithm for language
equivalence of finite state automata, together with Filippo Bonchi. This new
algorithm exploits well-known ideas from concurrency theory (bisimulations and
bisimulations up-to); it happens to be much faster than the other existing algo-
rithms, including the recent ones based on antichains. The correctness of this
algorithm has been formalized in Coq.

Alan Schmitt, in collaboration with Ivan Lanese, Michal Lienhardt, Claudio
Antares Mezzina, and Jean-Bernard Stefani, designed a higher order reversible
process calculus where the reversibility can be finely controlled. They then
showed how to encode several existing mechanisms for concurrent reliable sys-
tems.

New publications (appended at the end of this report):

• “Checking nfa equivalence with bisimulations up to congruence”, by Fil-
ippo Bonchi and Damien Pous.

• “Concurrent Flexible Reversibility”, by Ivan Lanese, Michal Lienhardt,
Claudio Antares Mezzina, Alan Schmitt, and Jean-Bernard Stefani.

3 Task 3

In Task 3, a new perspective on the study of techniques for establishing be-
havioural equivalences for concurrent systems has emerged in the last year, in
conjunction with the beginning of the PhD of Jean-Marie Madiot (co-direction
of the PhD with Davide Sangiorgi, Univ. of Bologna).

More precisely, the focus is on typed behavioural equivalences, whereby typ-
ing constraints are enforced on the observing contexts. This way, intuitively,
more equivalences are valid, since less observations are permitted. A stan-
dard type system for behavioural equivalences in process calculi is Pierce and
Sangiorgi’s system of capability types (also called i/o-types). Types are an im-
portant tool to reason about name-passing calculi, and provide expressive proof
techniques for that.

We have studied how i/o-types can be enriched, and adapted to a version of
the pi-calculus that enjoys symmetry and duality properties. We have demon-
strated how the resulting framework makes it possible to relate two rather dif-
ferent encodings of the lambda-calculus in the pi-calculus. Our results rely on
the usage of i/o-types, and of typed behavioural equivalences.

New publications (appended at the end of this report):

• “Duality and i/o-Types in the -Calculus”, by Daniel Hirschkoff and Jean-
Marie Madiot and Davide Sangiorgi.

Scientific Annals of Computer Science vol. 22 (1), 2012, pp. 147–199

DOI: 10.7561/SACS.2012.1.147

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS1

Tom HIRSCHOWITZ2, Damien POUS3

Abstract

Seeking a general framework for reasoning about and comparing
programming languages, we derive a new view of Milner’s CCS [34].
We construct a category E of plays, and a subcategory V of views. We
argue that presheaves on V adequately represent innocent strategies,
in the sense of game semantics [20]. We equip innocent strategies with
a simple notion of interaction.

We then prove decomposition results for innocent strategies, and,
restricting to presheaves of finite ordinals, prove that innocent strategies
are a final coalgebra for a polynomial functor [27] derived from the
game. This leads to a translation of CCS with recursive equations.

Finally, we propose a notion of interactive equivalence for innocent
strategies, which is close in spirit to Beffara’s interpretation [1] of
testing equivalences [7] in concurrency theory. In this framework, we
consider analogues of fair testing and must testing. We show that
must testing is strictly finer in our model than in CCS, since it avoids
what we call ‘spatial unfairness’. Still, it differs from fair testing, and
we show that it coincides with a relaxed form of fair testing.

Keywords: programming language semantics, concurrency, presheaf
models, game semantics, behavioural equivalences, fair testing

Note: This is an expanded version of our ICE ’11 paper [19]. It notably
simplifies a few aspects of the development, and corrects the mistaken
statement that fair and must testing coincide in our semantic framework.
Must testing only coincides with a relaxed variant of fair testing. This
version also subsumes a previous preprint, providing more compact proofs.

1Both authors have been partially funded by the French projects CHoCo (ANR-07-
BLAN-0324), PiCoq (ANR-10-BLAN-0305-01), and CNRS PEPS CoGIP.

2CNRS, Université de Savoie, France. Email: tom.hirschowitz@univ-savoie.fr
3CNRS, Laboratoire d’Informatique de Grenoble, France.

Email: damien.pous@ens-lyon.fr

148 T. Hirschowitz, D. Pous

1 Overview

Theories of programming languages Research in programming lan-
guages is mainly technological. Indeed, it heavily relies on techniques which
are ubiquitous in the field, but almost never formally made systematic.
Typically, the definition of a language then quotiented by variable renaming
(α-conversion) appears in many theoretical papers about functional program-
ming languages. Why isn’t there yet any abstract framework performing
these systematic steps for you? Because the quest for a real theory of pro-
gramming languages is not achieved yet, in the sense of a corpus of results
that actually help developing them or reasoning about them. However, many
attempts at such a theory do exist.

A problem for most of them is that they do not account for the dynamics
of execution, which limits their range of application. This is for example
the case of Fiore et al.’s second-order theories [10, 15, 16]. A problem for
most of the other theories of programming languages is that they neglect
denotational semantics, i.e., they do not provide a notion of model for a
given language. This is for example the case of Milner et al.’s bigraphs [22],
or of most approaches to structural operational semantics [37], with the
notable exception of the bialgebraic semantics of Turi and Plotkin [41]. A
recent, related, and promising approach is Kleene coalgebra, as advocated by
Bonsangue et al. [2]. Finally, higher-order rewriting [36], and its semantics in
double categories [12] or in cartesian closed 2-categories [18], is not currently
known to adequately account for process calculi.

Towards a new approach The most relevant approaches to us are bial-
gebraic semantics and Kleene coalgebra, since the programme underlying the
present paper concerns a possible alternative. A first difference, which is a bit
technical but may be of importance, is that both bialgebraic semantics and
Kleene coalgebra are based on labelled transition systems (LTSs), while our
approach is based on reduction semantics. This seems relevant, since reduc-
tion semantics is often considered more primitive than LTSs, and much work
has been devoted to deriving the latter from the former [40, 29, 22, 39, 38].

More generally, our approach puts more emphasis on interaction be-
tween programs, and hence is less interesting in cases where there is no
interaction. A sort of wild hope is that this might lead to unexpected mod-
els of programming languages, e.g., physical ones. This could also involve
finding a good notion of morphism between languages, and possibly propose
a notion of compilation. At any rate, the framework is not set up yet, so

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 149

investigating the precise relationship with bialgebraic semantics and Kleene
coalgebra is deferred to further work.

How will this new approach look like? Compared to such long-term
goals, we only take a small step forward here, by considering a particular
case, namely Milner’s CCS [34], and providing a new view of it. This view
borrows ideas from the following lines of research: game semantics [20], and in
particular the notion of an innocent strategy, graphical games [8, 17], Krivine
realisability [28], ludics [13], testing equivalences in concurrency [7, 1], the
presheaf approach to concurrency [24, 25], and sheaves [32]. It is also, more
remotely, related to graph rewriting [9] and computads [4].

From strategies to presheaves Game semantics [20] has provided fully
complete models of programming languages. It is based on the notion of
a strategy, i.e., a set of plays in some game, satisfying a few conditions.
In concurrency theory, taking as a semantics the set of accepted plays, or
‘traces’, is known as trace semantics. Trace semantics is generally considered
too coarse, since it equates, for a most famous example, the right and the
wrong coffee machines, a.(b+ c) and ab+ ac [34].

An observation essentially due to Joyal, Nielsen, and Winskel is that
strategies, i.e., prefix-closed sets of plays, are actually particular presheaves
of booleans on the category C with plays as objects, and prefix inclusions as
morphisms. By presheaves of booleans on C we here mean functors Cop → 2,
where 2 is the preorder category 0 ≤ 1. If a play p is accepted, i.e., mapped
to 1, then its prefix inclusions q ↪→ p are mapped to the unique morphism
with domain 1, i.e., id1, which entails that q is also accepted.

Following Joyal, Nielsen, and Winskel, we observe that considering
instead presheaves (of sets) on C yields a much finer semantics. So, a play p
is now mapped to a set S(p), to be thought of as the set of ways for p to be
accepted by the strategy S. Considering the set of players as a team, S(p)
may also be thought of as the set of possible states of the team after playing
p – which is empty if the team never accepts to play p.

This presheaf semantics is fine enough to account for bisimilarity [24, 25].
Indeed, presheaves are essentially forests with edges labelled by moves. For
example, in the setting where plays are finite words on an alphabet, the
wrong coffee machine may be represented by the presheaf S defined by the
equations on the left and pictured as on the right:

150 T. Hirschowitz, D. Pous

S(ε) = {?},
S(a) = {x, x′},
S(ab) = {y},
S(ac) = {y′},

S(ε ↪→ a) = {x 7→ ?, x′ 7→ ?},
S(a ↪→ ab) = {y 7→ x},
S(a ↪→ ac) = {y′ 7→ x′} :

?

x x′

y y′.

a a

b c

So, in summary: the standard notion of strategy may be generalised to
account for branching equivalences, by passing from presheaves of booleans
to presheaves of sets.

Multiple players Traditional game semantics mostly emphasises two-
player games. There is an implicit appearance of three-player games in
the definition of composition of strategies, and of four-player games in the
proof of its associativity, but these games are never given a proper status.
A central idea of graphical games, and to a lesser extent of ludics, is the
emphasis on multiple-player games.

Here, there first is a base category B of positions, whose objects represent
configurations of players. Since the game represents CCS, it should be natural
that players are related to each other via the knowledge of communication
channels. So, roughly, positions are bipartite graphs with vertex sets players
and channels, and edges from channels to players indicating when the former
is known to the latter. As a first approximation, morphisms of positions
may be thought of as just embeddings of such graphs.

Second, there is a category E of plays, with a functor to B sending each
play to its initial position. Plays are represented in a more flexible way than
just sequences of moves, namely using a kind of string diagrams. This echoes
the idea [33] that two moves may be independent, and that plays should
not depend on the order in which two independent moves are performed.
Furthermore, our plays are a rather general notion, allowing, e.g., to focus
on a given player. Morphisms of plays account both for:

• prefix inclusion, i.e., inclusion of a play into a longer play, and

• position enlargement, e.g., inclusion of information about some players
into information about more players.

Now, restricting to plays over a given initial position X, and then taking
presheaves on this category EX , we have a category of strategies on X.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 151

Innocence A fundamental idea of game semantics is the notion of inno-
cence, which says that players have a restricted view of the play, and that
their actions may only depend on that view.

We implement this here by defining a subcategory VX ↪→ EX of views
on X, and deeming a presheaf F on EX innocent when it is determined by
its restriction F ′ to VX , in the sense that it is isomorphic to the right Kan
extension [31] of F ′ along Vop

X ↪→ Eop
X .

We then define innocent strategies to be just presheaves on VX , and
view them as (naive) strategies via the (essential) embedding dVX ↪→ dEX
induced by right Kan extension.

Interaction For each position X, we thus have a category SX = dVX of
innocent strategies. In game semantics, composition of strategies is achieved
in two steps: interaction and hiding. Essentially, interaction amounts to
considering the three-player game obtained by letting two two-player games
interact at a common interface. Hiding then forgets what happens at that
interface, to recover a proper two-player game.

We have not yet investigated hiding in our approach, but, thanks to the
central status of multiple-player games, interaction is accounted for in a very
streamlined way. For any position X with two subpositions X1 ↪→ X and
X2 ↪→ X such that each player is in either X1 or X2, but none is in both,
given innocent strategies F1 ∈ SX1 and F2 ∈ SX2 , there is a unique innocent
strategy, the amalgamation [F1, F2] of F1 and F2, whose restrictions to X1

and X2 are F1 and F2.

Amalgamation in this sense models interaction in the sense of game
semantics, and, using the correspondence with presheaves on EX given by
right Kan extension, it is the key to defining interactive equivalences.

CCS Next, we define a translation of CCS terms with recursive equations
into innocent strategies. This rests on spatial and temporal decomposition
results for innocent strategies. Spatial decomposition says that giving a
strategy on a position X is the same as giving a strategy for each of its
players. Temporal decomposition says that a strategy is determined up to
isomorphism by its set of initial states, plus what remains of each of them
after each basic move. Restricting to presheaves of finite ordinals, we also
prove that innocent strategies form a final coalgebra for a polynomial functor
(in the sense of Kock [27]) derived from the game, thus hinting at links with
Kleene coalgebra. It is then easy to translate finite CCS into the language

152 T. Hirschowitz, D. Pous

induced by our polynomial functor, and to finally extend the translation to
CCS with recursive equations via infinite unfolding.

A natural question is then: which equivalence does this translation
induce on CCS terms? As explained in the following paragraph, we provide
some preliminary results about interactive equivalences, but essentially leave
the question open.

Interactive equivalences Returning to our model, we then define a
notion of interactive equivalence, which is close in spirit to both testing
equivalences in concurrency theory and Krivine realisability and ludics.

The game, as sketched above, allows interacting with players which
are not part of the considered position. E.g., a player in the considered
position X may perform an input which is not part of any synchronisation.
A test for an innocent strategy F on X is then, roughly, an innocent strategy
G on a position X ′ with the same channels as X. To decide whether F
passes the test G, we consider a restricted variant of the game on the ‘union’
X ∪X ′, forbidding any interaction with the outside. We call that variant
the closed-world game.

Then F passes G iff the amalgamation [F,G], right Kan extended to
EX∪X′ and then restricted to the closed-world game, belongs to some initially
fixed class of strategies, ⊥⊥X∪X′ . Finally, two innocent strategies F and F ′

on X are equivalent when they pass the same tests.
Here are two examples for ⊥⊥. Consider a tick move, fixed in advance.

Then call successful all plays containing at least one tick, and accordingly
call successful all states reached after a successful play. One may consider:

• ⊥⊥m, consisting of strategies whose maximal states (those that admit no
strict extensions) are all successful; the tick move plays a rôle analogous
to the daimon in ludics: it is the only move which is observable from
the outside;

• ⊥⊥f , consisting of strategies in which all states on finite plays admit a
successful extension.

From the classical concurrency theory point of view on behavioural equiva-
lences, the first choice clearly mimicks must testing equivalence, while the
second mimicks fair testing equivalence [35, 3].

Consider the processes Ω and Ω|a, where Ω is a process doing infinitely
many silent transitions. These processes are intuitively quite different: the
latter can do an output on the channel a, while the former cannot. They

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 153

are however equated by standard must testing equivalence: the infinite trace
provided by Ω may prevent the output prefix from being performed. In fact,
must testing equivalence heavily relies on the potential unfairness of the
scheduler. In the literature, this peculiar behaviour actually motivates the
introduction of fair testing equivalence.

In contrast, our notion of play is more flexible than standard traces, so
that our counterpart to must testing equivalence actually distinguishes these
two processes: the infinite play where the output prefix is not performed is
not maximal, so that the corresponding unfair behaviour is not taken into
account. In other words, thanks to our notion of play, the rather natural
notion of must testing already avoids what we call ‘spatial unfairness’.
However, must testing does not coincide with fair testing in our setting,
because there are other sources of unfairness, that are not handled properly.
Technically, we prove that ⊥⊥m coincides with the set of strategies whose
states all admit a successful extension. However, the restriction to finite plays
in the definition of ⊥⊥f is required to rule out other sources of unfairness.

Summary In summary, our approach emphasises a flexible notion of
multiple-player play, encompassing both views in the sense of game semantics,
closed-world plays, and intermediate notions. Strategies are then described
as presheaves on plays, while innocent strategies are presheaves on views.
Innocent strategies admit a notion of interaction, or amalgamation, and are
embedded into strategies via right Kan extension. This allows a notion of
testing, or interactive equivalence by amalgamation with the test, right Kan
extension, and finally restriction to closed-world.

Our main technical contributions are then a translation of CCS terms
with recursive equations into innocent strategies, and the study of fair and
must equivalences in our setting.

Perspectives Our next task is clearly to tighten the link with CCS.
Namely, we should explore which equivalence on CCS is induced via our
translation, for a given interactive equivalence. We will start with ⊥⊥f . Fur-
thermore, the very notion of interactive equivalence might deserve closer
consideration. Its current form is rather ad hoc, and one could hope to see
it emerge more naturally from the game. For instance, the fixed class ⊥⊥
of ‘successful’ strategies should probably be more constrained than is done
here. Also, the paradigm of observing via the set of successful tests might
admit sensible refinements, e.g., probabilistic ones.

154 T. Hirschowitz, D. Pous

Another possible research direction is to tighten the link with ‘graphical’
approaches to rewriting, such as graph rewriting or computads. E.g., our
plays might be presented by a computad [14], or be the bicategory of rewrite
sequences up to shift equivalence, generated by a graph grammar in the sense
of Gadducci et al. [11]. Both goals might require some technical adjustments,
however. For computads, we would need the usual yoga of U-turns to flexibly
model our positions; e.g., zigzags of U-turns are usually only equal up to
a higher-dimensional cell, while they would map to equal positions in our
setting. For graph rewriting, the problem is that our positions are not exactly
graphs (e.g., the channels known to a player are linearly ordered).

Other perspectives include the treatment of more complicated calculi
like π or λ. In particular, calculi with duplication of terms will pose a
serious challenge. An even longer-term hope is to be able to abstract over
our approach. Is it possible to systematise the process starting from a
calculus as studied in programming language theory, and generating its
strategies modulo interactive equivalence? If this is ever understood, the
next question is: when does a translation between two such calculi preserve
a given interactive equivalence? Finding general criteria for this might have
useful implications in programming languages, especially compilation.

Notation Throughout the paper, we abusively identify n with {1 . . . n},
for readability. So, e.g., i ∈ n means i ∈ {1, . . . , n}.

FC FC ′

GD GD′

F (f)

u u′

G(g)

The various categories and functors constructed
in the development are summed up with a short
description in Table 1. There, given two functors

C F−→ E G←− D, we denote (slightly abusively) by C ↓E D
the comma category: it has as objects triples (C,D, u) with C ∈ C, D ∈ D,
and u : F (C)→ G(D) in E, and as morphisms (C,D, u)→ (C ′, D′, u′) pairs
(f, g) making the square above commute. Also, when F is the identity on C
and G : 1→ C is an object C of C, this yields the usual slice category, which
we abbreviate as C/C. Finally, the category of presheaves on any category
C is denoted by ÒC = [Cop ,Set].

We denote by ob(C) the set of objects of any small category C. For any
functor F : C → D, we denote by Fop : Cop → Dop the functor induced on
opposite categories, defined exactly as F on both objects and morphisms.
Also, recall that an embedding of categories is an injective-on-objects, faithful
functor. This admits the following generalisation: a functor F : C → D is
essentially injective on objects when FC ∼= FC ′ implies C ∼= C ′. Any faithful,

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 155

Category Description of its objectsÒC ‘diagrams’

B ↪→ ÒC positions

E ↪→ (B ↓bC ÒC) plays

EX = (E ↓B (B/X)) plays on a position X
VX ↪→ EX views on X

SX = dVX innocent strategies on X
W ↪→ E closed-world plays
W(X) closed-world plays on X

Table 1: Summary of categories and functors

essentially injective on objects functor is called an essential embedding.

2 Plays as String Diagrams

We now describe our approach more precisely, starting with the category of
multiple-player plays. For the sake of clarity, we first describe this category
in an informal way, before giving the precise definition (Section 3).

2.1 Positions

Since the game represents CCS, it should be natural that
players are related to each other via the knowledge of
communication channels. This is represented by a kind
of4 finite, bipartite graph: an example position is on the
right. Bullets represent players, circles represent channels, and edges indicate
when a player knows a channel. The channels known by a player are linearly
ordered. Formally, as explained in Section 3, positions are presheaves over a
certain category C1. Morphisms of positions are natural transformations,
which are roughly morphisms of graphs, mapping players to players and
channels to channels. In full generality, morphisms thus do not have to be
injective, but include in particular embeddings of positions in the intuitive
sense. Positions and morphisms between them form a category B.

4Only ‘a kind of’, because, as mentioned above, the channels known to a player are
linearly ordered.

156 T. Hirschowitz, D. Pous

2.2 Moves

Plays will be defined as glueings of moves between positions. Moves are
derived from the very definition of CCS, as we now sketch. The diagrams
we draw in this section will be given a very precise combinatorial definition
in Section 3.

Let us start with the forking move, which corresponds to parallel
composition in CCS: a process (the player) forks into two sub-processes. In
the case of a player knowing two channels, the forking move is represented
by the diagram

,

(1)

to be thought of as a move from the bottom position X

(with one player p) to the top position Y

.

(with two players, which we call the ‘avatars’ of p). The left- and right-hand
borders are just channels evolving in time, not noticing that the represented
player forks into two. The surfaces spread between those vertical lines
represent links (edges in the involved positions) evolving in time. For example,
each link here divides into two when the player forks, thus representing the
fact that both of the avatars retain knowledge of the corresponding channel.
There is of course an instance πn of forking for each n, according to the
number of channels known to the player. As for channels known to a player,
the players and channels touching the black triangle are ordered: there are
different ‘ports’ for the initial player and its two avatars.

We then have a tick move ♥n, whose role is to define successful plays,
and a move for the channel creation or restriction of CCS, here νn. In the
case where the player knows two channels, they are graphically represented
as

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 157

♥ and

respectively. As expected, there is an instance of each of these two moves
for each number n of channels known to the player.

We also need a move to model CCS-like synchronisation, between two
players. For all n and m, representing the numbers of channels known to
the players involved in the synchronisation, and for all i ∈ n, j ∈ m, there is
a synchronisation τn,i,m,j , represented, in the case where one player outputs
on channel 3 ∈ 3 and the other inputs on channel 1 ∈ 2, by

.

As we shall see in Section 3, the dotted wire in the picture is actually a point
in the formal representation (i.e., an element of the corresponding presheaf).

The above four kinds of moves (forking, tick, channel creation, and
synchronisation) come from the reduction semantics of CCS. We classify
these as closed-world moves, since they correspond to the evolution of a
group of players in isolation.

We however need a more fine-grained structure for moves: moves whose
final position has more than one player (forking and synchronisation) must
be decomposed into basic moves, to get an appropriate notion of view.

We introduce two sub-moves for forking: left and right half-forking. In
the case where the player knows two channels, they are represented by the
following diagrams, respectively:

and

.

(2)

158 T. Hirschowitz, D. Pous

These sub-moves represent what each of the ‘avatars’ of the forking player
sees of the move. We call πln and πrn the respective instances of the left-hand
and right-hand basic moves for a player knowing n channels. Formally,
there will be injections from the left and right half-forking moves to the
corresponding forking moves.

We finally decompose synchronisation into an input move and an output
move: a.P and a.P in CCS become ι+n,i and ι−n,i here (where n is the number
of known channels, i ∈ {1 . . . n} is the index of the channel bearing the
synchronisation). Here, output on the right-hand channel and input on the
left-hand channel respectively look like

and

.

(3)

Like with forking, there will be injections from the input and output moves
to the corresponding synchronisation moves.

All in all, there are three classes of moves, which we summarise in
Table 2.

• Tick, channel creation, half-forking, and input/output moves are basic
moves: they evolve from a position with exactly one player to another
position with exactly one player. These moves are used to define views
later on.

• Forking, synchronisation, tick and channel creation moves are closed-
world moves: they correspond to the case where a group of players
evolves on its own, in isolation; they are central to the notion of
interactive equivalence.

• We need a third class of moves, called full, which consists of forking,
input, output, tick and channel creation. They involve a single player
and all of its avatars. They appear, e.g., in the statement of Lemma 12,
which is a partial correctness criterion for closed-world plays.

Formally, we define moves as cospans X ↪→ P ←↩ Y in the category of
diagrams (technically a presheaf category ÒC—see Section 3), where X is the
initial position and Y the final one. Both legs of the cospan are actually
monic morphisms in ÒC, as will be the case for all cospans considered here.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 159

Basic Full Closed-world

Left half-forking
Right half-forking

Forking Forking

Input
Output

Input
Output

Synchronisation

Channel creation Channel creation Channel creation

Tick Tick Tick

Table 2: Summary of classes of moves

2.3 Plays

We now sketch how plays are defined as glueings of moves. We start with
the following example, depicted in Figure 1. The initial position consists
of two players p1 and p2 sharing knowledge of a channel a, each of them
knowing another channel, resp. a1 and a2. The play consists of four moves:
first p1 forks into p1,1 and p1,2, then p2 forks into p2,1 and p2,2, and then
p1,1 does a left half-fork into p1,1,1; finally p1,1,1 synchronises (as the sender)
with p2,1. Now, we reach the limits of the graphical representation, but the
order in which p1 and p2 fork is irrelevant: if p2 forks before p1, we obtain
the same play. This means that glueing the various parts of the picture in
Figure 1 in different orders formally yields the same result (although there
are subtle issues in representing this result graphically in a canonical way).

Let us now sketch a definition of plays. Recall that moves may be seen
as cospans X ↪→M ←↩ Y , and consider an extended notion of move, which
may occur in a position not limited to players involved in the move. For
example, the moves in Figure 1 are extended moves in this sense.

Definition 1 A play is an embedding X0 ↪→ U in the category ÒC of dia-
grams, isomorphic to a possibly denumerable ‘composition’ of moves in the
(bi)category Cospan(ÒC) of cospans in ÒC, i.e., obtained as a colimit:

X0 X1 . . . Xn Xn+1 Xn+2 . . .

M0 . . . Mn Mn+1 . . .

U,

160 T. Hirschowitz, D. Pous

.
p1 p2aa1 a2

Figure 1: An example play

where each Xi ↪→Mi ←↩ Xi+1 is an extended move.

We often denote plays just by U , leaving the embedding X ↪→ U implicit.

Remark 1 For finite plays, one might want to keep track not only of the
initial position, but also of the final position. This indeed makes sense. Finite
plays then compose ‘vertically’, and form a double category. But infinite
plays do not really have any final position, which explains our definition.

U V

X Y.h

kLet a morphism (X ↪→ U) → (Y ↪→ V) of plays be
a pair (h, k) making the diagram on the right commute inÒC. This permits both inclusion ‘in width’ and ‘in height’.
E.g., the play consisting of the left-hand basic move in (2)
embeds in exactly two ways into the play of Figure 1. (Only two because the
image of the base position must lie in the base position of the codomain.)
We have:

Proposition 1 Plays and morphisms between them form a category E.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 161

There is a projection functor E→ B mapping each play X ↪→ U to its base
position X. This functor has a section, which is an embedding B ↪→ E,
mapping each position X to the ‘identity’ play X ↪→ X on X.

Remark 2 (Size) The category E is only locally small. Since presheaves on
a locally small category are less well-behaved than on a small category, we will
actually consider a skeleton of E. Because E consists only of denumerable
presheaves, this skeleton is a small category. Thus, our presheaves in the
next section may be understood as taken on a small category.

Remark 3 Plays are not very far from being just (infinite) abstract syntax
trees (or forests) ‘glued together along channels’. E.g., the play from Figure 1
is the glueing of, say (πl2(a.0))|0 and a|0 along a.

2.4 Relativisation

If we now want to restrict to plays over a given base position X, we may
consider

Definition 2 Let the category EX have

• as objects pairs of a play Y ↪→ U and a morphism Y → X,

• as morphisms (Y ↪→ U) → (Y ′ ↪→ U ′) all pairs (h, k) making the
diagram

U U ′

Y Y ′

X

k

h

commute in ÒC.

We will usually abbreviate U ←↩ Y → X as just U when no ambiguity
arises. As for morphisms of positions, in full generality, h and k, as well as
the morphisms Y → X, do not have to be injective.

Example 1 Let X be the position . The play
in Figure 1, say Y ↪→ U , equipped with the injection Y ↪→ X mapping the
two players of Y to the two leftmost players of X, is an object of EX .

162 T. Hirschowitz, D. Pous

One naively could imagine that the objects EX could just consist of plays
X ↪→ U on X. However, spatial decomposition, Theorem 1, relies on our
slightly more complex definition. E.g., still in Figure 1, this allows us to

distinguish between the identity view [2] [2]
p1
↪−→ X on p1 from the identity

view [2] [2]
p2
↪−→ X on p2, which would otherwise not be possible.

3 Diagrams

In this section, we define the category on which the string diagrams of the
previous section are presheaves. The techniques used here date back at least
to Carboni and Johnstone [5, 6].

3.1 First Steps

Let us first consider two small examples. It is well-known that directed
graphs form a presheaf category: consider the category C freely generated
by the graph with two vertices, say ? and [1], and two edges d, c : ? → [1]
between them. One way to visualise this is to compute the category of
elements of a few presheaves on C. Recall that the category of elements of
a presheaf F on C is the comma category y ↓bC F , where y is the Yoneda
embedding. Via Yoneda, it has as elements pairs (C, x) with C ∈ ob(C) and
x ∈ F (C), and morphisms (C, x)→ (D, y) morphisms f : C → D in C such
that F (f)(y) = x (which we abbreviate as y · f = x when the context is
clear).

Example 2 Consider the graph

0 1 2e e′

with three vertices 0, 1, and 2, and two edges e and e′.
This graph is represented by the presheaf F defined by the following

equations, whose category of elements is actually freely generated by the
graph on the right:

• F (?) = {0, 1, 2},

• F ([1]) = {e, e′},

• e · d = 0,

• e · c = 1,

• e′ · d = 1,

• e′ · c = 2,

1

e e′

0 2.

d

c d

c

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 163

This latter graph is not exactly the original one, but it does represent it.
Indeed, for each vertex we know whether it is in F (?) or F ([1]), hence whether
it represents a ‘vertex’ or an ‘edge’. The arrows all go from a ‘vertex’ v to
an ‘edge’ e. They lie over d when v is the domain of e, and over c when v
is the codomain of e.

Multigraphs, i.e., graphs whose edges have a list of sources instead of
just one, may also be seen as a presheaves on the category freely generated
by the graph with

• as vertices: one special vertex ?, plus for each natural number n a
vertex, say, [n]; and

• for all n ∈ N, n+ 1 edges ?→ [n], called d1, . . . , dn, and c.

It should be natural for presheaves on this category to look like multigraphs:
the elements of a presheaf F over ? are the vertices in the multigraph, the
elements over [n] are the n-ary multiedges, and the action of the di’s give
the ith source of a multiedge, while the action of c gives its target.

Example 3 Similarly, computing a few categories of elements might help
visualising. As above, consider F defined by

• F (?) = {0, 1, 2, 3, 4, 5},

• F ([1]) = F ([0]) = ∅,

• F ([2]) = {e′},

• F ([3]) = {e},

• F ([n+ 4]) = ∅,

• e · c = 0,

• e · d1 = 1,

• e · d2 = 2,

• e · d3 = 3,

• e′ · c = 1,

• e′ · d1 = 4,

• e′ · d2 = 5,

whose category of elements is freely generated by the graph:

0

e

1 2 3

e′

4 5.

c

d1

c

d2
d3

d1 d2

164 T. Hirschowitz, D. Pous

Now, this pattern may be extended to higher dimensions. Consider for
example extending the previous base graph with a vertex [m1, . . . ,mn; p] for
all natural numbers n, p,m1, . . . ,mn, plus edges

s1 : [m1]→ [m1, . . . ,mn; p],
. . . ,
sn : [mn]→ [m1, . . . ,mn; p], and
t : [p]→ [m1, . . . ,mn; p].

Let now C be the free category on this extended graph. Presheaves on C
are a kind of 2-multigraphs: they have vertices, multiedges, and multiedges
between multiedges.

We could continue this in higher dimensions.

3.2 Constructing the Base Category

Our base category follows a very similar pattern. We start from a slightly
different graph: let G0 have just one vertex ?; let G1, have one vertex ?,
plus a vertex [n] for each natural number n, plus n edges d1, . . . , dn : ?→ [n].
Let C0 and C1 be the categories freely generated by G0 and G1, respectively.
So, presheaves on C1 are a kind of hypergraphs with arity (since vertices
incident to a hyperedge are numbered). This is enough to model positions.

Example 4 The position drawn at the beginning of Section 2.1 may be
represented as the presheaf

• ? 7→ {1, 2, 3},

• [2] 7→ {x, z},

• [3] 7→ {y},

• 7→ ∅,

• x ·d1 = 1,

• x ·d2 = 2,

• z · d1 = 2,

• z · d2 = 3,

• y · d1 = 1,

• y · d2 = 2,

• y · d3 = 3,

whose category of elements is:

1 3

x y z

2.

d1 d1 d3 d2

d2
d2

d1

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 165

Now, consider the graph G2, which is G1 augmented with:

• for all n, vertices ♥n, πln, πrn, νn,

• for all n and 1 ≤ i ≤ n, vertices ι+n,i and ι−n,i,

• for all n, edges s, t : [n]→ ♥n, s, t : [n]→ πln, s, t : [n]→ πrn, s : [n]→
νn, t : [n+ 1]→ νn,

• for all n and 1 ≤ i ≤ n, edges s, t : [n]→ ι+n,i, s, t : [n]→ ι−n,i.

We slightly abuse language here by calling all these t’s and s’s the same. We
could label them with their codomain, but we refrain from doing so for the
sake of readability.

Now, let C2 be the category generated by G2 and the relations s ◦ di =
t ◦ di for all n and 1 ≤ i ≤ n (for all sensible—common—codomains). The
intuition here is that for any basic move by a player with n channels, these
n channels remain the same after the move. This includes the case of νn,
for which the absence of any equation involving the new channel makes it
different from the others.

Example 5 Again, computing a few categories of elements is in order. For
example, the category of elements of (the representable presheaf on) ι−3,3 is
the poset freely generated by the graph

td1

t td3

td2

id ι−3,3
sd1

s sd3

sd2,

to be compared with the corresponding pictures (3).

Example 6 Similarly, the category of elements of ν1 is the poset freely
generated by the graph

166 T. Hirschowitz, D. Pous

td1 t td2

idν1

sd1 s.

Note that only channel creation changes the number of channels known to
the player, and accordingly the corresponding morphism t has domain [n+ 1].

Presheaves on C2 are enough to model basic moves, but since we want
more, we continue, as follows.

Let G3 be G2, augmented with:

• for all n, a vertex πn, and

• edges l : πln → πn and r : πrn → πn.

Definition 3 Let C3 be the category generated by G3, the previous relations,
plus the relations l ◦ s = r ◦ s.

The equation models the fact that a forking move should be played by just
one player. We also call s = l ◦ s = r ◦ s the common composite, which gives
a uniform notation for the initial player of full moves.

Example 7 The category of elements of π2 is the poset freely generated by
the graph

ltd1 = rtd1 lt rt ltd2 = rtd2

l idπ2 r

lsd1 = rsd1 ls = rs lsd2 = rsd2.

The two views corresponding to left and right half-forking are subcategories,
and the object idπ2 ‘ties them together’.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 167

Presheaves on C3 are enough to model full moves; to model closed-world
moves, and in particular synchronisation, we continue as follows.

Let G4 be G3, augmented with, for all n, m, 1 ≤ i ≤ n, and 1 ≤ j ≤ m,

• a vertex τn,i,m,j , and

• edges ε : ι+n,i → τn,i,m,j and ρ : ι−m,j → τn,i,m,j (ε and ρ respectively
stand for ‘emission’ and ‘reception’).

Definition 4 Let C4 be the category generated by G4, the previous relations,
plus, for each ι+n,i

ε−→ τn,i,m,j
ρ←− ι−m,j, the relation ε ◦ s ◦ di = ρ ◦ s ◦ dj.

This equation is the exact point where we enforce that a synchronisation
involves an input and an output on the same channel, as announced in
Example 5.

Example 8 The category of elements of τ3,3,1,1 is the preorder freely gener-
ated by the graph

εtd1

εt εtd3 = ρtd1 ρt ρtd2

εtd2

ε id τ3,3,2,1 ρ

εsd1

εs εsd3 = ρsd1 ρs ρsd2

εsd2.

Again, the two views corresponding to ι+3,3 and ι−2,1 are subcategories, and the
new object τ3,3,2,1 ties them together.

