
Projet PiCoq

Deliverable D123
December 2014

De la KAM avec un Processus d’Ordre Supérieur

Damien Pous, Alan Schmitt

To cite this version:

Damien Pous, Alan Schmitt. De la KAM avec un Processus d’Ordre Supérieur. JFLAs 2014,
Jan 2014, Fréjus, France. pp.1-12. <hal-00966097>

HAL Id: hal-00966097

https://hal.archives-ouvertes.fr/hal-00966097

Submitted on 26 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00966097

De la KAM avec un Processus d’Ordre Suprieur

D. Pous1 & A. Schmitt2

1: CNRS, damien.pous@ens-lyon.fr
2: Inria, alan.schmitt@inria.fr

Résumé

Nous prsentons un encodage simple et direct de la machine abstraite de Krivine (KAM) dans
le calcul de processus d’ordre suprieur HOcore, en utilisant un nombre trs restreint de canaux de
communication. Cet encodage montre qu’il est possible de capturer l’expressivit du λ-calcul en
HOcore ds que l’on fixe l’ordre d’valuation. Nous donnons galement une nouvelle borne infrieure
pour le nombre minimal de restrictions ncessaire pour rendre l’quivalence de programmes dans
HOcore indcidable. 1

1. Introduction

Le calcul de processus HOcore est remarquable par sa similarit au λ-calcul, auquel il ajoute une
notion de concurrence. Malgr cette similarit, aucun encodage du λ-calcul en HOcore n’a t prsent ce
jour. En effet, l’appariement entre une fonction et son argument est trs syntaxique et trs rigide en
λ-calcul, alors qu’il est beaucoup plus lche en HOcore car il correspond la prsence simultane sur le
mme nom de canal d’un message et d’un rcepteur pour ce message. Cette diffrence cruciale, couple
l’impossibilit de gnrer de nouveaux noms de canaux, implique que toute traduction doit fixer le nombre
de redex pouvant tre activs en parallle. Ce nombre pouvant tre non-born pour certains λ-termes, ceci
empche toute traduction tant que la stratgie d’valuation n’a pas t fixe. C’est cette deuxime voie que
nous explorons ici, en choisissant une stratgie en appel par nom, dcline sous la forme d’une machine
abstraite de Krivine (KAM).

Une fois ce choix de conception arrt, la traduction est trs naturelle : on reprsente la structure
rcursive de la pile de la KAM comme deux messages transportant respectivement le terme de tte
et, rcursivement, la queue de la pile. La β-rduction est simplement la communication entre le terme
actif, reprsentant la fonction, avec la tte de la pile. De manire surprenante, cette traduction permet
galement de capturer l’oprateur de contrle call-cc de la KAM. La rification de la continuation en tant
que pile contenue dans un message permet en effet de facilement la dupliquer ou la remplacer.

Les leons que l’on peut tirer de cet encodage sont doubles. Tout d’abord, en ce qui concerne
l’expressivit de HOcore, il montre comment on peut s’appuyer sur l’ordre suprieur pour atteindre un
calcul Turing complet. Les travaux prcdents [5] tudiaient l’expressivit en se basant sur des machines
de Minsky, qui n’ont besoin que de savoir compter et de dtecter qu’un compteur vaut 0. L’ordre
suprieur n’est pas ncessaire pour compter, il est en revanche utilis pour dtecter l’galit 0 (voir [3] et [1]
pour des versions de calculs sans ordre suprieur utilisant d’autres fonctionnalits pour dtecter le 0). La
seconde leon porte sur la dcidabilit de la congruence barbue. En effet, nous avons montr prcdemment
que la congruence barbue est dcidable pour HOcore [5, 2] si aucun nom de canal n’est cach, et cette
congruence devient indcidable si quatre noms de canaux sont cachs. Notre traduction n’ayant besoin
que de deux noms de canaux, il permet d’affiner le nombre minimal de restrictions globales ncessaire
pour rendre la congruence barbue forte indcidable : il en suffit de deux.

1. Ce travail a bnfici du soutien de l’Agence Nationale pour la Recherche dans le cadre du projet PiCoq ANR 10

BLAN 0305.

1

Pous & Schmitt

Le reste de ce papier est organis comme suit. Nous prsentons le calcul HOcore en section 2, et la
KAM en section 3. La traduction et sa preuve de correspondance oprationnelle est prsente en section
4 avant de conclure en section 5.

2. Prsentation de HOcore

2.1. Syntaxe

Le calcul HOcore [5] peut tre vu comme une restriction du π-calcul d’ordre suprieur [7], auquel on
aurait enlev l’oprateur de restriction de nom. Il peut galement tre vu comme un λ-calcul parallle, o
l’application d’une fonction λx.Q un argument P est remplace par une communication sur un canal
a entre un envoi de message axP y mis en parallle d’une rception de message apxq.Q.

La syntaxe de HOcore est la suivante.

P ::“ apxq.P | axP y | P ‖ P | x | 0

Un processus P peut soit tre une rception de message sur un certain canal, note apxq.P , soit une
mission de message, note axP y, soit la mise en parallle de processus P ‖ Q, soit une variable x, soit le
processus inactif 0. Nous distinguons les variables x, y, z des noms de canaux a, b, c.

Intuitivement, l’unique rgle de rduction est la rgle de communication suivante, o l’opration rP {xsQ
est la substitution de la variable x par le processus P dans Q. Le processus P , mis sur le canal a, est
transmis au prfixe de rception apxq.Q.

axP y ‖ apxq.Q ÝÑ rP { xsQ (†)

Notons que le calcul est asynchrone : l’mission de message n’a pas de continuation. Dans un calcul
synchrone, l’envoi de message est de la forme axP y.Q, o le processus Q est la continuation dmarre
aprs l’mission du message sur a. Nous montrerons dans la section 4.3 que les messages synchrones
permettent un encodage de la KAM ne ncessitant qu’un seul nom de canal.

Variables Une variable x est dite lie si elle est sous la porte d’un lieur pour cette variable (une
rception de message apxq.P), libre sinon. Par exemple, dans le processus apxq.pP ‖ yq avec x ‰ y, les
occurrences de x dans P sont lies, mais y est libre.

La machine de Krivine pour le λ-calcul en appel par nom [4] permet de ne considrer que des
termes clos, et d’viter les difficults usuelles dues la capture de variables libres. Il en est de mme avec
l’encodage que nous prsentons ici : nous ne manipulerons que des termes dont toutes les variables
seront lies. Les noms de canaux sont eux tous libres, HOcore n’ayant pas d’oprateur de restriction.

2.2. Smantique

La smantique de HOcore est dfinie par un systme de transitions tiquetes (LTS). Les tiquettes sont
dfinies par la syntaxe suivante :

α ::“ axP y | apP q | τ .

2

De la KAM avec un Processus d’Ordre Suprieur

Elles correspondent respectivement l’mission d’un processus, la rception d’un processus, et une
communication interne. Le LTS est dfini inductivement, par les rgles suivantes.

axP y
axP y

ÝÝÝÑ 0

Out

apxq.Q
apP q

ÝÝÝÑ rP { xsQ
Inp

P
α

ÝÝÝÑ P 1

P ‖ Q
α

ÝÝÝÑ P 1 ‖ Q
Par1

Q
α

ÝÝÝÑ Q1

P ‖ Q
α

ÝÝÝÑ P ‖ Q1
Par2

P
axRy

ÝÝÝÑ P 1 Q
apRq

ÝÝÝÑ Q1

P ‖ Q
τ

ÝÝÝÑ P 1 ‖ Q1
Tau1

P
apRq

ÝÝÝÑ P 1 Q
axRy

ÝÝÝÑ Q1

P ‖ Q
τ

ÝÝÝÑ P 1 ‖ Q1
Tau2

Congruence structurelle Notons que le LTS prcdent est trs rigide : il conserve strictement
la structure des termes (l’inverse, une smantique rductionelle utilise gnralement une notion de
congruence structurelle, qui permet par exemple de rorganiser les parenthses modulo associativit de la
mise en parallle). L’avantage est que les termes obtenus aprs une rduction sont plus facile analyser ;
l’inconvnient est que ce LTS tend gnrer de nombreuses occurrences du processus 0, qui sont inutiles.
Par exemple, on a formellement les transitions suivantes :

paxP y ‖ bxQyq ‖ apxq.bpyq.px ‖ yq
τ

ÝÝÝÑ p0 ‖ bxQyq ‖ bpyq.pP ‖ yq
τ

ÝÝÝÑ p0 ‖ 0q ‖ pP ‖ Qq

On va donc s’appuyer sur une notion de congruence structurelle trs restreinte qui permet de s’affranchir
de ces occurrences de 0.

Une relationR est une congruence si c’est une relation d’quivalence (rflexive, symtrique, transitive)
qui respecte les diffrents constructeurs du langage (par exemple si P R Q alors nous avons
apxq.P R apxq.Q). On quotiente dans la suite l’ensemble des processus par la plus petite congruence
telle que la composition parallle admette le processus 0 comme lment neutre gauche et droite.

2.3. Expressivit

HOcore est qualifi de minimal, car il ne contient que le strict ncessaire l’ordre suprieur. Par
exemple, il n’inclut pas d’oprateurs de restriction ou de rplication. HOcore est tout de mme Turing
complet : un encodage fidle des machines de Minsky est prsent dans [5]. En particulier, le problme de
la terminaison y est indcidable.

Un objectif de ce papier est de montrer qu’il est possible d’encoder directement des modles de
calcul plus complexes, comme le λ-calcul, dans HOcore.

2.4. quivalence de processus

Une des questions cruciales de l’tude de calculs de processus est de savoir si deux processus ! font
la mme chose ". Ainsi, dans l’optique de la programmation modulaire, on doit tre capable de dire si
deux bibliothques logicielles sont interchangeables. Deux processus sont quivalents si, dans n’importe
quel contexte, ce que l’on observe de leur activit est similaire. Formellement, on dfinit la congruence
barbue [6] comme la plus grande relation symtrique telle que :

– si P » Q et P
τ

ÝÝÝÑ P 1, alors il existe un Q1 tel que Q
τ

ÝÝÝÑ Q1 et P 1 » Q1 : la congruence
barbue est prserve par rductions ;

– si P » Q, alors CrP s » CrQs pour tout contexte C, un contexte tant un processus avec un trou :
la congruence barbue est une congruence ;

3

Pous & Schmitt

– si P » Q et P
axP2y
ÝÝÝÑ P 1, alors il existe Q1 et Q2 tels que Q

axQ2y
ÝÝÝÑ Q1 : la congruence barbue met

en relation des processus avec les mmes observables, ou barbes, qui sont ici la possibilit d’mettre
un message sur un canal donn.

On peut dfinir de faon similaire la congruence barbue faible, note ≅, en considrant dans la premiere
clause des squences arbitraires de transitions, plutt que des transitions simples.

Un des rsultats fondamentaux de HOcore est la dcidabilit de la congruence barbue [5]. Les processus
de HOcore ne pouvant pas cacher leurs rductions (le langage n’a pas d’oprateur de restriction), il est
toujours possible de dfinir des contextes explorant la structure d’un processus. En revanche, ds que l’on
autorise des rductions anonymes, par exemple grce des restrictions globales empchant l’observation
sur certains noms, la congruence barbue devient indcidable. Les travaux prcdents ont montr que quatre
telles restrictions globales suffisent.

3. La KAM

La machine abstraite de Krivine est une machine trs simple pour valuer les termes du λ-calcul en
appel par nom. Elle permet galement de dfinir des oprateurs de contrle.

Une configuration de la KAM est compos d’un terme du λ-calcul et d’une pile, qui est une liste
de λ-termes. Comme indiqu plus haut, tous les λ-termes considrs sont clos (ils ne contiennent pas de
variable libre).

C ::“ M ‹ π

M ::“ x | MN | λx.M

π ::“ M :: π | rs

Les rgles de rductions de la KAM (sans oprateur de contrle) sont les suivantes ; un calcul s’arrte
quand un tat λx.M ‹ rs est atteint.

MN ‹ π ÞÑ M ‹ N :: π (Push)

λx.M ‹ N :: π ÞÑ rN { xsM ‹ π (Grab)

La KAM avec oprateurs de contrles ajoute deux constructions syntaxiques : l’oprateur de capture
de continuation cc, utilisable dans les programmes, et les constantes de pile kπ, qui ne peuvent tre
cres que par appel cc. Les deux rgles suivantes sont alors ajoutes.

cc ‹ M :: π ÞÑ M ‹ kπ :: π (CallCC)

kπ ‹ M :: π1 ÞÑ M ‹ π (Restore)

4. KAM en HOcore

Nous commenons par traduire la KAM sans oprateurs de contrle ; nous tendons ensuite notre
encodage ces oprateurs en section 4.2.

4.1. Version asynchrone

Nous prsentons un codage n’utilisant que deux noms libres. La pile courante est un message sur
le nom c (“c” pour continuation). Le contenu de la pile est un message sur le nom a (“a” comme

4

De la KAM avec un Processus d’Ordre Suprieur

argument), correspondant la tte de la pile, et un message sur c contenant la queue de la pile. La
traduction de la pile vide est arbitrairement fixe au processus bx0y, pour un troisime nom libre b

permettant d’observer la fin du calcul (les rsultats dmontrs ci-dessous sont toujours valides lorsque ce
processus est remplac par un processus arbitraire, tant que celui-ci n’introduit pas de divergence ou
de non-dterminisme).

La traduction d’une pile 1 :: 2 :: 3 :: rs prend donc la forme ax1y ‖ cxax2y ‖ cxax3y ‖ cxbx0yyyy.

Pour ne pas alourdir les notations, nous utilisons le mme symbole pour traduire des tats, des piles
et des λ-termes. Nous supposons galement que les noms des variables lies u et s (u n’apparat que pour
la traduction des oprateurs de contrle) sont diffrents des noms de variables du λ-terme.

vrsw
Ÿ

“ bx0y

vM :: πw
Ÿ

“ axvMwy ‖ cxvπwy

vMNw
Ÿ

“ cpsq.pvMw ‖ cxaxvNwy ‖ cxsyyq

vλx.Mw
Ÿ

“ cpsq.papxq. vMw ‖ sq

vxw
Ÿ

“ x

vM ‹ πw
Ÿ

“ vMw ‖ cxvπwy

Notons que dans la traduction d’une configuration, la pile, compose de messages imbriqus sur a et
c, est elle mme encapsule l’intrieur d’un message sur le nom c.

Nous montrons ci-dessous que la rduction de vM ‹ πw est dterministe pour tout M et tout π. De
plus, chaque tape de calcul de la KAM correspond une ou deux tapes de calcul du processus traduit
(ou trois lorsque l’on prend en compte les oprateurs de contrle).

Lemme 1 (Substitution). Pour tous M,x,N avec N clos, nous avons vrN { xsMw “ rvNw { xs vMw.

Démonstration. Par une simple induction sur M .

Lemme 2 (Simulation). Pour tous M,M 1, π, π1 tels que M ‹π ÞÑ M 1 ‹π1, nous avons vM ‹ πw
τ

ÝÝÝÑ
`

vM 1 ‹ π1w.

Démonstration. Il suffit de considrer les rgles de rduction de la machine de Krivine :

Push pMN ‹ π ÞÑ M ‹ N :: πq : on vrifie que

vMN ‹ πw “ pcpsq. vMw ‖ cxaxvNwy ‖ cxsyyq ‖ cxvπwy
τ

ÝÝÝÑ vMw ‖ cxaxvNwy ‖ cxvπwyy

“ vM ‹ N :: πw .

Il suffit donc d’une seule transition pour simuler cette rgle.

Grab pλx.M ‹ N :: π ÞÑ rN { xsM ‹ πq : il faut cette fois deux transitions :

vλx.M ‹ N :: πw “ pcpsq.papxq. vMwq ‖ sq ‖ cxaxvNwy ‖ cxvπwyy
τ

ÝÝÝÑ papxq. vMwq ‖ axvNwy ‖ cxvπwy
τ

ÝÝÝÑ rvNw { xs vMw ‖ cxvπwy

“ vrN { xsMw ‖ cxvπwy (par le Lemme 1)

“ vrN { xsM ‹ πw .

5

Pous & Schmitt

Il nous faut maintenant prouver que les transitions des processus traduits sont dterministes, et
qu’elles correspondent des rductions dans la KAM. Or, comme on le voit dans la preuve prcdente,
certaines transitions sont intermdiaires et doivent tre compltes afin de correspondre prcisment une
rduction de la KAM.

Afin de simplifier la preuve, nous passons par une machine abstraite lgrement diffrente de la KAM,
dans laquelle certaines tapes sont artificiellement ddoubles : les tapes de calcul des processus traduits
correspondent ainsi exactement aux rductions de la KAM modifie.

La modification est la suivante : on introduit une configuration intermdiaire, note λ1x.M ‹ π, et la
rgle Grab est ddouble comme suit :

λx.M ‹ π ÞÑ λ1x.M ‹ π (Grab1)

λ1x.M ‹ N :: π ÞÑ rN { xsM ‹ π (Grab2)

Fait 3. Une configuration admet une squence infinie de rductions dans la KAM originelle si et
seulement elle admet une squence infinie de rductions dans la KAM modifie.