3.3 Positions and Moves

We have now defined the base category C = C4 on which the string diagrams
of Section 2 are presheaves. More accurately we have defined a sequence
C0 ↪→ . . . ↪→ C4 of subcategories.

Positions Positions are finite presheaves on C1, or equivalently, finite
presheaves on C4 empty except over C1.

168 T. Hirschowitz, D. Pous

Moves Basic moves should be essentially representable presheaves on
objects in ob(C2) \ ob(C1). Recall however that basic moves are defined as
particular cospans in ÒC. This is also easy: in the generating graph G2, each
such object c has exactly two morphisms s and t into it, from objects, say,

[ns] and [nt], respectively. By Yoneda, these induce a cospan [ns]
s−→ c

t←− [nt]
in ÒC, which is the desired cospan. (Observe, again, that only νn has ns 6= nt.)

Similarly, full moves either are basic moves, or are essentially repre-
sentable presheaves on objects in ob(C3) \ ob(C1), i.e., representables on
some πn. To define the expected cospan, first observe that by the equation

ls = rs, we obtain an morphism [n]
s−→ πln

l−→ πn, equal to rs, in ÒC. This will
form the first leg of the cospan. For the other, observe that for each n and
i ∈ n, we obtain, by the equations ltdi = lsdi = rsdi = rtdi and by Yoneda,
that the outermost part of

n · ? [n]

[n] n|n πrn

πln πn

[di]i∈n

[di]i∈n
t

t
r

l

t

(4)

commutes in ÒC, where n · ? denotes an n-fold coproduct of ?. Letting n|n
be the induced pushout, and the dashed morphism t be obtained by its

universal property, we obtain the desired cospan [n]
ls−→ πn

t←− n|n.
Finally, closed-world moves either are full moves, or are essentially

representable presheaves on some τn,i,m,j . To define the expected cospan, we
proceed as in Figure 2: compute the pushout n i |j m, and infer the dashed

morphisms s′ and t′ to obtain the desired cospan n i |jm
s′−→ τn,i,m,j

t′←− n i |jm.

Remark 4 (Isomorphisms) Moves are particular cospans in ÒC. For cer-
tain moves, the involved objects are representable, but not for others, like
forking or synchronisation, whose final position is not representable. In the
latter cases, our definition thus relies on a choice, e.g., of pushout in (4).
Thus, let us be completely accurate: a move is a cospan which is isomorphic
to one of the cospans chosen above, in ÒC·←·→·, i.e., the category of functors
from the category · ← · → · (generated by the graph with three objects and
an edge from one to each of the other two) to ÒC.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 169

? [m]

[n] n i |j m

? ι−m,j

ι+n,i τn,i,m,j

? [m]

[n] n i |j m

t

s

di

dj

di

dj

di

dj

t

s

t′

s′

Figure 2: Construction of the synchronisation move

3.4 Extended Moves, Plays, and Relativisation

The most delicate part of our formalisation of Section 3 is perhaps the
passage from moves to extended moves. Recall from the paragraph above
Definition 1 that an extended move should be like a move occurring in a
larger position.

Moves with interfaces To formalise this idea, we first equip moves with
interfaces, as standard in graph rewriting [23]. Since moves are cospans, one
might expect that interfaces are cospans too. This may be done, but there
is a simpler, equivalent presentation. The route we follow here might have
to be generalised in order to handle more complex calculi than CCS, but let
us save the complications for later work.

Here, we define an interface for a cospan X →M ← Y to consist of a
presheaf I and morphisms X ← I → Y such that

I Y

X M

(5)

commutes, and I has dimension 0, i.e., is empty except over C0, i.e., consists
only of channels.

170 T. Hirschowitz, D. Pous

Definition 5 A cospan equipped with an interface is called a cospan with
interface.

Moves are particular cospans, and we now equip them with canonical
interfaces: all moves except channel creation preserve the set of channels,
the interface is then n · ?, with the obvious inclusion. For example, the less
obvious case is πn: we choose

n · ? n|n

[n] πn,

where the upper map is as in (4). For channel creation, we naturally choose

n · ? [n+ 1]

[n] νn.

[di]i∈n

Definition 6 A move with interface is one of these cospans with interface.
The basic, full, or closed-world character is retained from the underlying
move.

Extended moves We now plug moves with interfaces into contexts, in
the following sense.

Definition 7 A context for a cospan with interface (5) is a position Z,
equipped with a morphism I → Z.

From any cospan with interface µ as in (5) and context C : I → Z, we
construct the cospan C[µ] as in:

Y Y ′

M M ′

I Z

X X ′.

C

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 171

I.e., we push the available morphisms out of I along C, and infer the dashed
morphisms, which form the desired cospan.

Definition 8 An extended move is a cospan of the shape C[µ], for any
move with interface µ and context C as above.

Example 9 Recall that [2] is a position with one player knowing two chan-
nels. Recall from Figure 2 the pushout

? [2]

[2] 2 2 |1 2,

d1

d2

p1

p2

equivalently obtained as the pushout

?+ ? ?+ [2]

[2] 2 2 |1 2.

id?+d1

[d1,d2]

p1

[a1,p2]

The base position of Figure 1 is thus 2 2 |1 2. Recall also from (4) that
2|2 denotes the position with two players both knowing two channels. Now,
we have the forking move [2] ↪→ π2 ←↩ 2|2. Equipping it with the interface

[d1, d2] : ?+?→ [2],

and putting it in the context id? + d1 : ?+?→ ?+ [2], (which happens to be
the same as the interface), we obtain

2|2 (2|2) 2 |1 2

π2 M

?+ ? ?+ [2]

[2] 2 2 |1 2.
[d1,d2]

id?+d1

This formally constructs the first layer of Figure 1. Constructing the whole
play would be a little too verbose to be included here, but essentially straight-
forward.

172 T. Hirschowitz, D. Pous

Plays and relativisation We may now read Definition 1 again, this time
in the formal setting, to define plays. Similarly, the definition of morphisms
now makes rigorous sense, as well as Proposition 1.
Proof of Proposition 1: E is the full subcategory of the arrow category
of ÒC whose objects are plays. 2

Similarly, Section 2.4 now makes rigorous sense.

4 Innocent Strategies as Sheaves

Now that the category of plays is defined, we move on to defining innocent
strategies. There is a notion of a Grothendieck site [32], which consists of
a category equipped with a (generalised) topology. On such sites, one may
define a category of sheaves, which are very roughly the presheaves that
are determined locally w.r.t. the generalised topology. We claim that there
is a topology on each EX , for which sheaves adequately model innocent
strategies. Fortunately, in our setting, sheaves admit a simple description, so
that we can avoid the whole machinery. But sheaves were the way we arrived
at the main ideas presented here, because they convey the right intuition:
plays form a Grothendieck site, and the states of innocent strategies should
be determined locally.

In this section, we first define innocent strategies, and state the spatial
and temporal decomposition theorems. We then present our coalgebraic
interpretation of innocent strategies, i.e., we define a polynomial endofunctor
F, and show that presheaves of finite ordinals on views form a final F-
coalgebra. We then derive from this a formal language and its interpretation
in terms of innocent strategies. We finally use this language to translate
CCS with recursive equations into innocent strategies.

4.1 Innocent Strategies

Definition 9 A view is a finite, possibly empty ‘composition’ [n] ↪→ V of
(extended) basic moves in Cospan(ÒC), i.e., a play in which all the cospans
are basic moves.

When the composition is empty, we obtain [n] ↪→ [n], the identity view on
[n]. We also note in passing that empty presheaves cannot be views, i.e.,
X ↪→ ∅ is never a view.

Example 10 Forking (1) has two non-trivial views, namely the (left legs
of) basic moves (2). Each of them embeds into forking:

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 173

.

Example 11 In Figure 1, the leftmost branch contains a view consisting of
three basic moves: two πl2 and an output.

Definition 10 For any position X, let VX be the full subcategory of EX
consisting of views.

More precisely, VX consists of spans U ←↩ Y → X where Y ↪→ U is a view.

Definition 11 Let the category SX of innocent strategies on X be the
category dVX of presheaves on VX .

A possible interpretation is that for a presheaf F ∈dVX and view V ∈ VX ,
F (V) is the set of possible states of the strategy F after playing V .

It might thus seem that we could content ourselves with defining only
views, as opposed to plays. However, in order to define interactive equiv-
alences in Section 5, we need to view innocent strategies as (particular)
presheaves on the whole of EX .

C D

E

F

G

H

K

α′

ε

α

The connection is as follows. Recall
from MacLane [31] the notion of right Kan
extension. Given functors F and G as on
the right, a right Kan extension RanF (G) of
G along F is a functor H : D→ E, equipped
with a natural transformation ε : HF → G,
such that for all functors K : D→ E and transformations α : KF → G, there
is a unique α′ : K → H such that α = ε • (α′ ◦ idF), where • is vertical
composition of natural transformations. Now, precomposition with F induces
a functor Cat(F,E) : Cat(D,E)→ Cat(C,E), where Cat(D,E) is the category
of functors D→ E and natural transformations between them. When E is
complete, right Kan extensions always exist (and an explicit formula for our
setting is given below), and choosing one of them for each functor C→ E
induces a right adjoint to Cat(F,E). Furthermore, it is known that when F
is full and faithful, then ε is a natural isomorphism, i.e., HF ∼= G.

174 T. Hirschowitz, D. Pous

Proposition 2 If F is full and faithful, then RanF is a full essential em-
bedding.

Proof: First, let us show that RanF is essentially injective on objects.
Indeed, assume H = RanF (G), RanF (G′) = H ′, and i : H → H ′ is an
isomorphism with inverse k. We must construct an isomorphism G ∼= G′.
Let j : G→ G′ be εG′ • (iF) • ε−1

G . Similarly, let l : G′ → G be εG • (kF) • ε−1
G′ .

We have

l • j = εG • (kF) • ε−1
G′ • εG′ • (iF) • ε−1

G

= εG • (kF) • (iF) • ε−1
G

= εG • ((k • i) ◦ F) • ε−1
G

= εG • ε
−1
G

= idG.

Similarly, j • l = idG′ and we have G ∼= G′.

To see that RanF is full, observe that for any i : H → H ′, with H =
RanF (G) and H ′ = RanF (G′), j = εG′ • (iF) • ε−1

G is an antecedent of i by
RanF . Indeed, by definition, RanF (j) is the unique i′ : H → H ′ such that
εG′ • (i′F) = j • εG. But the latter is equal to εG′ • (iF), so i′ = i.

Finally, to show that RanF is faithful, consider G,G′ : C→ E and two
natural transformations i, j : G → G′ such that RanF (i) = RanF (j) = k.
Then, by construction of k, we have

i • εG = εG′ • (kF) = j • εG.

But, εG being an isomorphism, this implies i = j as desired. 2

Returning to views and plays, the embedding iX : VX ↪→ EX is full, so
right Kan extension along iopX : Vop

X → Eop
X induces a full essential embedding

RaniopX
: dVX → dEX . The (co)restriction of this essential embedding to its

essential image thus yields an essentially surjective, fully faithful functor,
i.e., an equivalence of categories:

Proposition 3 The category SX is equivalent to the essential image of
RaniopX

.

The standard characterisation of right Kan extensions as ends [31] yields,

for any F ∈dVX and U ∈ EX :

RaniopX
(F)(U) =

Z
V ∈VX

F (V)EX(V,U),

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 175

i.e., giving an element of RaniopX
(F) on a play U amounts to giving, for

each view V and morphism V → U , an element of F (V), satisfying some
compatibility conditions. In Example 12 below, we compute an example
right Kan extension.

The interpretation of strategies in terms of states extends: for any
presheaf F ∈dEX and play U ∈ EX , F (U) is the set of possible states of the
strategy F after playing U . That F is in the image of RaniopX

amounts to

F (U) being a compatible tuple of states of F after playing each view of U .

Example 12 Here is an example of a presheaf F ∈dEX which is not innocent,
i.e., not in the image of RaniopX

. Consider the position X consisting of three
players, say x, y, z, sharing a channel, say a. Let Xx be the subposition
with only x and a, and similarly for Xy, Xz, Xx,y, and Xx,z. Let Ix =
(ι−1,1 ←↩ Xx ↪→ X) be the play where x inputs on a, and similarly let Oy
and Oz be the plays where y and z output on a, respectively. Let now
Sx,y = (τ1,1,1,1 ←↩ Xx,y ↪→ X) be the play where x and y synchronise on a
(x inputs and y outputs), and similarly let Sx,z be the play where x and z
synchronise on a.

Finally, we define a presheaf F on E/X such that F (Sx,y) = 2 is a
two-element set, and F (Sx,z) = ∅. To define F on other plays, the idea is to
map any strict subplay of Sx,y and Sx,z to a one-element set 1, and other
plays to ∅. The cleanest technical way to do this seems to be as follows. The
poset Ex11 defined by

Oy Ix Oz

Sx,y Sx,z

fully embeds into E/X, via, say i11. Let F0 be the presheaf on Ex11 defined
by:

1 1 1

2 ∅.

We now let F = Raniop11(F0). Because i11 is fully faithful, F coincides with
F0 on the plays of Ex11, as desired.

Now, F fails to be innocent on two counts. First, since x and y accept
to input and output in only one way, it is non-innocent to accept that they

176 T. Hirschowitz, D. Pous

synchronise in more than one way. Formally, Sx,y has two non-trivial views,
Ix and Oy, so since F maps identity views to a singleton, F (Sx,y) should be
isomorphic to F (Ix)× F (Oy) = 1× 1 = 1. The second reason why F is not
innocent is that, since x and z accept to input and output, F should accept
that they synchronise. Formally, F (Sx,z) should also be a singleton. This
altogether models the fact that in CCS, processes do not get to know with
which other processes they synchronise.

The restriction of F to VX , i.e., F ′ = F ◦ iopX , in turn has a right Kan
extension F ′′, which is innocent. (In passing, the unit of the adjunction
Cat(iopX , Set) a RaniopX

is a natural transformation F → F ′′.) To conclude this

example, let us compute F ′′. First, F ′ only retains from F its values on views.
So, if Xx denotes the empty view on Xx, F ′(Xx) = 1, and similarly F ′(Xy) =
F ′(Xz) = 1. Furthermore, F ′(Ix) = F ′(Oy) = F ′(Oz) = 1. Finally, for
any view V not isomorphic to any of the previous ones, F ′(V) = ∅. So,
recall that F ′′ maps any play U ←↩ Y ↪→ X to

R
V ∈VX

F ′(V)EX(V,U). So,
e.g., since the views of Sx,y are subviews of Ix and Oy, we have F ′′(Sx,y) =
F ′(Ix) × F ′(Oy) = 1. Similarly, F ′′(Sx,z) = 1. But also, for any play U
such that all views V → U are subviews of either of Ix, Oy, or Oz, we have
F ′′(U) = 1. Finally, for any play U such that there exists a view V → U
which is not a subview of any of Ix, Oy, or Oz, we have F ′′(U) = ∅.

One way to understand Proposition 3 is to view dVX as the syntax for innocent
strategies: presheaves on views are (almost) infinite terms in a certain syntax
(see Section 4.4 below). On the other hand, seeing them as presheaves on
plays will allow us to consider their global behaviour: see Section 5 when
we restrict to the closed-world game. Thus, right Kan extension followed by
restriction to closed-world will associate a semantics to innocent strategies.

Remark 5 The relevant Grothendieck topology on EX says, roughly, that
a play is covered by its views. Any sheaf for this topology is determined by
its restriction to VX , for its elements on any non-view play U are precisely
amalgamations of its elements on views of U . Right Kan extension just
computes these amalgamations in the particular case of a topology derived
from a full subcategory, here views.

So, we have defined for each X the category SX of innocent strategies
on X. This assignment is actually functorial Bop → CAT, as follows (where
CAT is the large category of locally small categories). Any morphism
f : Y → X induces a functor f! : VY → VX mapping (V ←↩ Z → Y) to

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 177

(V ←↩ Z → Y → X). Precomposition with (f!)
op thus induces a functor

Sf : dVX →dVY .

Proposition 4 This defines a functor S : Bop → CAT.

Proof: A straightforward verification. 2

But there is more: for any position, giving a strategy for each player in
it easily yields a strategy on the whole position. We call this amalgamation
of innocent strategies (because the functor S is indeed a stack [43], and this
is a particular case of amalgamation in that stack). Formally, consider any
subpositions X1 and X2 of a given position X, inducing a partition of the
players of X, i.e., such that X1 ∪X2 contains all players of X, and X1 ∩X2

contains none. Then VX is isomorphic to the coproduct VX1 +VX2 . (Indeed,
a view contains in particular an initial player in X, which forces it to belong
either in VX1 or in VX2 .)

Definition 12 Given innocent strategies F1 on X1 and F2 on X2, let their
amalgamation be their copairing

[F1, F2] : Vop
X
∼= (VX1 + VX2)op ∼= Vop

X1
+ Vop

X2
→ Set.

By universal property of coproduct:

Proposition 5 Amalgamation yields an isomorphism of categoriesdVX ∼= ÔVX1 ×ÔVX2 .

Example 13 Consider again the position X from Example 12, and let Xy,z

be the subposition with only y and z. We have VX ' (VXx + VXy,z), which
we may explain by hand as follows. A view on X has a base player, x, y, or
z, and so belongs either in VXx or in VXy,z . Furthermore, if V is a view on
x and W is a view on y, then VX(V,W) = ∅ (and similarly for any pair of
distinct players in X).

Now, recall F ′, the restriction of F to VX . We may define Fx : Vop
Xx
→

Set to be the restriction of F ′ along the (opposite of the) embedding VXx ↪→
VX , and similarly Fy,z to be the restriction of F ′ along VXy,z ↪→ VX . We
have obviously F ′ = [Fx, Fy,z].

Analogous reasoning leads to what we call spatial decomposition. For
any X, let Pl(X) =

P
nX([n]), i.e., the set of pairs (n, x), where x is a

player in X, knowing n channels.

Theorem 1 We have dVX ∼= Q(n,x)∈Pl(X)
ÔV[n].

Again, this is a particular case of amalgamation in the stack S, but we
do not need to spell out the definition here.

178 T. Hirschowitz, D. Pous

4.2 Temporal Decomposition

Let us now describe temporal decomposition. Recall that basic moves are
left and right half-forking (2), input, output, tick, and channel creation.

Definition 13 Let M be the graph with vertices all natural numbers n, and
with edges n→ n′ all (isomorphism classes of) basic moves M : [n]→ [n′].

Recall from Remark 4 that the notion of isomorphism considered here is
that of an isomorphism of cospans in ÒC.

Definition 14 Let Mn be the set of edges from n in M.

For stating the temporal decomposition theorem, we need a standard [21]
categorical construction, the category of families on a given category C.
First, given a set X, consider the category Fam(X) with as objects X-
indexed families of sets Y = (Yx)x∈X , and as morphisms Y → Z families
(fx : Yx → Zx)x∈X of maps. This category is equivalently described as
the slice category Set/X. To see the correspondence, consider any family
(Yx)x∈X , and map it to the projection function

P
x∈X Yx → X sending (x, y)

to x. Conversely, given f : Y → X, let, for any x ∈ X, Yx be the fibre of f
over x, i.e., f−1(x).

Generalising from sets X to small categories C, Fam(C) has as objects
families p : Y → ob(C) indexed by the objects of C. Morphisms (Y, p) →
(Z, q) are pairs of u : Y → Z and v : Y → mor(C), where mor(C) is the set
of morphisms of C, such that dom ◦v = p, and cod ◦v = q ◦ u. Thus, any
element y ∈ Y over C ∈ C is mapped to some u(y) ∈ Z over C ′ ∈ C, and
this mapping is labelled by a morphism v(y) : C → C ′ in C. The obtained
category is locally small.

Further generalising, for C a locally small category, we may define
Fam(C) in exactly the same way (with Y still a set), and the obtained
category remains locally small.

The temporal decomposition theorem is:

Theorem 2 There is an equivalence of categories

Sn ' Fam

� Y
M∈Mn

Scod(M)

�
.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 179

The main intuition is that an innocent strategy is determined up to iso-
morphism by (i) its initial states, and (ii) what remains of them after each
possible basic move. The family construction is what permits innocent
strategies with several possible states over the identity play.
Proof sketch: For general reasons, we have:

Fam
�Q

M∈Mn
Scod(M)

�
= Fam

�Q
M∈Mn

[Vop
cod(M),Set]

�
∼= Fam

��P
M∈Mn

Vcod(M)
op ,Set

��
'
hP

M∈Mn
Vop

cod(M), Set
i
↓ ∆,

where ∆: Set → [
P
M∈Mn

Vop
cod(M),Set] maps any set X to the constant

presheaf mapping any object to X and any morphism to the identity.
By definition, the last category is a lax pullbackhP

M∈Mn
Vop

cod(M), Set
i hP

M∈Mn
Vop

cod(M), Set
i

Set
hP

M∈Mn
Vop

cod(M), Set
i
↓ ∆

∆

in CAT.
Now, any basic move M : n→ n′ induces a functor (−◦M) : V[n′] → V[n],

mapping any view V ∈ V[n′] to V ◦M (with composition in Cospan(ÒC)). We
show that the squareP

M∈Mn
Vop

cod(M)

P
M∈Mn

Vop
cod(M)

1 Vop
[n]

!

pid [n]q

[−◦M]M∈Mn
λ (6)

is a lax pushout in Cat, where λM,V : id [n] → M ◦ V , seen in V[n], is the
obvious inclusion, which for general reasons is mapped by the hom-2-functor
CAT(−,Set) to a lax pullback. But CAT(!, Set) = ∆ and CAT(id ,Set) = id ,
so we obtain a canonical isomorphism of lax pullbacks

S[n] = [Vop
[n],Set]

∼=

24 X
M∈Mn

Vop
cod(M), Set

35 ↓ ∆.

More detail is in Appendix A. 2

180 T. Hirschowitz, D. Pous

Remark 6 The theorem almost makes innocent strategies into a sketch (on
the category with positions as objects, finite compositions of extended moves
as morphisms, and the MX ’s as distinguished cones). Briefly, being a sketch
would require a bijection of sets Sn ∼=

Q
M∈Mn

Scod(M). Here, the bijection
becomes an equivalence of categories, and the family construction sneaks in.

4.3 Innocent Strategies as a Terminal Coalgebra

Temporal decomposition gives

Sn ' Fam

� Y
M∈Mn

Scod(M)

�
,

for all n. Considering a variant of this formula as a system of equations
will lead to our interpretation of CCS. The first step is to replace Set with
FinOrd, the category of finite ordinals and monotone functions. The proof
applies mutatis mutandis and we obtain an equivalence, which, because both
categories are skeletal, is an isomorphism:

øV[n]
∼= Famf

� Y
M∈Mn

üVcod(M)

�
, (7)

where

• Famf is the same as Fam but with finite families, i.e., for any category
C, ob(Famf (C)) =

P
I∈FinOrd(ob(C))I = (ob(C))∗ is the set of finite

words over objects of C, also known as the free monoid on ob(C);

• and for any category C, ôC denotes the functor category [Cop ,FinOrd].

Remark 7 Recall that in the proof of Theorem 2, Fam arises from the
‘constant presheaf ’ functor ∆: Set→ Ò−, with − a complicated category. This
functor itself is equal to restriction along − → 1, via b1 ∼= Set. Replacing
Set with FinOrd thus replaces ∆ with the analogous functor FinOrd→ ô−, viaó1 ∼= FinOrd, and thus Fam with Famf .

Furthermore, because FinOrd embeds into Set, the special strategies oføV[n] embed into S[n].

Then, taking advantage of the fact that FinOrd is a small category, we
consider its set FinOrd0 of objects, i.e., finite ordinals, and the endofunctor

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 181

F on Set/FinOrd0 defined on any family of sets X = (Xi)i∈FinOrd0 by:

(F(X))n =
X

I∈FinOrd0

� Y
M∈Mn

Xcod(M)

�I

,

where we abusively confuse [n′] = cod(M) and the natural number n′ itself.
The isomorphism (7) becomes

ob(øV[n]) ∼= (F(ob(÷V−)))n.

We may decompose F as follows. Consider the endofunctor on Set/
FinOrd0 defined by (∂X)n =

Q
M∈Mn

Xcod(M), for any family X. We obvi-
ously have:

Lemma 1 F is equal to the composite (∂−)∗.

This endofunctor is polynomial [27] and we now give a characterisation
of its final coalgebra. The rest of this subsection is devoted to proving:

Theorem 3 The family ob(öVn) formed for each n by (the objects of) öVn is
a terminal coalgebra for F.

Consider any F-coalgebra a : X → FX.

We define by induction on N a sequence of maps fN : X →øV[−], such
that for any view V of length less than N (i.e., with less than N basic
moves), and any N ′ > N , fN ′(x)(V) = fN (x)(V), and similarly the action
of fN (x) on morphisms is the same as that of fN ′(x).

To start the induction, take f0(x) to be the strategy mapping id [n] to

π(a(x)), i.e., the length of a(x) ∈
P
I∈FinOrd0((∂X)n)I , and all other views

to 0.

Furthermore, given fN , define fN+1 to be

X
a−→ FX

F(fN)−−−→ F(øV[−])
∼=−→øV[−],

where the equivalence is by temporal decomposition.

Unfolding the definitions yields:

Lemma 2 Consider any x ∈ Xn, and a(x) = (z1, . . . , zk). For any move
M : n → n′ and view V : n′ → n′′ of length at most N , and for any i ∈ k,
fN+1(x)(V ◦M) =

P
i∈k fN (zi(M))(V).

182 T. Hirschowitz, D. Pous

For any x ∈ Xn, we have a sequence f0(x) ↪→ f1(x) ↪→ . . . fN (x) ↪→
fN+1(x) ↪→ . . . which is pointwise stationary. This sequence thus has a

colimit in øV[n], the presheaf mapping any view V of length N to fN (V) (or
equivalently fN ′(V) for any N ′ ≥ N), which allows us to define:

Definition 15 Let f : X →øV[−] map any x ∈ Xn to
S
N fN (x).

By construction, we have

Lemma 3 The following diagram commutes:

X FX

øV[−] F(øV[−]).

a

f F(f)
∼=

Lemma 4 The map f is a morphism of F-coalgebras.

Proof: Let, for any innocent strategy S ∈øV[n] and i ∈ S(id [n]), S|i be
the strategy mapping any view V to the fibre over i of S(V) → S(id [n]).
Using the notations of Lemma 2, we must show that for any i ∈ k, we have
(f(x))|i(V ◦M) = f(zi(M))(V). But Lemma 2 entails that f(x)(V ◦M)→
f(x)(id [n]) is actually the coproduct over i′ ∈ k of all f(zi′(M))(V)

!−→ 1
i′−→

π(a(x)), so its fibre over i is indeed f(zi(M))(V). 2

Lemma 5 The map f is the unique map X →øV[−] of F-coalgebras.

Proof: Consider any such map g of coalgebras. It must be such that
g(x)(id [n]) = π(a(x)), and furthermore, using the same notation as before,
for any i ∈ k (g(x))|i(V ◦M) = g(zi(M))(V), which imposes by induction
that f = g. 2

The last two lemmas directly entail Theorem 3.

4.4 Languages

A consequence of Theorem 3 is that the family öVn supports the operations
of the grammar

. . . n ` Fi . . . (∀i ∈ I)

n `
X
i∈I

Fi
(I ∈ FinOrd0)

. . . n′ ` FM . . . (∀M : [n]→ [n′] ∈M)

n ` 〈M 7→ FM 〉
·

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 183

Here, n ` F denotes a presheaf of finite ordinals on Vn. The interpretation
is as follows: given presheaves F1, . . . , FI , for I ∈ FinOrd0, the first rule
constructs the finite coproduct

P
i∈I Fi of presheaves (finite coproducts exist

in öVn because they do in FinOrd). In particular, when I is the empty ordinal,
we sum over an empty set, so the rule degenerates to

n ` ∅
·

In terms of presheaves, this is just the constantly empty presheaf.

For the second rule, if for all basic M : [n]→ [n′], we are given FM ∈øV[n′], then 〈M 7→ FM 〉 denotes the image under (7) of

(1, 1 7→M 7→ FM).

Here, we provide an element of the right-hand side of (7), consisting of the

finite ordinal I = 1 = {1}, and the function mapping M to FM ∈ øV[n′] (up
to currying). That was for parsing; the intuition is that we construct a
presheaf with one initial state, 1, which maps any view starting with M , say
V ◦M , to FM (V). Thus the FM ’s specify what remains of our presheaf after
each possible basic move. In particular, when all the FM ’s are empty, we
obtain a presheaf which has an initial state, but which does nothing beyond
it. We abbreviate it as 0 = 〈 7→ ∅〉.

4.5 Translating CCS

It is rather easy to translate CCS into this language. First, define CCS
syntax by the natural deduction rules in Figure 3, where Names and Vars
are two fixed, disjoint, and infinite sets of names and variables; Ξ ranges
over finite sequences of pairs (x : n) of a variable x and its arity n ∈ FinOrd0,
such that the variables are pairwise distinct; Γ ranges over finite sequences
of pairwise distinct names; there are two judgements: Γ ` P for global
processes, Ξ; Γ ` P for open processes. Rule Global is the only rule for
forming global processes, and there Ξ = (x1 : |∆1|, . . . , xn : |∆n|). Finally, α
denotes a or a, for a ∈ Names, and bac = bac = a.

First, we define the following (approximation of a) translation on open

processes, mapping each open process Ξ; Γ ` P to JP K ∈ öVn, for n = |Γ|.
This translation ignores the recursive definitions, and we will refine it below
to take them into account. We proceed by induction on P , leaving contexts

184 T. Hirschowitz, D. Pous

CCSApp

Ξ; Γ ` x(a1, . . . , an)
((x : n) ∈ Ξ and a1, . . . , an ∈ Γ)

Ξ; Γ, a ` P
Ξ; Γ ` νa.P

(a /∈ Γ)
Ξ; Γ ` P Ξ; Γ ` Q

Ξ; Γ ` P |Q

. . . Ξ; Γ ` Pi . . . (∀i ∈ I)

Ξ; Γ `
X
i∈I

αi.Pi
(I ∈ FinOrd0 and ∀i ∈ I, bαic ∈ Γ)

Global
Ξ; ∆1 ` P1 . . . Ξ; ∆n ` Pn Ξ; Γ ` P
Γ ` rec x1(∆1) := P1, . . . , xn(∆n) := Pn in P

Figure 3: CCS syntax

Ξ; Γ implicit:

x(a1, . . . , ak) 7→ ∅
P |Q 7→ 〈 πln 7→ JP K,

πrn 7→ JQK,
7→ ∅ 〉

νa.P 7→ 〈νn 7→ JP K, 7→ ∅〉P
i∈I αi.Pi 7→ 〈 (ι+n,j 7→

P
k∈I

j
JPkK,

ι−n,j 7→
P
k∈Ij JPkK)j∈n,

7→ ∅ 〉.

Let us explain intuitions and notation. In the first case, we assume implicitly
that (x : k) ∈ Ξ; the intuition is just that we approximate variables with
empty strategies. Next, P |Q is translated to the strategy with one initial
state, which only accepts left and right half-forking first, and then lets its
avatars play JP K and JQK, respectively. Similarly, νa.P is translated to the
strategy with one initial state, accepting only the channel creation move, and
then playing JP K. In the last case, the guarded sum

P
i∈I αi.Pi is translated

to the strategy with one initial state, which

• accepts input on any channel a when αi = a for some i ∈ I, and output
on any channel a when αi = a for some i ∈ I;

• after an input on a, plays the sum of all JPiK’s such that αi = a; and
after an output on a, plays the sum of all JPiK’s such that αi = a.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 185

Formally, in the definition, we let, for all j ∈ n, Ij = {i ∈ I | αi = aj} and
Ij = {i ∈ I | αi = aj}. In particular, if I = ∅, we obtain 0.

Thus, almost all translations of open processes have exactly one initial
state, i.e., map the identity view on [n] to the singleton 1. The only exceptions
are variable applications, which are mapped to the empty presheaf.

The translation extends to global processes as follows. Fixing a global
process Q = (rec x1(∆1) := P1, . . . , xk(∆k) := Pk in P) typed in Γ with n
names, define the sequence (P i)i∈FinOrd0 of open processes (all typed in Ξ; Γ)
as follows. First, P 0 = P . Then, let P i+1 = dP i, where d is the derivation
endomap on open processes typed in any extension Ξ; (Γ,∆) of Ξ; Γ, which
unfolds one layer of recursive definitions. This map is defined by induction
on its argument as follows:

d(xl(a1, . . . , akl)) = Pl[bj 7→ aj]1≤j≤kl
d(P |Q) = dP |dQ

d(νa.P) = νa.dP
d(
P
i∈I αi.Pi) =

P
i∈I αi.(dPi),

where for all l ∈ {1, . . . , k}, ∆l = (b1, . . . , bkl), and P [σ] denotes simultaneous,
capture-avoiding substitution of names in P by σ.

By construction, the translations of these open processes form a sequence
JP 0K ↪→ JP 1K . . . of inclusions in öVn, such that for any natural number i and
view V ∈ Vn of length i, JP jK(V) is fixed after j = (k+ 1)i, at worst, i.e., for
all j ≥ (k + 1)i, JP jK(V) = JP (k+1)iK(V). Thus, this sequence has a colimit

in öVn, the presheaf sending any view V of length i to JP (k+1)iK(V). We put:

Definition 16 Let the translation of Q be JQK = colimi∈FinOrdJP iK.

Which equivalence is induced by this mapping on CCS, especially when
taking into account the interactive equivalences developed in the next section?
This is the main question we will try to address in future work.

5 Interactive Equivalences

5.1 Fair Testing vs. Must Testing: The Standard Case

An important part of concurrency theory consists in studying behavioural
equivalences. Since each such equivalence is supposed to define when two
processes behave the same, it might seem paradoxical to consider several
of them. Van Glabbeek [42] argues that each behavioural equivalence
corresponds to a physical scenario for observing processes.

186 T. Hirschowitz, D. Pous

A distinction we wish to make here is between fair scenarios, and
potentially unfair ones. An example of a fair scenario is when parallel
composition of processes is thought of as modelling different physical agents,
e.g., in a game with several players. Otherwise said, players are really
independent. On the other hand, an example of a potentially unfair scenario
is when parallelism is implemented via a scheduler.

This has consequences on so-called testing equivalences [7]. Let ♥ be a
fixed action.

Definition 17 A process P is must orthogonal to a context C, notation
P ⊥m C, when all maximal traces of C[P] play ♥ at some point.

Here, maximal means either infinite or finite without extensions. Let P⊥
m

be the set of all contexts must orthogonal to P .

Definition 18 P and Q are must equivalent, notation P ∼m Q, when
P⊥

m
= Q⊥

m
.

In transition systems, or automata, we have Ω ∼m Ω|a (where Ω is the
looping process, producing infinitely many silent transitions). This might be
surprising, because the context C = a.♥ |� intuitively should distinguish
these processes, by being orthogonal to Ω|a but not to Ω alone. However, it
is not orthogonal to Ω|a, because C[Ω|a] has an infinite looping trace giving
priority to Ω. This looping trace is unfair, because the synchronisation on
a is never performed. Thus, one may view the equivalence Ω ∼m Ω|a as
exploiting potential unfairness of a hypothetical scheduler.

Usually, concurrency theorists consider this too coarse, and resort to
fair testing equivalence.

Definition 19 A process P is fair orthogonal to a context C, notation
P ⊥f C, when all finite traces of C[P] extend to traces that play ♥ at some
point.

Again, P⊥
f

denotes the set of all contexts fair orthogonal to P .

Definition 20 P and Q are fair equivalent, notation P ∼f Q, when P⊥
f

=

Q⊥
f
.

This solves the issue, i.e., Ω �f Ω|a.
In summary, the mainstream setting for testing equivalences relies on

traces; and the notion of maximality for traces is intrinsically unfair. This is

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 187

usually rectified by resorting to fair testing equivalence over must testing
equivalence. Our setting is more flexible, in the sense that maximal plays are
better behaved than maximal traces. In terms of the previous section, this
allows viewing the looping trace Ω|a|a.♥ τ−→ Ω|a|a.♥ τ−→ . . . as non-maximal.
In the next sections, we define an abstract notion of interactive equivalence
(still in the particular case of CCS but in our setting) and we instantiate it
to define and study the counterparts of must and fair testing equivalences.

5.2 Interactive Equivalences

Definition 21 A play is closed-world when it is a composite of closed-world
extended moves.

Equivalently, a play is closed-world when all of its basic moves are part of a
closed-world move.

Let W ↪→ E be the full subcategory of closed-world plays, W(X) being
the fibre over X for the projection functor W→ B, i.e., the subcategory of
W consisting of closed-world plays with base X, and morphisms (idX , k)
between them5.

Let the category of closed-world behaviours on X be the category

GX = ÖW(X) of presheaves on W(X). We may now put:

Definition 22 An observable criterion consists for all positions X, of a
replete subcategory ⊥⊥X ↪→ GX .

Recall that ⊥⊥X being replete means that for all F ∈ ⊥⊥X and isomorphism
f : F → F ′ in GX , F ′ and f are in ⊥⊥X .

An observable criterion specifies the class of ‘successful’, closed-world
behaviours. The two criteria considered below are two ways of formalising
the idea that a successful behaviour is one in which all accepted closed-world
plays are ‘successful’, in the sense that some player plays the tick move at
some point.

We now define interactive equivalences. Recall that [F,G] denotes the
amalgamation of F and G, and that right Kan extension along iopZ induces a

functor RaniopZ
: dVZ → ÓEZ . Furthermore, precomposition with the canonical

5This is not exactly equivalent to what could be noted WX , since in the latter there are
objects U ←↩ Y ↪→ X with a strict inclusion Y ↪→ X. However, both should be equivalent
for what we do in this paper, i.e., fair and must equivalences.

188 T. Hirschowitz, D. Pous

inclusion jZ : W(Z) ↪→ EZ induces a functor j∗Z : ÓEZ →ÖW(Z). Composing
the two, we obtain a functor Gl : SZ → GZ :

SZ =dVZ Ran
i
op
Z−−−−→ ÓEZ j∗Z−→ÖW(Z) = GZ .

Definition 23 For any innocent strategy F on X
and any pushout square P of positions as on the right,
with I consisting only of channels, let F⊥⊥P be the class
of all innocent strategies G on Y such that Gl([F,G]) ∈
⊥⊥Z .

I Y

X Z
(8)

Here, G is thought of as a test for F . Also, P denotes the whole pushout
square and F⊥⊥P denotes all the valid tests for the considered pushout square
P . From the CCS point of view, I corresponds to the set of names shared
by the process under observation (F) and the test (G).

Definition 24 Any two innocent strategies F, F ′ ∈ SX are ⊥⊥-equivalent,
notation F ∼⊥⊥ F ′, iff for all pushouts P as in 8, F⊥⊥P = F ′⊥⊥P .

5.3 Fair vs. Must

Let us now define fair and must testing equivalences. Let a closed-world
play be successful when it contains a ♥n. Furthermore, for any closed-world
behaviour G ∈ GX and closed-world play U ∈W(X), an extension of a state
σ ∈ G(U) to U ′ is a σ′ ∈ G(U ′) with i : U → U ′ and G(i)(σ′) = σ. The
extension σ′ is successful when U ′ is. The intuition is that the behaviour G,
before reaching U ′ with state σ′, passed through U with state σ.

Definition 25 The fair criterion ⊥⊥f contains all closed-world behaviours
G such that any state σ ∈ G(U) for finite U admits a successful extension.

Now call an extension of σ ∈ G(U) strict when U → U ′ is not surjective,
or, equivalently, when U ′ contains more moves than U . For any closed-world
behaviour G ∈ GX , a state σ ∈ G(U) is G-maximal when it has no strict
extension.

Definition 26 Let the must criterion ⊥⊥m consist of all closed-world be-
haviours G such that for all closed-world U and G-maximal σ ∈ G(U), U is
successful.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 189

As explained in the introduction and Section 5.1, unlike in the standard
setting, this definition of must testing equivalence distinguishes between the
processes Ω and Ω|a. Indeed, take the CCS context C = a.♥ | �, which
we can implement by choosing as a test the strategy T = Ja.♥K on a single
player knowing one channel a. Taking I to consist of the sole channel a, the
pushout Z as in Definition 23 consists of two players, say x for the observed
strategy and y for the test strategy, sharing the channel a. Now, assuming
that Ω loops deterministically, the global behaviour G = Gl([JP K, T]) has
exactly one state on the identity play, and again exactly one state on the
play π1 consisting of only one fork move by x. Thus, G reaches a position
with three players, say x1 playing Ω, x2 playing a, and y playing a.♥. The
play with infinitely many silent moves by x1 is not maximal: we could insert
(anywhere in the sequence of moves by x1) a synchronisation move by x2

and y, and then a tick move by the avatar of y. Essentially: our notion of
play is more fair than just traces.

To get more intuition about must testing equivalence in our setting, we
prove that it actually coincides with the testing equivalence generated by
the following criterion:

Definition 27 The spatially fair criterion ⊥⊥sf contains all closed-world
behaviours G such that any state σ ∈ G(U) admits a successful extension.

This criterion is almost like the fair criterion, except that we do not restrict
to finite plays. The key result to show the equivalence is:

Theorem 4 For any innocent strategy F on X, any state σ ∈ Gl(F)(U)
admits a Gl(F)-maximal extension.

The proof is in Appendix B. Thanks to the theorem, we have:

Lemma 6 For all F ∈ SX , Gl(F) ∈ ⊥⊥mX iff Gl(F) ∈ ⊥⊥sfX .

Proof: Let G = Gl(F).
(⇒) By Theorem 4, any state σ ∈ G(U) has a G-maximal extension

σ′ ∈ G(U ′), which is successful by hypothesis, hence σ has a successful
extension.

(⇐) Any G-maximal σ ∈ G(U) admits by hypothesis a successful
extension which may only be on U byG-maximality, and hence U is successful.
2

(Note that U is not necessarily finite in the proof of the right-to-left
implication, so that the argument does not apply to the fair criterion.)

Now comes the expected result:

190 T. Hirschowitz, D. Pous

Theorem 5 For all F, F ′ ∈ SX , F ∼⊥⊥m F ′ iff F ∼⊥⊥sf F ′.

Proof: (⇒) Consider two innocent strategies F and F ′ on X, and an
innocent strategy G on Y (as in the pushout (8)). As in spatial decomposition
(Proposition 5), copairing induces an isomorphism SX × SY → SZ , and we
have, using Lemma 6:

Gl[F,G] ∈ ⊥⊥sf iff Gl[F,G] ∈ ⊥⊥m

iff Gl[F ′, G] ∈ ⊥⊥m

iff Gl[F ′, G] ∈ ⊥⊥sf

(⇐) Symmetric. 2

Intuitively, must testing only considers spatially fair schedulings, in the
sense that all players appearing in a play should be given the opportunity
to play: no one should starve.

However, this is not the only source of unfairness, so that must test-
ing and fair testing differ. To see this, consider the CCS process P =
νb.rec x(a, b) := b|(b.(x(a, b)) + a) in x(a, b), that can repeatedly perform
synchronisations on the private channel b, until it chooses to perform an
output on a. We have JΩK ∼sf JP K while JΩK 6∼f JP K. Indeed, since the
choice between doing a synchronisation on b or an output on a is done by a
single player, the infinite play where the output on a is never performed is
maximal: no player starve, we just have a player that repeatedly chooses
the same branch, in an unfair way.

We leave for future work the investigation of such unfair scenarios and
their correlation to the corresponding behaviours in classical presentations
of CCS.

A Temporal Decomposition

This section is a proof of Theorem 2. Let us first review the general
equivalences mentioned in the proof sketch. The product of a family of
presheaf categories is isomorphic to the category of presheaves over the
corresponding coproduct of categories:

Lemma 7 We have
Q
M∈Mn

Scod(M)
∼= [
P
M∈Mn

Vop
cod(M), Set].

Furthermore, let the functor ∆: Set→ ÒC map any set X to the constant
presheaf mapping any C ∈ C to X. We have:

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 191

Lemma 8 For any small category C, Fam(ÒC) ' (ÒC ↓ ∆).

Proof: A generalisation of the more well-known SetX ' Set/X. 2

Corollary 1 We have:

Fam

� Y
M∈Mn

Scod(M)

�
' ([

X
M∈Mn

Vop
cod(M),Set] ↓ ∆).

We now construct the lax pushout (6). A first step is the construction,
for each move [n] ↪→M ←↩ [n′], of a functor (− ◦M) : V[n′] → V[n] given by

precomposition with M in Cospan(ÒC). This functor maps any V1 : [n′] ↪→ V1

to the view V1 ◦M , i.e., the view [n] ↪→ V ′1 defined by the colimit

[n] [n′]

M V1

V ′1 .

This of course relies on the choice of such a colimit for every V and V1. Any
morphism f : V1 → V2 in V[n′], letting V ′2 = V2 ◦ V , is mapped to the dashed
morphism induced by universal property of pushout in

[n] [n′]

V V1

V ′1

V2

V ′2 .

f

f◦V

Once the choice has been made on objects, the map for morphisms is
determined uniquely.

This family of functors allows us to decompose V[n] as follows:

192 T. Hirschowitz, D. Pous

Lemma 9 The diagramP
M∈Mn

Vop
cod(M)

P
M∈Mn

Vop
cod(M)

1 Vop
[n]

!

pid [n]q

[−◦M]M∈Mn
λ (9)

is a lax pushout, where λM,V : id [n] → M ◦ V , seen in V[n], is the obvious
inclusion.

Proof: For any category C, taking such a lax pushout of idC with 1 just
adds a terminal object to C. The rest is an easy verification. A dual result
of course holds with V[n], reversing the direction of λ. 2

Now, it is well-known that, in any small 2-category K, any contravariant
hom-2-functor, i.e., 2-functor of the shape K(−, X) for X ∈ K, maps
weighted colimits in K to weighted limits in Cat. For an introduction to
weighted limits and colimits in the case of enrichment over Cat, see Kelly [26].
Here, for any 2-category P , and 2-functors G : P → K and J : P op → Cat,
any colimit L = J ? G of G weighted by J with unit ξ : J → K(G(−), L) in
[P op ,Cat] is mapped, for any object X ∈ K, by the hom-2-functor K(−, X)
to a limit of K(G(−), X) : P op → Cat weighted by J in Cat, with unit
K(ξ,X) : J → Cat(K(L,X),K(G(−), X)), in Cat. In particular, lax pushouts
are mapped to lax pullbacks. As usual, considering a larger universe, we
may replace Cat with CAT and obtain the same results with K = Cat.

Recalling our lax pushout (9) and taking the hom-categories to Set, we
obtain a lax pullback

[
P
M∈Mn

Vop
cod(M), Set] [

P
M∈Mn

Vop
cod(M),Set]

Set S[n]

!∗
λ∗

in CAT, i.e., a comma category. But observe that restriction along ! is
precisely ∆: Set → [

P
M∈Mn

Vop
cod(M), Set], so we have indeed shown that

S[n] is a comma category [
P
M∈Mn

Vop
cod(M),Set] ↓ ∆.

B Maximal Extensions

This section is a proof of Theorem 4.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 193

Lemma 10 For any position X, the category W(X) of closed-world plays
is a preorder.

Proof: Easy. 2

In the following, we consider the quotient poset.

Lemma 11 In W(X), any non-decreasing chain admits an upper bound.

Recall M, the graph of all basic moves, and the set Mn of edges from
n, for each n. Let now, for each n, Mf

n be the analogous set with full moves,
i.e., the set of isomorphism classes of full moves from [n].

Lemma 12 For each play U ∈ EX , the coproduct of all s maps from full
moves � X

n∈FinOrd

X
M∈Mf

n

U(M)

�
→

X
n∈FinOrd

U [n], (10)

is injective.

Recall here that for forking, we have also called s the common composite
l ◦ s = r ◦ s (see the discussion following Definition 3).

Proof: By induction on U . 2

Lemma 13 Any non-decreasing sequence in the poset W(X) admits its
colimit in ÒC as an upper bound.

Proof: Consider any increasing sequence U1 ↪→ U2 ↪→ . . . of plays in
W(X). Let U be its colimit in ÒC. We want to prove that U is a play.

First, observe that U satisfies joint injectivity of s-maps as in Lemma 12:
indeed, if we had a player p and two full moves M and M ′ such that
s(M) = s(M ′) = p, then all of M , M ′, and p would appear in some U i,
which, being a play, has to satisfy joint injectivity.

For each n, Un comes with a sequence of compatible (closed-world)
extended moves

X = Xn
0 ↪→Mn

1 ←↩ Xn
1 ↪→ . . .←↩ Xn

i−1 ↪→Mn
i ←↩ Xn

i ↪→ . . .

which are also (by the colimit cocone) morphisms over U in ÒC. For each i ≥ 1,
taking the colimit of the i first moves yields a finite play X ↪→ Uni ←↩ Xn

i .
By convention, letting Un0 = X extends this to i ≥ 0. Similarly, we may

194 T. Hirschowitz, D. Pous

consider all the given plays infinite, by accepting not only extended moves,
but also identity cospans.

We consider the poset of pairs (N,n) ∈ {(0, 0)}]
P
N∈FinOrd∗ N , with

lexicographic order, i.e., (N,n) ≤ (N ′, n′) when N < N ′ or when N = N ′

and n ≤ n′.
We will construct by induction on (N,n) a sequence of composable

closed-world moves, with colimit U ′, such that for all (N,n), UnN−n+1 ⊆ U ′
in W(X)/U . More precisely, we construct for each (N,n) an integer KN,n

and a sequence

X = XN,n
0 ↪→MN,n

1 ←↩ XN,n
1 ↪→ . . .←↩ XN,n

KN,n−1 ↪→MN,n
KN,n

←↩ XN,n
KN,n

,

(again, if KN,n = 0, we mean the empty sequence) such that

• for all (N ′, n′) < (N,n), we have KN ′,n′ ≤ KN,n and the sequence

(MN ′,n′

i)i∈KN′,n′ is a prefix of (MN,n
i∈KN,n

);

• and the colimit, say UN,n, of (MN,n
i)i∈KN,n

is such that for all (N ′, n′) ≤
(N,n), Un

′
N−n′+1 ⊆ UN,n in W(X)/U .

For the base case, we let K0,0 = 0, which forces M0,0 to be the empty
sequence on X.

For the induction step, consider any (N,n) 6= (0, 0), and let (N0, n0)
be the predecessor of (N,n). The induction hypothesis gives a KN0,n0 and

a sequence (MN0,n0
i)i∈KN0,n0

satisfying some hypotheses, among which the
existence of a diagram

X UnN−n Xn
N−n Mn

N−n+1 Xn
N−n+1

X UN0,n0 XN0,n0

KN0,n0

over U .
Now, if Mn

N−n+1 → U factors through UN0,n0 , then we put KN,n =

KN0,n0 and (MN,n
i)i∈KN,n

= (MN0,n0
i)i∈KN0,n0

, and all induction hypotheses
go through.

Otherwise, Mn
N−n+1 is played by players in Xn

N−n which are not in the
joint image of all s maps (10) in UN0,n0 , otherwise s maps in U could not
be jointly injective, contradicting Lemma 12. Technically, the diagram

Xn
N−n →Mn

N−n+1 ← Xn
N−n+1

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 195

is obtained by pushing some (non-extended) closed-world move Y →M ← Y ′

along some morphism I → Z from an interface I, and the induced morphism
Y → Xn

N−n → UnN−n → UN0,n0 factors through XN0,n0

KN0,n0
. We consider the

subposition Z ′ ⊆ XN0,n0

KN0,n0
making

I Y

Z ′ XN0,n0

KN0,n0

a pushout; Z ′ consists of the players in XN0,n0

KN0,n0
that are not in the image of

Y , plus their names, plus possibly missing names from I.
Then, pushing Y →M ← Y ′ along I → Z ′, we obtain an extended move

XN0,n0

KN0,n0
↪→M ′ ←↩ X ′. We let KN,n = KN0,n0 + 1 and define (MN,n

i)i∈KN,n

to be the extension of (MN0,n0
i)i∈KN0,n0

by M ′. This induces a unique
map UN,n → U by universal property of UN,n as a colimit. All induction
hypotheses go through; in particular, UnN−n+1 is a union UnN−n ∪Mn

N−n+1 in
W(X)/U , and actually a union UnN−n∪M ; similarly, UN,n = UN0,n0 ∪M ; so,
since we have UnN−n ⊆ UN0,n0 by induction hypothesis, we obtain UnN−n+1 ⊆
UN,n.

The sequences MN,n induce by union a possibly infinite sequence of
closed-world extended moves, i.e., a closed-world play U ′, such that for all
(N,n), UnN−n+1 ⊆ U ′, hence, for all n, Un ⊆ U ′ ⊆ U , i.e., U ′ ∼= U . Thus, U
is indeed a play. 2

We are almost ready for proving Theorem 4. We just need one more
lemma. Consider any innocent strategy F on X, play U ∈W(X), and any
state σ ∈ Gl(F)(U). Consider now the poset Fσ of Gl(F)-extensions of σ
(made into a poset by choosing a skeleton of W(X)), where σ′ ∈ F (U ′) ≤
σ′′ ∈ F (U ′′) iff U ′ ≤ U ′′. This poset is not empty, since it contains σ.
Furthermore, we have:

Lemma 14 Any non-decreasing sequence in Fσ admits an upper bound.

Proof: Any such sequence, say (σi)i∈FinOrd, induces a non-decreasing
sequence of plays in W(X), say (Ui)i, which by Lemma 13 admits its colimit,
say U ′, as an upper bound. Now, any view inclusion j : V ↪→ U ′, factors
through some Ui, and we let σj = (σi)|V (this does not depend on the choice
of i). This assignment determines (by innocence of F and by construction
of the right Kan extension as an end) an element σ′ ∈ F (U ′), which is an
upper bound for (σi)i∈FinOrd. 2

196 T. Hirschowitz, D. Pous

Proof of Theorem 4: Consider any innocent strategy F on X, play
U ∈W(X), and any state σ ∈ Gl(F)(U). Consider as above the poset Fσ of
Gl(F)-extensions of σ. By the last lemma, we may apply Zorn’s lemma to
choose a maximal element of Fσ, which is a Gl(F)-maximal extension of σ.
2

References

[1] Emmanuel Beffara. Logique, réalisabilité et concurrence. PhD thesis,
Université Paris 7, December 2005.

[2] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva. A
Kleene theorem for polynomial coalgebras. In Luca de Alfaro, editor,
FOSSACS, volume 5504 of Lecture Notes in Computer Science, pages
122–136. Springer, 2009.

[3] Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In Insup
Lee and Scott A. Smolka, editors, CONCUR, volume 962 of Lecture
Notes in Computer Science, pages 313–327. Springer, 1995.

[4] Albert Burroni. Higher-dimensional word problems with applications
to equational logic. Theoretical Computer Science, 115(1):43–62, 1993.

[5] Aurelio Carboni and Peter Johnstone. Connected limits, familial rep-
resentability and artin glueing. Mathematical Structures in Computer
Science, 5(4):441–459, 1995.

[6] Aurelio Carboni and Peter Johnstone. Corrigenda for ‘connected limits,
familial representability and artin glueing’. Mathematical Structures in
Computer Science, 14(1):185–187, 2004.

[7] Rocco De Nicola and Matthew Hennessy. Testing equivalences for
processes. Theor. Comput. Sci., 34:83–133, 1984.

[8] Olivier Delande and Dale Miller. A neutral approach to proof and
refutation in mall. In LICS ’08 [30], pages 498–508.

[9] H. Ehrig, H.-J. Kreowski, Ugo Montanari, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Trans-
formation, Volume 3: Concurrency, Parallelism and Distribution. World
Scientific, 1999.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 197

[10] Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax.
In LICS ’08 [30], pages 57–68.

[11] Fabio Gadducci, Reiko Heckel, and Mercè Llabrés. A bi-categorical
axiomatisation of concurrent graph rewriting. Electronic Notes in
Theoretical Computer Science, 29, 1999.

[12] Fabio Gadducci and Ugo Montanari. The tile model. In Gordon D.
Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and
Interaction, pages 133–166. The MIT Press, 2000.

[13] Jean-Yves Girard. Locus solum: From the rules of logic to the logic
of rules. Mathematical Structures in Computer Science, 11(3):301–506,
2001.

[14] Yves Guiraud and Philippe Malbos. Higher-dimensional categories
with finite derivation type. Theory and Applications of Categories,
22(18):420–278, 2009.

[15] André Hirschowitz and Marco Maggesi. Modules over monads and
linearity. In Daniel Leivant and Ruy J. G. B. de Queiroz, editors,
WoLLIC, volume 4576 of Lecture Notes in Computer Science, pages
218–237. Springer, 2007.

[16] André Hirschowitz and Marco Maggesi. Modules over monads and
initial semantics. Information and Computation, 208(5):545–564, 2010.

[17] André, Michel, and Tom Hirschowitz. Contraction-free proofs and
finitary games for linear logic. Electronic Notes in Theoretical Computer
Science, 249:287–305, 2009.

[18] Tom Hirschowitz. Cartesian closed 2-categories and permuta-
tion equivalence in higher-order rewriting. Preprint. http://hal.

archives-ouvertes.fr/hal-00540205/en/, 2010.

[19] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves
and interactive equivalences for CCS. In Alexandra Silva, Simon Bliudze,
Roberto Bruni, and Marco Carbone, editors, ICE, volume 59 of EPTCS,
pages 2–24, 2011.

[20] Martin Hyland. Semantics and Logics of Computation, chapter Game
Semantics. Cambridge University Press, 1997.

http://hal.archives-ouvertes.fr/hal-00540205/en/
http://hal.archives-ouvertes.fr/hal-00540205/en/

198 T. Hirschowitz, D. Pous

[21] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in
Studies in Logic and the Foundations of Mathematics. North Holland,
Amsterdam, 1999.

[22] Ole H. Jensen and Robin Milner. Bigraphs and mobile processes (re-
vised). Technical Report TR580, University of Cambridge, 2004.

[23] P. T. Johnstone, S. Lack, and P. Sobociński. Quasitoposes, quasiadhesive
categories and Artin glueing. In CALCO, volume 4624 of LNCS, pages
312–326. Springer Verlag, 2007.

[24] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and
open maps. In LICS ’93, pages 418–427. IEEE Computer Society, 1993.

[25] Stefano Kasangian and Anna Labella. Observational trees as models for
concurrency. Mathematical Structures in Computer Science, 9(6):687–
718, 1999.

[26] G. M. Kelly. Elementary observations on 2-categorical limits. Bulletin
of the Australian Mathematical Society, 39:301–317, 1989.

[27] Joachim Kock. Polynomial functors and trees. International Mathemat-
ics Research Notices, 2011(3):609–673, 2011.

[28] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor.
Comput. Sci., 308(1-3):259–276, 2003.

[29] James J. Leifer and Robin Milner. Deriving bisimulation congruences
for reactive systems. In Catuscia Palamidessi, editor, CONCUR, volume
1877 of Lecture Notes in Computer Science, pages 243–258. Springer,
2000.

[30] Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA.
IEEE Computer Society, 2008.

[31] Saunders Mac Lane. Categories for the Working Mathematician. Num-
ber 5 in Graduate Texts in Mathematics. Springer, 2nd edition, 1998.

[32] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic:
A First Introduction to Topos Theory. Universitext. Springer, 1992.

Innocent Strategies as Presheaves and
Interactive Equivalences for CCS 199

[33] Paul-André Melliès. Asynchronous games 2: the true concurrency of
innocence. In Proc. CONCUR ’04, volume 3170 of LNCS, pages 448–465.
Springer Verlag, 2004.

[34] Robin Milner. A Calculus of Communicating Systems, volume 92 of
LNCS. Springer, 1980.

[35] V. Natarajan and Rance Cleaveland. Divergence and fair testing. In
Zoltán Fülöp and Ferenc Gécseg, editors, ICALP, volume 944 of Lecture
Notes in Computer Science, pages 648–659. Springer, 1995.

[36] Tobias Nipkow. Higher-order critical pairs. In LICS ’91, pages 342–349.
IEEE Computer Society, 1991.

[37] Gordon D. Plotkin. A structural approach to operational semantics.
DAIMI Report FN-19, Computer Science Department, Aarhus Univer-
sity, 1981.

[38] Julian Rathke and Pawel Sobocinski. Deconstructing behavioural the-
ories of mobility. In IFIP TCS, volume 273 of IFIP, pages 507–520.
Springer, 2008.

[39] Vladimiro Sassone and Pawel Sobociński. Deriving bisimulation con-
gruences using 2-categories. Nordic Journal of Computing, 10(2), 2003.

[40] Peter Sewell. From rewrite to bisimulation congruences. In Davide
Sangiorgi and Robert de Simone, editors, CONCUR, volume 1466 of
Lecture Notes in Computer Science, pages 269–284. Springer, 1998.

[41] Daniele Turi and Gordon D. Plotkin. Towards a mathematical opera-
tional semantics. In LICS ’97, pages 280–291, 1997.

[42] Rob J. van Glabbeek. The linear time-branching time spectrum (ex-
tended abstract). In Jos C. M. Baeten and Jan Willem Klop, editors,
CONCUR, volume 458 of Lecture Notes in Computer Science, pages
278–297. Springer, 1990.

[43] Angelo Vistoli. Notes on Grothendieck topologies, fibered categories
and descent theory. Preprint. http://arxiv.org/abs/math/0412512,
2007.

c© Scientific Annals of Computer Science 2012

http://arxiv.org/abs/math/0412512

Checking NFA equivalence
with bisimulations up to congruence

Filippo Bonchi Damien Pous
CNRS, ENS Lyon, Université de Lyon, LIP (UMR 5668)

{filippo.bonchi,damien.pous}@ens-lyon.fr

Abstract
We introduce bisimulation up to congruence as a technique for
proving language equivalence of non-deterministic finite automata.
Exploiting this technique, we devise an optimisation of the classical
algorithm by Hopcroft and Karp [16]. We compare our approach to
the recently introduced antichain algorithms, by analysing and re-
lating the two underlying coinductive proof methods. We give con-
crete examples where we exponentially improve over antichains;
experimental results moreover show non negligible improvements.

Keywords Language Equivalence, Automata, Bisimulation, Coin-
duction, Up-to techniques, Congruence, Antichains.

1. Introduction
Checking language equivalence of finite automata is a classical
problem in computer science, which finds applications in many
fields ranging from compiler construction to model checking.

Equivalence of deterministic finite automata (DFA) can be
checked either via minimisation [9, 15] or through Hopcroft and
Karp’s algorithm [2, 16], which exploits an instance of what is
nowadays called a coinduction proof principle [24, 27, 29]: two
states recognise the same language if and only if there exists a
bisimulation relating them. In order to check the equivalence of
two given states, Hopcroft and Karp’s algorithm creates a relation
containing them and tries to build a bisimulation by adding pairs of
states to this relation: if it succeeds then the two states are equiva-
lent, otherwise they are different.

On the one hand, minimisation algorithms have the advantage of
checking the equivalence of all the states at once (while Hopcroft
and Karp’s algorithm only check a given pair of states). On the
other hand, they have the disadvantage of needing the whole au-
tomata from the beginning1, while Hopcroft and Karp’s algorithm
can be executed “on-the-fly” [12], on a lazy DFA whose transitions
are computed on demand.

This difference is fundamental for our work and for other re-
cently introduced algorithms based on antichains [1, 33]. Indeed,
when starting from non-deterministic finite automata (NFA), the

1 There are few exceptions, like [19] which minimises labelled transition
systems w.r.t. bisimilarity rather than trace equivalence.

[Copyright notice will appear here once ’preprint’ option is removed.]

powerset construction used to get deterministic automata induces
an exponential factor. In contrast, the algorithm we introduce in this
work for checking equivalence of NFA (as well as those in [1, 33])
usually does not build the whole deterministic automaton, but just
a small part of it. We write “usually” because in few bad cases, the
algorithm still needs exponentially many states of the DFA.

Our algorithm is grounded on a simple observation on deter-
minised NFA: for all sets X and Y of states of the original NFA,
the union (written +) of the language recognised by X (written
[[X]]) and the language recognised by Y ([[Y]]) is equal to the lan-
guage recognised by the union ofX and Y ([[X+Y]]). In symbols:

[[X + Y]] = [[X]] + [[Y]] (1)

This fact leads us to introduce a sound and complete proof tech-
nique for language equivalence, namely bisimulation up to context,
that exploits both induction (on the operator +) and coinduction:
if a bisimulation R equates both the (sets of) states X1, Y1 and
X2, Y2, then [[X1]] = [[Y1]] and [[X2]] = [[Y2]] and, by (1), we can
immediately conclude that also X1 + X2 and Y1 + Y2 are lan-
guage equivalent. Intuitively, bisimulations up to context are bisim-
ulations which do not need to relate X1 +X2 and Y1 + Y2 when
X1 (resp. X2) and Y1 (resp. Y2) are already related.

To illustrate this idea, let us check the equivalence of states x
and u in the following NFA. (Final states are overlined, labelled
edges represent transitions.)

x

a

��
z

a
oo

a ''
y

a
ff u

a ''

a

��
w

a
ff v

a
oo

The determinised automaton is depicted below.

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a

GG

6

{u}
a
// {v, w}

a
// {u,w}

a
// {u, v, w} a

}}

Each state is a set of states of the NFA, final states are overlined:
they contain at least one final state of the NFA. The numbered
lines show a relation which is a bisimulation containing x and u.
Actually, this is the relation that is built by Hopcroft and Karp’s
algorithm (the numbers express the order in which pairs are added).

The dashed lines (numbered by 1, 2, 3) form a smaller relation
which is not a bisimulation, but a bisimulation up to context: the
equivalence of states {x, y} and {u, v, w} could be immediately
deduced from the fact that {x} is related to {u} and {y} to {v, w},
without the need of further exploring the determinised automaton.

Bisimulations up-to, and in particular bisimulations up to con-
text, have been introduced in the setting of concurrency theory [24,

1 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

http://hal.archives-ouvertes.fr/hal-00639716
http://hal.archives-ouvertes.fr

25, 28] as a proof technique for bisimilarity of CCS or π-calculus
processes. As far as we know, they have never been used for prov-
ing language equivalence of NFA.

Among these techniques one should also mention bisimulation
up to equivalence, which, as we show in this paper, is implicitly
used in the original Hopcroft and Karp’s algorithm. This technique
can be briefly explained by noting that not all bisimulations are
equivalence relations: it might be the case that a bisimulation re-
lates (for instance) X and Y , Y and Z but not X and Z. However,
since [[X]] = [[Y]] and [[Y]] = [[Z]], we can immediately conclude
that X and Z recognise the same language. Analogously to bisim-
ulations up to context, a bisimulation up to equivalence does not
need to relate X and Z when they are both related to some Y .

The techniques of up-to equivalence and up-to context can be
combined resulting in a powerful proof technique which we call
bisimulation up to congruence. Our algorithm is in fact just an ex-
tension of Hopcroft and Karp’s algorithm that attempts to build
a bisimulation up to congruence instead of a bisimulation up to
equivalence. An important consequence, when using up to congru-
ence, is that we do not need to build the whole deterministic au-
tomata, but just those states that are needed for the bisimulation
up-to. For instance, in the above NFA, the algorithm stops after
equating z and u+ v and does not build the remaining four states.
Despite their use of the up to equivalence technique, this is not the
case with Hopcroft and Karp’s algorithm, where all accessible sub-
sets of the deterministic automata have to be visited at least once.

The ability of visiting only a small portion of the determinised
automaton is also the key feature of the antichain algorithm [33]
and its optimisation exploiting similarity [1]. The two algorithms
are designed to check language inclusion rather than equivalence,
but we can relate these approaches by observing that the two prob-
lems are equivalent ([[X]] = [[Y]] iff [[X]] ⊆ [[Y]] and [[Y]] ⊆ [[X]];
and [[X]] ⊆ [[Y]] iff [[X]] + [[Y]] = [[Y]] iff [[X + Y]] = [[Y]]).

In order to compare with these algorithms, we make explicit
the coinductive up-to technique underlying the antichain algo-
rithm [33]. We prove that this technique can be seen as a restriction
of up to congruence, for which symmetry and transitivity are not al-
lowed. As a consequence, the antichain algorithm usually needs to
explore more states than our algorithm. Moreover, we show how to
integrate the optimisation proposed in [1] in our setting, resulting
in an even more efficient algorithm.

Summarising, the contributions of this work are

(1) the observation that Hopcroft and Karp implicitly use bisimula-
tions up to equivalence (Section 2),

(2) an efficient algorithm for checking language equivalence (and
inclusion), based on a powerful up to technique (Section 3),

(3) a comparison with antichain algorithms, by recasting them into
our coinductive framework (Sections 4 and 5).

Outline
Section 2 recalls Hopcroft and Karp’s algorithm for DFA, show-
ing that it implicitly exploits bisimulation up to equivalence. Sec-
tion 3 describes the novel algorithm, based on bisimulations up to
congruence. We compare this algorithm with the antichain one in
Section 4, and we show how to exploit similarity in Section 5. Sec-
tion 6 is devoted to benchmarks. Sections 7 and 8 discuss related
and future works. Omitted proofs can be found in the Appendix.

Notation
We denote sets by capital letters X,Y, S, T . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is their
Cartesian product,X]Y is the disjoint union and XY is the set of
functions f : Y → X . Finite iterations of a function f : X → X

are denoted by fn (formally, f0(x) = x, fn+1(x) = f(fn(x))).
The collection of subsets of X is denoted by P(X). The (omega)
iteration of a function f : P(X) → P(X) is denoted by fω

(formally, fω(Y) =
⋃
n≥0 f

n(Y)). For a set of letters A, A?

denotes the set of all finite words over A; ε the empty word; and
w1w2 the concatenation of words w1, w2 ∈ A?. We use 2 for the
set {0, 1} and 2A

?

for the set of all languages over A.

2. Hopcroft and Karp’s algorithm for DFA
A deterministic finite automaton (DFA) over the alphabet A is a
triple (S, o, t), where S is a finite set of states, o : S → 2 is
the output function, which determines if a state x ∈ S is final
(o(x) = 1) or not (o(x) = 0), and t : S → SA is the transition
function which returns, for each state x and for each letter a ∈ A,
the next state ta(x). For a ∈ A, we write x a→ x′ to mean that
ta(x) = x′. For w ∈ A?, we write x w→ x′ for the least relation

such that (1) x ε→ x and (2) x aw′→ x′ iff x a→ x′′ and x′′ w
′
→ x′.

For any DFA, there exists a function [[−]] : S → 2A
?

mapping
states to languages, defined for all x ∈ S as follows:

[[x]](ε) = o(x) , [[x]](aw) = [[ta(x)]](w) .

The language [[x]] is called the language accepted by x. Given two
automata (S1, o1, t1) and (S2, o2, t2), the states x1 ∈ S1 and
x2 ∈ S2 are said to be language equivalent (written x1 ∼ x2)
iff they accept they same language.

Remark 1. In the following, we will always consider the prob-
lem of checking the equivalence of states of one single and fixed
automaton (S, o, t). We do not loose generality since for any two
automata (S1, o1, t1) and (S2, o2, t2) it is always possible to build
an automaton (S1] S2, o1] o2, t1] t2) such that the language
accepted by every state x ∈ S1] S2 is the same as the language
accepted by x in the original automaton (Si, oi, ti). For this rea-
son, we also work with automata without explicit initial states: we
focus on the equivalence of two arbitrary states of a fixed DFA.