En accord avec le second cas dans la preuve du lemme 2, la fonction de traduction est tendue aux
configurations intermdiaires en posant :

0

λ1x.M ‹ π
8

Ÿ

“ papxq. vMwq ‖ vπw .

Lemme 4. La fonction de traduction est injective.

Démonstration. On prouve qu’elle est injective sur les λ-termes, puis sur les piles, puis sur les
configurations.

Notons v¨w´1 la fonction partielle inverse de la traduction, i.e., telle que vvCww´1 “ C pour toute
configuration C de la KAM modifie. On se convainc aisment que cette fonction est calculable.

Lemme 5 (Rflection). Pour toute configuration C et processus P , si vCw
τ

ÝÝÝÑ P , alors vP w
´1

est

dfini et C ÞÑ vP w´1.

Démonstration. On raisonne par cas sur la configuration C :
– C “ MN ‹ π : on a vCw “ pcpsq. vMw ‖ cxaxvNwy ‖ cxsyyq ‖ cxvπwy, d’o P “ vMw ‖

cxaxvNwy ‖ cxvπwyy puisqu’une seule transition est possible. On vrifie alors que vP w
´1

“ M ‹N ::

π, et C ÞÑ vP w
´1

par la rgle (Push).
– C “ λx.MN ‹ π : on a vCw “ pcpsq.papxq. vMwq ‖ sq ‖ cxvπwy, d’o P “ papxq. vMwq ‖ vπw . On

vrifie alors que vP w
´1

“ λ1x.M ‹ π, et C ÞÑ vP w
´1

par la rgle (Grab1).
– C “ λ1x.MN ‹π : si la pile π est vide, alors vCw “ papxq. vMwq ‖ bx0y n’admet pas de transition τ ,
ce qui contredit l’hypothse sur P . On a donc π “ N :: π1, et vCw “ papxq. vMwq ‖ axNy ‖ cxvπ1wy.

On a ncessairement P “ rvNw{xs vMw ‖ cxvπ1wy ; on vrifie alors que vP w
´1

“ rN {xsM ‹π1 l’aide

du Lemme 1, et que C ÞÑ vP w´1 par la rgle (Grab2).

Thorme 6 (Dterminisme). Pour toute configuration C et tous processus P, P 1, P 2, si vCw
τ

ÝÝÝÑ
‹
P ,

P
τ

ÝÝÝÑ P 1 et P
τ

ÝÝÝÑ P 2, alors P 1 “ P 2.

Démonstration. Par le Lemme 5, on peut se ramener au cas o P “ vCw. En reprenant la preuve de ce
mme lemme, par analyse de cas sur C, on constate qu’au plus une communication est possible dans
le processus traduit vCw.

6

De la KAM avec un Processus d’Ordre Suprieur

Thorme 7 (Correspondance oprationelle). Pour toutes configurations C,C 1, C ÞÑ C 1 si et seulement
si vCw

τ
ÝÝÝÑ vC 1w.

Démonstration. Consquence immdiate des Lemmes 2 et 5.

Thorme 8. Pour toute configuration C, nous avons C termine si et seulement si vCw
τ

ÝÝÝÑ
‹ bx0y
ÝÝÝÑ.

Démonstration. La machine abstraite s’arrte exactement sur les configurations de la forme λ1x.M ‹ rs,
dont les encodages sont de la forme papxq. vMwq ‖ bx0y, qui ont pas de transitions τ , et qui ont une
barbe sur b. Inversement, les seules configurations dont la traduction est capable d’mettre sur b sont
celles de la forme λ1x.M ‹ rs. On peut donc conclure par le Thorme 7.

En tant que fragment du π-calcul d’ordre suprieur [7], HOcore peut naturellement tre tendu en
ajoutant un oprateur de restriction de nom. Nous ne considrons ici qu’une extension plus rduite
n’utilisant que des restrictions globales (i.e., les restrictions ne peuvent tre dans des messages, donc
elles ne peuvent tre rpliques). La syntaxe est tendue de la manire suivante.

T ::“ νa.T | P

L’extension du LTS est immdiate : les seules transitions autorises pour les termes νa.T sont celles
de T dont les noms ne mentionnent pas a. Nous notons npαq les noms de canaux de α.

T
α

ÝÝÝÑ T 1 a R npαq

νa.T
α

ÝÝÝÑ νa.T 1

Intuitivement, νa.P correspond au processus P auquel on interdit de communiquer sur a avec
l’extrieur (en mission comme en rception) : le nom de canal a est connu de lui seul, toutes les
communications sur a ne peuvent donc avoir lieu qu’ l’intrieur de P .

Thorme 9. Soit Ω
Ÿ

“ νa.axapxq.paxxy ‖ xqy ‖ apxq.paxxy ‖ xq. Pour tout λ-terme M et toute pile π,
on a νa.νc. vM ‹ πw » Ω si et seulement si M ‹ π ne termine pas.

Démonstration. Ω est un processus divergent, dont la seule transition est Ω
τ

ÝÝÝÑ Ω. Par consquent,
si M ‹ π ne termine pas, alors νa.νc. vM ‹ πw lui est quivalent, puisqu’il ne pourra jamais mettre sur
son seul nom libre (b). Inversement, si M ‹ π termine, alors νa.νc. vM ‹ πw finira par mettre sur b, ce
qui le distingue du processus Ω.

Corollaire 10. L’quivalence contextuelle est indcidable dans HOcore avec deux restrictions globales.

Un raisonnement similaire permet d’obtenir l’indcidabilit de l’quivalence contextuelle faible dans
HOcore avec deux restrictions globales ; on peut mme utiliser dans ce cas le processus vide, 0, plutt que
le processus divergent Ω (notons cependant que pour cette preuve, on n’a pas la possibilit d’encoder
la pile vide par un processus arbitraire ; en particulier, le processus vide ne conviendrait pas : il est
ncessaire d’avoir une observable visible lorsque le fond de pile est atteint). En contrepartie, dans le
cas fort, le fond de pile peut tre traduit par 0 en effectuant la comparaison avec Ω.

4.2. Oprateurs de contrle

Nous ajoutons maintenant les oprateurs de contrle (call-cc). Rappelons les deux rgles de rduction
de la KAM dfinissant ces oprateurs :

cc ‹ M :: π ÞÑ M ‹ kπ :: π (CallCC)

kπ ‹ M :: π1 ÞÑ M ‹ π (Restore)

7

Pous & Schmitt

Etant donn un processus P , on dfinit

KpP q
Ÿ

“ cps0q.ps0 ‖ apuq.cp q.pu ‖ cxP yqq.

Les deux oprateurs sont alors traduits comme suit :

vccw
Ÿ

“ cps0q.ps0 ‖ cpsq.apuq.pu ‖ cxaxKpsqy ‖ cxsyyqq

vkπw
Ÿ

“ Kpvπwq

Cet encodage ncessite trois transitions pour simuler les rgles (CallCC) et (Restore) de la
KAM avec oprateurs de contrle. Comme prcdemment pour la rgle (Grab), on introduit donc quatre
configurations intermdiaires et artificielles dans la KAM, dont la smantique est dfinie par les six rgles
suivantes.

cc ‹ π ÞÑ cc1 ‹ π (CallCC1)

cc1 ‹ M :: π ÞÑ cc2 ‹ M :: π (CallCC2)

cc2 ‹ M :: π ÞÑ M ‹ kπ :: π (CallCC3)

kπ ‹ π1 ÞÑ k1π ‹ π1 (Restore1)

k1π ‹ M :: π1 ÞÑ k2π ‹ M :: π1 (Restore2)

k2π ‹ M :: π1 ÞÑ M ‹ π (Restore3)

Ces quatre configurations s’encodent comme suit dans HOcore.

vcc1 ‹ πw
Ÿ

“ vπw ‖ cpsq.apuq.pu ‖ cxaxKpsqy ‖ cxsyyq

vcc2 ‹ M :: πw
Ÿ

“ axvMwy ‖ apuq.pu ‖ cxaxKpvπwqy ‖ cxvπwyyq

“ axvMwy ‖ apuq.pu ‖ cxaxvkπwy ‖ cxvπwyyq

“ axvMwy ‖ apuq.pu ‖ cxvkπ :: πwyq
0

k1π ‹ π1
8

Ÿ

“
0

π1
8

‖ apuq.cp q.pu ‖ cxvπwyq
0

k2π ‹ M :: π1
8

Ÿ

“ cx
0

π1
8

y ‖ cp q.pvMw ‖ cxvπwyq

“ cx
0

π1
8

y ‖ cp q. vM ‹ πw

On vrifie alors que les processus traduits correspondants ont exactement les transitions suivantes.

vcc ‹ M :: πw
τ

ÝÝÝÑ vcc1 ‹ M :: πw
τ

ÝÝÝÑ vcc2 ‹ M :: πw
τ

ÝÝÝÑ vM ‹ kπ :: πw
0

kπ ‹ M :: π1
8 τ

ÝÝÝÑ
0

k1π ‹ M :: π1
8 τ

ÝÝÝÑ
0

k2π ‹ M :: π1
8 τ

ÝÝÝÑ vM ‹ πw

Les preuves des lemmes 1, 2, 4 et 5 ainsi que des thormes 6 et 7 s’tendent sans difficult.

Le lecteur attentif aura remarqu que la traduction de l’oprateur cc effectue d’abord une rception
cpsq avant la rception apuq. Ce choix est purement esthtique : changer l’ordre des rceptions est tout fait
possible, mais ne permet pas d’utiliser vkπ :: πw dans la traduction de cc2, la rendant moins succincte.

4.3. Version synchrone

Nous montrons maintenant qu’il est possible d’obtenir une traduction de la KAM en utilisant un
seul nom, si le calcul considr est synchrone. Une version synchrone de HOcore ne modifie que l’mission
de message, remplaant la construction axP y par axP y.Q. Cette dernire met toujours un message sur a

8

De la KAM avec un Processus d’Ordre Suprieur

transportant P . En revanche, ds que le message est reu, le processus Q, appel continuation, est lanc :
la rgle de rduction intuitive devient

axP y.Q ‖ apxq.R ÝÑ Q ‖ rP { xsR (‡)

Formellement, cela se traduit dans le LTS par une simple modification de la rgle axiome Out :

axP y.Q
axP y

ÝÝÝÑ Q

Out

La traduction de la KAM (tendue) est donne ci-dessous. Nous traduisons dsormais les piles comme
tant des messages synchrones : le contenu du message tant la tte de la pile et la continuation du message
la queue de la pile. Nous traduisons ainsi une pile 1 :: 2 :: 3 :: rs par ax1y.axax2y.axax3y.axbx0yyyy.

Au sein d’une configuration, comme dans le cas asynchrone, la pile sera de plus encapsule l’intrieur
d’un message additionel sur a.

Comme ci-dessus, pour tout processus P , nous dfinissons

KpP q
Ÿ

“ aps0q.ps0 ‖ apuq.ap q.pu ‖ axP yqq.

(Par convention, nous notons axP y les messages axP y.0 dont la continuation est vide). Nous dfinissons
alors la traduction synchrone comme suit.

vrsw
Ÿ

“ bx0y

vM :: πw
Ÿ

“ axvMwy.axvπwy

vMNw
Ÿ

“ apsq.pvMw ‖ axaxvNwy.axsyyq

vλx.Mw
Ÿ

“ apsq.papxq. vMw ‖ sq

vxw
Ÿ

“ x

vM ‹ πw
Ÿ

“ vMw ‖ axvπwy

vccw
Ÿ

“ aps0q.ps0 ‖ apuq.apsq.pu ‖ axaxKpsqy.axsyyqq

vkπw
Ÿ

“ Kpvπwq

A nouveau, les preuves de la section 4.1 s’adaptent sans difficult. L’quivalence contextuelle est donc
indcidable dans HOcore synchrone avec une seule restriction de nom globale.

5. Conclusion

Nous avons prsent deux traductions directes de la machine abstraite de Krivine avec oprateurs de
contrle dans HOcore, utilisant un nom libre dans le cas synchrone, et deux dans le cas asynchrone.
Cela nous a permis d’affiner la borne sur le nombre de restrictions globales de noms de canaux suffisant
pour obtenir l’indcidabilit des quivalences contextuelles fortes et faible (en l’absence de restriction de
nom, l’quivalence contextuelle forte est dcidable que le calcul soit synchrone ou asynchrone [5]—le cas
faible est ouvert).

Nous pouvons remarquer que les trois fonctionnalits fondamentales utilises pour traduire la KAM
sont les suivantes. Les deux premires portent sur l’ordre suprieur : les messages transportent des
processus, et la rception effectue une substitution identique celle du λ-calcul. La troisime fonctionnalit
sur laquelle nous nous appuyons porte sur le contrle de l’valuation : nous devons distinguer entre la
tte de la pile et le reste de la pile. Pour ce faire, nous pouvons utiliser deux noms diffrents (version
asynchrone), ou squentialiser les missions (version synchrone) et n’utiliser ainsi qu’un seul nom. Nous

9

Pous & Schmitt

ne pensons pas qu’il soit possible d’obtenir une traduction de la KAM avec un seul nom dans un calcul
asynchrone.

La relative simplicit de notre traduction, et le fait qu’elle permette de traiter immdiatement les
oprateurs de contrle, nous laisse esprer qu’elle permettra une meilleure comprhension de l’expressivit
du calcul HOcore, et peut-tre, terme, de rsoudre la question de la dcidabilit de l’quivalence contextuelle
faible—dans le calcul sans restriction de nom.

Références

[1] J. Aranda, F. D. Valencia, and C. Versari. On the expressive power of restriction and priorities
in ccs with replication. In L. Alfaro, editor, Foundations of Software Science and Computational
Structures, volume 5504 of Lecture Notes in Computer Science, pages 242–256. Springer Berlin
Heidelberg, 2009.

[2] S. Boulier and A. Schmitt. Formalisation de hocore en coq. In Actes des 23èmes Journées
Francophones des Langages Applicatifs, Jan. 2012.

[3] N. Busi, M. Gabbrielli, and G. Zavattaro. On the expressive power of recursion, replication and
iteration in process calculi. Mathematical Structures in Computer Science, 19(6) :1191–1222, Dec.
2009.

[4] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation,
20(3) :199–207, 2007.

[5] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness and decidability of
higher-order process calculi. Information and Computation, 209(2) :198–226, Feb. 2011. Extended
abstract presented at Logic in Computer Science (LICS), 2008.

[6] R. Milner and D. Sangiorgi. Barbed bisimulation. In 19th ICALP, volume 623 of LNCS, pages
685–695. Springer Verlag, 1992.

[7] D. Sangiorgi and D. Walker. The π-calculus : a Theory of Mobile Processes. Cambridge University
Press, 2001.

10

Components as Location Graphs

Jean-Bernard Stefani

To cite this version:

Jean-Bernard Stefani. Components as Location Graphs. 11th International Symposium on
Formal Aspects of Component Software, Sep 2014, Bertinoro, Italy. Lecture Notes in Computer
Science, 8997, Lecture Notes in Computer Science. <hal-01094208>

HAL Id: hal-01094208

https://hal.inria.fr/hal-01094208

Submitted on 11 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01094208

Components as Location Graphs

Jean-Bernard Stefani

INRIA

Abstract. This paper presents a process calculus framework for model-
ing ubiquitous computing systems and dynamic component-based struc-
tures as location graphs. A key aspect of the framework is its ability
to model nested locations with sharing, while allowing the dynamic re-
configuration of the location graph, and the dynamic update of located
processes.

1 Introduction

Motivations. Computing systems are increasingly built as distributed, dynamic
assemblages of hardware and software components. Modelling these assemblages
requires capturing different kinds of dependencies and containment relationships
between components. The software engineering literature is rife with analyses of
different forms of whole-part, aggregation or composition relationships, and of
their attendants characteristics such as emergent property, overlapping lifetimes,
and existential dependency [2]. These analyses explicitly consider the possibility
for a component to be shared at once between different wholes, an important
requirement in particular if one expects to deal with multiple architectural views
of a system.

Consider, for instance, a software system featuring a database DB and a
client of the database C. The database comprises the following (sub)components:
a cache CC, a data store DS and a query engine QE. Both data store and query
engine reside in the same virtual machine V0, for performance reasons. Client
and cache reside in another virtual machine V1, also for performance reasons. We
have here a description which combines two architectural views, in the sense of
[17]: a logical view, that identifies two high-level components, the database DB
and its client C, and the sub-components CC,QE and DS of the database, and
a process view, that maps the above components on virtual machines V0 and V1.
We also have two distinct containment or whole-part relationships: being placed
in a virtual machine, and being part of the DB database. A virtual machine is
clearly a container: it represents a set of resources dedicated to the execution
of the components it contains, and it manifests a failure dependency for all the
components it executes (should a virtual machine fail, the components it contains
also fail). The database DB is clearly a composite: it represents the result of the
composition of its parts (cache, query engine, and data store) together with their
attendant connections and interaction protocols; it encapsulates the behavior
of its subcomponents; and its lifetime constrains those of its parts (e.g. if the

database is destroyed so are its subcomponents). The cache component CC in
this example is thus part of two wholes, the databaseDB and the virtual machine
V1.