2.1 Proving language equivalence via coinduction
We first define bisimulation. We make explicit the underlying no-
tion of progression which we need in the sequel.

Definition 1 (Progression, Bisimulation). Given two relations
R,R′ ⊆ S × S on states, R progresses to R′, denoted R� R′, if
whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) R′ ta(y).

A bisimulation is a relation R such that R� R.

As expected, bisimulation is a sound and complete proof tech-
nique for checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states are language equivalent
iff there exists a bisimulation that relates them.

2.2 Naive algorithm
Figure 1 shows a naive version of Hopcroft and Karp’s algorithm
for checking language equivalence of the states x and y of a de-
terministic finite automaton (S, o, t). Starting from x and y, the
algorithm builds a relation R that, in case of success, is a bisimula-
tion. In order to do that, it employs the set (of pairs of states) todo
which, intuitively, at any step of the execution, contains the pairs
(x′, y′) that must be checked: if (x′, y′) already belongs to R, then
it has already been checked and nothing else should be done. Other-
wise, the algorithm checks if x′ and y′ have the same outputs (i.e.,
if both are final or not). If o(x′) 6= o(y′), then x and y are different.

2 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

Naive(x, y)

(1) R is empty; todo is empty;
(2) insert (x, y) in todo;
(3) while todo is not empty , do {

(3.1) extract (x′, y′) from todo;
(3.2) if (x′, y′) ∈ R then skip;

(3.3) if o(x′) 6= o(y′) then return false;
(3.4) for all a ∈ A,

insert (ta(x
′), ta(y

′)) in todo;
(3.5) insert (x′, y′) in R;

(4) return true;

Figure 1. Naive algorithm for checking the equivalence of states
x and y of a DFA (S, o, t); R and todo are sets of pairs of states.
The code of HK(x, y) is obtained by replacing step 3.2 with if
(x′, y′) ∈ e(R) then skip.

x
a //

1

y

a
((

2

z
a

hh

3

u
a
// v

a
((
w

a

hh

x
a,b //

1

y
a,b //

2 5

z a,bdd

3

4

v

a,b
((
w

a,b

hh

u
a

66

b

;;

Figure 2. Checking for DFA equivalence.

If o(x′) = o(y′), then the algorithm inserts (x′, y′) in R and, for
all a ∈ A, the pairs (ta(x′), ta(y′)) in todo.

Proposition 2. For all x, y ∈ S, x ∼ y iff Naive(x, y).

Proof. We first observe that if Naive(x, y) returns true then the
relation R that is built before arriving to step 4 is a bisimulation.
Indeed, the following proposition is an invariant for the loop corre-
sponding to step 3:

R� R ∪ todo
This invariant is preserved since at any iteration of the algorithm, a
pair (x′, y′) is removed from todo and inserted in R after checking
that o(x′) = o(y′) and adding (ta(x

′), ta(y
′)) for all a ∈ A in

todo. Since todo is empty at the end of the loop, we eventually
have R� R, i.e., R is a bisimulation. By Proposition 1, x ∼ y.

We now prove that if Naive(x, y) returns false, then x 6∼ y.
Note that for all (x′, y′) inserted in todo, there exists a word
w ∈ A? such that x w→ x′ and y w→ y′. Since o(x′) 6= o(y′),
then [[x′]](ε) 6= [[y′]](ε) and thus [[x]](w) = [[x′]](ε) 6= [[y′]](ε) =
[[y]](w), that is x 6∼ y.

Since both Hopcroft and Karp’s algorithm and the one we in-
troduce in Section 3 are simple variations of this naive one, it is
important to illustrate its execution with an example. Consider the
DFA with input alphabetA = {a} in the left-hand side of Figure 2,
and suppose we want to check that x and u are language equivalent.

During the initialisation, (x, u) is inserted in todo. At the first
iteration, since o(x) = 0 = o(u), (x, u) is inserted in R and (y, v)
in todo. At the second iteration, since o(y) = 1 = o(v), (y, v)
is inserted in R and (z, w) in todo. At the third iteration, since
o(z) = 0 = o(w), (z, w) is inserted in R and (y, v) in todo. At
the fourth iteration, since (y, v) is already in R, the algorithm does
nothing. Since there are no more pairs to check in todo, the relation
R is a bisimulation and the algorithm terminates returning true.

These iterations are concisely described by the numbered
dashed lines in Figure 2. The line i means that the connected pair
is inserted in R at iteration i. (In the sequel, when enumerating
iterations, we ignore those where a pair from todo is already in R
so that there is nothing to do.)

Remark 2. Unless it finds a counter-example, Naive constructs
the smallest bisimulation that relates the two starting states (see
Proposition 8 in Appendix A). On the contrary, minimisation al-
gorithms [9, 15] are designed to compute the largest bisimulation
relation for a given automaton. For instance, taking automaton on
the left of Figure 2, they would equate the states x and w which are
language equivalent, while Naive(x, u) does not relate them.

2.3 Hopcroft and Karp’s algorithm
The naive algorithm is quadratic: a new pair is added to R at
each non-trivial iteration, and there are only n2 such pairs, where
n = |S| is the number of states of the DFA. To make this algorithm
(almost) linear, Hopcroft and Karp actually record a set of equiva-
lence classes rather than a set of visited pairs. As a consequence,
their algorithm may stop earlier, when an encountered pair of states
is not already inR but in its reflexive, symmetric, and transitive clo-
sure. For instance in the right-hand side example from Figure 2, we
can stop when we encounter the dotted pair (y, w), since these two
states already belong to the same equivalence class according to the
four previous pairs.

With this optimisation, the produced relationR contains at most
n pairs (two equivalence classes are merged each time a pair is
added). Formally, and ignoring the concrete data structure to store
equivalence classes, Hopcroft and Karp’s algorithm consists in
simply replacing step 3.2 in Figure 1 with

(3.2) if (x′, y′) ∈ e(R) then skip;

where e : P(S × S) → P(S × S) is the function mapping each
relation R ⊆ S × S into its symmetric, reflexive, and transitive
closure. We hereafter refer to this algorithm as HK.

2.4 Bisimulations up-to
We now show that the optimisation used by Hopcroft and Karp
corresponds to exploiting an “up-to technique”.

Definition 2 (Bisimulation up-to). Let f : P(S×S)→ P(S×S)
be a function on relations on S. A relation R is a bisimulation up
to f if R� f(R), i.e., whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) f(R) ta(y).

With this definition, Hopcroft and Karp’s algorithm just consists
in trying to build a bisimulation up to e. To prove the correctness
of the algorithm it suffices to show that any bisimulation up to
e is contained in a bisimulation. We use for that the notion of
compatible function [26, 28]:

Definition 3 (Compatible function). A function f : P(S × S) →
P(S × S) is compatible if it is monotone and it preserves progres-
sions: for all R,R′ ⊆ S × S,

R� R′ entails f(R)� f(R′) .

Proposition 3. Let f be a compatible function. Any bisimulation
up to f is contained in a bisimulation.

Proof. Suppose that R is a bisimulation up to f , i.e., that R �
f(R). Using compatibility of f and by a simple induction on n, we
get ∀n, fn(R)� fn+1(R). Therefore, we have⋃

n

fn(R)�
⋃
n

fn(R) ,

3 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

in other words, fω(R) =
⋃
n f

n(R) is a bisimulation. This latter
relation trivially contains R, by taking n = 0.

We could prove directly that e is a compatible function; we how-
ever take a detour to ease our correctness proof for the algorithm
we propose in Section 3.

Lemma 1. The following functions are compatible:

id: the identity function;
f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compatible

functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Lemma 2. The following functions are compatible:

• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S};
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Intuitively, given a relation R, (s ∪ id)(R) is the symmetric
closure ofR, (r∪s∪ id)(R) is its reflexive and symmetric closure,
and (r ∪ s ∪ t ∪ id)ω(R) is its symmetric, reflexive and transitive
closure: e = (r ∪ s ∪ t ∪ id)ω . Another way to understand this
decomposition of e is to recall that for a given R, e(R) can be
defined inductively by the following rules:

x e(R) x
r

x e(R) y

y e(R) x
s

x e(R) y y e(R) z

x e(R) z
t

x R y

x e(R) y
id

Theorem 1. Any bisimulation up to e is contained in a bisimula-
tion.

Proof. By Proposition 3, it suffices to show that e is compatible,
which follows from Lemma 1 and Lemma 2.

Corollary 1. For all x, y ∈ S, x ∼ y iff HK(x, y).

Proof. Same proof as for Proposition 2, by using the invariant
R� e(R)∪ todo. We deduce thatR is a bisimulation up to e after
the loop. We conclude with Theorem 1 and Proposition 1.

Returning to the right-hand side example from Figure 2, Hopcroft
and Karp’s algorithm constructs the relation

RHK = {(x, u), (y, v), (z, w), (z, v)}
which is not a bisimulation, but a bisimulation up to e: it contains
the pair (x, u), whose b-transitions lead to (y, w), which is not in
RHK but in its equivalence closure, e(RHK).

3. Optimised algorithm for NFA
We now move from DFA to non-deterministic automata (NFA). We
start with standard definitions about semi-lattices, determinisation,
and language equivalence for NFA.

A semi-lattice (X,+, 0) consists of a set X and a binary op-
eration +: X × X → X which is associative, commutative,
idempotent (ACI), and has 0 ∈ X as identity. Given two semi-
lattices (X1,+1, 01) and (X2,+2, 02), an homomorphism of semi-
lattices is a function f : X1 → X2 such that for all x, y ∈ X1,
f(x +1 y) = f(x) +2 f(y) and f(01) = 02. The set 2 = {0, 1}
is a semi-lattice when taking + to be the ordinary Boolean or. Also
the set of all languages 2A

?

carries a semi-lattice where + is the
union of languages and 0 is the empty language. More generally,
for any set X , P(X) is a semi-lattice where + is the union of sets
and 0 is the empty set. In the sequel, we indiscriminately use 0
to denote the element 0 ∈ 2, the empty language in 2A

?

, and the

empty set in P(X). Similarly, we use + to denote the Boolean or
in 2, the union of languages in 2A

?

, and the union of sets in P(X).

A non-deterministic finite automaton (NFA) over the input al-
phabet A is a triple (S, o, t), where S is a finite set of states,
o : S → 2 is the output function (as for DFA), and t : S → P(S)A
is the transition relation, which assigns to each state x ∈ S and
input letter a ∈ A a set of possible successor states.

The powerset construction transforms any NFA (S, o, t) in
the DFA (P(S), o], t]) where o] : P(S) → 2 and t] : P(S) →
P(S)A are defined for all X ∈ P(S) and a ∈ A as follows:

o](X) =

o(x) if X = {x} with x ∈ S
0 if X = 0

o](X1) + o](X2) if X = X1 +X2

t]a(X) =

ta(x) if X = {x} with x ∈ S
0 if X = 0

t]a(X1) + t]a(X2) if X = X1 +X2

Observe that in (P(S), o], t]), the states form a semi-lattice
(P(S),+, 0), and o] and t] are, by definition, semi-lattices homo-
morphisms. These properties are fundamental for the up-to tech-
nique we are going to introduce; in order to highlight the difference
with generic DFA (which usually do not carry this structure), we
introduce the following definition.

Definition 4. A determinised NFA is a DFA (P(S), o], t]) ob-
tained via the powerset construction of some NFA (S, o, t).

Hereafter, we use a new notation for representing states of
determinised NFA: in place of the singleton {x} we just write x
and, in place of {x1, . . . , xn}, we write x1 + · · ·+ xn.

For an example, consider the NFA (S, o, t) depicted below (left)
and part of the determinised NFA (P(S), o], t]) (right).

x

a

BB

a ''
y

a
gg z

aoo x
a // y + z

a // x+ y
a // x+ y + z

a

FF

In the determinised NFA, x makes one single a-transition going
into y + z. This state is final: o](y + z) = o](y) + o](z) =
o(y)+o(z) = 1+0 = 1; it makes an a-transition into t]a(y+z) =
t]a(y) + t]a(z) = ta(y) + ta(z) = x+ y.

The language accepted by the states of a NFA (S, o, t) can be
conveniently defined via the powerset construction: the language
accepted by x ∈ S is the language accepted by the singleton {x}
in the DFA (P(S), o], t]), in symbols [[{x}]]. Therefore, in the fol-
lowing, instead of considering the problem of language equivalence
of states of the NFA, we focus on language equivalence of sets of
states of the NFA: given two sets of statesX and Y inP(S), we say
that X and Y are language equivalent (X ∼ Y) iff [[X]] = [[Y]].
This is exactly what happens in standard automata theory, where
NFA are equipped with sets of initial states.

3.1 Extending coinduction to NFA
In order to check if two sets of states X and Y of an NFA (S, o, t)
are language equivalent, we can simply employ the bisimulation
proof method on (P(S), o], t]). More explicitly, a bisimulation for
a NFA (S, o, t) is a relation R ⊆ P(S) × P(S) on sets of states,
such that whenever X R Y then (1) o](X) = o](Y), and (2) for
all a ∈ A, t]a(X) R t]a(Y). Since this is just the old definition
of bisimulation (Definition 1) applied to (P(S), o], t]), we get that
X ∼ Y iff there exists a bisimulation relating them.

4 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

Remark 3 (Linear time v.s. branching time). It is important not
to confuse these bisimulation relations with the standard Milner-
and-Park bisimulations [24] (which strictly imply language equiv-
alence): in a standard bisimulation R, if the following states x and
y of an NFA are in R,

x1
...x

a 55

a))
xn

y1
...y

a 55

a))
ym

then each xi should be in R with some yj (and vice-versa). Here,
instead, we first transform the transition relation into

x
a // x1 + · · ·+ xn y

a // y1 + · · ·+ ym ,

using the powerset construction, and then we require that the sets
x1 + · · ·+ xn and y1 + · · ·+ ym are related by R.

3.2 Bisimulation up to congruence
The semi-lattice structure (P(S),+, 0) carried by determinised
NFA makes it possible to introduce a new up-to technique, which
is not available with plain DFA: up to congruence. This technique
relies on the following function.

Definition 5 (Congruence closure). Let u : P(P(S) × P(S)) →
P(P(S) × P(S)) be the function on relations on sets of states
defined for all R ⊆ P(S)× P(S) as:

u(R) = {(X1 +X2, Y1 + Y2) | X1 R Y1 and X2 R Y2} .

The function c = (r ∪ s ∪ t ∪ u ∪ id)ω is called the congruence
closure function.

Intuitively, c(R) is the smallest equivalence relation which is
closed with respect to + and which includes R. It could alterna-
tively be defined inductively using the rules r, s, t, and id from the
previous section, and the following one:

X1 c(R) Y1 X2 c(R) Y2

X1 +X2 c(R) Y1 + Y2
u

We call bisimulations up to congruence the bisimulations up to
c. We report the explicit definition for the sake of clarity:

Definition 6 (Bisimulation up to congruence). A bisimulation up
to congruence for a NFA (S, o, t) is a relation R ⊆ P(S)× P(S)
on sets of states, such that whenever X R Y then

1. o](X) = o](Y) and
2. for all a ∈ A, t]a(X) c(R) t]a(Y).

We then show that bisimulations up to congruence are sound,
using the notion of compatibility:

Lemma 3. The function u is compatible.

Proof. We assume that R � R′, and we prove that u(R) �
u(R′). If X u(R) Y , then X = X1 + X2 and Y = Y1 + Y2

for some X1, X2, Y1, Y2 such that X1 R Y1 and X2 R Y2. By
assumption, we have o](X1) = o](Y1), o](X2) = o](Y2), and for
all a ∈ A, t]a(X1) R

′ t]a(Y1) and t]a(X2) R
′ t]a(Y2). Since o] and

t] are homomorphisms, we deduce o](X1 +X2) = o](Y1 + Y2),
and for all a ∈ A, t]a(X1 +X2) u(R

′) t]a(Y1 + Y2).

Theorem 2. Any bisimulation up to congruence is contained in a
bisimulation.

Proof. By Proposition 3, it suffices to show that c is compatible,
which follows from Lemmas 1, 2 and 3.

x

a

EE

a &&
y

a
gg z

aoo

u

a

DD

x
a //

1

y + z
a //

2

x+ y
a //

3

x+ y + z

a

FF
4

u

a

DD

Figure 3. Bisimulations up to congruence, on a single letter NFA.

In the Introduction, we already gave an example of bisimulation
up to context, which is a particular case of bisimulation up to
congruence (up to context corresponds to use just the function
(r ∪ u ∪ id)ω , without closing under s and t).

A more involved example illustrating the use of all ingredients
of the congruence closure function (c) is given in Figure 3. The
relation R expressed by the dashed numbered lines (formally R =
{(x, u), (y + z, u)}) is neither a bisimulation, nor a bisimulation
up to equivalence, since y + z

a→ x + y and u
a→ u, but

(x+y, u) /∈ e(R). However,R is a bisimulation up to congruence.
Indeed, we have (x+ y, u) ∈ c(R):

x+ y c(R) u+ y ((x, u) ∈ R)
c(R) y + z + y ((y + z, u) ∈ R)
= y + z

c(R) u ((y + z, u) ∈ R)

In contrast, we need four pairs to get a bisimulation up to e contain-
ing (x, u): this is the relation depicted with both dashed and dotted
lines in Figure 3.

Note that we can deduce many other equations from R; in fact,
c(R) defines the following partition of sets of states:

{0}, {y}, {z}, {x, u, x+y, x+z, and the 9 remaining subsets}.

3.3 Optimised algorithm for NFA
Algorithms for NFA can be obtained by computing the deter-
minised NFA on-the-fly [12]: starting from the algorithms for DFA
(Figure 1), it suffices to work with sets of states, and to inline the
powerset construction. The corresponding code is given in Figure 4.
The naive algorithm (Naive) does not use any up to technique,
Hopcroft and Karp’s algorithm (HK) reasons up to equivalence in
step 3.2, and the optimised algorithm, referred as HKC in the se-
quel, relies on up to congruence: step 3.2 becomes

(3.2) if (X ′, Y ′) ∈ c(R ∪ todo) then skip;

Observe that we use c(R ∪ todo) rather than c(R): this allows
us to skip more pairs, and this is safe since all pairs in todo will
eventually be processed.

Corollary 2. For all X,Y ∈ P(S), X ∼ Y iff HKC(X,Y).

Proof. Same proof as for Proposition 2, by using the invariant
R� c(R∪ todo) for the loop. We deduce that R is a bisimulation
up to congruence after the loop. We conclude with Theorem 2 and
Proposition 1.

The most important point about these three algorithms is that
they compute the states of the determinised NFA lazily. This means
that only accessible states need to be computed, which is of prac-
tical importance since the determinised NFA can be exponentially
large. In case of a negative answer, the three algorithms stop even
before all accessible states have been explored; otherwise, if a
bisimulation (possibly up-to) is found, it depends on the algorithm:

5 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

Naive(X,Y)

(1) R is empty; todo is empty;
(2) insert (X,Y) in todo;
(3) while todo is not empty , do {

(3.1) extract (X ′, Y ′) from todo;
(3.2) if (X ′, Y ′) ∈ R then skip;

(3.3) if o](X ′) 6= o](Y ′) then return false;
(3.4) for all a ∈ A,

insert (t]a(X
′), t]a(Y

′)) in todo;
(3.5) insert (X ′, Y ′) in R;

(4) return true;

Figure 4. On-the-fly naive algorithm, for checking the equivalence
of sets of states X and Y of a NFA (S, o, t). The code for on-
the-fly HK(X,Y) is obtained by replacing the test in step 3.2 with
(X ′, Y ′) ∈ e(R); the code for HKC(X,Y) is obtained by replacing
this test with (X ′, Y ′) ∈ c(R ∪ todo).

• with Naive, all accessible states need to be visited, by definition
of bisimulation;
• with HK, the only case where some accessible states can be

avoided is when a pair (X,X) is encountered: the algorithm
skips this pair so that the successors of X are not necessarily
computed (this situation rarely happens in practice—it actually
never happens when starting with disjoint automata). In the
other cases where a pair (X,Y) is skipped, then X and Y are
necessarily already related to some other states in R, so that
their successors will eventually be explored;
• with HKC, only a small portion of the accessible states is built

(check the experiments in Section 6). To see a concrete exam-
ple, let us execute HKC on the NFA from Figure 3. After two
iterations, R = {(x, u), (y + z, u)}. Since x + y c(R) u, the
algorithm stops without building the states x+y and x+y+z.
Similarly, in the example from the Introduction, HKC does not
construct the four states corresponding to pairs 4, 5, and 6.

This ability of HKC to ignore parts of the determinised NFA comes
from the up to congruence technique, which allows one to infer
properties about states that were not necessarily encountered be-
fore. As we shall see in Section 4 the efficiency of antichains algo-
rithms [1, 33] also comes from their ability to skip large parts of
the determinised NFA.

3.4 Computing the congruence closure
For the optimised algorithm to be effective, we need a way to
check whether some pairs belong to the congruence closure of
some relation (step 3.2). We present here a simple solution based
on set rewriting; the key idea is to look at each pair (X,Y) in a
relation R as a pair of rewriting rules:

X → X + Y Y → X + Y ,

which can be used to compute normal forms for sets of states.
Indeed, by idempotence, X R Y entails X c(R) X + Y .

Definition 7. LetR ⊆ P(S)×P(S) be a relation on sets of states.
We define R ⊆ P(S)×P(S) as the smallest irreflexive relation
that satisfies the following rules:

X R Y

X R X + Y

X R Y

Y R X + Y

Z R Z
′

U + Z R U + Z′

Lemma 4. For all relations R, the relation R is convergent.

In the sequel, we denote by X↓R the normal form of a set X
w.r.t. R. Intuitively, the normal form of a set is the largest set

of its equivalence class. Recalling the example from Figure 3, the
common normal form of x + y and u can be computed as follows
(R is the relation {(x, u), (y + z, u)}):

x+ y
**

u
ww

x+ y + u
++

x+ u
ss

x+ y + z + u

Theorem 3. For all relations R, and for all X,Y ∈ P(S), we
have X↓R = Y ↓R iff (X,Y) ∈ c(R).

Thus, in order to check if (X,Y) ∈ c(R ∪ todo) we only have
to compute the normal form of X and Y with respect to R∪todo.
Note that each pair ofR∪todomay be used only once as a rewriting
rule, but we do not know in advance in which order to apply these
rules. Therefore, the time required to find one rule that applies is in
the worst case rn where r = |R ∪ todo| is the size of the relation
R∪todo, and n = |S| is the number of states of the NFA (assuming
linear time complexity for set-theoretic union and containment of
sets of states). Since we cannot apply more than r rules, the time
for checking whether (X,Y) ∈ c(R ∪ todo) is bounded by r2n.

We tried other solutions, notably by using binary decision dia-
grams [8]. We have chosen to keep the presented rewriting algo-
rithm for its simplicity and because it behaves well in practice.

3.5 Complexity hints
The complexity of Naive, HK and HKC is closely related to the size
of the relation that they build. Hereafter, we use v = |A| to denote
the number of letters in A.

Lemma 5. The three algorithms require at most 1 + v·|R| itera-
tions, where |R| is the size of the produced relation; moreover, this
bound is reached whenever they return true.

Therefore, we can conveniently reason about |R|.
Lemma 6. LetRNaive,RHK, andRHKC denote the relations produced
by the three algorithms. We have

|RHKC|, |RHK| ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the deter-
minised NFA and n is the number of states of the NFA. If the algo-
rithms returned true, we moreover have

|RHKC| ≤ |RHK| ≤ |RNaive| . (3)

As shown below in Section 4.2.4, RHKC can be exponentially
smaller than RHK. Notice however that the problem of deciding
NFA language equivalence is PSPACE-complete [23], and that
none of the algorithms presented here is in PSPACE: all of them
store a set of visited pairs, and in the worst case, this set can
become exponentially large with all of them. (This also holds for
the antichain algorithms [1, 33] which we describe in Section 4.)
Instead, the standard PSPACE algorithm does not store any set of
visited pairs: it checks all words of length smaller than 2n. While
this can be done in polynomial space, this systematically requires
exponential time.

3.6 Using HKC for checking language inclusion
For NFA, language inclusion can be reduced to language equiva-
lence in a rather simple way. Since the function [[−]] : P(S)→ 2A

?

is a semi-lattice homomorphism (see Theorem 7 in Appendix A),
for any given sets of states X and Y , [[X+Y]] = [[Y]] iff
[[X]] + [[Y]] = [[Y]] iff [[X]] ⊆ [[Y]]. Therefore, it suffices to run
HKC(X+Y, Y) to check the inclusion [[X]] ⊆ [[Y]].

In such a situation, all pairs that are eventually manipulated
by HKC have the shape (X ′+Y ′, Y ′) for some sets X ′, Y ′. The
step 3.2 of HKC, where it checks whether the current pair belongs

6 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

to the congruence closure of the relation, can thus be simplified.
First, the pairs in the current relation can only be used to rewrite
from right to left. Second, the following lemma allows one to avoid
unnecessary normal form computations:

Lemma 7. For all sets X,Y and for all relations R, we have
X+Y c(R) Y iff X ⊆ Y ↓R.

Proof. We first prove that for allX,Y, X↓R = Y ↓R iffX ⊆ Y ↓R
and Y ⊆ X↓R, using the fact that the normalisation function
↓R : X 7→ X↓R is monotone and idempotent. The announced
result follows by Theorem 3, since Y ⊆ (X+Y)↓R is always true
and X+Y ⊆ Y ↓R iff X ⊆ Y ↓R.

However, as shown below, checking an equivalence by decom-
posing it into two inclusions cannot be more efficient than checking
the equivalence directly.

Lemma 8. Let X,Y be two sets of states; let R⊆ and R⊇ be the
relations computed by HKC(X+Y, Y) and HKC(X+Y,X), respec-
tively. If R⊆ and R⊇ are bisimulations up to congruence, then the
following relation is a bisimulation up to congruence:

R= = {(X ′, Y ′) | (X ′+Y ′, Y ′) ∈ R⊆ or (X ′+Y ′, X ′) ∈ R⊇}.

On the contrary, checking the equivalence directly actually al-
lows one to skip some pairs that cannot be skipped when reasoning
by double inclusion. As an example, consider the DFA on the right
of Figure 2. The relation computed by HKC(x, u) contains only four
pairs (because the fifth one follows from transitivity). Instead, the
relations built by HKC(x, x+u) and HKC(u+x, u) would both con-
tain five pairs: transitivity cannot be used since our relations are
now oriented (from y ≤ v, z ≤ v and z ≤ w, we cannot deduce
y ≤ w). Another example, where we get an exponential factor by
checking the equivalence directly rather than through the two in-
clusions, can be found in Section 4.2.4.

In a sense, the behaviour of the coinduction proof method here
is similar to that of standard proofs by induction, where one often
has to strengthen the induction predicate to get a (nicer) proof.

4. Antichain algorithm
In [33], De Wulf et al. have proposed the antichain approach for
checking language inclusion of NFA. We show that this approach
can be explained in terms of simulations up to upward-closure
that, in turn, can be seen as a special case of bisimulations up
to congruence. Before doing so, we recall the standard notion of
antichain and we describe the antichain algorithm (AC).

Given a partial order (X,v), an antichain is a subset Y ⊆ X
containing only incomparable elements (that is, for all y1, y2 ∈ Y ,
y1 6v y2 and y2 6v y1). AC exploits antichains over the set
S × P(S), where the ordering is given by (x1, Y1) v (x2, Y2)
iff x1 = x2 and Y1 ⊆ Y2.

In order to check [[X]] ⊆ [[Y]] for two sets of states X,Y
of an NFA (S, o, t), AC maintains an antichain of pairs (x′, Y ′),
where x′ is a state of the NFA and Y ′ is a state of the deter-
minised automaton. More precisely, the automaton is explored non-
deterministically (via t) for obtaining the first component of the pair
and deterministically (via t]) for the second one. If a pair such that
x′ is accepting (o(x′) = 1) and Y ′ is not (o](Y ′) = 0) is en-
countered, then a counter-example has been found. Otherwise all
derivatives of the pair along the automata transitions have to be in-
serted into the antichain, so that they will be explored. If one these
pairs p is larger than a previously encountered pair p′ (p′ v p) then
the language inclusion corresponding to p is subsumed by p′ so
that p can be skipped; otherwise, if p v p1, . . . , pn for some pairs

p1, . . . , pn that are already in the antichain, then one can safely re-
move these pairs: they are subsumed by p and, by doing so, the set
of visited pairs remains an antichain.

Remark 4. An important difference between HKC and AC consists
in the fact that the former inserts pairs in todo without checking
whether they are redundant (this check is performed when the
pair is processed), while the latter removes all redundant pairs
whenever a new one is inserted. Therefore, the cost of an iteration
with HKC is merely the cost of the corresponding congruence check,
while the cost of an iteration with AC is merely that of inserting all
successors of the corresponding pair and simplifying the antichain.

Note that the above description corresponds to the “forward”
antichain algorithm, as described in [1]. Instead, the original an-
tichain algorithm, as first described in [33], is “backward” in the
sense that the automata are traversed in the reversed way, from ac-
cepting states to initial states. The two versions are dual [33] and
we could similarly define the backward counterpart of HKC and HK.
We however stick to the forward versions for the sake of clarity.

4.1 Coinductive presentation
Leaving apart the concrete data structures used to manipulate an-
tichains, we can rephrase this algorithm using a coinductive frame-
work, like we did for Hopcroft and Karp’s algorithm.

First define a notion of simulation, where the left-hand side
automaton is executed non-deterministically:

Definition 8 (Simulation). Given two relations T, T ′ ⊆ S×P(S),
T s-progresses to T ′, denoted T �s T

′, if whenever x T Y then

1. o(x) ≤ o](Y) and
2. for all a ∈ A, x′ ∈ ta(x), x′ T ′ t]a(Y).

A simulation is a relation T such that T �s T .

As expected, we obtain the following coinductive proof principle:

Proposition 4 (Coinduction). For all sets X,Y , we have [[X]] ⊆
[[Y]] iff there exists a simulation T such that for all x ∈ X , x T Y .

(Note that like for our notion of bisimulation, the above notion
of simulation is weaker than the standard one from concurrency
theory [24], which strictly entails language inclusion—Remark 3.)

To account for the antichain algorithm, where we can discard
pairs using the preorder v, it suffices to define the upward closure
function � : P(S × P(S))→ P(S × P(S)) as

�T = {(x, Y) | ∃(x′, Y ′) ∈ T s.t. (x′, Y ′) v (x, Y)} .

A pair belongs to the upward closure �T of a relation T ⊆ S ×
P(S), if and only if this pair is subsumed by some pair in T . In
fact, rather than trying to construct a simulation, AC attempts to
construct a simulation up to upward closure.

Like for HK and HKC, this method can be justified by defining the
appropriate notion of s-compatible function, showing that any sim-
ulation up to an s-compatible function is contained in a simulation,
and showing that the upward closure function (�) is s-compatible.

Theorem 4. Any simulation up to � is contained in a simulation.

Corollary 3. For all X,Y ∈ P(S), [[X]] ⊆ [[Y]] iff AC(X,Y).

4.2 Comparing HKC and AC

The efficiency of the two algorithms strongly depends on the num-
ber of pairs that they need to explore. In the following (Sections
4.2.3 and 4.2.4), we show that HKC can explore far fewer pairs than
AC, when checking language inclusion of automata that share some
states, or when checking language equivalence. We would also like
to formally prove that (a) HKC never explores more than AC, and

7 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

(b) when checking inclusion of disjoint automata, AC never ex-
plores more than HKC. Unfortunately, the validity of these state-
ments highly depends on numerous assumptions about the two
algorithms (e.g., on the exploration strategy) and their potential
proofs seem complicated and not really informative. For these rea-
sons, we preferred to investigate the formal correspondence at the
level of the coinductive proof techniques, where it is much cleaner.

4.2.1 Language inclusion: HKC can mimic AC
As explained in Section 3.6, we can check the language inclusion
of two sets X,Y by executing HKC(X+Y, Y). We now show that
for any simulation up to upward closure that proves the inclusion
[[X]] ⊆ [[Y]], there exists a bisimulation up to congruence of the
same size which proves the same inclusion. For T ⊆ S × P(S),
let T̂ ⊆ P(S)× P(S) denote the relation {(x+ Y, Y) | x T Y }.

Lemma 9. We have �̂T ⊆ c(T̂).

Proof. If (x + Y, Y) ∈ �̂T , then there exists Y ′ ⊆ Y such that
(x, Y ′) ∈ T . By definition, (x+ Y ′, Y ′) ∈ T̂ and (Y, Y) ∈ c(T̂).
By the rule (u), (x+ Y ′ + Y, Y ′ + Y) ∈ c(T̂) and since Y ′ ⊆ Y ,
(x+ Y, Y) ∈ c(T̂).

Proposition 5. If T is a simulation up to �, then T̂ is a bisimulation
up to c.

Proof. First observe that if T �s T
′, then T̂ � uω(T̂ ′). There-

fore, if T �s �T , then T̂ � uω(�̂T). By Lemma 9, T̂ �
uω(c(T̂)) = c(T̂).

(Note that transitivity and symmetry are not used in the above
proofs: the constructed bisimulation up to congruence is actually
a bisimulation up to context (r ∪ u ∪ id)ω .)

The relation T̂ is not the one computed by HKC, since the former
contains pairs of the shape (x+ Y, Y), while the latter has pairs of
the shape (X + Y, Y) with X possibly not a singleton. However,
note that manipulating pairs of the two kinds does not change
anything since by Lemma 7, (X +Y, Y) ∈ c(R) iff for all x ∈ X ,
(x+ Y, Y) ∈ c(R).

4.2.2 Inclusion: AC can mimic HKC on disjoint automata
As shown in Section 4.2.3 below, HKC can be faster than AC, thanks
to the up to transitivity technique. However, in the special case
where the two automata are disjoint, transitivity cannot help, and
the two algorithms actually match each other.

Suppose that the automaton (S, o, t) is built from two disjoint
automata (S1, o1, t1) and (S2, o2, t2) as described in Remark 1.
Let R be the relation obtained by running HKC(X0+Y0, Y0) with
X0 ⊆ S1 and Y0 ⊆ S2. All pairs in R are necessarily of the shape
(X+Y, Y) withX ⊆ S1 and Y ⊆ S2. LetR ⊆ S×P(S) denote
the relation {(x, Y) | ∃X, x ∈ X and X+Y R Y }.

Lemma 10. If S1 and S2 are disjoint, then c(R) ⊆ �(R).

Proof. Suppose that x c(R) Y , i.e., x ∈ X with X + Y c(R) Y .
By Lemma 7, we have X ⊆ Y ↓R, and hence, x ∈ Y ↓R. By def-
inition of R the pairs it contains can only be used to rewrite from
right to left; moreover, since S1 and S2 are disjoint, such rewriting
steps cannot enable new rewriting rules, so that all steps can be per-
formed in parallel: we have Y ↓R =

∑
X′+Y ′RY ′⊆Y X

′. There-
fore, there exists some X ′, Y ′ with x ∈ X ′, X ′+Y ′ R Y ′, and
Y ′ ⊆ Y . It follows that (x, Y ′) ∈ R, hence (x, Y) ∈ �(R).

Proposition 6. If S1 and S2 are disjoint, and ifR is a bisimulation
up to congruence, then R is a simulation up to upward closure.

x
a //a,b :: x1

a,b // · · ·
a,b // xn

y
b //a,b :: y1

a,b // · · ·
a,b // yn

z
a,b //a,b :: z1

a,b // · · ·
a,b // zn

Figure 5. Family of examples where HKC exponentially improves
over AC and HK; we have x+ y ∼ z.