Surprisingly, most formal models of computation and software architecture do
not provide support for a direct modelling of containment structures with shar-
ing. On the one hand, one finds numerous formal models of computation and of
component software with strictly hierarchic structures, such as Mobile Ambients
and their different variants [7, 6], the Kell calculus [25], BIP [4], Ptolemy [26],
or, at more abstract level, Milner’s bigraphs [20]. In bigraphs, for instance, it
would be natural to model the containment relationships in our database exam-
ple as instances of sub-node relationships in bigraphs, because nodes correspond
to agents in a bigraph. Yet this is not possible because the sub-node relation in a
bigraph is restricted to form a forest. To model the above example as a bigraph
would require choosing which containment relation (placement in a virtual ma-
chine or being a subcomponent of the database) to represent by means of the
sub-node relation, and to model the other relation by means of bigraph edges.
This asymetry in modelling is hard to justify for both containment relations are
proper examples of whole-part relationships.

On the other hand, one finds formal component models such as Reo [1],
π-ADL [22], Synchronized Hyperedge Replacement (SHR) systems [14], SRM-
Light [15], that represent only interaction structures among components, and
not containment relationships, and models that support the modeling of non-
hierarchical containment structures, but with other limitations. Our own work on
the Kell calculus with sharing [16] allows to model non-hierarchical containment
structures but places constraints on the dependencies that can be modelled. For
instance, the lifetime dependency constraints associated with the virtual ma-
chines and the database in our example above (if the aggregate or composite
dies so do its sub-components) cannot be both easily modeled. The reason is
that the calculus still enforces an ownership tree between components for the
purpose of passivation: components can only passivate components lower down
in the tree (i.e. suspend their execution and capture their state). The formal
model which comes closer to supporting non strictly hierarchical containment
structures is probably CommUnity [28], where component containment is mod-
elled as a form of superposition, and can be organized as an arbitrary graph.
However, in CommUnity, possible reconfigurations in a component assemblage
are described as graph transformation rules that are separate from the behav-
ior of components, making it difficult to model reconfigurations initiated by the
component assemblage itself.

To sum up, we are missing a model of computation that allows us to directly
model both different forms of interactions and different forms of containment re-
lationships between components; that supports both planned (i.e. built in com-
ponent behaviors) and unplanned (i.e. induced by the environment) dynamic
changes to these relationships, as well as to component behaviors.

Contribution. In this paper, we introduce a model of computation, called G-
Kells, which meets these requirements. We develop our model at a more concrete

level than bigraph theory, but we abstract from linguistic details by developing
a process calculus framework parameterized by a notion of process and certain
semantical operations. Computation in our model is carried out by located pro-
cesses, i.e. processes that execute at named locations. Locations can be nested
inside one another, and a given location can be nested inside one or more loca-
tions at once. Locations constitute scopes for interactions: a set of processes can
interact when situated in locations nested within the same location. Behaviors
of located processes encompass interaction with other processes as well as re-
configuration actions which may change the structure of the location graph and
update located processes. In addition, the G-Kells framework supports a notion
of dynamic priority that few other component models support, apart from those
targeting real-time and reactive systems such as BIP and Ptolemy.

Outline. The paper is organized as follows. The framework we introduce can be
understood as an outgrowth of our prior work with C. Di Giusto [13], in which
we proposed a process calculus interpretation of the BIP model. We recall briefly
in Section 2 the main elements of this work, to help explain the extensions we
introduce in our G-Kells framework. Section 3 presents the G-Kells framework
and its formal operational semantics. Section 4 discusses the various features of
the G-Kells framework, and related work. Section 5 concludes the paper.

2 CAB: a process calculus interpretation of BIP

One way to understand the G-Kells model we introduce in the next section, is
to see it as a higher-order, dynamic extension of the CAB model [13], a process
calculus interpretation of the BIP model. We recall briefly in this section the
main elements of CAB.

The CAB model captures the key features of the BIP model: (i) hierarchical
components; (ii) composition of components via explicit “glues” enforcing mul-
tiway synchronization constraints between sub-components; (iii) priority con-
straints regulating interactions among components. Just as the BIP model, the
CAB model is parameterized by a family P of primitive behaviors. A CAB com-
ponent, named l, can be either a primitive component C = l[P], where P is taken
from P, or a composite component C = l[C1, . . . , Cn ? G], built by composing a
set of CAB components {C1, . . . , Cn} with a glue process G. When l is the name
of a component C, we write C.nm = l. We note C the set of CAB components,
Nl the set of location names, and Nc the set of channel names. Behaviors in P
are defined as labelled transition systems, with labels in Nc.

In CAB, the language for glues G is a very simple language featuring:

– Action prefix ξ.G, where ξ is an action, andG a continuation glue (in contrast
to BIP, glues in CAB can be stateful).

– Parallel composition G1 | G2, where G1 and G2 are glues. This operator
can be interpreted as an or operator, that gives the choice of meeting the
priority and synchronization constraints of G1 or of G2.

– Recursion µX.G, where X is a process variable, and G a glue.

Actions embody synchronization and priority constraints that apply to subcom-
ponents in a composition. An action ξ consists of a triplet 〈π · a · σ〉, where π is
a priority constraint, σ is a synchronization constraint, and a is a channel name,
signalling a possibility of synchronization on channel a. Priority and synchroniza-
tion constraints take the same form: {li : ai | i ∈ I}, where li are location names,
and ai are channel names. A synchronization constraint σ = {li : ai | i ∈ I}
requires each sub-component li to be ready to synchronize on channel ai. Note
that in a synchronization constraint σ = {li : ai | i ∈ I} we expect each li to
appear only once, i.e. for all i, j ∈ I, if i 6= j then li 6= lj . A priority constraint
π = {li : ai | i ∈ I} ensures each subcomponent named li is not ready to
synchronize on channel ai.

Example 1. A glue G of the form 〈{l : a}; c; {l1 : a1, l2 : a2}〉.G′ specifies a synchro-
nization between two subcomponents named l1 and l2: if l1 offers a synchronization on
channel a1, and l2 offers a synchronization on a2, then their composition with glue G
offers a synchronization on c, provided that the subcomponent named l does not offer
a synchronization on a. When the synchronization on a takes place, implying l1 and l2
have synchronized with composite on a1 and a2, respectively, a new glue G′ is put in
place to control the behavior of the composite.

Note that the same component l can appear in both the priority and the
synchronization constraint of the same action ξ.

Example 2. An action of the form 〈{l : a} · c · {l : b, l′ : b}〉 specifies that a synchro-
nization on c is possible provided both subcomponents l and l′ offer a synchronization
on b, and component l does not offer a synchronization on a.

The operational semantics of the CAB model is defined as the labeled tran-
sition system whose transition relation,→⊆ C× (Nl×Nc)×C, is defined by the
inference rules in Figure 2, where we use the following notations:

– C denotes a finite (possibly empty) set of components
– Cσ denotes the set {Ci | i ∈ I}, i.e. the set of subcomponents involved in

the multiway synchronization directed by the synchronization constraint σ
in rule Comp. Likewise, C′σ denotes the set {C ′i | i ∈ I}.

– C |=p {li : ai | i ∈ I} denotes the fact that C meets the priority constraint
π = {li : ai | i ∈ I}, i.e. for all i ∈ I, there exists Ci ∈ C such that Ci.nm = li

and ¬(Ci
li:ai−−−→), meaning there are no C ′ such that Ci

li:ai−−−→ C ′.

The Comp rule in Figure 2 relies on the transition relation between glues
defined as the least relation verifying the rules in Figure 1.

The transition relation is well defined despite the presence of negative premises,
for the set of rules in Figure 2 is stratified by the height of components, given
by the function height, defined inductively as follows:

height(l[P]) = 0 height(l[C ? G]) = 1 + max{height(C) | C ∈ C}

Indeed, in rule Comp, if height(l[C ? G]) = n, then the components in C
that appear in the premises of the rule have a maximum height of n − 1. The

Act ξ.G
ξ−→ G

Rec
G{µX.G/X}

ξ−→ G′

µX.G
ξ−→ G′

Parl
G

ξ−→ G′

G | G2
ξ−→ G′ | G2

Parr
G

ξ−→ G′

G2 | G
ξ−→ G2 | G′

Fig. 1. LTS semantics for CAB glues

Prim
P

α−→ P ′

l[P]
l:α−−→ l[P ′]

Comp
G
〈π · a ·σ〉−−−−−→ G′ σ = {li : ai | i ∈ I} ∀i ∈ I, Ci

li:ai−−−→ C′i C |=p π

l[C ? G]
l:a−−→ l[(C \Cσ) ∪C′σ ? G

′]

Fig. 2. LTS semantics for CAB(P)

transitions relation→ is thus the transition relation associated with the rules in
Figure 2 according to Definition 3.14 in [5], which is guaranteed to be a minimal
and supported model of the rules in Figure 2 by Theorem 3.16 in [5].

We now give some intuition on the operational semantics of CAB. The evo-
lution of a primitive component C = l[P], is entirely determined by its primi-
tive behavior P , following rule Prim. The evolution of a composite component
C = l[C?G] is directed by that of its glue G, which is given by rules Act, Parl,
Parr and Rec. Note that the rules for glues do not encompass any synchroniza-
tion between branches G1 and G2 of a parallel composition G1 | G2. Rule Comp
specifies how glues direct the behavior of a composite (a form of superposition):
if the glue G of the composite l[C?G] offers action 〈π · a · σ〉, then the composite
offers action l : a if both the priority (C |=p π) and synchronization constraints
are met. For the synchronization constraint σ = {li : ai | i ∈ I} to be met, there
must exist subcomponents {Ci | i ∈ I} ready to synchronize on channel ai, i.e.

such that we have, for each i, Ci
li:ai−−−→ C ′i, for some C ′i. The composite can then

evolve by letting each each Ci perform its transition on channel ai, and by letting
untouched the components in C not involved in the synchronization (in the rule
Comp, the components Ci in C are simply replaced by their continuation C ′i on
the right hand side of the conclusion).

The CAB model is simple but already quite powerful. For instance, it was
shown in [13] that CAB(∅), i.e. the instance of the CAB model with no primi-

tive components, is Turing complete1. Priorities are indispensable to the result,
though: as shown in [13], CAB(∅) without priorities, i.e. where glue actions have
empty priority constraints, can be encoded in Petri nets. We now turn to the
G-Kells model itself.

3 G-Kells: a framework for location graphs

3.1 Syntax

The G-Kells process calculus framework preserves some basic features of the
CAB model (named locations, actions with priority and synchronization con-
straints, multiway synchronization within a location) and extends it in several
directions at once:

– First, we abstract away from the details of a glue language. We only require
that a notion of process be defined by means of a particular kind of labelled
transition system. The G-Kells framework will then be defined by a set
of transition rules (the equivalent of Figure 2 for CAB) that takes as a
parameter the transition relation for processes.

– We do away with the tree structure imposed by CAB for components.
Instead, components will now form directed graphs between named loca-
tions, possibly representing different containment relationships among com-
ponents.

– In addition, our location graphs are entirely dynamic, in the sense that they
can evolve as side effects of process transitions taking place in nodes of the
graphs, i.e. locations.

– CAB was essentially a pure synchronization calculus, with no values ex-
changed between components during synchronization. The G-Kells frame-
work allows higher-order value passing between locations: values exchanged
during synchronization can be arbitrary, including names and processes.

The syntax of G-Kells components is quite terse, and is given in Figure 3. The
set of G-Kells components is called K. Let us explain the different constructs:

– 0 stands for the null component, which does nothing.
– l[P] is a location named l, which hosts a process P . As we will see below,

a process P can engage in interactions with other processes hosted at other
locations, but also modify the graph of locations in various ways.

– l.r _ h denotes an edge in the location graph. An edge l.r _ h connects the
role r of a location l to another location h.

– C1 ‖ C2 stands for the parallel composition of components C1 and C2, which
allows for the independent, as well as synchronized, evolution of C1 and C2.

1 The CAB model is defined in [13] with an additional rule of evolution featuring silent
actions. For simplicity, we have not included such a rule in our presentation here,
but the stated results still stand for the CAB model presented in this paper.

C ::= 0 | l[P] | l.r _ h | C ‖ C

l, h ∈ Nl r ∈ Nr

Fig. 3. Syntax of G-Kells components

A role is just a point of attachment to nest a location inside another. A role
r of a location l can be bound, meaning there exists an edge l.r _ h attaching a
location h to r, or unbound, meaning that there is no such edge. We say likewise
that location h is bound to location l, or to a role in location l, if there exists
an edge l.r _ h. Roles can be dynamically attached to a location, whether
by the location itself or by another location. One way to understand roles is
by considering a location l[P] with unbound roles r1, . . . , rn as a frame for a
composite component. To obtain the composite, one must complete the frame
by binding all the unbound roles r1, . . . , rn to locations l1, . . . , ln, which can be
seen as subcomponents. Note that several roles of a given location can be bound
to the same location, and that a location can execute with unbound roles.

Locations serve as scopes for interactions: as in CAB, interactions can only
take place between a location and all the locations bound to its roles, and a
location offers possible interactions as a result. Unlike bigraphs, all interactions
are thus local to a given location. One can understand a location in two ways:
either as a composite glue superposing, as in CAB, priority and synchronization
constraints on the evolution of its subcomponents, i.e. the locations bound to it,
or as a connector, providing an interaction conduit to the components it binds,
i.e. the locations bound to it. More generally, one can understand intuitively
a whole location graph as a component C, with unbound locations acting as
external interfaces for accessing the services provided by C, locations bound to
these interfaces corresponding to subcomponents of C, and unbound roles in the
graph to possible places of attachment of missing subcomponents.

We do not have direct edges of the form l _ h between locations to allow
for processes hosted in a location, say l, to operate without knowledge of the
names of locations bound to l through edges. This can be leveraged to ensure
a process is kept isolated from its environment, as we discuss in Section 4. We
maintain two invariants in G-Kells components: at any one point in time, for
any location name l, there can be at most one location named l, and for any role
r and location l, there can be at most one edge of the form l.r _ k.

Example 3. Let us consider how the example we discussed in the introduction can be
modeled using G-Kells. Each of the different elements appearing in the configuration
described (database DB, data store DS, query engine QE, cache CC, client C, virtual
machines V0 and V1) can be modeled as locations, named accordingly. The database
location has three roles s, q, c, and we have three edges DB.s _ DS, DB.q _ QE,
DB.c _ CC, binding its three subcomponents DS, QE and CC. The virtual machines
locations have two roles each, 0 and 1, and we have four edges V1.0 _ C, V1.1 _ CC,

V0.0 _ DS, V0.1 _ QE, manifesting the placement of components C,CC,DS,QE in
virtual machines. Now, the database location hosts a process supporting the semantics
of composition between its three subcomponents, e.g. the cache management protocol
directing the interactions between the cache and the other two database subcompo-
nents2. The virtual machine locations host processes supporting the failure semantics
of a virtual machine, e.g. a crash failure semantics specifying that, should a virtual
machine crash, the components it hosts (bound through roles 0 and 1) should crash
similarly. We will see in Section 4 how this failure semantics can be captured.

3.2 Operational semantics

We now formally define the G-Kells process calculus framework operational se-
mantics by means of a labelled transition system.

Names, values and environments

Notations. We use boldface to denote a finite set of elements of a given set.
Thus if S is a set, and s a typical element of S, we write s to denote a finite
set of elements of S, s ⊆ S. We use ε to denote an empty set of elements. We
write ℘f (S) for the set of finite subsets of a set S. If S1, S2, S are sets, we write
S1] S2 = S to mean S1 ∪ S2 = S and S1, S2 are disjoint, i.e. S1 and S2 form
a partition of S. We sometimes write s, s to denote {s} ∪ s. If C is a G-Kell
component, Γ (C) represents the set of edges of C. Formally, Γ (C) is defined
by induction as follows : Γ (0) = ∅, Γ (l[P]) = ∅, Γ (l.r _ h) = {l.r. _ h},
Γ (C1 ‖ C2) = Γ (C1) ∪ Γ (C2).