Proof. First observe that for all relations R,R′, if R � R′, then
R�s R′. Therefore, if R� c(R), then R�s c(R). We deduce
R�s �(R) by Lemma 10.

4.2.3 Inclusion: AC cannot mimic HKC on merged automata
The containment of Lemma 10 does not hold when S1 and S2 are
not disjoint, since c can exploit transitivity, while � cannot. For a
concrete grasp, take R = {(x + y, y), (y + z, z)} and observe
that (x, z) ∈ c(R) but (x, z) /∈ �(R). This difference makes it
possible to find bisimulations up to c that are much smaller than
the corresponding simulations up to �, and for HKC to be more
efficient than AC. Such an example, where HKC is exponentially
better than AC for checking language inclusion of automata sharing
some states, is given in [6].

4.2.4 Language equivalence: AC cannot mimic HKC.
AC can be used to check language equivalence, by checking the two
underlying inclusions. However, checking equivalence directly can
be better, even in the disjoint case. To see this on a simple example,
consider the DFA on the right-hand side of Figure 2. If we use AC
twice to prove x ∼ u, we get the following antichains

T1 = {(x, u), (y, v), (y, w), (z, v), (z, w)} ,
T2 = {(u, x), (v, y), (w, y), (v, z), (w, z)} ,

containing five pairs each. Instead, four pairs are sufficient with HK
or HKC, thanks to up to symmetry and up to transitivity.

For a more interesting example, consider the family of NFA
given in Figure 5, where n is an arbitrary natural number. Taken
together, the states x and y are equivalent to the state z: they recog-
nise the language (a+b)?(a+b)n+1. Alone, the state x (resp. y)
recognises the language (a+b)?a(a+b)n (resp. (a+b)?b(a+b)n).

For i ≤ n, let Xi = x+x1+ . . .+xi, Yi = y+y1+ . . .+yi,
and Zi = z+z1+ . . .+zi; for N ⊆ [1..i], furthermore set

XN
i = x+

∑
j∈N

xj , Y
N
i = y +

∑
j∈[1..n]\N

yj .

In the determinised NFA, x + y can reach all the states of the
shape XN

i +Y
N
i , for i ≤ n and N ⊆ [1..i]. For instance, for

n=i=2, we have x+y aa→ x+y+x1+x2, x+y ab→ x+y+y1+x2,
x+y

ba→ x+y+x1+y2, and x+y
bb→ x+y+y1+y2. Instead, z

reaches only n+1 distinct states, those of the form Zi.

The smallest bisimulation relating x+ y and z is

R ={(XN
i + Y

N
i , Zi) | i ≤ n,N ⊆ [1..i]},

which contains 2n+1−1 pairs. This is the relation computed by
Naive(x, y) and HK(x, y)—the up to equivalence technique (alone)
does not help in HK. With AC, we obtain the antichains Tx+Ty (for

8 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

[[x+ y]] ⊆ [[z]]) and Tz (for [[x+ y]] ⊇ [[z]]), where:

Tx = {(xi, Zi) | i ≤ n},
Ty = {(yi, Zi) | i ≤ n},

Tz = {(zi, XN
i + Y

N
i) | i ≤ n,N ⊆ [1..i]}.

Note that Tx and Ty have size n+ 1, and Tz has size 2n+1−1.
The language recognised by x or y are known for having a

minimal DFA with 2n states [17]. So, checking x + y ∼ z via
minimisation (e.g., [9, 15]) would also require exponential time.

This is not the case with HKC, which requires only polynomial
time in this case. Indeed, HKC(x+y, z) builds the relation

R′ = {(x+ y, z)}
∪ {(x+ Yi + yi+1, Zi+1) | i < n}
∪ {(x+ Yi + xi+1, Zi+1) | i < n}

which is a bisimulation up to congruence and which only contains
2n + 1 pairs. To see that this is a bisimulation up to congruence,
consider the pair (x+y+x1+y2, Z2) obtained from (x+y, z)
after reading the word ba. This pair does not belong to R′ but to
its congruence closure. Indeed, we have

x+y+x1+y2 c(R
′) Z1+y2 (x+y+x1 R′ Z1)

c(R′) x+y+y1+y2 (x+y+y1 R′ Z1)

c(R′) Z2 (x+y+y1+y2 R′ Z2)

(Check Lemma 18 in Appendix D for a complete proof.)

5. Exploiting Similarity
Looking at the example in Figure 5, a natural idea would be to
first quotient the automaton by graph isomorphism. By doing so,
we would merge the states xi, yi, zi, and we would obtain the
following automaton, for which checking x+y ∼ z is much easier.

x
a

&&

a,b ::

y
b
//a,b :: m1

a,b // · · ·
a,b // mn

z
a,b

88

a,b ::

As shown by Abdulla et al. [1], one can actually do better
with the antichain algorithm, by exploiting any preorder contained
in language inclusion (e.g., similarity [24]). In this section, we
rephrase this technique for antichains in our coinductive frame-
work, and we show how this idea can be embedded in HKC, resulting
in an even stronger algorithm.

5.1 AC with similarity: AC’
For the sake of clarity, we fix the preorder to be similarity, which
can be computed in quadratic time [13]:

Definition 9 (Similarity). Similarity is the largest relation on states
� ⊆ S × S such that x � y entails:

1. o(x) ≤ o(y) and
2. for all a ∈ A, x′ ∈ S such that x a→ x′, there exists some y′

such that y a→ y′ and x′ � y′.

One extends similarity to a preorder �∀∃ ⊆ P(S) × P(S) on
sets of states, and to a preorder v� ⊆ (S ×P(S))× (S ×P(S))
on antichain pairs, as:

X �∀∃ Y if ∀x ∈ X, ∃y ∈ Y, x � y ,

(x′, Y ′) v� (x, Y) if x � x′ and Y ′ �∀∃ Y .

The new antichain algorithm [1], which we call AC’, is similar
to AC, but the antichain is now taken w.r.t. the new preorder v�.
Formally, let & : P(S × P(S)) → P(S × P(S)) be the function
defined for all relations T ⊆ S × P(S), as

&T = {(x, Y) | x �∀∃ Y , or

∃(x′, Y ′) ∈ T s.t. (x′, Y ′) v� (x, Y)}.

While AC consists in trying to build a simulation up to �, AC’ tries
to build a simulation up to &, i.e., it skips a pair (x, Y) if either (a)
it is subsumed by another pair of the antichain or (b) x �∀∃ Y .

Theorem 5. Any simulation up to & is contained in a simulation.

Corollary 4. The antichain algorithm proposed in [1] is sound and
complete: for all sets X,Y , [[X]] ⊆ [[Y]] iff AC’(X,Y).

Optimisation 1(a) and optimisation 1(b) in [1] are simply (a) and
(b), as discussed above. Another optimisation, called Optimisation
2, is presented in [1]: if y1 � y2 and y1, y2 ∈ Y for some pair
(x, Y), then y1 can be safely removed from Y . Note that while
this is useful to store smaller sets, it does not allow one to explore
less, since the pairs encountered with or without optimisation 2 are
always equivalent w.r.t. the ordering v�: Y �∀∃ Y \ y1 and, for
all a ∈ A, t]a(Y) �∀∃ t]a(Y \ y1).

5.2 HKC with similarity: HKC’
Although HKC is primarily designed to check language equivalence,
we can also extend it to exploit the similarity preorder. It suffices to
notice that for any similarity pair x � y, we have x+y ∼ y.

Let� denote the relation {(x+y, y) | x � y}, let r′ denote the
constant to � function, and let c′ = (r′∪s∪t∪u∪id)ω . Accord-
ingly, we call HKC’ the algorithm obtained from HKC (Figure 4) by
replacing (X,Y) ∈ c(R ∪ todo) with (X,Y) ∈ c′(R ∪ todo)
in step 3.2. Notice that the latter test can be reduced to rewriting
thanks to Theorem 3 and the following lemma.

Lemma 11. For all relations R, c′(R) = c(R ∪ �).

In other words to check whether (X,Y) ∈ c′(R ∪ todo), it
suffices to compute the normal forms of X and Y w.r.t. the rules
from R ∪ todo plus the rules x+ y ← y for all x � y.

Theorem 6. Any bisimulation up to c′ is contained in a bisimula-
tion.

Proof. Consider the constant function r′′ : P(P(S) × P(S)) →
P(P(S)×P(S)) mapping all relations to∼. Since language equiv-
alence (∼) is a bisimulation, we immediately obtain that this func-
tion is compatible. Thus so is the function c′′ = (r′′∪s∪t∪u∪id)ω .
We have that � is contained in ∼, so that any bisimulation up to c′

is a bisimulation up to c′′. Since c′′ is compatible, such a relation
is contained in a bisimulation, by Proposition 3.

Note that in the above proof, we can replace� by any other relation
contained in ∼. Intuitively, bisimulations up to c′′ correspond to
classical bisimulations up to bisimilarity [24] from concurrency.

Corollary 5. For all sets X,Y , we have X ∼ Y iff HKC’(X,Y).

5.3 Relationship between HKC’ and AC’

Like in Section 4.2.1, we can show that for any simulation up to &
there exists a corresponding bisimulation up to c′, of the same size.

Lemma 12. For all relations T ⊆ S × P(S), &̂T ⊆ c′(T̂).

Proposition 7. If T is a simulation up to &, then T̂ is a bisimula-
tion up to c′.

9 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

x
a //a,b :: x1

a,b // · · ·
a,b // xn

a

kk

y
b //a,b :: y1

a,b // · · ·
a,b // yn

c

kk

z
a,b //a,b :: z1

a,b // · · ·
a,b // zn

a,b

kk

x � z
x1 � z1

...
xn � zn

Figure 6. Family of examples where HKC’ exponentially improves
over AC’, for inclusion of disjoint automata: we have [[z]] ⊆ [[x+y]].

However, even for checking inclusion of disjoint automata, AC’
cannot mimic HKC’, because now the similarity relation allows one
to exploit transitivity. To see this, consider the example given in
Figure 6, where we want to check that [[z]] ⊆ [[x + y]], and for
which the similarity relation is shown on the right-hand side.

Since this is an inclusion of disjoint automata, HKC and AC,
which do not exploit similarity, behave the same (cf. Sections 4.2.1
and 4.2.2). Actually, they also behave like HK and they require
2n+1−1 pairs. On the contrary, the use of similarity allows HKC’
to prove the inclusion with only 2n + 1 pairs, by computing the
following bisimulation up to c′ (Lemma 19 in Appendix E):

R′′ = {(z+x+y, x+y)}
∪ {(Zi+1+Xi+y+yi+1, Xi+y+yi+1) | i < n}
∪ {(Zi+1+Xi+1+y, Xi+1+y) | i < n} ,

where Xi = x+x1+ . . .+xi and Zi = z+z1+ . . .+zi.
Like in Section 4.2.4, to see that this is a bisimulation up to

c′ (where we do exploit similarity), consider the pair obtained
after reading the word ab: (Z2+x+y+x2+y1, x+y+x2+y1).
This pair does not belong to R′′ or c(R′′), but it does belong to
c′(R′′). Indeed, by Lemmas 7 and 11, this pair belong to c′(R′′) iff
Z2 ⊆ (x+y+x2+y1)↓R′′∪� , and we have

x+y+x2+y1

 R′′∪� Z1+x+y+y1+x2 (Z1+x+y+y1 R
′′ x+y+y1)

 R′′∪� Z1+X1+y+y1+x2 = Z1+X2+y+y1 (x1 � z1)

 R′′∪� Z2+X2+y+y1+x2 (Z2+X2+y R
′′ X2+y)

On the contrary, AC’ is not able to exploit similarity in this case,
and it behaves like AC: both of them compute the same antichain Tz
as in the example from Section 4.2.4, which has 2n+1−1 elements.

In fact, even when considering inclusion of disjoint automata,
the use of similarity tends to virtually merge states, so that HKC’
can use the up to transitivity technique which AC and AC’ lack.

5.4 A short recap
Figure 7 summarises the relationship amongst the presented algo-
rithms, in the general case and in the special case of language in-
clusion of disjoint automata. In this diagram, an arrow X→Y (from
an algorithm X to Y) means that (a) Y can explore less states than X,
and (b) Y can mimic X, i.e., the proof technique of Y is at least as
powerful as the one of X. (The labels on the arrows point to the sec-
tions showing these relations; unlabelled arrows are not illustrated
in this paper, they are easily inferred from what we have shown.)

6. Experimental assessment
To get an intuition of the average behaviour of HKC on various NFA,
and to compare it with HK and AC, we provide some benchmarks on
random automata and on automata obtained from model-checking
problems. In both cases, we conduct the experiments on a MacBook
pro 2.4GHz Intel Core i7, with 4GB of memory, running OS X

General case Disjoint inclusion case

HKC’

HKC

(5) 88

AC’

(5.3)ee

HK

(3) 99

AC

(4.2)ff (5) 99

Naive

(2.4)ee 88

HKC’

AC’

(5.3)
OO

HKC↔ AC (4.2.2)

OO

HK↔ Naive

OO

Figure 7. Relationship between the various algorithms.

Lion (10.7.4). We use our OCaml implementation for HK, HKC, and
HKC’ [6], and the libvataC++ library for AC and AC’ [20]. (To our
knowledge, libvata is the most efficient implementation currently
available for the antichain algorithms.)

6.1 Random automata
For a given size n, we generate a thousand random NFA with n
states and two letters. According to [31], we use a linear transi-
tion density of 1.25 (which means that the expected out-degree of
each state and with respect to each letter is 1.25): Tabakov and
Vardi empirically showed that one statistically gets more challeng-
ing NFA with this particular value. We generate NFA without ac-
cepting states: by doing so, we make sure that the algorithms never
encounter a counter-example, so that they always continue until
they find a (bi)simulation up to: these runs correspond to their worst
cases for all possible choices of accepting states for the given NFA.2

We run all algorithms on these NFA, starting from two distinct
singleton sets, to measure the required time and the number of
processed pairs: for HK, HKC, and HKC’, this is the number of pairs
put into the bisimulation up to (R); for AC and AC’, this is the
number of pairs inserted into the antichain. The timings for HKC’
and AC’ do not include the time required to compute similarity.

We report the median values (50%), the last deciles (90%), the
last percentiles (99%), and the maximum values (100%) in Table 1.
For instance, for n = 70, 90% of the examples require less than
155ms with HK; equivalently, 10% of the examples require more
than 155ms. (For a few tests, libvata ran out of memory, whence
the ∞ symbols in the table.) We also plotted on Figure 8 the
distribution of the number of processed pairs when n = 100.

HKC and AC are several orders of magnitude better than HK, and
HKC is usually two to ten times faster than AC. Moreover, for the
first four lines, HKC is much more predictable than AC, i.e., the last
percentiles and maximal values are of the same order as the median
value. (AC seems to become more predictable for larger values of
n.) The same relative behaviour can be observed between HKC’ and
AC’; moreover, HKC alone is apparently faster than AC’.

Also recall that the size of the relations generated by HK is a
lower bound for the number of accessible states of the determinised
NFA (Lemma 6 (2)); one can thus see in Table 1 that HKC usually
explores an extremely small portion of these DFA (e.g., less than
one per thousand for n = 100). The last column reports the median
size of the minimal DFA for the corresponding parameters, as given
in [31]. HK usually explores much many states than what would be
necessary with a minimal DFA, while HKC and AC need much less.

6.2 Automata from model-checking
Checking language inclusion of NFA can be useful for model-
checking, where one sometimes has to compute a sequence of NFA

2 To get this behaviour for AC and AC’, we actually had to trick libvata,
which otherwise starts by removing non-coaccessible states, and thus re-
duces any of these NFA to the empty one.

10 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

required time (seconds) number of processed pairs mDFA size
n = |S| algo. 50% 90% 99% 100% 50% 90% 99% 100% 50%

50

HK 0.007 0.022 0.050 0.119 2511 6299 12506 25272

∼1000
AC 0.002 0.003 0.142 1.083 112 245 2130 5208
HKC 0.000 0.000 0.000 0.000 21 26 32 63
AC’ 0.002 0.002 0.038 0.211 79 131 1098 1926
HKC’ 0.000 0.000 0.000 0.000 18 23 28 58

70

HK 0.047 0.155 0.413 0.740 10479 28186 58782 87055

∼6000
AC 0.002 0.003 1.492 4.163 150 285 8383 15575
HKC 0.000 0.000 0.000 0.000 27 34 40 49
AC’ 0.002 0.003 0.320 0.884 110 172 3017 6096
HKC’ 0.000 0.000 0.000 0.000 23 29 36 44

100

HK 0.373 1.207 3.435 5.660 58454 164857 361227 471727

∼30000
AC 0.003 0.004 3.214 36.990 204 298 13801 48059
HKC 0.000 0.000 0.000 0.001 36 44 54 70
AC’ 0.003 0.004 0.738 6.966 152 211 4087 18455
HKC’ 0.000 0.000 0.000 0.001 31 39 46 64

300

AC 0.009 0.010 0.028 0.750 562 622 2232 14655

–HKC 0.001 0.002 0.003 0.009 86 104 118 132
AC’ 0.012 0.013 0.022 0.970 433 484 920 14160
HKC’ 0.001 0.001 0.002 0.006 76 91 104 116

500

AC 0.014 0.015 0.039 ∞ 918 986 2571 ∞
–HKC 0.002 0.005 0.008 0.018 130 154 176 193

AC’ 0.025 0.028 0.042 ∞ 710 772 1182 ∞
HKC’ 0.002 0.004 0.007 0.013 115 136 154 169

1000

AC 0.029 0.031 0.038 ∞ 1808 1878 2282 ∞
–HKC 0.007 0.022 0.055 0.093 228 271 304 337

AC’ 0.074 0.080 0.092 ∞ 1409 1488 1647 ∞
HKC’ 0.008 0.019 0.041 0.077 202 238 265 299

Table 1. Running the five presented algorithms to check language equivalence on random NFA with two letters.

 0

 50

 100

 150

 200

 250

 10 100 1000 10000 100000 1e+06

nu
m

be
r o

f c
he

ck
ed

 N
FA

number of processed pairs

HK
AC
AC'

HKC
HKC'

Figure 8. Distributions of the number of processed pairs, for the
1000 NFA with 100 states and 2 letters from Table 1.

by iteratively applying a transducer, until a fixpoint is reached [7].
To know that the fixpoint is reached, one typically has to check
whether an NFA is contained in another one.

Abdulla et al. [1] use such benchmarks to test their algorithm
(AC’) against the plain antichain algorithm (AC [33]). We reuse
them to test HKC’ against AC’ in a concrete scenario. We take
the sequences of automata kindly provided by L. Holik, which
roughly corresponds to those used in [1] and which come from the
model checking of various programs (the bakery algorithm, bubble
sort, and a producer-consumer system). For all these sequences,
we check the inclusions of consecutive pairs, in both directions.
We separate the results into those for which a counter-example is
found, and those for which the inclusion holds. We skip the trivial
inclusions which hold by similarity (�∀∃), and for which both HKC’
and AC’ stop immediately.

The results are given in Table 2. Even though these are inclu-
sions of disjoint automata, HKC’ is faster than AC’ on these ex-
amples: up to transitivity can be exploited thanks to the similarity
pairs, and larger parts of the determinised NFA can be skipped.

7. Related work
A similar notion of bisimulation up to congruence has already been
used to obtain decidability and complexity results about context-
free processes, under the name of self-bisimulations. Caucal [10]
introduced this concept to give a shorter and nicer proof of the
result by Baeten et al. [4]: bisimilarity is decidable for normed
context-free processes. Christensen et al [11] then generalised the
result to all context-free processes, also by using self-bisimulations.
Hirshfeld et al. [14] used a refinement of this notion to get a
polynomial algorithm for bisimilarity in the normed case.

There are two main differences with the ideas we presented
here. First, the above papers focus on bisimilarity rather than lan-
guage equivalence (recall that although we use bisimulation re-
lations, we check language equivalence since we work on the
determinised NFA—Remark 3). Second, we consider a notion
of bisimulation up to congruence where the congruence is taken
with respect to non-determinism (union of sets of states). Self-
bisimulations are also bisimulations up to congruence, but the con-
gruence is taken with respect to word concatenation. We cannot
consider this operation in our setting since we do not have the
corresponding monoid structure in plain NFA.

Other approaches, that are independent from the algebraic struc-
ture (e.g., monoids or semi-lattices) and the behavioural equiv-
alence (e.g., bisimilarity or language equivalence) are shown in
[5, 21, 22, 26]. These propose very general frameworks into which
our up to congruence technique fits as a very special case. To our
knowledge, bisimulation up to congruence has never been proposed
as a technique for proving language equivalence of NFA.

11 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

required time (seconds) number of processed pairs number of tests
result algo. 50% 90% 99% 100% 50% 90% 99% 100%

counter-example AC’ 0.012 0.107 1.047 1.134 23 247 598 1352 518
HKC’ 0.001 0.005 0.025 0.383 11 24 112 290

inclusion holds AC’ 0.079 0.795 1.457 1.480 149 733 1854 3087 178
HKC’ 0.015 0.165 0.340 0.345 61 695 1076 1076

Table 2. Running HKC’ and AC’ to test language inclusion of disjoint NFA generated from model-checking.

8. Conclusions and future work
We showed that the standard algorithm by Hopcroft and Karp for
checking language equivalence of DFA relies on a bisimulation up
to equivalence proof technique; this allowed us to design a new
algorithm (HKC) for the non-deterministic case, where we exploit a
novel technique called up to congruence.

We then compared HKC to the recently introduced antichain al-
gorithms [33] (AC): when checking the inclusion of disjoint au-
tomata, the two algorithms are equivalent, in all the other cases
HKC is more efficient since it can use transitivity to prune a larger
portion of the state-space.

The difference between these two approaches becomes even
more striking when considering some optimisation exploiting sim-
ilarity. Indeed, as nicely shown with AC’ [1], the antichains ap-
proach can widely benefit from the knowledge one gets by first
computing similarity. Inspired by this work, we showed that both
our proof technique (bisimulation up to congruence) and our al-
gorithm (HKC) can be easily modified to exploit similarity. The re-
sulting algorithm (HKC’) is now more efficient than AC’ even for
checking language inclusion of disjoint automata.

We provided concrete examples where HKC and HKC’ are ex-
ponentially faster than AC and AC’ (Sections 4.2.4 and 5.3) and
we proved that the coinductive techniques underlying the formers
are at least as powerful as those exploited by the latters (Proposi-
tions 5 and 7). We finally compared the algorithms experimentally,
by running them on both randomly generated automata, and au-
tomata resulting from model checking problems. It appears that for
these examples, HKC and HKC’ perform better than AC and AC’.

Finally note that our implementation of the presented algo-
rithms is available online [6], together with an applet making it
possible to test them on user-provided examples.

As future work, we plan to extend our approach to tree au-
tomata. In particular, it seems promising to investigate if further
up-to techniques can be defined for regular tree expressions. For
instance, the algorithms proposed in [3, 18] exploit some optimisa-
tion which suggest us coinductive up-to techniques.

References
[1] P. A. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, and T. Vojnar. When

simulation meets antichains. In Proc. TACAS, vol. 6015 of LNCS,
pages 158–174. Springer, 2010.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[3] A. Aiken and B. R. Murphy. Implementing regular tree expressions.
In FPCA, vol. 523 of LNCS, pages 427–447. Springer, 1991.

[4] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisim-
ulation equivalence for processes generating context-free languages.
In Proc. PARLE (II), vol. 259 of LNCS, pages 94–111. Springer, 1987.

[5] F. Bartels. On generalized coinduction and probabilistic specification
formats. PhD thesis, Vrije Universiteit Amsterdam, 2004.

[6] F. Bonchi and D. Pous. Web appendix for this paper.
http://perso.ens-lyon.fr/damien.pous/hknt, 2012.

[7] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In Proc. CAV, vol. 3114 of LNCS. Springer, 2004.

[8] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[9] J. A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. In Mathematical Theory of Automata, vol.
12(6), pages 529–561. Polytechnic Press, NY, 1962.

[10] D. Caucal. Graphes canoniques de graphes algébriques. ITA, 24:339–
352, 1990.

[11] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence
is decidable for all context-free processes. Information and Computa-
tion, 121(2):143–148, 1995.

[12] J.-C. Fernandez, L. Mounier, C. Jard, and T. Jron. On-the-fly verifica-
tion of finite transition systems. Formal Methods in System Design, 1
(2/3):251–273, 1992.

[13] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing
simulations on finite and infinite graphs. In Proc. FOCS, pages 453–
462. IEEE Computer Society, 1995.

[14] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for
deciding bisimilarity of normed context-free processes. Theoretical
Computer Science, 158(1&2):143–159, 1996.

[15] J. E. Hopcroft. An n log n algorithm for minimizing in a finite
automaton. In Proc. International Symposium of Theory of Machines
and Computations, pages 189–196. Academic Press, 1971.

[16] J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equiva-
lence of finite automata. TR 114, Cornell Univ., December 1971.

[17] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[18] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for
XML. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

[19] D. Lee and M. Yannakakis. Online minimization of transition systems
(extended abstract). In Proc. STOC, pages 264–274. ACM, 1992.

[20] O. Lengál, J. Simácek, and T. Vojnar. Vata: A library for efficient
manipulation of non-deterministic tree automata. In TACAS, vol. 7214
of LNCS, pages 79–94. Springer, 2012.

[21] M. Lenisa. From set-theoretic coinduction to coalgebraic coinduction:
some results, some problems. ENTCS, 19:2–22, 1999.

[22] D. Lucanu and G. Rosu. Circular coinduction with special contexts.
In Proc. ICFEM, vol. 5885 of LNCS, pages 639–659. Springer, 2009.

[23] A. Meyer and L. J. Stockmeyer. Word problems requiring exponential
time. In Proc. STOC, pages 1–9. ACM, 1973.

[24] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[25] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
I/II. Information and Computation, 100(1):1–77, 1992.

[26] D. Pous. Complete lattices and up-to techniques. In Proc. APLAS, vol.
4807 of LNCS, pages 351–366. Springer, 2007.

[27] J. Rutten. Automata and coinduction (an exercise in coalgebra). In
Proc. CONCUR, vol. 1466 of LNCS, pages 194–218. Springer, 1998.

[28] D. Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8:447–479, 1998.

[29] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, 2011.

[30] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the
powerset construction, coalgebraically. In Proc. FSTTCS, vol. 8 of
LIPIcs, pages 272–283. Leibniz-Zentrum fuer Informatik, 2010.

12 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

http://perso.ens-lyon.fr/damien.pous/hknt

[31] D. Tabakov and M. Vardi. Experimental evaluation of classical au-
tomata constructions. In Proc. LPAR, vol. 3835 of LNCS, pages 396–
411. Springer, 2005.

[32] D. Turi and G. D. Plotkin. Towards a mathematical operational
semantics. In LICS, pages 280–291, 1997.

[33] M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains:
A new algorithm for checking universality of finite automata. In Proc.
CAV, vol. 4144 of LNCS, pages 17–30. Springer, 2006.

A. Smallest bisimulation and compositionality
In this appendix, we show some (unrelated) properties that have
been discussed through the paper, but never formally stated.

The first property concerns the relation computed by Naive(x, y).
The following proposition shows that it is the smallest bisimulation
relating x and y.

Proposition 8. Let x and y be two states of a DFA. Let RNaive

be the relation built by Naive(x, y). If Naive(x, y) = true,
then RNaive is the smallest bisimulation relating x and y, i.e.,
RNaive ⊆ R, for all bisimulations R such that (x, y) ∈ R.

Proof. We have already shown in Proposition 2 that RNaive is a
bisimulation. We need to prove that it is the smallest. Let R be a
bisimulation such that (x, y) ∈ R. For all words w ∈ A∗ and pair
of states (x′, y′) such that x w→ x′ and y w→ y′, it must hold that
(x′, y′) ∈ R (by definition of bisimulation).

By construction, for all (x′, y′) ∈ RNaive there exists a word
w ∈ A∗, such that x w→ x′ and y w→ y′. Therefore all the pairs in
RNaive must be also in R, that is RNaive ⊆ R.

The second property is

[[X + Y]] = [[X]] + [[Y]] ,

which we have used in the Introduction to give an intuition of
bisimulation up to context and to show that the problem of lan-
guage inclusion can be reduced to language equivalence. We be-
lieve that this property is interesting, since it follows from the cate-
gorical observation made in [30] that determinised NFA are bialge-
bras [32], like CCS processes. For this reason, we prove here that
[[−]] : P(S)→ 2A

∗
is a semi-lattice homomorphism.

Theorem 7. Let (S, o, t) be a non-deterministic automaton and
(P(S), o], t]) be the corresponding deterministic automaton ob-
tained through the powerset construction. The function [[−]] : P(S)→
2A
∗

is a semi-lattice homomorphism, that is, for all X1, X2 ∈
P(S),

[[X1 +X2]] = [[X1]] + [[X2]] and [[0]] = 0 .

Proof. We prove that for all words w ∈ A∗, [[X1 + X2]](w) =
[[X1]](w) + [[X2]](w), by induction on w.

• for ε, we have:

[[X1 +X2]](ε) = o](X1 +X2)

= o](X1) + o](X2) = [[X1]](ε) + [[X2]](ε) .

• for a · w, we have:

[[X1 +X2]](a · w)
= [[t]a(X1 +X2)]](w) (by definition)

= [[t]a(X1) + t]a(X2)]](w) (by definition)

= [[t]a(X1)]](w) + [[t]a(X2)]](w) (by induction hypothesis)
= [[X1]](a · w) + [[X2]](a · w) . (by definition)

For the second part, we prove that for all words w ∈ A∗, [[0]](w) =
0, again by induction on w. Base case: [[0]](ε) = o](0) = 0.
Inductive case: [[0]](a · w) = [[t]a(0)]](w) = [[0]](w) that by
induction hypothesis is 0.

B. Proofs of Section 2

Proposition 1. Two states are language equivalent iff there exists a
bisimulation that relates them.

Proof. Let R[[−]] be the relation {(x, y) | [[x]] = [[y]]}. We
prove that R[[−]] is a bisimulation. If x R[[−]] y, then o(x) =
[[x]](ε) = [[y]](ε) = o(y). Moreover, for all a ∈ A and w ∈ A∗,
[[ta(x)]](w) = [[x]](a · w) = [[y]](a · w) = [[ta(y)]](w) that means
[[ta(x)]] = [[ta(y)]], that is ta(x) R[[−]] ta(y).

We now prove the other direction. Let R be a bisimulation.
We want to prove that x R y entails [[x]] = [[y]], i.e., for all
w ∈ A∗, [[x]](w) = [[y]](w). We proceed by induction on w.
For w = ε, we have [[x]](ε) = o(x) = o(y) = [[y]](ε). For
w = a · w′, since R is a bisimulation, we have ta(x) R ta(y)
and thus [[ta(x)]](w′) = [[ta(y)]](w

′) by induction. This allows us
to conclude since [[x]](a · w′) = [[ta(x)]](w

′) and [[y]](a · w′) =
[[ta(y)]](w

′).

Lemma 1. The following functions are compatible:

id: the identity function;

f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compatible

functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Proof. The first two points are straightforward;
For the third one, assume that F is a family of compatible

functions. Suppose that R� R′; for all f ∈ F , we have f(R)�
f(R′) so that

⋃
f∈F f(R)�

⋃
f∈F f(R

′).
For the last one, assume that f is compatible; for all n, fn is

compatible because (a) f0 = id is compatible (by the first point)
and (b) fn+1 = f ◦ fn is compatible (by the second point and
induction hypothesis). By definition fω =

⋃
n f

n and thus, by the
third point, fω is compatible.

Lemma 2. The following functions are compatible:

• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S};
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Proof. r: observe that the identity relation Id = {(x, x) | ∀x ∈
S} is always a bisimulation, i.e., Id � Id. Thus for all R,R′

r(R) = Id� Id = r(R′).
s: observe that the definition of progression is completely sym-

metric. Therefore, if R� R′, then s(R)� s(R′).
t: assume that R � R′. For each (x, z) ∈ t(R), there ex-

ists y such that (x, y) ∈ R and (y, z) ∈ R. By assump-
tion, (1) o′(x) = o′(y) = o′(z) and (2) for all a ∈ A,
t′a(x)R

′ t′a(y)R
′ t′a(z), that is t′a(x) t(R′) t′a(z).

13 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

C. Proofs of Section 3

Lemma 4. For all relations R, the relation R is convergent.

Proof. We have that Z R Z′ implies |Z′| > |Z|, where |X|
denotes the cardinality of the set X (note that R is irreflexive).
Since |Z′| is bounded by |S|, the number of states of the NFA,
the relation R is strongly normalising. We can also check that
whenever Z R Z1 and Z R Z2, either Z1 = Z2 or there is
some Z′ such that Z1 R Z′ and Z2 R Z′. Therefore, R is
convergent.

Lemma 13. The relation R is contained in c(R).

Proof. If Z R Z′ then there exists (X,Y) ∈ (s ∪ id)(R) such
that Z = Z+X and Z′ = Z+Y . Therefore Z c(R) Z′ and, thus,
 R is contained in c(R).

Lemma 14. Let X,Y ∈ P(S), we have (X + Y)↓R = (X↓R +
Y ↓R)↓R.

Proof. Follows from confluence (Lemma 4) and from the fact that
for all Z,Z′, U , Z R Z

′ entails U + Z =
R U + Z′.

Theorem 3. For all relations R, and for all X,Y ∈ P(S), we have
X↓R = Y ↓R iff (X,Y) ∈ c(R).

Proof. From right to left. We proceed by induction on the deriva-
tion of (X,Y) ∈ c(R). The cases for rules r, s, and t are straight-
forward. For rule id, suppose that X R Y , we have to show
X↓R = Y ↓R:

• if X = Y , we are done;
• if X (Y , then X R X + Y = Y ;
• if Y (X , then Y R X + Y = X;
• if neither Y ⊆ X nor X ⊆ Y , then X,Y R X + Y .

(In the last three cases, we conclude by confluence—Lemma 4.)
For rule u, suppose by induction that Xi↓R = Yi↓R for i ∈ 1, 2;
we have to show that (X1 + Y1)↓R = (X2 + Y2)↓R. This follows
by Lemma 14.
From left to right. By Lemma 13, we have X c(R) X↓R for any
set X , so that X c(R) X↓R = Y ↓R c(R) Y .

Lemma 5. The three algorithms require at most 1+v·|R| iterations,
where |R| is the size of the produced relation; moreover, this bound
is reached whenever they return true.

Proof. At each iteration, one pair is extracted from todo. The latter
contains one pair before entering the loop and v pairs are added to
it every time that a pair is added to R.

Lemma 15. Let x and y be two states of a DFA. LetRNaive andRHK

be relations computed by Naive(x, y) and HK(x, y), respectively.
If Naive(x, y) = HK(x, y) = true, then e(RNaive) = e(RHK).

Proof. By the proof of Proposition 3, eω(RHK) is a bisimulation.
Since e is idempotent, we have eω = e and thus e(RHK) is a
bisimulation; we can thus deduce by Proposition 8 that RNaive ⊆
e(RHK). Moreover, by definition of the algorithms, we have RHK ⊆
RNaive. Summarising,

RHK ⊆ RNaive ⊆ e(RHK)

It follows that e(RHK) = e(RNaive), e being monotonic and idem-
potent.