Names and Values. We use three disjoint, infinite, denumerable sets of names,
namely the set Nc of channel names, the set Nl of location names, and the set
Nr of role names. We set N = Nc∪Nl ∪Nr. We note P the set of processes. We
note V the set of values. We posit the existence of three functions fcn : V → Nc,
fln : V → Nl frn : V → Nr that return, respectively, the set of free channel
names, free location names, and free role names occurring in a given value.
The restriction of fcn (resp. fln, frn) to Nc (resp. Nl,Nr) is defined to be the
identity on Nc (resp. Nl,Nr). The function fn : V → N , that returns the set of
free names of a given value, is defined by fn(V) = fcn(V)∪fln(V)∪frn(V). The
sets N , P and V, together with the functions fcn, fln, and frn, are parameters
of the G-Kells framework. We denote by E the set of edges, i.e. the set of triples
l.r _ h of Nl × Nr × Nl. We stipulate that names, processes, edges and finite
sets of edges are values: N ∪ P ∪ E ∪ ℘f (E) ⊆ V. We require the existence of a
relation match ⊆ V2, used in ascertaining possible synchronization.

2 Notice that the database location does not run inside any virtual machine. This
means that, at this level of abstraction, our process architectural view of the database
composite is similar to a network connecting the components placed in the two
virtual machines.

Environments. Our operational semantics uses a notion of environment. An
environment Γ is just a subset of N ∪ E , i.e. a set of names and a set of edges.
The set of names in an environment represents the set of already used names in
a given context. The set of edges in an environment represents the set of edges
of a location graph. the set of environments is noted G.

Processes

Process transitions. We require the set of processes to be equipped with a tran-
sition system semantics given by a labelled transition system where transitions
are of the following form:

P
〈π ·α ·σ ·ω〉−−−−−−−→ P ′

The label 〈π · α · σ · ω〉 comprises four elements: a priority constraint π
(an element of Pr), an offered interaction α, a synchronization constraint σ (an
element of S), and an effect ω (an element of A). The first three are similar in pur-
pose to those in CAB glues. The last one, ω, embodies queries and modifications
of the surrounding location graph.

An offered interaction α takes the form {ai〈Vi〉 | i ∈ I}, where I is a finite
index set, ai are channel names, and Vi are values.

Evalution functions. We require the existence of evaluation functions on priority
constraints (evalπ), and on synchronization constraints (evalσ) of the following
types evalπ : G × Nl × Pr → ℘f (Nl × Nr × Nc), and evalσ : G × Nl × S →
℘f (Nl ×Nr ×Nc × V). The results of the above evaluation functions are called
concrete (priority or synchronization) constraints. The presence of evaluation
functions allows us to abstract away from the actual labels used in the semantics
of processes, and to allow labels used in the operational semantics of location
graphs, described below, to depend on the environment and the surrounding
location graph.

Example 4. One can, for instance, imagine a kind of broadcast synchronization con-
straint of the form ∗ : a〈V 〉, which, in the context of an environment Γ and a location
l, evaluates to a constraint requiring all the roles bound to a locations in Γ to offer an
interaction on channel a, i.e.: evalσ(Γ, l, ∗ : a〈V 〉) = {l.r : a〈V 〉 | ∃h, l.r _ h ∈ Γ}.

We require the existence of an evaluation function on effects (evalω) with
the type evalω : G × Nl × A → ℘f (E), where E is the set of concrete effects. A
concrete effect can take any of the following forms, where l is a location name:

– l : newl(h, P), l : newch(c), l : newr(r), respectively to create a new location
named h with initial process P , to create a new channel named c, and to
create a new role named r.

– l : add(h, r, k), l : rmv(h, r, k), respectively to add and remove a graph edge
h.r _ k to and from the surrounding location graph.

– l : gquery(Γ), to discover a subgraph Γ of the surrounding location graph.
– l : swap(h, P,Q), to swap the process P running at location h for process Q.

– l : kill(h), to remove location h from the surrounding location graph.

Concrete effects embody the reconfiguration capabilities of the G-Kells frame-
work. Effects reconfiguring the graph itself come in pairs manifesting intro-
duction and elimination effects: thus, adding and removing a node (location)
from the graph (newl, kill), and adding and removing an edge from the graph
(add, rmv). Role creation (newr) is introduced to allow the creation of new edges.
Channel creation (newch) allows the same flexibility provided by name creation
in the π-calculus. The swap effect (swap) is introduced to allow the atomic up-
date of a located process. The graph query effect (gquery) is perhaps a bit more
unorthodox: it allows a form of reflection whereby a location can discover part of
its surrounding location graph. It is best understood as an abstraction of graph
navigation and query capabilities which have been found useful for programming
reconfigurations in component-based systems [11].

Operational semantics of location graphs

Transitions. The operational semantics of location graphs is defined by means
of a transition system, whose transition relation → is defined, by means of the
inference rules presented below, as a subset of G×K×L×K. Labels take the form
〈π · σ · ω〉, where π and σ are located priority and synchronization constraints,
respectively, and ω is a finite set of located effects (for simplicity, we reuse the
same symbols than for constraints and effects). The set of labels is noted L.

A located priority constraint π is just a concrete priority constraint, and takes
the form {li.ri : ai | i ∈ I}, where I is a finite index set, with li, ri, ai in location,
role and channel names, respectively. A located synchronization constraint takes
the form {uj : aj〈Vj〉}, where aj are channel names, uj are either location
names lj or pairs of location names and roles, noted lj .rj , and Vj are values.
Located effects can take the following forms: l : rmv(h, r, k), l : swap(h, P,Q),
l : kill(h), h : rmv(h, r, k), h : swap(h, P,Q), and h : kill(h), where l, h, k are
location names, r is a role name, P,Q are processes. The predicate located on
E identifies located effects. In particular, for a set ω ⊂ E, we have located(ω) if
and only if all elements of ω are located.

A transition 〈Γ,C, 〈π · σ · ω〉, C ′〉 ∈→ is noted Γ . C
〈π ·σ ·ω〉−−−−−−→ C ′ and must

obey the folowing constraint:

– If Γ = u ∪ ∆, where u is a set of names, and ∆ is a set of edges, then
fn(∆) ⊆ u and fn(Γ) = u.

– fn(C) ⊆ fn(Γ), i.e. the free names occurring in C must appear in the already
used names of Γ .

– If l.r _ h and l.r _ k are in Γ ∪Γ (C), then h = k, i.e. we only have a single
edge binding a role r of a given location l to another location h.

Auxiliary relation −→•. The definition of → makes use of an auxiliary relation
−→•⊆ G×K×L•×K, where L• is a set of elements of the form 〈π · σ · ω〉 where π
and σ are located priority and synchronizaton constraints, and where ω is a finite

set of concrete effects. Relation −→• is defined as the least relation satisfying the
rules in Figure 4, where we use the following notation: if α = {ai〈Vi〉 | i ∈ I},
then l : α = {l : ai〈Vi〉 | i ∈ I}, and if α = ε, then l : α = ε.

Rule Act simply expresses how process transitions are translated into loca-
tion graph transitions, and process level constraints and effects are translated
into located constraints and concrete effects, via the evaluation functions intro-
duced above. Rule NewL specifies the effect of an effect l : newl(h,Q) , which
creates a new location h[Q]. Notice how effect l : newl(h,Q) is removed from
the set of effects in the transition label in the conclusion of the rule: auxiliary
relation −→• is in fact used to guarantee that a whole set of concrete effects are
handled atomically. All the rules in Figure 4 except Act, which just prepares for
the evaluation of effects, follow the same pattern. Rules NewC and NewR spec-
ify the creation of a new channel name and of a new role name, respectively. The
rules just introduce the constraint that the new name must not be an already
used name in the environment Γ . Our transitions being in the early style, the use
of the new name is already taken into account in the continuation location graph
C (in fact in the continuation process P ′ appearing on the left hand side of the
instance of rule Act that must have led to the building of C). This handling of
new names is a bit unorthodox but it squares nicely with the explicitly indexed
labelled transition semantics of the π-calculus given by Cattani and Sewell in [8].
Rule AddE specifies the effect of adding a new edge to the location graph. Rule
Gquery allows the discovery by processes of a subgraph of the location graph.
In the rule premise, we use the notation Γl to denote the set of edges reachable
from location l, formally: ΓL = {h.r _ k ∈ Γ | l _+

Γ h}, where l _+
Γ h means

that there exists a non-empty chain l.r _ l1, l1.r1 _ l2, . . . , ln−1.rn−1 _ ln,
ln.rn _ h, with n ≥ 1, linking l to h in the location graph Γ . As in the case
of name creation rules, the exact effect on processes is left unspecified, the only
constraint being that the discovered graph be indeed a subgraph of the location
graph in the environment.