Lemma 6. LetRNaive,RHK, andRHKC denote the relations produced
by the three algorithms. We have

|RHKC|, |RHK| ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the deter-
minised NFA and n is the number of states of the NFA. If the algo-
rithms returned true, we moreover have

|RHKC| ≤ |RHK| ≤ |RNaive| . (3)

Proof. For the first point, let PS denote the set of (determinised
NFA) states accessible from the two starting states, so that m =
|PS| ≤ 2n. Since RNaive ⊆ PS×PS, we deduce |RNaive| ≤ m2.
Since each pair added to RHK merges two distinct equivalence
classes in e(RHK), we necessarily have |RHK| ≤ m (the largest
partition of PS has exactly m singletons). Similarly, each pair
added to RHKC merges at least two distinct equivalence classes in
c(RHK), so that we also have |RHKC| ≤ m.

For the second point, |RHK| ≤ |RNaive| follows from the fact that
RHK ⊆ RNaive, by definition of the algorithms. The other inequality
is less obvious.

By construction, RHKC ⊆ RNaive and, since e is monotonic,
e(RHKC) ⊆ e(RNaive) = e(RHK) (the latter equality is given by
Proposition 15). In particular, there are more equivalence classes
in e(RHKC) than in e(RHK); using the same argument as above, we
deduce that |RHKC| ≤ |RHK|.

Lemma 8. Let X,Y be two sets of states; let R⊆ and R⊇ be the
relations computed by HKC(X+Y, Y) and HKC(X+Y,X), respec-
tively. If R⊆ and R⊇ are bisimulations up to congruence, then the
following relation is a bisimulation up to congruence:

R= = {(X ′, Y ′) | (X ′+Y ′, Y ′) ∈ R⊆ or (X ′+Y ′, X ′) ∈ R⊇}.

Proof. Let (X ′, Y ′) ∈ R= and suppose that (X ′+Y ′, Y ′) ∈ R⊆
(the other case is symmetric).

First notice that all pairs in R⊇ necessarily have the shape
(t]w(X+Y), t]w(X)), for some word w. Since R⊇ is a bisimula-
tion up to congruence, c(R⊇) is a bisimulation. Since (X+Y,X) ∈
c(R⊇) then, for all words w, (t]w(X+Y), t]w(X)) ∈ c(R⊇)
and thus (X ′+Y ′, X ′) ∈ c(R⊇) (we have X ′ = t]w(X) and
Y ′ = t]w(Y) for some word w).

Since c(R⊆) and c(R⊇) are bisimulations containing (X ′+Y ′, Y ′)
and (X ′+Y ′, X ′), it holds that:

1. o](X ′) = o](X ′ + Y ′) = o](Y ′);
2. for all a, t]a(X ′ + Y ′) c(R⊇) t

]
a(X

′) and t]a(X ′ + Y ′) c(R⊆)
t]a(Y

′).

By Lemma 7, t]a(Y ′) ⊆ t]a(X
′)↓R⊇ and X ′ ⊆ t]a(Y

′)↓R⊆ and
since all the rewriting rules for R⊆ and R⊇ are also rewriting rules
for R=, then t]a(Y ′) ⊆ t]a(X

′)↓R= and t]a(X ′) ⊆ t]a(Y
′)↓R= .

By the first observation in the proof of Lemma 7, this means that
t]a(X

′) c(R=) t
]
a(Y

′).

D. Proofs of Section 4

Proposition 4. For all sets X,Y , we have [[X]] ⊆ [[Y]] iff there
exists a simulation T such that for all x ∈ X , x T Y .

14 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

Proof. Let T[[−]] be the relation {(x, Y) | [[x]] ⊆ [[Y]]}. We prove
that T[[−]] is a simulation. If x T[[−]] Y , then o(x) = [[x]](ε) ≤
[[Y]](ε) = o](Y). Moreover, for all a ∈ A x′ ∈ ta(x) andw ∈ A∗,
[[x′]](w) ⊆ [[x]](a · w) ⊆ [[Y]](a · w) = [[t]a(Y)]](w) that means
[[x′]] ⊆ [[t]a(Y)]], that is ta(x) T[[−]] t

]
a(Y).

We now prove the other direction. Let T be a simulation. We
want to prove that x T Y entails [[x]] ⊆ [[Y]], i.e., for all w ∈ A∗,
[[x]](w) ≤ [[Y]](w). We proceed by induction on w. For w = ε, we
have [[x]](ε) = o(x) ≤ o](Y) = [[Y]](ε). For w = a · w′, since T
is a simulation, we have ta(x) T t]a(Y) and thus [[ta(x)]](w

′) ≤
[[t]a(Y)]](w′) by induction. This allows us to conclude since [[x]](a ·
w′) = [[ta(x)]](w

′) and [[y]](a · w′) = [[t]a(y)]](w
′).

Definition 10. A function f : P(S×P(S))→ P(S×P(S)) is s-
compatible if is monotone and for all relations T, T ′ ⊆ S×P(S),
T �s T

′ entails f(T)�s f(T
′).

Lemma 16. Any simulation T up to an s-compatible function f
(T �s f(T)) is contained in a simulation, namely fω(T).

Proof. Same proof as for Proposition 3.

Lemma 17. The upward closure function � is s-compatible.

Proof. We assume that T �s T
′ and we prove that �T �s �T ′.

If x �T Y , then ∃Y ′ ⊆ Y such that x T Y ′. Since Y ′ ⊆ Y ,
o](Y ′) ≤ o](Y) and t]a(Y

′) ⊆ t]a(Y) for all a ∈ A. Since
T �s T ′ and x T Y ′, then o(x) ≤ o](Y ′) ≤ o](Y) and
ta(x) �T ′ t]a(Y) for all a ∈ A.

Theorem 4. Any simulation up to � is contained in a simulation.

Proof. By Lemmas 16 and 17.

Lemma 18. The relation

R′ = {(x+ y, z)}
+ {(x+ Yi + yi+1, Zi+1) | i < n}
+ {(x+ Yi + xi+1, Zi+1) | i < n}

is a bisimulation up to congruence for the NFA in Fig. 5.

Proof. First notice that

X1 + y c(R′) x+ Y1 c(R′) Z1

We then consider each kind of pair of R′ separately:

• (x, y): we have o](x + y) = 0 = o](z) and t]a(x + y) =
X1 + y R′ Z1 = t]a(z) and, similarly, t]b(x+ y) = x+ Y1 R

′

Z1 = t]b(z).
• (x+Yi+yi+1, Zi+1): both members are accepting iff i+1 =
n; setting j = min(i+ 2, n), we have

t]a(x+ Yi + yi+1) =X1 + y + y2 + · · ·+ yj

c(R′) x+ Y1 + y2 + · · ·+ yj

= x+ Yj R
′ Zj = t]a(Zi+1)

and

t]b(x+ Yi + yi+1) = x+ Yj R
′ Zj = t]b(Zi+1)

• (x+Yi+xi+1, Zi+1): both members are accepting iff i+1 =
n; if i+ 1 < n then we have:

t]a(x+ Yi + xi+1) =X1 + y + y2 + · · ·+ yi+1 + xi+2

c(R′) x+ Y1 + y2 + · · ·+ yi+1 + xi+2

= x+ Yi+1 + xi+2

R′ Zi+2 = t]a(Zi+1)

and

t]b(x+ Yi + xi+1) = x+ Yi+1 + xi+2 R
′ Zi+2 = t]b(Zi+1)

otherwise, i.e., i+ 1 = n, notice that:

x+ Yn + xn c(R
′) Zn + yn

c(R′) x+ Yn + yn = x+ Yn

c(R′) Zn = t]a(Zn) ,

from which we deduce:

t]a(x+ Yi + xn) =X1 + y + y2 + · · ·+ yn + xn

c(R′) x+ Y1 + y2 + · · ·+ yn + xn

= x+ Yn + xn c(R
′) t]a(Zn)

and

t]b(x+ Yi + xn) = x+ Yn + xn c(R
′) t]a(Zn)

E. Proofs of Section 5

Theorem 5. Any simulation up to & is contained in a simulation.

Proof. By Lemma 16, it suffices to show that & is s-compatible.
Suppose that T �s T ′, we have to show that &T �s &T ′.
Assume that x &T Y .

• if x �∀∃ Y then x � y for some y ∈ Y . Therefore, we have
o(x) ≤ o(y) ≤ o](Y) and for all a ∈ A, x′ ∈ ta(x), we
have some y′ ∈ ta(y) with x′ � y′. Since ta(y) ⊆ t]a(Y), we
deduce x′ �∀∃ t]a(Y), and hence x′ &T ′ t]a(Y), as required.
• otherwise, we have some (x′, Y ′) ∈ T such that (x′, Y ′) v�
(x, Y), i.e., x � x′ and Y ′ �∀∃ Y . Since T �s T ′, we
have o(x) ≤ o(x′) ≤ o](Y ′) ≤ o](Y). Now take some
x′′ ∈ ta(x), we have some x′′′ ∈ ta(x′) with x′′ � x′′′, and
since T �s T

′, we know x′′′ T ′ t]a(Y
′). It suffices to show

that t]a(Y ′) �∀∃ t]a(Y) to conclude; this follows easily from
Y ′ �∀∃ Y and from the definition of similarity.

Lemma 11. For all relations R, c′(R) = c(R ∪ �).

Proof. The inclusion c(R ∪ �) ⊆ c′(R) is trivial. For the other
inclusion we take d = r′∪s∪t∪u∪id and we prove by induction
that for all natural numbers n, dn(R) ⊆ c(R ∪ �). For n = 0,
d0(R) = R ⊆ c(R ∪ �). For n + 1, dn+1(R) = d(dn(R)). By
induction hypothesis, dn(R) ⊆ c(R ∪�) and, by monotonicity of
d, d(dn(R)) ⊆ d(c(R ∪�)). By definition of d, the latter is equal
to c(R ∪ �).

Lemma 12. For all relations T ⊆ S × P(S), &̂T ⊆ c′(T̂).

15 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

Proof. If (x + Y, Y) ∈ &̂T , then either (a) x �∀∃ Y or (b)
there exists x � x′ and Y ′ �∀∃ Y such that (x′, Y ′) ∈ T . We
have to show (x+Y, Y) ∈ c′(T̂), i.e., (x+Y, Y) ∈ c(T̂ + �) by
Lemma 11, that is x ∈ Y ↓T̂+� by Lemma 7. For (b), we have:

Y ?
T̂+� Y + Y ′ (Y ′ �∀∃ Y)

 T̂+� Y + Y ′ + x′ ((x′+Y ′, Y ′) ∈ T̂)

 T̂+� Y + Y ′ + x′ + x (x � x′)

x ∈ Y ↓T̂+� follows by confluence (Lemma 4). For (a), we
immediately have that Y T̂+� Y + x.

Proposition 7. If T is a simulation up to &, then T̂ is a bisimulation
up to c′.

Proof. First observe that if T �s T
′, then T̂ � uω(T̂ ′). There-

fore, if T �s �T , then T̂ � uω(�̂T). By Lemma 12, T̂ �
uω(c′(T̂)) = c′(T̂).

Lemma 19. The relation

R′′ = {(z+x+y, x+y)}
∪ {(Zi+1+Xi+y+yi+1, Xi+y+yi+1) | i < n}
∪ {(Zi+1+Xi+1+y, Xi+1+y) | i < n} ,

is a bisimulation up to c′ for the NFA in Figure 6.

Proof. Let X ′i be the set Xi without x1 and note that Xi
a→ Xi+1

and Xi
b→ X ′i+1. First we observe that for all i,

X ′i + Y1 R′′∪� X
′
i + Y1 + Z1 R′′∪� X

′
i + Y1 + Z1 + x1

where the first reduction is given by (Z1 +X0 + y+ y1, X0 + y+
y1) ∈ R′′ and the second by x1 � z1. Since X ′i + x1 = Xi, then
one can apply the third kind of pairs in R′′, so that

X ′i + Y1
∗
R′′∪� Xi + Y1 + Zi

that is Zi ⊆ (X ′i + Y1)↓R′′∪�. By Lemmas 7 and 11, this means
that

Zi +X ′i + Y1 c
′(R′′) X ′i + Y1 (2)

If we moreover have yi+1, we can apply the second kind of pair
in R′′ and obtain

X ′i + Y1 + yi+1
∗
R′′∪� Xi + Y1 + Zi+1 + yi+1

that is

Zi+1 +X ′i + Y1 + yi+1 c
′(R′′) X ′i + Y1 + yi+1 (3)

With (2) and (3), it is easy to prove that R′′ is a bisimulation up
to c′, by simply proceeding by cases:

• (z+x+y, x+y): we have o](x+y+z) = 0 = o](x+y) and
t]a(x+y+z) = Z1+X1+y R′′ X1 + y = t]a(x+y) and,
similarly, t]b(x+y+z) = Z1+x+Y1 R

′′ x+Y1 = t]b(z).
• (Zi+1+Xi+y+yi+1, Xi+y+yi+1) and i < n − 1: both

members are not accepting;

t]a(Zi+1+Xi+y+yi+1) = Zi+2+Xi+1+y+yi+2

R′′ Xi+1+y+yi+2

= t]a(Xi+y+yi+1)

and

t]b(Zi+1+Xi+y+yi+1) = Zi+2+X
′
i+1+Y1+yi+2

c′(R′′)X ′i+1+Y1+yi+2

= t]b(Xi+y+yi+1)

• (Zn+Xn−1+y+yn, Xn−1+y+yn) and i = n − 1: both
members are accepting;

t]a(Zn+Xn−1+y+yn) = Zn+Xn+y

R′′ Xn+y

= t]a(Xn−1+y+yn)

and

t]b(Zn+Xn−1+y+yn) = Zn+X
′
n+Y1

c′(R′′)X ′n+Y1

= t]b(Xn−1+y+yn)

• (Zi+1+Xi+1+y, Xi+1+y) and i < n− 1: both members are
not accepting;

t]a(Zi+1+Xi+1+y) = Zi+2+Xi+2+y

R′′ Xi+2+y

= t]a(Xi+1+y)

and

t]b(Zi+1+Xi+1+y) = Zi+2+X
′
i+2+Y1

c(R′′)X ′i+2+Y1

= t]b(Xi+1+y)

• (Zn+Xn+y, Xn+y): both members are accepting; Moreover,

t]a(Zn+Xn+y) = Zn+Xn+y

R′′ Xn+y = t]a(Xn+y)

and

t]b(Zn+Xn+y) = Zn+X
′
n+Y1

c(R′′)X ′n+Y1

= t]b(Xn+y)

The cases for the letter c are always trivial since Zi
c→ 0.

16 2012/7/11

ha
l-0

06
39

71
6,

 v
er

si
on

 5
 -

11
 J

ul
 2

01
2

Concurrent Flexible Reversibility?

Ivan Lanese1, Michael Lienhardt2, Claudio Antares Mezzina3, Alan Schmitt4,
and Jean-Bernard Stefani4

1 Focus Team, University of Bologna/Inria, Italy lanese@cs.unibo.it
2 PPS Laboratory, Paris Diderot University, France lienhard@cs.unibo.it

3 SOA Unit, FBK, Trento, Italy mezzina@fbk.eu
4 Inria, France alan.schmitt@inria.fr, jean-bernard.stefani@inria.fr

Abstract. Concurrent reversibility has been studied in different ar-
eas, such as biological or dependable distributed systems. However, only
“rigid” reversibility has been considered, allowing to go back to a past
state and restart the exact same computation, possibly leading to diver-
gence. In this paper, we present croll-π, a concurrent calculus featuring
flexible reversibility, allowing the specification of alternatives to a com-
putation to be used upon rollback. Alternatives in croll-π are attached to
messages. We show the robustness of this mechanism by encoding more
complex idioms for specifying flexible reversibility, and we illustrate the
benefits of our approach by encoding a calculus of communicating trans-
actions.

1 Introduction

Reversible programs can be executed both in the standard, forward direction as
well as in the backward direction, to go back to past states. Reversible program-
ming is attracting much interest for its potential in several areas. For instance,
chemical and biological reactions are typically bidirectional, and the direction
of execution is fixed by environmental conditions such as temperature. Simi-
larly, quantum computations are reversible as long as they are not observed.
Reversibility is also used for backtracking in the exploration of a program state-
space toward a solution, either as part of the design of the programming language
as in Prolog, or to implement transactions. We are particularly interested in the
use of reversibility for modeling and programming concurrent reliable systems.
In this setting, the main idea is that in case of an error the program backtracks
to a past state where the decisions leading to the error have not been taken yet,
so that a new forward execution may avoid repeating the (same) error.

Reversibility has a non trivial interplay with concurrency. Understanding this
interplay is fundamental in many of the areas above, e.g., for biological or reliable
distributed systems, which are naturally concurrent. In the spirit of concurrency,
independent threads of execution should be rolled-back independently, but causal
dependencies between related threads should be taken into account.

? This work has been partially supported by the French National Research Agency
(ANR), projects REVER ANR 11 INSE 007 and PiCoq ANR 10 BLAN 0305.

2 Ivan Lanese et al.

This form of reversibility, termed causal consistent, was first introduced by
RCCS [11], a reversible variant of CCS. RCCS paved the way to the definition of
reversible variants of more expressive concurrent calculi [8, 18, 20, 22]. This line
of research considered rigid, uncontrolled, step-by-step reversibility. Step-by-step
means that each single step can be undone, as opposed, e.g., to checkpointing
where many steps are undone at once. Uncontrolled means that there is no hint as
to when to go forward and when to go backward, and up to where. Rigid means
that the execution of a forward step followed by the corresponding backward step
leads back to the starting state, where an identical computation can restart.

While these works have been useful to understand the basics of concurrent
reversibility in different settings, some means to control reversibility are required
in practice. In the literature four different forms of control have been proposed:
relating the direction of execution to some energy parameter [2], introducing
irreversible actions [12], using an explicit rollback primitive [17], and using a
superposition operator to control forward and backward execution [24].

With the exception of [24], these works were based on causal consistent, rigid
reversibility. However, rigid reversibility may not always be the best choice. In the
setting of reliable systems, for instance, rigid reversibility means that to recover
from an error a past state is reached. From this past state the computation that
lead to the error is still possible. If the error was due to a transient fault, retrying
the same computation may be enough to succeed. If the failure was permanent,
the program may redo the same error again and again.

Our goal is to overcome this limitation by providing the programmer with
suitable linguistic constructs to specify what to do after a causal consistent
backward computation. Such constructs can be used to ensure that new forward
computations explore new possibilities. To this end, we build on our previous
work on roll-π [17], a calculus where concurrent reversibility is controlled by the
roll γ operator. Executing it reverses the action referred by γ together with all the
dependent actions. Here, we propose a new calculus called croll-π, for compen-
sating roll-π, as a framework for flexible reversibility. We attempt to keep croll-π
as close as possible to roll-π while enabling many new possible applications. We
thus simply replace roll-π communication messages a〈P 〉 by messages with al-
ternative a〈P 〉÷ c〈Q〉. In forward computation, a message a〈P 〉÷ c〈Q〉 behaves
exactly as a〈P 〉. However, if the interaction consuming it is reversed, the origi-
nal message is not recreated—as would be the case with rigid reversibility—but
the alternative c〈Q〉 is released instead. Our rollback and alternative message
primitives provide a simple form of reversibility control, which always respects
the causal consistency of reverse computation. It contrasts with the fine-grained
control provided by the superposition constructs in [24], where the execution of
a CCS process can be constrained by a controller, possibly reversing given past
actions in a way that is non-causally consistent.

Our contributions are as follows. We show that the simple addition of alter-
natives to roll-π greatly extends its expressive power. We describe how messages
with alternative allow for programming different patterns for flexible reversibil-
ity. Then, we show that croll-π can be used to model the communicating transac-

Concurrent Flexible Reversibility 3

tions of [13]. Notably, the tracking of causality of croll-π is more precise than the
one in [13], thus allowing to improve on the original proposal by avoiding some
spurious undo of actions. Additionally, we study some aspects of the behavioral
theory of croll-π, including a context lemma for barbed congruence. This allows
us to reason about croll-π programs, in particular to prove the correctness of the
encodings of primitives for flexible reversibility and of the transactional calculus
of [13]. Finally, we present an interpreter, written in Maude [10], for a small
language based on croll-π.

Outline. Section 2 gives an informal introduction to croll-π. Section 3 defines the
croll-π calculus, its reduction semantics, and it introduces the basics of its be-
havioral theory. Section 4 presents various croll-π idioms for flexible reversibility.
Section 5 outlines the croll-π interpreter in Maude and a solution for the Eight
Queens problem. Section 6 presents an encoding and an analysis of the Trans-
CCS constructs from [13]. Section 7 concludes the paper with related work and a
mention of future studies. The paper includes short proof sketches for the main
results. We refer to the online technical report [16] for full proofs.

2 Informal Presentation

Rigid reversibility in roll-π. The croll-π calculus is a conservative extension of the
roll-π calculus introduced in [17].5 We briefly review the roll-π constructs before
presenting the extension added by croll-π. Processes in roll-π are essentially pro-
cesses of the asynchronous higher-order π-calculus [25], extended with a rollback
primitive. Processes in roll-π cannot directly execute, only configurations can. A
configuration is essentially a parallel composition of tagged processes along with
memories tracking past interactions and connectors tracing causality informa-
tion. In a tagged process of the form k : P , the tag k uniquely identifies the
process P in a given configuration. We often use the term key instead of tag.

The uniqueness of tags in configurations is achieved thanks to the following
reduction rule that defines how parallel processes are split.

k : P | Q −→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

In the above reduction, | is the parallel composition operator and ν is the
restriction operator, both standard from the π-calculus. As usual, the scope of
restriction extends as far to the right as possible. Connector k ≺ (k1, k2) is used
to remember that the process tagged by k has been split into two sub-processes
identified by the new keys k1 and k2. Thus complex processes can be split into
threads, where a thread is either a message, of the form a〈P 〉 (where a is a
channel name), a receiver process (also called a trigger), of the form a(X) .γ P ,
or a rollback instruction of the form roll k, where k is a key.

A forward communication step occurs when a message on a channel can be
received by a trigger on the same channel. It takes the following form (roll-π is

5 The version of roll-π presented here is slightly refined w.r.t. the one in [17].

4 Ivan Lanese et al.

an asynchronous higher-order calculus).

(k1 : a〈P 〉) | (k2 : a(X) .γ Q) −→ νk. k : Q{P,k/X,γ} | [µ; k]

In this forward step, keys k1 and k2 identify threads consisting respectively of
a message a〈P 〉 on channel a and a trigger a(X) .γ Q expecting a message on
channel a. The result of the message input yields, as in higher-order π, the body
of the trigger Q with the formal parameter X instantiated by the received value,
i.e., process P . Message input also has three side effects: (i) the tagging of the
newly created process Q{P,k/X,γ} by a fresh key k; (ii) the creation of a memory
[µ; k], which records the original two threads,6 µ = (k1 : a〈P 〉) | (k2 : a(X).γQ),
together with key k; and (iii) the instantiation of variable γ with the newly
created key k (the trigger construct is a binder both for its process parameter
and its key parameter).

In roll-π, a forward computation, i.e., a series of forward reduction steps
as above, can be perfectly undone by backward reductions triggered by the
occurrence of an instruction of the form roll k, where k refers to a previously
instantiated memory. In roll-π, we have for instance the following forward and
backward steps, where M = (k1 : a〈Q〉) | (k2 : a(X) .γ X | roll γ):

M −→ νk. (k : Q | roll k) | [M ; k] −→
νk k3 k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→M

The communication between threads k1 and k2 in the first step and the split of
process k into k3 and k4 are perfectly undone by the third (backward) step.

More generally, the set of memories and connectors of a configuration M
provides us with an ordering <: between the keys of M that reflects their causal
dependency: k′ <: k means that key k′ has key k as causal descendant. Thus,
the effects of a rollback can be characterized as follows. When a rollback takes
place in a configuration M , triggered by an instruction kr : roll k, it suppresses
all threads and processes whose tag is a causal descendant of k, as well as all
connectors k′ ≺ (k1, k2) and memories m = [k1 : τ1 | k2 : τ2; k′] whose key k′

is a causal descendant of k. When suppressing such a memory m, the rollback
operation may release a thread ki : τi if ki is not a causal descendant of k (at
least one of the threads of m must have k as causal antecedent if k′ has k as
causal antecedent). This is due to the fact that a thread that is not a causal
descendant of k may be involved in a communication (and then captured into
a memory) by a descendant of k. This thread can be seen as a resource that is
taken from the environment through interaction, and it should be restored in
case of rollback. Finally, rolling-back also releases the content µ of the memory
[µ; k] targeted by the roll, reversing the corresponding communication step.

Flexible reversibility in croll-π. In roll-π, a rollback perfectly undoes a computa-
tion originated by a specific message receipt. However, nothing prevents the same

6 Work can be done to store memories in a more efficient way. We will not consider
this issue in the current paper; an approach can be found in [20].

Concurrent Flexible Reversibility 5

computation from taking place again and again (although not necessarily in the
same context, as independent computations may have proceeded on their own
in parallel). To allow for flexible reversibility, we extend roll-π with a single new
construct, called a message with alternative. In croll-π, a message may now take
the form a〈P 〉÷C, where alternative C may either be a message c〈Q〉÷0 with
null alternative or the null process 0. When the message receipt of k : a〈P 〉÷C
is rolled-back, configuration k : C is released instead of the original k : a〈P 〉, as
would be the case in roll-π. (Only the alternative associated to the message in the
memory [µ; k] targeted by the roll is released: other processes may be restored,
but not modified.) For example, if M = (k1 : a〈Q〉÷0) | (k2 : a(X) .γ X | roll γ)
then we have the following computation, where the communication leading to
the rollback becomes disabled.

M −→ νk. (k : Q | roll k) | [M ; k] −→
νk k3 k4. k ≺ (k3, k4) | k3 : Q | k4 : roll k | [M ; k] −→
k1 : 0 | (k2 : a(X) .γ X | roll γ)

We will show that croll-π is powerful enough to devise various kinds of al-
ternatives (see Section 4), whose implementation is not possible in roll-π (cf.
Theorem 2). Also, thanks to the higher-order aspect of the calculus, the behav-
ior of roll-π can still be programmed: rigid reversibility can be seen as a particular
case of flexible reversibility. Thus, the introduction of messages with alternative
has limited impact on the definition of the syntax and of the operational seman-
tics, but it has a strong impact on what can actually be modeled in the calculus
and on its theory.

3 The croll-π Calculus: Syntax and Semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually-disjoint sets: the set N of names, the set K of keys, the
set VK of key variables, and the set VP of process variables. N denotes the set
of natural numbers. We let (together with their decorated variants): a, b, c range
over N ; h, k, l range over K; u, v, w range over N ∪K; γ range over VK; X,Y, Z
range over VP . We denote by ũ a finite set u1 . . . un.

Syntax. The syntax of the croll-π calculus is given in Figure 1. Processes, given
by the P,Q productions, are the standard processes of the asynchronous higher-
order π-calculus [25], except for the presence of the roll primitive, the extra
bound tag variable in triggers, and messages with alternative that replace roll-π
messages a〈P 〉. The alternative operator ÷ binds more strongly than any other
operator. Configurations in croll-π are given by the M,N productions. A config-
uration is built up from tagged processes k : P , memories [µ; k], and connectors
k ≺ (k1, k2). In a memory [µ; k], we call µ the configuration part of the memory

6 Ivan Lanese et al.

P,Q ::= 0 | X | νa. P | (P | Q) | a(X) .γ P | a〈P 〉÷C | roll k | roll γ
M,N ::= 0 | νu.M | (M | N) | k : P | [µ; k] | k ≺ (k1, k2) C ::= a〈P 〉÷0 | 0

µ ::= (k1 : a〈P 〉÷C) | (k2 : a(X) .γ Q)

a, b, c ∈ N X,Y, Z ∈ VP γ ∈ VK u, v, w ∈ N ∪ K h, k, l ∈ K

Fig. 1. Syntax of croll-π

and k its key. P denotes the set of croll-π processes and C the set of croll-π con-
figurations. We let (together with their decorated variants) P,Q,R range over P
and L,M,N range over C. We call thread a process that is either a message with
alternative a〈P 〉÷C, a trigger a(X).γP , or a rollback instruction roll k. We let τ
and its decorated variants range over threads. We write

∏
i∈IMi for the parallel

composition of configurations Mi for each i ∈ I (by convention
∏
i∈IMi = 0 if

I = ∅), and we abbreviate a〈0〉 to a.

Free identifiers and free variables. Notions of free identifiers and free variables
in croll-π are standard. Constructs with binders are of the following forms: νa. P
binds the name a with scope P ; νu.M binds the identifier u with scope M ; and
a(X) .γ P binds the process variable X and the key variable γ with scope P .
We denote by fn(P) and fn(M) the set of free names and keys of process P and
configuration M , respectively. Note in particular that fn(k : P) = {k} ∪ fn(P),
fn(roll k) = {k}. We say that a process P or a configuration M is closed if it
has no free (process or key) variable. We denote by Pcl and Ccl the sets of closed
processes and configurations, respectively. We abbreviate a(X) .γ P , where X is
not free in P , to a .γ P ; and a(X) .γ P , where γ is not free in P , to a(X) . P .

Remark 1. We have no construct for replicated processes or internal choice in croll-π:

as in the higher-order π-calculus, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

if terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Reduction Semantics

The reduction semantics of croll-π is defined via a reduction relation −→, which
is a binary relation over closed configurations (−→ ⊂ Ccl×Ccl), and a structural
congruence relation ≡, which is a binary relation over configurations (≡ ⊂ C×C).
We define configuration contexts as “configurations with a hole •”, given by
the grammar: C ::= • | (M | C) | νu.C. General contexts G are just
configurations with a hole • in a place where an arbitrary process P can occur.
A congruence on processes or configurations is an equivalence relation R that
is closed for general or configuration contexts: P RQ =⇒ G[P]RG[Q] and
M RN =⇒ C[M]RC[N].

Concurrent Flexible Reversibility 7

(E.ParC)M | N ≡ N |M (E.ParA)M1 | (M2 |M3) ≡ (M1 |M2) |M3

(E.NilM)M | 0 ≡M (E.NewN) νu.0 ≡ 0

(E.NewC) νu. νv.M ≡ νv. νu.M (E.NewP) (νu.M) | N ≡ νu. (M | N)

(E.α)M =α N =⇒ M ≡ N (E.TagC) k ≺ (k1, k2) ≡ k ≺ (k2, k1)

(E.TagA) νh. k ≺ (h, k3) | h ≺ (k1, k2) ≡ νh. k ≺ (k1, h) | h ≺ (k2, k3)

Fig. 2. Structural congruence for croll-π

(S.Com)
µ = (k1 : a〈P 〉÷C) | (k2 : a(X) .γ Q2)

(k1 : a〈P 〉÷C) | (k2 : a(X) .γ Q2) −→ νk. (k : Q2{P,k/X,γ}) | [µ; k]

(S.TagN) k : νa. P −→ νa. k : P

(S.TagP) k : P | Q −→ νk1 k2. k ≺ (k1, k2) | k1 : P | k2 : Q

(S.Roll)
k <: N complete(N | [µ; k] | (kr : roll k)) µ′ = xtr(µ)

N | [µ; k] | (kr : roll k) −→ µ′ | N k

(S.Ctx)
M −→ N

C[M] −→ C[N]
(S.Eqv)

M ≡M ′ M ′ −→ N ′ N ′ ≡ N
M −→ N

Fig. 3. Reduction rules for croll-π

Structural congruence ≡ is defined as the smallest congruence on configu-
rations that satisfies the axioms in Figure 2, where t =α t

′ denotes equality of
t and t′ modulo α-conversion. Axioms E.ParC to E.α are standard from the
π-calculus. Axioms E.TagC and E.TagA model commutativity and associativ-
ity of connectors, in order not to have a rigid tree structure. Thanks to axiom
E.NewC, νũ. A stands for νu1 . . . un. A if ũ = u1 . . . un.

Configurations can be written in normal form using structural congruence.

Lemma 1 (Normal form). Given a configuration M , we have:

M ≡ νñ.
∏
i

(ki : Pi) |
∏
j

[µi; kj] |
∏
l

kl ≺ (k′l, k
′′
l)

The reduction relation −→ is defined as the smallest binary relation on closed
configurations satisfying the rules of Figure 3. This extends the näıve semantics of

8 Ivan Lanese et al.

roll-π introduced in [17],7 and outlined here in Section 2, to manage alternatives.
We denote by =⇒ the reflexive and transitive closure of −→.

Reductions are either forward, given by rules S.Com, S.TagN, and S.TagP,
or backward, defined by rule S.Roll. They are closed under configuration con-
texts (rule S.Ctx) and under structural congruence (rule S.Eqv). The rule for
communication S.Com is the standard communication rule of the higher-order
π-calculus with the side effects discussed in Section 2. Rule S.TagN allows re-
strictions in processes to be lifted at the configuration level. Rule S.TagP allows
to split parallel processes. Rule S.Roll enacts rollback, canceling all the effects
of the interaction identified by the unique key k, and releasing the initial con-
figuration that gave rise to the interaction, where the alternative replaces the
original message. This is the only difference between croll-π and roll-π: in the lat-
ter, the memory µ was directly released. However, this small modification yields
significant changes to the expressive power of the calculus, as we will see later.

The rollback impacts only the causal descendants of k, defined as follows.

Definition 1 (Causal dependence). Let M be a configuration and let TM
be the set of keys occurring in M . Causal dependence <:M is the reflexive and
transitive closure of <M , which is defined as the smallest binary relation on TM
satisfying the following clauses:

– k <M k′ if k ≺ (k1, k2) occurs in M with k′ = k1 or k′ = k2;

– k <M k′ if a thread k : P occurs (inside µ) in a memory [µ; k′] of M .

If the configuration M is clear from the context, we write k <: k′ for k <:M k′.

A backward reduction triggered by roll k involves all and only the descen-
dants of key k. We ensure they are all selected by requiring that the configuration
is complete, and that no other term is selected by requiring k-dependence.

Definition 2 (Complete configuration). A configuration M is complete,
denoted as complete(M), if, for each memory [µ; k] and each connector k′ ≺
(k, k1) or k′ ≺ (k1, k) that occurs in M there exists in M either a connector
k ≺ (h1, h2) or a tagged process k : P (possibly inside a memory).

A configuration M is k-dependent if all its components depend on k.

Definition 3 (k-dependence). Let M be a configuration such that:
M ≡ νũ.

∏
i∈I(ki : Pi) |

∏
j∈J [µj ; kj] |

∏
l∈L kl ≺ (k′l, k

′′
l) with k /∈ ũ.

Configuration M is k-dependent, written k <: M by overloading the notation for
causal dependence among keys, if for every i in I ∪ J ∪ L, we have k <:M ki.

Rollback should release all the resources consumed by the computation to be
rolled-back which were provided by other threads. They are computed as follows.

7 We extend the näıve semantics instead of the high-level or the low-level semantics
(also defined in [17]) for the sake of simplicity. However, reduction semantics corre-
sponding to the high-level and low-level semantics of roll-π can similarly be specified.

Concurrent Flexible Reversibility 9

Definition 4 (Projection). Let M be a configuration such that:
M ≡ νũ.

∏
i∈I(ki : Pi) |

∏
j∈J [k′j : Rj | k′′j : Tj ; kj] |

∏
l∈L kl ≺ (k′l, k

′′
l) with

k /∈ ũ. Then:

M k = νũ.
(∏
j′∈J′

k′j′ : Rj′
)
|
(∏
j′′∈J′′

k′′j′′ : Tj′′
)

where J ′ = {j ∈ J | k 6<: k′j} and J ′′ = {j ∈ J | k 6<: k′′j }.

Intuitively, M k consists of the threads inside memories in M which are not
dependent on k.

Finally, and this is the main novelty of croll-π, function xtr defined below
replaces messages from the memory targeted by the roll by their alternatives.

Definition 5 (Extraction function).

xtr(M | N) = xtr(M) | xtr(N) xtr(k : a〈P 〉÷C) = k : C

xtr(k : a(X) .γ Q) = k : a(X) .γ Q

No other case needs to be taken into account as xtr is only called on the
contents of memories.

Remark 3. Not all syntactically licit configurations make sense. In particular, we ex-

pect configurations to respect the causal information required for executing croll-π

programs. We therefore work only with coherent configurations. A configuration is co-

herent if it is obtained by reduction starting from a configuration of the form νk. k : P

where P is closed and contains no roll h primitive (all the roll primitives should be of

the form roll γ).

3.3 Barbed Congruence

We define notions of strong and weak barbed congruence to reason about croll-π
processes and configurations. Name a is observable in configuration M , denoted
as M ↓a, if M ≡ νũ. (k : a〈P 〉÷C) | N , with a 6∈ ũ. We write MR↓a, where R is
a binary relation on configurations, if there exists N such that MRN and N ↓a.
The following definitions are classical.

Definition 6 (Barbed congruences for configurations). A relation R ⊆
Ccl×Ccl on closed configurations is a strong (respectively weak) barbed simula-
tion if whenever M RN ,

– M ↓a implies N ↓a (respectively N =⇒↓a);
– M −→M ′ implies N −→ N ′ (respectively N =⇒ N ′) with M ′RN ′.

A relation R ⊆ Ccl × Ccl is a strong (weak) barbed bisimulation if R and R−1
are strong (weak) barbed simulations. We call strong (weak) barbed bisimilarity
and denote by ∼ (≈) the largest strong (weak) barbed bisimulation. The largest
congruence for configuration contexts included in ∼ (≈) is called strong (weak)
barbed congruence, denoted by ∼c (≈c).

10 Ivan Lanese et al.

The notion of strong and weak barbed congruence extends to closed and open
processes, by considering general contexts that form closed configurations.

Definition 7 (Barbed congruences for processes). A relation R ⊆ Pcl ×
Pcl on closed processes is a strong (resp. weak) barbed congruence if whenever
PRQ, for all general contexts G such that G[P] and G[Q] are closed configura-
tions, we have G[P] ∼c G[Q] (resp. G[P] ≈c G[Q]).

Two open processes P and Q are said to be strong (resp. weak) barbed con-
gruent, denoted by P ∼oc Q (resp. P ≈oc Q) if for all substitutions σ such that
Pσ and Qσ are closed, we have Pσ ∼c Qσ (resp. Pσ ≈c Qσ).

Working with arbitrary contexts can quickly become unwieldy. We offer the
following Context Lemma to simplify the proofs of congruence.

Theorem 1 (Context lemma). Two processes P and Q are weak barbed con-
gruent, P ≈oc Q, if and only if for all substitutions σ such that Pσ and Qσ are
closed, all closed configurations M , and all keys k, we have: M | (k : Pσ) ≈M |
(k : Qσ).

The proof of this Context Lemma is much more involved than the corresponding
one in the π-calculus, notably because of the bookkeeping required in dealing
with process and thread tags. It is obtained by composing the lemmas below.

The first lemma shows that the only relevant configuration contexts are par-
allel contexts.

Lemma 2 (Context lemma for closed configurations). For any closed
configurations M,N , M ∼c N if and only if, for all closed configurations L,
M | L ∼ N | L. Likewise, M ≈c N if and only if, for all L, M | L ≈ N | L.

Proof. The left to right implication is immediate, by definition of ∼c. For the
other direction, the proof consists in showing that R = {〈C[M],C[N]〉 | ∀L,M |
L ∼ N | L} is included in ∼. The weak case is identical to the strong one. ut

We can then prove the thesis on closed processes.

Lemma 3 (Context lemma for closed processes). Let P and Q be closed
processes. We have P ≈c Q if and only if, for all closed configuration contexts
C and k 6∈ fn(P,Q), we have C[k : P] ≈ C[k : Q].

Proof. The left to right implication is clear. One can prove the right to left direc-
tion by induction on the form of general contexts for processes, using Lemma 4
below for message contexts. ut

Lemma 4 (Factoring). For all closed processes P , all closed configurations M
such that M{P /X} is closed, and all c, t, k0, k

′
0 6∈ fn(M,P), we have

M{P /X} ≈c νc, t, k0, k′0.M{c/X} | k0 : t〈YP 〉 | k′0 : YP

where YP = t(Y) . (c . P) | t〈Y 〉 | Y .

Concurrent Flexible Reversibility 11

We then deal with open processes.

Lemma 5 (Context lemma for open processes). Let P and Q be (possibly
open) processes. We have P ≈oc Q if and only if for all closed configuration
contexts C, all substitutions σ such that Pσ and Qσ are closed, and all k 6∈
fn(P,Q), we have C[k : Pσ] ≈ C[k : Qσ].

Proof. For the only if part, one proceeds by induction on the number of bindings
in σ. The case for zero bindings follows from Lemma 3. For the inductive case,
we write P[•] for a process where an occurrence of 0 has been replaced by •, and
we show that contexts of the form P = a〈R〉 | a(X) . P′[•] where a is fresh and
P = a〈R〉 | a(X).γ P′[•] where a is fresh and X never occurs in the continuation
actually enforce the desired binding.

For the if part, the proof is by induction on the number of triggers. If the
number of triggers is 0 then the thesis follows from Lemma 3. The inductive
case consists in showing that equivalence under substitutions ensures equivalence
under a trigger context. ut

Proof (of Theorem 1). A direct consequence of Lemma 5 and Lemma 2. ut

4 croll-π Expressiveness

4.1 Alternative Idioms

The message with alternative a〈P 〉 ÷ C triggers alternative C upon rollback.
We choose to restrict C to be either a message with 0 alternative or 0 itself in
order to have a minimal extension of roll-π. However, this simple form of alter-
native is enough to encode far more complex alternative policies and constructs,
as shown below. We define the semantics of the alternative idioms below by
only changing function xtr in Definition 5. We then encode them in croll-π and
prove the encoding correct w.r.t. weak barbed congruence. More precisely, for
every extension below the notion of barbs is unchanged. The notion of barbed
bisimulation thus relates processes with slightly different semantics (only xtr

differs) but sharing the same notion of barbs. Since we consider extensions of
croll-π, in weak barbed congruence we consider just closure under croll-π con-
texts. By showing that the extensions have the same expressive power of croll-π,
we ensure that allowing them in contexts would not change the result. Every
encoding maps unmentioned constructs homomorphically to themselves. After
having defined each alternative idiom, we freely use it as an abbreviation.

Arbitrary alternatives. Messages with arbitrary alternative can be defined by
allowing C to be any process Q. No changes are required to the definition of
function xtr. We can encode arbitrary alternatives as follows, where c is not free
in P,Q.

La〈P 〉÷QMaa = νc. a〈LP Maa〉÷ c〈LQMaa〉÷0 | c(X) . X

Proposition 1. P ≈c LP Maa for any closed process with arbitrary alternatives.

12 Ivan Lanese et al.

R = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪ Id
R1 = {〈k : a〈P 〉÷Q | L , k : (νc. a〈P 〉÷ c〈Q〉÷0 | c(X) . X) | L〉}
R2 = {〈k : a〈P 〉÷Q | L , νc k1 k2. k ≺ (k1, k2) | k1 : a〈P 〉÷ c〈Q〉÷0 | k2 : c(X) . X | L〉}
R3 = {〈νh. [k : a〈P 〉÷Q | k′ : a(X) .γ R;h] | L′′ ,

νc k1 k2 h. k ≺ (k1, k2) | [k1 : a〈P 〉÷ c〈Q〉÷0 | k′ : a(X) .γ R;h] | k2 : c(X) . X | L′′〉}
R4 = {〈k : Q | L′′′ , νc k1 k2. k ≺ (k1, k2) | k1 : c〈Q〉÷0 | k2 : c(X) . X | L′′′〉}
R5 = {〈k : Q | L′′′ , νc k1 k2 h. k ≺ (k1, k2) | [k1 : c〈Q〉÷0 | k2 : c(X) . X;h] | h : Q | L′′′〉}

Fig. 4. Bisimulation relation for arbitrary alternatives

Proof. We consider just one instance of arbitrary alternative, the thesis will
follow by transitivity.

Thanks to Lemma 5 and Lemma 2, we only need to prove that for all closed
configurations L and k 6∈ fn(P), we have k : a〈P 〉 ÷Q | L ≈ k : (νc. a〈P 〉 ÷
c〈Q〉÷0 | c(X) . X) | L. We consider the relation R in Figure 4 and prove that
it is a weak barbed bisimulation. In every relation, L is closed and k /∈ fn(P).

InR1, the right configuration can reduce via rule S.TagN followed by S.TagP.
These lead to R2. Performing these reductions is needed to match the barb
and the relevant reductions of the left configuration, thus we consider directly
R2. In R2 the barbs coincide. Rollbacks lead to the identity. The only possible
communication is on a, and requires L ≡ L′ | k′ : a(X).γR. It leads toR3, where
L′′ = L′ | R{P,h/X,γ}. In R3 the barbs coincide too. All the reductions can be
matched by staying in R3 or going to the identity, but for executing a roll with
key h. This leads to R4, where L′′′ is closed. From R4 we can always execute the
internal communication at c leading to R5. The thesis follows from the result
below, whose proof requires again to find a suitable bisimulation relation.

Lemma 6. For each configuration M k-dependent and complete such that k′, t,
k1, k2 /∈ fn(M) we have M ≈c νk′ t k1 k2. k ≺ (k1, k2) | [k1 : t〈Q〉 ÷ C | k2 :
t(X) . R; k′] |M{k′/k}. ut

Proofs concerning other idioms follow similar lines, and can be found in the
online technical report [16].

A particular case of arbitrary alternative a〈P 〉 ÷Q is when Q is a message
whose alternative is not 0. By applying this pattern recursively we can write
a1〈P1〉 ÷ . . .÷ an〈Pn〉 ÷Q. In particular, by choosing a1 = · · · = an and P1 =
· · · = Pn we can try n times the alternative P before giving up by executing Q.

Endless retry. We can also retry the same alternative infinitely many times, thus
obtaining the behavior of roll-π messages. These messages can be integrated into
croll-π semantics by defining function xtr as the identity on them.

La〈P 〉Mer = νt. Y | a〈LP Mer〉÷ t〈Y 〉 Y = t(Z) . Z | a〈LP Mer〉÷ t〈Z〉

Concurrent Flexible Reversibility 13

Proposition 2. P ≈c LP Mer for any closed process with roll-π messages.

As corollary of Proposition 2 we thus have the following.

Corollary 1. croll-π is a conservative extension of roll-π.

Triggers with alternative. Until now we attached alternatives to messages. Sym-
metrically, one may attach alternatives to triggers. Thus, upon rollback, the
message is released and the trigger is replaced by a new process.

The syntax for triggers with alternative is (a(X) .γ Q)÷ b〈Q′〉 ÷ 0. As for
messages, we use a single message as alternative, but one can use general pro-
cesses as described earlier. Triggers with alternative are defined by the extract
clause below.

xtr(k : (a(X) .γ Q)÷ b〈Q′〉÷0) = k : b〈Q′〉÷0

Interestingly, messages with alternative and triggers with alternative may coex-
ist. The encoding of triggers with alternative is as follows.

L(a(X).γQ)÷b〈Q′〉÷0Mat = νc d. c÷d÷0 | (c.γ a(X).LQMat) | (d. b〈LQ′Mat〉÷0)

Proposition 3. P ≈c LP Mat for any closed process with triggers with alterna-
tive.

4.2 Comparing croll-π and roll-π

While Corollary 1 shows that croll-π is at least as expressive as roll-π, a natural
question is whether croll-π is actually strictly more expressive than roll-π or not.
The theorem below gives a positive answer to this question.

Theorem 2. There is no encoding L•M from croll-π to roll-π such that for each
croll-π configuration M :

1. if M has a computation including at least a backward step, then LMM has a
computation including at least a backward step;

2. if M has only finite computations, then LMM has only finite computations.

Proof. Consider configuration M = νk. k : a÷b÷0 | a.γ roll γ. This configuration
has a unique possible computation, composed by one forward step followed by
one backward step. Assume towards a contradiction that an encoding exists and
consider LMM. LMM should have at least a computation including a backward
step. From roll-π loop lemma [17, Theorem 1], if we have a backward step, we
are able to go forward again, and then there is a looping computation. This is
in contrast with the second condition of the encoding. The thesis follows. ut

The main point behind this result is that the Loop Lemma, a cornerstone of
roll-π theory [17] capturing the essence of rigid rollback (and similar results
in [8, 18, 20, 22]), does not hold in croll-π. Naturally, the result above does not
imply that croll-π cannot be encoded in HOπ or in π-calculus. However, these
calculi are too low level for us, as hinted at by the fact that the encoding of
a simple reversible higher order calculus into HOπ is quite complex, as shown
in [18].

14 Ivan Lanese et al.

Qi , (acti(Z) . pi〈i, 1〉÷ . . .÷ pi〈i, 8〉÷ fi〈0〉÷0 |
(pi(xi) .γi !ci〈xi〉÷0 | acti+1〈0〉 | fi+1(Y) . roll γi |∏i−1

j=1 cj(yj) . if err(xi,yj) then roll γi))

err((x1, x2), (y1, y2)) , (x1 = y1 ∨ x2 = y2 ∨ |x1 − y1| = |x2 − y2|)

Fig. 5. The i-th queen

5 Programming in croll-π

A main goal of croll-π is to make reversibility techniques exploitable for appli-
cation development. Even if croll-π is not yet a full-fledged language, we have
developed a proof-of-concept interpreter for it. To the best of our knowledge, this
is the first interpreter for a causal-consistent reversible language. We then put
the interpreter at work on a few simple, yet interesting, programming problems.
We detail below the algorithm we devised to solve the Eight Queens problem [3,
p. 165]. The interpreter and the code for solving the Eight Queens problem
are available at http://proton.inrialpes.fr/~mlienhar/croll-pi/implem,
together with examples of encodings of primitives for error handling, and an
implementation of the car repair scenario of the EU project Sensoria.

The interpreter for croll-π is written in Maude [10], a language based on both
equational and rewriting logic that allows the programmer to define terms and
reduction rules, e.g., to execute reduction semantics of process calculi. Most
of croll-π’s rules are straightforwardly interpreted, with the exception of rule
S.Roll. This rule is quite complex as it involves checks on an unbounded num-
ber of interacting components. Such an issue is already present in roll-π [17],
where it is addressed by providing an easier to implement, yet equivalent, low-
level semantics. This semantics replaces rule S.Roll with a protocol that sends
notifications to all the involved components to roll-back, then waits for them to
do so. Extending the low-level semantics from roll-π to croll-π simply requires
the application of function xtr to the memory targeted by the rollback. We do
not detail the low-level semantics of croll-π here, and refer the reader to [17] for
a detailed description in the setting of roll-π. Our Maude interpreter is based on
this low-level semantics, extended with values (integers and pairs) and with the
if-then-else construct. It is fairly concise (less than 350 lines of code).

The Eight Queens problem is a well-known constraint-programming problem
which can be formulated as follows: how to place 8 queens on an 8×8 chess board
so that no queen can directly capture another? We defined an algorithm in croll-π
where queens are concurrent entities, numbered from 1 to 8, all executing the
code schema shown in Figure 5. We use x to indicate a pair of integer variables
(x1, x2), and replicated messages !ci〈x〉÷ 0 to denote the encoding of a parallel
composition of an infinite number of messages ci〈x〉÷0 (cf. Remark 1).

Concurrent Flexible Reversibility 15

The queens are activated in numeric order. The i-th queen is activated by
a message on channel acti from its predecessor (a message on act1 is needed to
start the whole computation). When a queen is activated it looks for its position
by trying sequentially all the positions in the i-th row of the chess board. To try
a position, it sends it over channel pi. Then, the position is made available on
channel ci and the next queen is activated. Finally, the position is checked for
compatibility with the positions of previous queens. This is done by computing
(in parallel) err(xj,xi) for each j < i. If a check fails, roll γi rolls-back the
choice of the position of queen i. The alternatives mechanism allows to try the
next position. If no suitable position is available, the choice of position of queen
i − 1 is rolled-back (possibly recursively) by the communication over fi. Note
that a roll-back of queen j makes all queens i with i > j restart, since previously
discarded positions may now be acceptable. This is obtained thanks to activation
messages establishing the needed causal dependencies. When the computation
ends, messages on ci contain positions which are all compatible.

6 Asynchronous Interacting Transactions

This section shows how croll-π can model in a precise way interacting transac-
tions with compensations as formalized in TransCCS [13]. Actually, the natural
croll-π encoding improves on the semantics in [13], since croll-π causality tracking
is more precise than the one in TransCCS, which is based on dynamic embedding
of processes into transactions. Thus croll-π avoids some spurious undo of actions,
as described below. Before entering the details of TransCCS, let us describe the
general idea of transaction encoding.

We consider a very general notion of atomic (but not necessarily isolated)
transaction, i.e., a process that executes completely or not at all. Informally, a
transaction [P,Q]γ with name γ executing process P with compensation Q can
be modeled by a process of the form:

[P,Q]γ = νa c. a÷ c÷0 | (a .γ P) | (c . Q)

Intuitively, when [P,Q]γ is executed, it first starts process P under the rollback
scope γ. Abortion of the transaction can be triggered in P by executing a roll γ.
Whenever P is rolled-back, the rollback does not restart P (since the message
on a is substituted by the alternative on c), but instead starts the compensation
process Q. In this approach commit is implicit: when there is no reachable roll γ,
the transaction is committed. From the explanation above, it should be clear that
in the execution of [P,Q]γ , either P executes completely, i.e., until it reaches
a commit, or not at all, in the sense that it is perfectly rolled-back. If P is
ever rolled-back, its failed execution can be compensated by that of process Q.
Interestingly, and in contrast with irreversible actions used in [12], our rollback
scopes can be nested without compromising this all-or-nothing semantics.

Let us now consider an asynchronous fragment of TransCCS [13], removing
choice and recursion. Dealing with the whole calculus would not add new diffi-
culties related to rollback, but only related to the encoding of such operators in

16 Ivan Lanese et al.

(R-Comm) a | a.P −→ P
(R-Emb)

k /∈ fn(R)

JP .k QK | R −→ JP | R .k Q | RK

(R-Co) JP | co k .k QK −→ P (R-Ab) JP .k QK −→ Q

and is closed under active contexts νa. •, • | Q and J•.kQK, and structural congruence.

Fig. 6. Reduction rules for TransCCS

higher-order π. The syntax of the fragment of TransCCS we consider is:

P ::= 0 | νa. P | (P | Q) | a | a.P | co k | JP .k QK

Essentially, it extends CCS with a transactional construct JP .kQK, executing a
transaction with body P , name k and compensation Q, and a commit operator
co k.

The rules defining the semantics of TransCCS are given in Figure 6. Struc-
tural congruence contains the usual rules for parallel composition and restriction.
Keep in mind that transaction scope is a binder for its name k, thus k does not
occur outside the transaction, and there is no name capture in rules R-Co and
R-Emb.

A croll-π transaction [P,Q]γ as above has explicit abort, specified by roll γ,
where γ is used as the transaction name, and implicit commit. TransCCS takes
different design choices, using non-deterministic abort and programmable com-
mit. Thus we have to instantiate the encoding above.

Definition 8 (TransCCS encoding). Let P be a TransCCS process. Its en-
coding L•Mt in croll-π is defined as:

Lνa. P Mt = νa. LP Mt LP | QMt = LP Mt | LQMt LaMt = a

La.P Mt = a . LP Mt Lco lMt = l(X) . 0 L0Mt = 0

LJP .l QKMt = [νl. LP Mt | l〈roll γ〉 | l(X) . X, LQMt]γ

Since in croll-π only configurations can execute, the behavior of P should be
compared with νk. k : LP Mt.

In the encoding, abort is always possible since at any time the only occurrence
of the roll in the transaction can be activated by a communication on l. On the
other hand, executing the encoding of a TransCCS commit disables the roll
related to the transaction. This allows to garbage collect the compensation, and
thus corresponds to an actual commit. Note, however, that in croll-π the abort
operation is not atomic as in TransCCS since the roll related to a transaction
first has to be enabled through a communication on l, disabling in this way
any possibility to commit, and then it can be executed. Clearly, until the roll is
executed, the body of the transaction can continue its execution. To make abort
atomic one would need the ability to disable an active roll, as could be done

Concurrent Flexible Reversibility 17

using a (mixed) choice such as (roll k) + (l . 0). In this setting an output on
l would commit the transaction. Adding choice would not make the reduction
semantics more difficult, but its impact on behavioral equivalence has not been
studied yet.

The relation between the behavior of a TransCCS process P and of its transla-
tion LP Mt is not immediate, not only because of the comment above on atomicity,
but also because of the approximate tracking of causality provided by TransCCS.
TransCCS tracks interacting processes using rule (R-Emb): only processes inside
the same transaction may interact, and when a process enters the transaction it
is saved in the compensation, so that it can be restored in case of abort. How-
ever, no check is performed to ensure that the process actually interacts with
the transaction code. For instance, a process a | a.P may enter a transaction
JQ.kRK and then perform the communication at a. Such a communication would
be undone in case of abort. This is a spurious undo, since the communication
at a is not related to the transaction code. Actually, the same communication
could have been performed outside the transaction, and in this case it would not
have been undone.

In croll-π encoding, a process is “inside” the transaction with key k if and only
if its tag is causally dependent on k. Thus a process enters a transaction only by
interacting with a process inside it. For this reason, there is no reduction in croll-π
corresponding to rule (R-Emb), and since no process inside the transaction is
involved in the reduction at a above, the reduction would not be undone in case
of abort, since it actually happens “outside” the transaction. Thus our encoding
avoids spurious undo, and computations in croll-π correspond to computations in
TransCCS with minimal applications of rule (R-Emb). These computations are
however very difficult to characterize because of syntactic constraints. In fact,
for two processes inside two parallel transactions k1 and k2 to interact, either k1
should move inside k2 or vice versa, but in both the cases not only the interacting
processes move, as minimality would require, but also all the other processes
inside the same transactions have to move. Intuitively, TransCCS approximates
the causality relation, which is a dag, using the tree defined by containment.
The spurious reductions undone in TransCCS can always be redone so to reach
a state corresponding to the croll-π one. In this sense croll-π minimizes the set
of interactions undone.

We define a notion of weak barbed bisimilarity t≈cπ relating a TransCCS
process P and a croll-π configuration M . First, we define barbs in TransCCS by
the predicate P ↓a, which is true in the cases below, false otherwise.

a↓a νb. P ↓a if P ↓a ∧ a 6= b
P | P ′↓a if P ↓a ∨ P ′↓a JP .k QK↓a if P ↓a ∧ a 6= k

Here, differently from [13], we observe barbs inside the transaction body, to have
a natural correspondence with croll-π barbs.

Definition 9. A relation R relating TransCCS processes P and croll-π config-
urations M is a weak barbed bisimulation if and only if for each (P,M) ∈ R:

18 Ivan Lanese et al.

1. if P ↓a then M =⇒↓a;
2. if M ↓a then P =⇒↓a;
3. if P −→ P1 is derived using rule (R-Ab) then M =⇒ M ′, P1 =⇒ P2 and

P2RM ′;
4. if P −→ P1 is derived without using rule (R-Ab) then M =⇒ M ′ and

P1RM ′;
5. if M −→ M ′ then either: (i) PRM ′ or (ii) P −→ P1 and P1RM ′ or (iii)

M ′ −→M ′′, P −→ P1 and P1RM ′′.

Weak barbed bisimilarity t≈cπ is the largest weak barbed bisimulation.

The main peculiarities of the definition above are in condition 3, which captures
the need of redoing some reductions that are unduly rolled-back in TransCCS,
and in case (iii) of condition 5, which forces atomic abort.

Theorem 3. For each TransCCS process P , P t≈cπ νk. k : LP Mt.

Proof. The proof has to take into account the fact that different croll-π configura-
tions may correspond to the same TransCCS process. In particular, a TransCCS
transaction JP.kQK is matched in different ways if Q is the original compensation
or if part of it is the result of an application of rule (R-Emb).

Thus, in the proof, we give a syntactic characterization of the set of croll-π
configurations LP Mp matching a TransCCS process P . Then we show that νk. k :
LP Mt ∈ LP Mp, and that there is a match between reductions of P and the weak
reductions of each configuration in LP Mp. The proof, in the two directions, is by
induction on the rule applied to derive a single step. ut

7 Related Work and Conclusion

We have presented a concurrent process calculus with explicit rollback and min-
imal facilities for alternatives built on a reversible substrate analogous to a Lévy
labeling [4] for concurrent computations. We have shown by way of examples
how to build more complex alternative idioms and how to use rollback and al-
ternatives in conjunction to encode transactional constructs. In particular, we
have developed an analysis of communicating transactions proposed in Tran-
sCCS [13]. We also developed a proof-of-concept interpreter of our language and
used it to give a concurrent solution of the Eight Queens problem.

Undo or rollback capabilities in sequential languages have a long history (see
[19] for an early survey). In a concurrent setting, interest has developed more
recently. Works such as [9] introduce logging and process group primitives as
a basis for defining fault-tolerant abstractions, including transactions. Ziarek et
al. [26] introduce a checkpoint abstraction for concurrent ML programs. Field
et al. [15] extend the actor model with checkpointing constructs. Most of the
approaches relying instead on a fully reversible concurrent language have already
been discussed in the introduction. Here we just recall that models of reversible
computation have also been studied in the context of computational biology, e.g.,
[8]. Also, the effect of reversibility on Hennessy-Milner logic has been studied

Concurrent Flexible Reversibility 19

in [23]. Several recent works have proposed a formal analysis of transactions,
including [13] studied in this paper, as well as several other works such as [21, 5, 7]
(see [1] for numerous references to the line of work concentrating on software
transactional memories). Note that although reversible calculi can be used to
implement transactions, they offer more flexibility. For instance, transactional
events [14] only allow an all-or-nothing execution of transactions. Moreover, no
visible side-effect is allowed during the transaction, as there is no way to specify
how to compensate the side-effects of a failed transaction. A reversible calculus
with alternatives allows the encoding of such compensations.

With the exception of the seminal work by Danos and Krivine [12] on RCCS,
we are not aware of other work exploiting precise causal information as pro-
vided by our reversible machinery to analyze recovery-oriented constructs. Yet
this precision seems important: as we have seen in Section 6, it allows us to
weed out spurious undo of actions that appear in an approach that relies on a
cruder transaction “embedding” mechanism. Although we have not developed a
formal analysis yet, it seems this precision would be equally important, e.g., to
avoid uncontrolled cascading rollbacks (domino effect) in [26] or to ensure that,
in contrast to [15], rollback is always possible in failure-free computations. Al-
though [9] introduces primitives able to track down causality information among
groups of processes, called conclaves, it does not provide automatic support for
undoing the effects of aborted conclaves, while our calculus directly provides a
primitive to undo all the effects of a communication.

While encouraging, our results in Section 6 are only preliminary. Our con-
current rollback and minimal facilities for alternatives provide a good basis for
understanding the “all-or-nothing” property of transactions. To this end it would
be interesting to understand whether we are able to support both strong and
weak atomicity of [21]. How to support isolation properties found, e.g., in soft-
ware transactional memory models, in a way that combines well with these facil-
ities remains to be seen. Further, we would like to study the exact relationships
that exist between these facilities and the different notions of compensation that
have appeared in formal models of computation for service-oriented computing,
such as [5, 7]. It is also interesting to compare with zero-safe Petri nets [6],
since tokens in zero places dynamically define transaction scopes as done by
communications in croll-π.

From a practical point of view, we want both to refine the interpreter, and
to test it against a wider range of more complex case studies. Concerning the
interpreter, a main point is to allow for garbage collection of memories which
cannot be restored any more, so to improve space efficiency.

References

[1] M. Abadi and T. Harris. Perspectives on transactional memory. In CONCUR’09,
volume 5710 of LNCS. Springer, 2009.

[2] G. Bacci, V. Danos, and O. Kammar. On the statistical thermodynamics of
reversible communicating processes. In CALCO 2011, volume 6859 of LNCS,
2011.

20 Ivan Lanese et al.

[3] W. W. Rouse Ball. Mathematical Recreations and Essays (12th ed.). Macmillan,
New York, 1947.

[4] G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive pro-
grams. J. ACM, 26(1), 1979.

[5] R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations for com-
pensations in flow composition languages. In POPL’05. ACM, 2005.

[6] R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and indi-
vidual token approaches. Information and Computation, 156(1-2), 2000.

[7] M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace semantics for long-running
transactions. In 25 Years CSP, number 3525 in LNCS. Springer, 2004.

[8] L. Cardelli and C. Laneve. Reversible structures. In CMSB 2011. ACM, 2011.
[9] T. Chothia and D. Duggan. Abstractions for fault-tolerant global computing.

Theor. Comput. Sci., 322(3), 2004.
[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J.F.

Quesada. Maude: specification and programming in rewriting logic. Theor. Comp.
Sci., 285(2), 2002.

[11] V. Danos and J. Krivine. Reversible communicating systems. In CONCUR’04,
volume 3170 of LNCS. Springer, 2004.

[12] V. Danos and J. Krivine. Transactions in RCCS. In CONCUR’05, volume 3653
of LNCS. Springer, 2005.

[13] E. de Vries, V. Koutavas, and M. Hennessy. Communicating transactions. In
CONCUR 2010, volume 6269 of LNCS. Springer, 2010.

[14] K. Donnelly and M. Fluet. Transactional events. Journal of Functional Program-
ming, 18(5–6), 2008.

[15] J. Field and C. A. Varela. Transactors: a programming model for maintaining
globally consistent distributed state in unreliable environments. In POPL’05.
ACM, 2005.

[16] I. Lanese, M. Lienhardt, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Concurrent
flexible reversibility (TR). http://www.cs.unibo.it/~lanese/publications/

fulltext/TR-crollpi.pdf.gz, 2012.
[17] I. Lanese, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. Controlling reversibility

in higher-order pi. In CONCUR 2011, volume 6901 of LNCS. Springer, 2011.
[18] I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversing higher-order pi. In CON-

CUR 2010, volume 6269 of LNCS. Springer, 2010.
[19] G. B. Leeman. A formal approach to undo operations in programming languages.

ACM Trans. Program. Lang. Syst., 8(1), 1986.
[20] M. Lienhardt, I. Lanese, C. A. Mezzina, and J.-B. Stefani. A reversible abstract

machine and its space overhead. In FMOODS/FORTE 2012, volume 7273 of
LNCS, 2012.

[21] K. F. Moore and D. Grossman. High-level small-step operational semantics for
transactions. In POPL’08. ACM, 2008.

[22] I. Phillips and I. Ulidowski. Reversing algebraic process calculi. J. Log. Algebr.
Program., 73(1-2), 2007.

[23] I. Phillips and I. Ulidowski. A logic with reverse modalities for history-preserving
bisimulations. In EXPRESS 2011, volume 64 of EPTCS, 2011.

[24] I. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the mod-
elling of the ERK signalling pathway. In RC 2012, volume 7581 of LNCS, 2012.

[25] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[26] L. Ziarek and S. Jagannathan. Lightweight checkpointing for concurrent ML. J.
Funct. Program., 20(2), 2010.

Duality and i/o-types in the π-calculus

Daniel Hirschkoff1, Jean-Marie Madiot1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France,
2 INRIA/Università di Bologna, Italy

Abstract. We study duality between input and output in the π-calculus.
In dualisable versions of π, including πI and fusions, duality breaks with
the addition of ordinary input/output types. We introduce π, intuitively
the minimal symmetrical conservative extension of π with input/output
types. We prove some duality properties for π and we study embeddings
between π and π in both directions. As an example of application of
the dualities, we exploit the dualities of π and its theory to relate two
encodings of call-by-name λ-calculus, by Milner and by van Bakel and
Vigliotti, syntactically quite different from each other.

1 Introduction

It is common in mathematics to look for dualities; dualities may reveal underly-
ing structure and lead to simpler theories. In turn, dualities can be used to relate
different mathematical entities. In this work, our goal is to study dualities in the
typed π-calculus, and to exploit them to understand the possible relationships
between encodings of functions as π-calculus processes.

Reasoning about processes usually involves proving behavioural equivalences.
In the case of the π-calculus, there is a well-established theory of equivalences
and proof techniques. In some cases, it is necessary to work in a typed setting.
Types allow one to express constraints about the observations available to the
context when comparing two processes. One of the simplest and widely used
such discipline is given by input/output-types [SW01] — i/o-types in the sequel.

In the π-calculus (simply called π below), the natural form of duality comes
from the symmetry between input and output. There are several variants of
π where processes can be ‘symmetrised’ by replacing inputs with outputs and
vice versa. The π-calculus with internal mobility, πI [San96], is a subcalculus of
π where only bound outputs are allowed (a bound output, that we shall note
a(x).P , is the emission of a private name x on some channel a). In πI, duality can
be expressed at an operational level, by exchanging (bound) inputs and bound
outputs: the dual of a(x).x(y).0 is a(x).x(y).0.

Other well-known variants of π with dualities are the calculi in the fusion
family [PV98,Fu97,GW00]. In fusions, a construct for free input acts as the dual
of the free output construct of π, and the calculus has only one binder, restriction.
Interaction on a given channel has the effect of fusing (that is, identifying) names.

The discipline of simple types can be adapted both to πI and to fusions,
while preserving dualities. The situation is less clear for i/o-types, which can

be very useful to establish equivalences between processes. Let us give some
intuitions about why it is so. In i/o-types, types are assigned to channels and
express capabilities: a name of type oT can be used only to emit values of type
T , and similarly for the input capability (iT). This is expressed by the following
typing rules for i/o-types in π:

Γ ` a : iT Γ, x : T ` P
Γ ` a(x).P

Γ ` a : oT Γ ` b : T Γ ` P
Γ ` ab.P

The rule for input can be read as follows: process a(x).P is well-typed provided
(i) the typing environment, Γ , ensures that the input capability on a can be
derived, and (ii) the continuation of the input can be typed in an environment
where x is used according to T . The typing rule for output checks that (i) the
output capability on a is derivable, (ii) the emitted value, b, has the right type,
and (iii) the continuation P can be typed. As an example, a : i(iT) ` a(x).xt.0
cannot be derived, because only the input capability is received on a, which
prevents xt.0 from being typable.

I/o-types come with a notion of subtyping, that makes it possible to relate
type]T (which stands for both input and output capabilities) with input and
output capabilities (in particular, we have]T ≤ iT and]T ≤ oT). We stress
an asymmetry between the constraints attached to the transmitted name in the
two rules above. Indeed, while in a reception we somehow enforce a “contract”
on the usage of the received name, in the rule for output this is not the case: we
can use subtyping in order to derive type, say, iU for b when typechecking the
output, while b’s type can be]U when typechecking the continuation P .

The starting point of this work is the conflict between the asymmetry inher-
ent to i/o-types and the symmetries we want to obtain via duality. For example
i/o-types can be adapted to πI, but duality cannot be applied to the resulting
typings. In fusion calculi, the conflict with the asymmetry of i/o-types is even
more dramatic. Indeed, subtyping in i/o-types is closely related to substitution,
since replacing a name with another makes sense only if the latter has a more
general type. Fusions are intuitively substitutions operating in both directions,
which leaves no room for subtyping. In work in preparation [HMS12], we investi-
gate this relationship between subtyping and substitution, and compare several
variants of existing calculi, including the one presented in this paper.

In this paper, in order to work in a setting that provides a form of duality and
where i/o-types can be used, we introduce a calculus named π (Section 2). π is an
extension of π with constructs for free input and bound output (note that bound
output is not seen as a derived construct in π). In π, we rely on substitutions
as the main mechanism at work along interactions. To achieve this, we forbid
interactions involving a free input and a free output: the type system rules out
processes that use both kinds of prefixes on the same channel.

Calculus π contains π, and any π process that can be typed using i/o-types
can be typed in exactly the same way in π. Moreover π contains a ‘dualised’
version of π: one can choose to use some channels in free input and bound output.

For such channels, the typing rules intuitively enforce a ‘contract’ on the usage
of the transmitted name on the side of the emitter (dually to the typing rules
presented above). We show how π can be related to π, by translating π into a
variant of the π-calculus with i/o-types in a fully abstract way. This result shows
that π and π are rather close in terms of expressiveness.

We also define a notion of typed barbed congruence in π, which allows us
to validate at a behavioural level the properties we have mentioned above: two
processes are equivalent if and only if their duals are. To our knowledge, no
existing calculus with i/o-types enjoys this form of duality for behaviours.

As an application of π, its dualities, and its behavioural theory, we use π
to relate two encodings of call-by-name λ-calculus. The first one is the ordinary
encoding by Milner [Mil92], the second one is by van Bakel and Vigliotti [vBV09].
The two encodings are syntactically quite different. Milner’s is input-based, in
that an abstraction interacts with its environment via an input. In contrast, van
Bakel and Vigliotti’s is output-based. Moreover, only the latter makes use of link
processes, that is, forwarders that under certain conditions act as substitutions.

Van Bakel and Vigliotti actually encode strong call-by-name — reductions
may also take place inside a λ-abstraction. We therefore compare van Bakel and
Vigliotti’s encoding with the strong variant of Milner’s encoding, obtained by
replacing an input with a delayed input, following [Mer00] (in a delayed input
a(x):P , the continuation P may perform transitions not involving the binder x
even when the head input at a has not been consumed).

We exploit π (in fact the extension of π with delayed input) to prove that the
two encodings are the dual of one another. This is achieved by first embedding
the π-terms of the λ-encodings into π, and then applying behavioural laws of π.
The correctness of these transformations is justified using i/o-types (essentially
to express the conditions under which a link can be erased in favour of a substi-
tution). Some of the transformations needed for the λ-encodings, however, are
proved in this paper only for barbed bisimilarity; see the concluding section for
a discussion.

Paper outline. Section 2 introduces π, and presents its main properties. To
analyse dualities in encodings of λ into π, in Section 3, we extend π, notably
with delayed prefixes. As the addition of these constructs is standard, they are
omitted from the original syntax so to simplify the presentation. Section 4 gives
concluding remarks.

2 π, a symmetric π-calculus

In this section, we present π, a π-calculus with i/o-types that enjoys duality
properties. We define the syntax and operational semantics for π processes in
Section 2.1, introduce types and barbed congruence in Section 2.2, establish
duality in Section 2.3, and present results relating π and π in Section 2.4.

2.1 Syntax and Operational Semantics

We consider an infinite set of names, ranged over using a, b, . . . , x, y, The
syntax of π is as follows:

P ::= 0 | P |P | !P | α.P | (νa)P α ::= ρb | ρ(x) ρ ::= a | a

π differs from the usual π-calculus by the presence of the free input ab and bound
output a(x) prefixes. Note that in π, the latter is not a notation for (νx)ax.P ,
but a primitive construct. These prefixes are the symmetric counterpart of ab
and a(x) respectively. Given a process P , fn(P) stands for the set of free names
of P — restriction, bound input and bound output are binding constructs. Given
ρ of the form a or a, n(ρ) is defined by n(a) = n(a) = a.

Structural congruence is standard, and defined as in π (in particular, there are
no axioms involving prefixes). The reduction laws allow communication involving
two prefixes only if at least one of them is bound :

ab.P | a(x).Q→ P | Q[b/x] P → Q if P ≡→≡ Q
ab.P | a(x).Q→ P | Q[b/x] (νa)P → (νa)Q if P → Q

a(x).P | a(x).Q→ (νx)(P | Q) P | R→ Q | R if P → Q

Note that ab | ac is a process of π that has no reduction; this process is ruled
out by the type system presented below.

2.2 Types and Behavioural Equivalence

Types are a refinement of standard i/o-types: in addition to capabilities (ranged
over using c), we annotate types with sorts (s), that specify whether a name can
be used in free input (sort e) or in free output (r) — note that a name cannot
be used to build both kinds of free prefixes.

T ::= csT | 1 c ::= i | o |] s ::= e | r

If name a has type crT , we shall refer to a as an r-name, and similarly for e.
The subtyping relation is the smallest reflexive and transitive relation ≤

satisfying the rules of Figure 1. As in the π-calculus ir is covariant and or is
contravariant. Dually, ie is contravariant and oe is covariant. Note that sorts (e,
r) are not affected by subtyping.

The type system is defined as a refinement of input/output types, and is
given by the rules of Figure 2. There is a dedicated typing rule for every kind of
prefix (free, ρb, or bound, ρ(x)), according to the sort of the involved name. We
write Γ (a) for the type associated to a in Γ . T↔ stands for T where we switch
the top-level capability: (csT)↔ = csT where o = i, i = o,] =]. The typing rules
for r-names impose a constraint on the receiving side: all inputs on an r-channel
should be bound. Note that a(x).P and (νx)ax.P are not equivalent from the
point of view of typing: typing a bound output on an r-channel (a) imposes
that the transmitted name (x) is used according to the “dual constraint” w.r.t.

]sT ≤ isT]sT ≤ osT

T1 ≤ T2

irT1 ≤ irT2

T1 ≤ T2

orT2 ≤ orT1

T1 ≤ T2

ieT2 ≤ ieT1

T1 ≤ T2

oeT1 ≤ oeT2

Fig. 1. Subtyping

Γ ` a : irT Γ, x : T ` P
Γ ` a(x).P

Γ ` a : ieT Γ, x : T↔ ` P
Γ ` a(x).P

Γ ` a : oeT Γ, x : T ` P
Γ ` a(x).P

Γ ` a : orT Γ, x : T↔ ` P
Γ ` a(x).P

Γ ` a : ieT Γ ` b : T Γ ` P
Γ ` ab.P

Γ ` a : orT Γ ` b : T Γ ` P
Γ ` ab.P

Γ, a : T ` P
Γ ` (νa)P

Γ ` P Γ ` Q
Γ ` P | Q

Γ ` P
Γ ` !P Γ ` 0

Γ (a) ≤ T
Γ ` a : T

Fig. 2. π: Typing rules

what a’s type specifies: this is enforced using T↔ (while names received on a
are used according to T). Symmetrical considerations can be made for e-names,
that impose constraints on the emitting side.

We write Γ ` P,Q when both Γ ` P and Γ ` Q can be derived.

Remark 1 (“Double contract”). We could adopt a more liberal typing for bound
outputs on r names, and use the rule

Γ ` a : orT Γ, x : T ′ ` P T ′ ≤ T
Γ ` a(x).P

(and its counterpart for inputs on e-names). This would have the effect of typ-
ing a(x).P like (νx)ax.P . We instead chose to enforce what we call a “double
contract”: the same way a receiving process uses the bound name according to
the type specified in the channel that is used for reception, the continuation of a
bound output uses the emitted name according to T↔, the symmetrised version
of T . This corresponds to a useful programming idiom in π, where it is common
to create a name, transmit one capability on this name and use locally the other,
dual capability. This idiom is used e.g. in [Vas09] and in [SW01, Sect. 5.7.3]. This
choice moreover makes the proofs in Section 3.2 easier.

Observe that when a typable process reduces according to

a(x).P | a(x).Q→ (νx)(P | Q) ,

if a has type, say,]r(osT), then in the right hand side process, name x is given
type]sT , and the] capability is “split” into isT (used by P) and osT (used by
Q) — it would be the other way around if a’s sort were e.

Lemma 1 (Properties of typing).

1. (Weakening) If Γ ` P then Γ, a : T ` P .
2. (Strengthening) If Γ, a : T ` P and a 6∈ fn(P) then Γ ` P .
3. (Narrowing) If ∆ ≤ Γ and Γ ` P then ∆ ` P .
4. (Substitution) If Γ, x : T ` P and Γ ` b : T then Γ ` P [b/x].

Proposition 1 (Subject reduction). If Γ ` P and P → Q then Γ ` Q.

Proof. By transition induction. Lemma 1 (4) is used when a bound prefix com-
municates with a free prefix; Lemma 1 (3) is used for the interaction between
two bound prefixes, since T and T↔ have a common subtype. ut

Definition 1 (Contexts). Contexts are processes with one occurrence of the
hole, written [−]. They are defined by the following grammar:

C ::= [−] | C|P | P |C | !C | α.C | (νa)C .

Definition 2. Let Γ,∆ be typing environments. We say that Γ extends ∆ if the
support of ∆ is included in the support of Γ , and if ∆ ` x : T entails Γ ` x : T
for all x. A context C is a (Γ/∆)-context, written Γ/∆ ` C, if C can be typed
in the environment Γ , the hole being well-typed in any context that extends ∆.

As a consequence of the previous definition and of Lemma 1, it is easy to
show that if ∆ ` P and Γ/∆ ` C, then Γ ` C[P].

We now move to the definition of behavioural equivalence.

Definition 3 (Barbs). Given ρ ∈ {a, a}, where a is a name, we say that P
exhibits barb ρ, written P↓ρ, if P ≡ (νc1 . . . cn)(α.Q | R) where α ∈ {ρ(x), ρb}
with a 6∈ {c1, . . . , cn}. We extend the definition to weak barbs: P ⇓ρ stands for
P ⇒↓ρ where ⇒ is the reflexive transitive closure of →.

Definition 4 (Typed barbed congruence). Barbed bisimilarity is the largest
symmetric relation ≈̇ such that whenever P ≈̇Q, P ↓ρ implies Q ⇓ρ and P → P ′

implies Q⇒ ≈̇P ′. When ∆ ` P,Q, we say that P and Q are barbed congruent
at ∆, written ∆B P ∼=c Q, if for all (Γ/∆)-context C, C[P] ≈̇ C[Q].

2.3 Duality

Definition 5 (Dual of a process). The dual of a process P , written P , is
the process obtained by transforming prefixes as follows: ab = ab, ab = ab,
a(x) = a(x), a(x) = a(x), and applying dualisation homeomorphically to the
other constructs.

Lemma 2 (Duality for reduction). If P → Q then P → Q.

Dualising a type means swapping i/o capabilities and e/r sorts.

Definition 6 (Dual of a type). The dual of T , written T , is defined by setting
csT = cs T , with r = e, e = r, i = o, and o = i. We extend the definition to typing
environments, and write Γ for the dual of Γ .

Lemma 3 (Duality for typing).

1. If T1 ≤ T2 then T1 ≤ T2.
2. If Γ ` P then Γ ` P .
3. If Γ/∆ ` C then Γ/∆ ` C.

Proof. (1): the covariant type operators (ir and oe) are dual of each other, and
so are the contravariant operators (or and ie). (2) follows from the shape of the
typing rules, e.g., the dual of the rule for ir is an instance of the rule for ir = oe.
(3) holds because if Φ extends ∆ then Φ extends ∆ (item (1)). ut

Most importantly, duality holds for typed barbed congruence. The result is
easy in the untyped case, since duality preserves reduction and dualises barbs.
On the other hand, we are not aware of the existence of another system having
this property in presence of i/o-types.

Theorem 1 (Duality for ∼=c). If ∆B P ∼=c Q then ∆B P ∼=c Q.

Proof. By Lemma 3, we only have to prove that if P ≈̇Q then P ≈̇Q, i.e., duality
preserves reduction and swaps barbs. ut

2.4 Embeddings between π and π

From π to πio. As explained in Section 1, the π-calculus with i/o-types (that we
note πio) is an asymmetric calculus. In some sense, π can be seen as a ‘dualisation’
of πio. This can be formulated rigorously by projecting π into πio. To define this
projection, which we call a partial dualisation, we work in an extended version
of πio, where capabilities are duplicated: in addition to the i, o,] capabilities, we
also have capabilities i, o and], that intuitively correspond to the image of the
“e-part” of π through the encoding. The additional capabilities act exactly like
the corresponding usual capabilities, in particular w.r.t. subtyping and duality.
We write πio

2 for the resulting calculus. We discuss below (Remark 3) to what
extent the addition of these capabilities is necessary. We also rely on πio

2 to
prove that π is a conservative extension of the π-calculus in Theorem 2 — πio

2

is actually close, operationally, to both calculi.

Definition 7 (Partial dualisation). We define a translation from typed pro-
cesses in π to πio

2 . The translation acts on typing derivations: given a derivation
δ of Γ ` P (written δ :: Γδ ` P), we define a πio

2 process noted [P]δ as follows:

[ρb.P]δ = ρb.[P]δ
′

if Γδ(n(ρ)) = ceT

[ρb.P]δ = ρb.[P]δ
′

if Γδ(n(ρ)) = crT

[ρ(x).P]δ = ρ(x).[P]δ
′

if Γδ(n(ρ)) = ceT

[ρ(x).P]δ = ρ(x).[P]δ
′

if Γδ(n(ρ)) = crT

[(νa)P]δ = [P]δ
′

[0]δ = 0 [!P]δ = ![P]δ
′

[P | Q]δ = [P]δ
′
1 | [Q]δ

′
2

In the above definition, δ′ is the subderivation of δ, in case there is only one,
and δ′1 and δ′2 are the obvious subderivations in the case of parallel composition.
We extend the definition to types: T ∗ stands for T where all occurrences of cr

(resp. ce) are replaced with c (resp. c, the dual of c). We define accordingly Γ ∗.

Remark 2. The same translation could be defined for a simply typed version of
π. Indeed, [·] does not depend on capabilities (i/o/]), but only on sorts (r/e).

Lemma 4. If δ :: Γ ` P (in π), then Γ ∗ ` [P]δ (in πio
2).

Proof. In moving from Γ to Γ ∗, we replace ie (resp. oe, ir, or) with o (resp. i,
i, o). This transformation preserves the subtyping relation. Moreover, the rules
to type prefixes ir, or, ie, oe in π correspond to the rules for i, o, o, i in πio

2 . ut

Lemma 5. Whenever δ1 :: Γ ` P and δ2 :: Γ ` P , we have Γ ∗B [P]δ1 'c [P]δ2 .

Proof. The relationR M
= {([P]δ1 , [P]δ2) | δ1, δ2 ::Γ `P} is a strong bisimulation

in π and is substitution-closed; hence R is included in 'c, since [P]δi is typable
in Γ ∗ (by Lemma 4). ut

Lemma 6. If δP :: Γ ` P and δQ :: Γ ` Q then we have the following:

1. (P and Q have the same barbs) iff ([P]δP and [Q]δQ have the same barbs)
2. if P → P ′ then [P]δP → [P ′]δ for some δ :: Γ ` P ′.
3. if [P]δP → P1 then P1 = [P ′]δ with P → P ′ for some δ :: Γ ` P ′.
4. P ≈̇ Q iff [P]δP ≈̇ [Q]δQ .

Proof. (4) is a consequence of (1), (2), (3). For (1) remark that if Γ (a) = crT
then P and [P]δP have the same barbs on a; if Γ (a) = ceT , they have dual barbs
on a, but in this case so do Q and [Q]δQ . For (2) and (3), we remark that [·]δ
is compositional and preserves the fact that two prefixes can interact — even
when moving to a different δ. ut

Proposition 2 (Full abstraction). If δP :: Γ ` P and δQ :: Γ ` Q then

Γ B P ∼=c Q (in π) iff Γ ∗ B [P]δP ∼=c [Q]δQ (in πio
2) .

Proof. Soundness: given a derivation γ :: ∆/Γ ` C, we build [C]γ which is a
(∆∗/Γ ∗)-context. Then [C]γ [[P]δP] = [C[P]]βP for some βP and we can rely on
barbed congruence in πio

2 to establish [C[P]]βP ≈̇ [C[Q]]βQ . By Lemma 6, we
deduce C[P] ≈̇ C[Q].
Completeness: we define the reverse translation {·} of [·] and reason as above to
prove its soundness. Thanks to the fact that δP :: Γ ` P implies {[P]δP }δ∗P = P
where δ∗P :: Γ ∗ ` [P]δ is the derivation obtained by Lemma 4, the soundness of
{·} implies the completeness of [·] , and vice versa. ut

Remark 3 (πio
2 vs πio). We can make two remarks about the above result.

First, it would seem natural to project directly onto πio, by mapping capabil-
ities ir and oe into i, and or and ie into o. However, the result of Proposition 2

would not hold in this case. The intuitive reason is that in doing so, we would
allow two names having different sorts in π to be equated in the image of the
encoding, thus giving rise to additional observations (since we cannot equate
names having different sorts in π). Technically, this question is reminiscent of
the problem of closure of bisimilarity under substitutions in the π-calculus.

Second, the key ingredient in the definition of partial dualisation is to preserve
the distinction between names having originally different sorts in the π process.
It is possible to define an encoding of πio

2 into a dyadic version of πio (without
the extra capabilities), in order to do so.

Lemma 7. Suppose ∆ ` P,Q holds in πio.
Then ∆B P ∼=c Q (in πio) iff ∆B P ∼=c Q (in πio

2).

Proof. The right-to-left implication is immediate because any πio-context is a
πio
2 -context. To show the converse, we observe that a (Γ/∆)-context in πio

2 is a
(Γ ′/∆)-context in πio, where Γ ′ is Γ where every c capability is replaced with c.

From πio to π. π contains πio, the π-calculus with i/o-types: the rules for r-
channels are exactly those of πio, and typability of e-free processes coincides with
typability in πio. More precisely we can say that π is a conservative extension
of πio. In πio we rely on typed barbed congruence as defined in [SW01], which
is essentially the same as ∼=c in π. Before presenting the result, the following
remark introduces some notation.

Remark 4. Suppose δ :: Γ ` P , in πio. Then δr :: Γ r ` P in π, where Γ r stands
for Γ in which all types are decorated with r and δr stands for δ where all usages
of the typing rule for restriction introduce an r-type. Moreover [P]δ

r

= P .

Theorem 2 (Conservative extension). Suppose Γ ` P,Q holds in πio.
Then Γ B P ∼=c Q (in πio) iff Γ r B P ∼=c Q (in π).

Proof. We use πio
2 as an intermediate calculus. By Remark 4, let δP , δQ be deriva-

tions of Γ r ` P and Γ r ` Q such that P = [P]δP and Q = [Q]δQ . By Proposi-
tion 2, the right hand side is equivalent to (Γ r)∗ B [P]δP ∼=c [Q]δQ (in πio

2). By
hypothesis, and since (Γ r)∗ = Γ , the latter is equivalent to Γ BP ∼=c Q (in πio

2).
Lemma 7 allows us to finish the proof. ut

The result above shows that π can be embedded rather naturally into π. This is
in contrast with fusion calculi, where the equivalence on π-calculus terms induced
by the embedding into fusions does not coincide with a barbed congruence or
equivalence in the π-calculus.

Remark 5 (π and existing symmetric calculi). π contains the π-calculus, and
hence contains (the typed version of) πI, the π-calculus with internal mobility
(see [SW01]). On the other hand, because free inputs and free outputs are not
allowed to interact in π, π fails to represent the fusion calculus. As mentioned
above, we have not succeeded in defining a ‘symmetrical version’ of i/o-types
that would be suitable for fusions.

3 Application: Relating Encodings of the λ-calculus

In this section, we use π to reason about encodings of the (call-by-name) λ-
calculus into the π-calculus. To do so, we need to extend π (Section 3.1). We
then justify the validity of a transformation that makes use of link processes
in Section 3.2. Finally, we show how duality, together with the latter transfor-
mation, allows us to relate Milner’s encoding with the one of van Bakel and
Vigliotti.

3.1 Extending π

Based on π, we develop an extension, called πa, with forms of asynchronous
communication and polyadicity. The extension to polyadic communication is
standard. Asynchronous communication is added via the inclusion of delayed
prefixes: a(x):P (resp. a(x):P) stands for a (bound) delayed input (resp. output)
prefix. The intuition behind delayed prefixes is that they allow the continua-
tion of the prefix to interact, as long as the performed action is not causally
dependent on the prefix itself — this is made more precise below. Intuitively
asynchrony is useful when reasoning about encodings of the λ-calculus because
in a β-reduction (λx.M)N →M [N/x] the “output” part N has no continuation.
It is also useful to have asynchrony in input because the considered λ-strategy
allows reduction under a λ-abstraction. Moreover asynchrony allows us to derive
some transformation laws involving link processes (Section 3.2). Note that syn-
chronous prefixes are still necessary, to encode the argument of an application.

Delayed prefixes are typed like bound input and output prefixes in Section 2.
Types are refined with two new sorts that enforce asynchrony: d to force inputs
to be bound and delayed, a to force outputs to be bound and delayed — we call
such outputs asynchronous. For instance, if we have a :]rdT for some T , then all
inputs at a are bound and delayed. We also include recursive types.

T ::= ct〈s1T1, . . . ,sn Tn〉 | 1 | µX.T | X s ::= e | r t ::= d | a

In the polyadic case, e/r sorts are given to each element of the transmitted
tuple. We present here only the typing rule for delayed input, in polyadic form,
to illustrate how we extend the type system of Section 2.

Γ ` a : it〈s1T1, . . .snTn〉 Γ, x1 : T s11 , . . . , xn : T snn ` P
Γ ` a(x1, . . . , xn):P

(with T r = T and T e = T↔). The sort d (resp. a) is forbidden in the rules to
type non-delayed input (resp. output) prefixes.

The definition of operational semantics is extended as follows to handle de-
layed prefixes (below, ρ(y)P stands for either ρ(y).P or ρ(y):P):

P | ρ(x):Q ≡ ρ(x):(P | Q) if x /∈ fn(P)
ρ1(y):ρ2(x):P ≡ ρ2(x):ρ1(y):P if n(ρ1) 6= x, x 6= y, y 6= n(ρ2)

(νy)ρ(x):P ≡ ρ(x):(νy)P if x 6= y, y 6= n(ρ)

ρ(x):(ρ(y)P | Q)→ (νy)(P | Q)[y/x]
ρ(x):(ρb.P | Q)→ (P | Q)[b/x]

ρ(x):P → ρ(x):Q if P → Q

Barbs are defined as in Section 2, with an additional clause saying that if ρ
is a barb of P and n(ρ) 6= x, then ρ is a barb of ρ′(x):P .

The results of Section 2 hold for this extended calculus, with similar proofs:

Proposition 3 (Duality, extended calculus).

1. Duality of typing: Γ ` P ⇒ Γ ` P .
2. Duality of barbed congruence: Γ B P ∼=c Q⇒ Γ B P ∼=c Q.

The counterpart of Theorem 2 also holds in πa, which stands for the extended
calculus of this section, where types also specify how names have to be used in de-
layed prefixes. It can be stated w.r.t. πio,a, which is defined as πio with additional
typing information to specify which names have to be used asynchronously.

Theorem 3 (Conservative extension, extended calculus). Suppose we
have Γ ` P,Q in πio,a. Then Γ BP ∼=c Q (in πio,a) iff Γ rBP ∼=c Q (in πa) .

The extensions πa and πio,a are asynchronous versions of π and πio in the sense
that interaction is no longer a synchronous handshaking between two processes:
for at least one of the processes, the occurrence of the interaction is not observ-
able because the consumed action is not blocking for a continuation.

3.2 Reasoning about Links, a transformation from oea to ira

The main result of this section is a technical lemma about the validity of a trans-
formation which is used for the analysis of λ-calculus encodings in Section 3.3.
A reader not interested in this result may safely skip this section.

Differently from partial dualisation (Definition 7), the transformation, writ-
ten 〈〈·〉〉er, modifies prefixes, beyond simple dualisation, by introducing link pro-
cesses. It also acts on types, by mapping e-names onto r-names.

Definition 8. We set 〈〈ab.P 〉〉er = a(x).(x _ b | 〈〈P 〉〉er), where x _ b =
!x(z).bz is called a link process. We also define 〈〈ρ(x).P 〉〉er = ρ(x).〈〈P 〉〉er and
similarly for delayed prefixes. 〈〈·〉〉er leaves free outputs unchanged and acts home-
omorphically on the other constructors.

The transformation 〈〈·〉〉er removes all free inputs and inserts free outputs (in the
link process). We therefore expect it to return plain π processes. Moreover, the
process computed in the translation of free input behaves as expected provided
only the input capability is transmitted (the link process at the receiver’s side
exerts the input capability on x). Accordingly, we define Toe = µX.oeaX =
oeao

e
ao

e
a · · · , and Tir = µX.iraX = irai

r
ai

r
a · · · . We let Γir (resp. Γoe) range over

environments mapping all names to some craTir (resp. ceaToe), for c ∈ {i, o,]}.

Lemma 8 (Typing for 〈〈·〉〉er). If Γoe ` P then Γir ` 〈〈P 〉〉er for some Γir.

Proof. We prove by induction on P that if Γ ` P then Γ ` 〈〈P 〉〉er. In the case
for ν we always introduce the type]raTir. For bound prefixes we replace ceaToe
with craTir, and for free inputs we type links with Tir types. ut

As this result shows, 〈〈·〉〉er yields processes that only transmit the input
capability. This is reminiscent of the localised π-calculus [SW01] where only the
output capability is passed.

It can be noted that Lemma 8 holds because we enforce a “double contract”
in the typing rules (cf. Remark 1), which allows us to typecheck bound prefixes
as e-names (before the transformation) and as r-names (after).

The relationship between P and 〈〈P 〉〉er is given in terms of barbed expan-
sion precongruence, which is a preorder in between strong and weak barbed
congruence.

Definition 9 (Barbed expansion precongruence). Barbed expansion is the

largest relation .̇ such that whenever P .̇ Q,

– if P → P ′ then Q→⇒ Q′ with P ′ .̇ Q′;
– if Q→ Q′ then P → P ′ or P = P ′ with P ′ .̇ Q′;
– P ↓ ρ implies Q ⇓ ρ, and Q ↓ ρ implies P ↓ ρ.

We call (resp. typed) barbed expansion precongruence (.c) the induced (resp.
typed) precongruence.

Lemma 9 (Properties of links).

1. a : iraTir, b : oraTir B a _ b .c (νx)(a _ x | x _ b).
2. If Γoe, a : Toe ` P then Γir B 〈〈P 〉〉er[b/a] .c (νa)(a _ b | 〈〈P 〉〉er).

Proof. 1. The law is valid for the ordinary π-calculus (and is substitution-closed);
Lemma 3 transfers the result to π.

2. By typing, a free output involving a in 〈〈P 〉〉er is necessarily in a link; in
this case, we can use (1). The other kind of interaction is with some a(x):Q in
〈〈P 〉〉er, and b(x):Q[b/a] behaves like (νa)(a _ b | a(x):Q[b/a]). ut

We use Lemma 9 to deduce operational correspondence.

Lemma 10 (Operational correspondence). Suppose that Γoe ` P .

1. P ↓ ρ iff 〈〈P 〉〉er ↓ ρ.
2. If P → P ′ then 〈〈P 〉〉er →&c 〈〈P ′〉〉er.
3. If 〈〈P 〉〉er → P1 then P → P ′ and P1 &c 〈〈P ′〉〉er for some P ′.

A version of these results in the weak case can also be proved, for barbed ex-
pansion. Notably, P and 〈〈P 〉〉er exhibit the same weak barbs.

Lemma 11. If Γoe ` P,Q then P ≈̇ Q iff 〈〈P 〉〉er ≈̇ 〈〈Q〉〉er.

Proof. We show that &̇{(〈〈P 〉〉er, 〈〈Q〉〉er) | P ≈̇ Q}.̇ and {(P,Q) | 〈〈P 〉〉er ≈̇
〈〈Q〉〉er} are weak barbed bisimulations. We then use the adaptation of Lemma 10
to the weak case, for barbed expansion. ut

Lemma 12. If Γoe ` P,Q and Γir B 〈〈P 〉〉er ∼=c 〈〈Q〉〉er then Γoe B P ∼=c Q.

Proof. We define a type system with marks on types, such that only Tir-types
are marked. The marking propagates onto the names of the typed processes.
We modify the encoding 〈〈·〉〉er to only operate on marked prefixes. For every
(∆/Γoe)-context C, its encoding 〈〈C〉〉er is a (∆′/Γir)-context. Thanks to the
compositionality of 〈〈·〉〉er, the hypothesis of the lemma implies the equivalence
〈〈C[P]〉〉er ≈̇ 〈〈C[Q]〉〉er. We then adapt the proof of Lemma 11 to this marked
encoding. ut

3.3 An analysis of van Bakel and Vigliotti’s encoding

As announced in Section 1, we start from an adaptation of Milner’s call-by-name
(cbn) encoding of [Mil92] to strong cbn, which also allows reductions to occur
under λ. We obtain this by using a delayed prefix in the clause for λ-abstraction.
The encoding, noted J·KM, is defined as follows:

JxKMp = xp Jλx.MKMp = p(x, q):JMKMq
JMNKMp = (νq)

(
JMKMq | (νx)(q〈x, p〉 | !x(r).JNKMr)

)
The other encoding we analyse, taken from [vBV09], is written J·KB:

JxKBp = x(p′):p′ _ p Jλx.MKBp = p(x, q):JMKBq
JMNKBp = (νq)

(
JMKBq | q(x, p′).(p′ _ p | !x(r).JNKBr)

)
Note that J·KB is written in [vBV09] using asynchronous free output and restric-
tion instead of delayed bound output. We can adopt this more concise notation
since (νx)(ax | P) and a(x):P are strongly bisimilar processes, and similarly
for x(p′):p′ _ p and x(p′).p′ _ p. (Another difference is that the replication
in the encoding of the application is guarded, as in [vBV10], to force a tighter
operational correspondence between reductions in λ and in the encodings.)

As remarked above, J·KB and J·KM differ considerably because they engage
in quite different dialogues with their environments: in J·KM a function receives
its argument via an input, in J·KB it interacts via an output. Differences are also
visible in the encodings of variables and application (e.g. the use of links).

To compare the encodings J·KM and J·KB, we introduce an intermediate en-
coding, noted J·KI , which is defined as the dual of J·KM (in π):

JxKIp = xp Jλx.MKIp = p(x, q):JMKIq
JMNKIp = (νq)

(
JMKIq | (νx)(q〈x, p〉 | !x(r).JNKIr)

)
Note that while J·KM and J·KB can be expressed in π, J·KI uses free input, and
does thus not define π-calculus processes.

The three encodings given above are based on a similar usage of names. Two
kinds of names are used: we refer to names that represent continuations (p, p′, q, r
in the encodings) as handles, and to names that stand for λ-calculus parameters
(x, y, z) as λ-variables. Here is how these encodings can be typed in π:

Lemma 13 (Typing the encodings). J·KM, J·KB and J·KI yield processes
which are typable with the respective typing environments ΓM, ΓB, ΓI , where:

– ΓM types λ-variables with oraH and handles with H = µX.ird〈oraX,X〉;
– ΓB uses respectively irdG and ora〈ordG,G〉 where G = µY.ira〈ordY, Y 〉;
– ΓI is the dual of ΓM (that is, it uses iedH and H = µZ.oea〈iedZ,Z〉).

Encoding J·KI can be obtained from J·KM by duality. The only difference be-
tween J·KI and J·KB is the presence of two links. We rely on a link transformation
similar to the one of Section 3.2 to move from J·KI to J·KB. Thus, by composing
the results on duality and on the transformation, we are able to go from J·KM
to J·KB.

Proposition 4. Given two λ-terms M and N , we have JMKMp ≈̇ JNKMp if and

only if JMKBp ≈̇ JNKBp (both equivalences are in πio,a).

Proof. By duality, JMKMp ≈̇ JNKMp iff JMKIp ≈̇ JNKIp . To establish that this is

equivalent to JMKBp ≈̇ JNKBp , we rely on an adaptation of Lemma 11. For this,
we define a transformation that exploits the ideas presented in Section 3.2. In
particular, handles (p, p′, q, r) are treated like in Definition 8. The handling of λ-
variables (x, y, z) is somehow orthogonal, and raises no major difficulty, because
such names are always transmitted as bound (fresh) names. ut

Remark 6 (Call by name). To forbid reductions under λ-abstractions, we could
adopt Milner’s original encoding, and use an input prefix instead of delayed
input in the translation of abstractions. Accordingly, adapting Van Bakel and
Vigliotti’s encoding to this strategy would mean introducing a free input prefix
— which is rather natural in π, but is not in the π-calculus.

4 Concluding remarks

We have presented several properties of π, and established relationships with the
π-calculus with i/o-types (πio).

The calculus π enjoys properties of dualities while being “large”, in the sense
that it incorporates many of the forms of prefix found in dialects of the π-calculus
(free input, bound input, and, in the extension in Section 3.1, also delayed input,
plus the analogue for outputs), and a non-trivial type system based on i/o-types.
This syntactic abundance makes π a possibly interesting model in which to study
various forms of dualities. This is exemplified in our study of encodings of the
λ-calculus, where we have applied π and its theory to explain a recent encoding
of cbn λ-calculus by van Bakel and Vigliotti: it can be related, via dualities, to
Milner’s encoding.

It would be interesting to strengthen the full abstraction in Lemma 11 from
barbed bisimilarity to barbed congruence. This would allow us to replace barbed
bisimilarity with typed barbed congruence in Proposition 4 as well (using the
type environments of Lemma 13). While we believe the result to be true, the

proof appears difficult because the link transformation modifies both processes
and types, so that the types needed for barbed congruence in the two encodings
are different. Therefore also the sets of contexts to be taken into account are
different. The problem could be tackled by combining the theory on delayed
input and the link bisimilarity in [MS04], and adapting it to a typed setting.

We plan to further investigate the behavioural theory of π, and study in
particular other transformations along the lines of Section 3.2, where link pro-
cesses are used to implement substitutions. It would be interesting to provide
general results on process transformations in terms of links, when the direction
and the form of the links vary depending on the types of the names involved.
Currently we only know how to handle them when the calculus is asynchronous
and localised [MS04].

As already mentioned, another interesting issue is how to accommodate i/o-
types into πI and fusion calculi while maintaining the dualities of the untyped
calculi.

Acknowledgments. This work was supported by the french ANR projects Recre,
2009-BLAN-0169-02 Panda, and 2010-BLAN-0305-01 PiCoq.

References

[Fu97] Y. Fu. The χ-calculus. In Proc. of APDC’97, pages 74–81. IEEE Computer
Society Press, 1997.

[GW00] P. Gardner and L. Wischik. Explicit fusions. In Proc. of MFCS, volume 1893
of LNCS, pages 373–382. Springer-Verlag, 2000.

[HMS12] D. Hirschkoff, J.M. Madiot, and D. Sangiorgi. On subtyping in symmetric
versions of the π-calculus. In preparation, 2012.

[Mer00] M. Merro. Locality in the pi-calculus and applications to distributed objects.
PhD thesis, École des Mines, France, 2000.

[Mil92] R. Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992.

[MS04] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. Mathe-
matical Structures in Computer Science, 14(5):715–767, 2004.

[PV98] J. Parrow and B. Victor. The fusion calculus: expressiveness and symmetry
in mobile processes. In Proc. of LICS, pages 176 –185. IEEE, 1998.

[San96] D. Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. In
Selected papers from TAPSOFT ’95, pages 235–274. Elsevier, 1996.

[SW01] D. Sangiorgi and D. Walker. The Pi-Calculus: a theory of mobile processes.
Cambridge University Press, 2001.

[Vas09] V. T. Vasconcelos. Fundamentals of session types. In Proc. of SFM, volume
5569 of LNCS, pages 158–186. Springer, 2009.

[vBV09] S. van Bakel and M. G. Vigliotti. A logical interpretation of the λ-calculus into
the π-calculus, preserving spine reduction and types. In Proc. of CONCUR,
volume 5710 of LNCS, pages 84–98. Springer, 2009.

[vBV10] S. van Bakel and M. G. Vigliotti. Implicative logic based encoding of the
λ-calculus into the π-calculus, 2010. From http://www.doc.ic.ac.uk/ svb/.