Transition relation −→. The transition relation −→ is defined by the rules in
Figure 5. We use the following notations and definitions in Figure 5:

– Function seval is defined by induction as follows (for any l, r, h, V, σ, σ′):

seval(Γ, σ) = seval(Γ, σ′) if σ = {l.r : a〈V 〉, h : a〈W 〉} ∪ σ′

∧ l.r _ h ∈ Γ ∧ match(V,W)

seval(Γ, σ) = σ otherwise

– Function aeval is defined by induction as follows (for any l, r, h, k, P,Q, σ, σ′):

aeval(Γ, σ) = aeval(Γ, σ′) if σ = {l : swap(h, P,Q), swap(h, P,Q)} ∪ σ′

aeval(Γ, σ) = aeval(Γ, σ′) if σ = {l : rmv(h, r, k), rmv(h, r, k)} ∪ σ′

aeval(Γ, σ) = aeval(Γ, σ′) if σ = {l : kill(h), kill(h)} ∪ σ′

aeval(Γ, σ) = σ otherwise

Act•

P
〈π ·α ·σ ·ω〉−−−−−−−−→ P ′

π• = evalπ(Γ, l, π) σ• = evalσ(Γ, l, σ) ω• = evalω(Γ, l, ω)

Γ . l[P]
〈π• · l:α∪σ• ·ω•〉−−−−−−−−−−−→• l[P ′]

NewL
Γ . l[P]

〈π ·σ · l:newl(h,Q),ω〉−−−−−−−−−−−−−→• C h 6∈ Γ

Γ . l[P]
〈π ·σ ·ω〉−−−−−−→• C ‖ h[Q]

NewC
Γ . l[P]

〈π ·σ · l:newch(c),ω〉−−−−−−−−−−−−→• C c 6∈ Γ

Γ . l[P]
〈π ·σ ·ω〉−−−−−−→• C

NewR
Γ . l[P]

〈π ·σ · l:newr(r),ω〉−−−−−−−−−−−→• C r 6∈ Γ

Γ . l[P]
〈π ·σ ·ω〉−−−−−−→• C

AddE
Γ . l[P]

〈π ·σ · l:add(h,r,k),ω〉−−−−−−−−−−−−−→• C ¬(∃k, h.r _ k ∈ Γ)

Γ . l[P]
〈π ·σ ·ω〉−−−−−−→• C ‖ h.r _ k

Gquery
Γ . l[P]

〈π ·σ · l:gquery(∆),ω〉−−−−−−−−−−−−−→• C ∆ ⊆ Γl

Γ . l[P]
〈π ·σ ·ω〉−−−−−−→• C

Fig. 4. Rules for auxiliary relation −→•

Swap Γ . l[P]
〈ε · ε · swap(l,P,Q)〉−−−−−−−−−−−→ l[Q] Kill Γ . l[P]

〈ε · ε · kill(l)〉−−−−−−−−→ 0

Rmv Γ . h.r _ k
〈ε · ε · rmv(h,r,k)〉−−−−−−−−−−→ 0

Act
Γ . l[P]

〈π ·σ ·ω〉−−−−−−→• C located(ω)

Γ . l[P]
〈π ·σ ·ω〉−−−−−−→ C

Comp

Γ ′ = Γ ∪ Γ (C1) ∪ Γ (C2) π = π1 ∪ π2 fn(Γ ′)]∆1]∆2 = N
Γ ′ . LC1 ‖ C2Mπ |= π σ = seval(Γ ′, σ1 ∪ σ2) ω = aeval(Γ ′, ω1 ∪ ω2)

Γ ′ ∪∆1 . C1
〈π1 ·σ1 ·ω1〉−−−−−−−−→ C′1 Γ ′ ∪∆2 . C2

〈π2 ·σ2 ·ω2〉−−−−−−−−→ C′2

Γ . C1 ‖ C2
〈π ·σ ·ω〉−−−−−−→ C′1 ‖ C′2

Fig. 5. Rules for transition relation −→

– Assume π = {li.ri : ai | i ∈ I}, then LCMπ is obtained by replacing in C all
the locations {li[Pi] | i ∈ I} with locations {li[LPiM] | i ∈ I}, where LP M is
defined by the LTS obtained from that of P by the following rule:

Trim
P
〈π ·α ·σ ·ω〉−−−−−−−→ P ′

LP M
〈ε ·α ·σ ·ω〉−−−−−−−→ P ′

In other terms, LCMπ is obtained by disregarding the priority constraints that
are generated by locations li mentioned in the priority constraint π.

– Γ . C |= {li.ri : ai | i ∈ I} means that, for all i ∈ I, Γ . C |= li.ri : ai. We
write Γ . C |= l.r : a to mean that

¬(∃h, π, σ, ω, V, C ′, l.r _ h ∧ Γ . C 〈π · l:a〈V 〉,σ ·ω〉−−−−−−−−−−→ C ′)

Rule Swap specifies that at any point in time a location can see its process
swapped for another. Likewise, rules Kill and Rmv specify that at any point in
time a location or an edge, respectively, can be removed from a location graph.
Rule Act specifies the termination of the atomic execution of a set of concrete
effects. All the effects remaining must be located effects, which expect some
counterpart (provided by the rules Swap, Kill, and Rmv, when invoking rule
Comp) to proceed.

Rule Comp is the workhorse of our operational semantics of location graphs.
It specifies how to determine the transitions of a parallel composition C1 ‖ C2,
by combining the priority constraints, synchronization constraints and effects
obtained from the determination of contributing transitions from C1 and C2.
The latter takes place in extended environment Γ ′, that contains the original
environment Γ , but also the edges present in C1 and C2, defined as Γ (C1) and
Γ (C2), respectively. To ensure the names created as side effects of C1 and C2

transitions are indeed unique, the determination of the contributing transition of
C1 takes place in an environment where the already used names include those in
Γ as well as those in ∆1, which gathers names that may be created as a side effect
of the contributing transition of C2. Likewise for determining the contributing
transition of C2. The constraint fn(Γ ′)]∆1]∆2 = N ensures that names in ∆1

and ∆2 are disjoint, as well as disjoint from the already used names of fn(Γ ′).
The original aspect of rule Comp lies with the computation of located syn-

chronization contraints and effects resulting from the parallel composition of
G-Kells components: we allow it to be dependent on the global environment Γ ′

with the clauses σ = seval(Γ ′, σ1 ∪ σ2) and ω = aeval(Γ ′, ω1 ∪ ω2), which,
in turn, allows to enforce constraints dependent on the location graph as in
the definition of function seval. In fact, as we discuss in Section 4 below, we
can envisage instances of the framework where different types of location-graph-
dependent constraints apply.

The use of environments in rule Comp to obtain a quasi-compositional rule
of evolution is reminiscent of the use of environment and process frames in the
parallel rule of the ψ-calculus framework [3]. We say our rule Comp is quasi-
compositional for the handling of priority is not compositional: it relies on the

global condition Γ ′ . LC1 ‖ C2Mπ, which requires computing with (an altered
view of) the whole composition. The use of the L·M− operator in rule Comp
is reminiscent of the handling of priorities in other works [9]. An easy way to
turn rule Comp into a completely compositional rule would be to adopt a more
“syntactic” approach, defining LCMπ to be obtained by replacing all locations
l[P] in C by their trimmed version l[LP M], and defining environments to include
information on possible actions by trimmed locations. On the other hand, we can
also adopt a purely “semantic” (albeit non-compositional) variant by defining
LCMπ to be just C. However, in this case, we don’t know whether the completeness
result in Theorem 1 below still stands.

Example 5. To illustrate how the rules work, consider the following process transitions:

P
〈ε · ε · ∗:a〈V 〉 · newl(h,P)〉−−−−−−−−−−−−−−−→ P ′ P1

〈ε · a〈V1〉 · ε · {newl(h1,P1)}〉−−−−−−−−−−−−−−−−−→ P ′1 P2
〈ε · a〈V2〉 · ε · ε〉−−−−−−−−−→ P ′2

Let Γ = {l, l1, l2} ∪ {l.r1 _ l1, l.r2 _ l2}, and let ∆,∆′ be such that ∆] ∆′ =
N \ {l, l1, l2, h, h1}. We assume further that match(V, V1) and match(V, V2), that all
names l, l1, l2, h, h1 are distinct, and that

evalσ(Γ, l, ∗ : a〈V 〉) = {l.r1 : a〈V 〉, l.r2 : a〈V 〉}
evalω(Γ, l, {newl(h, P)}) = {l : newl(h, P)}
evalω(Γ, l1, {newl(h1, P1)}) = {l1 : newl(h1, P1)}
evalω(Γ, l2, ε) = ε evalπ(Γ, l, ε) = ε evalπ(Γ, l1, ε) = ε evalπ(Γ, l2, ε) = ε

Applying rule Act•, we get

Γ ∪ {h1},∆ . l[P]
〈ε · {l.r1:a〈V 〉,l.r2:a〈V 〉} · {l:newl(h,P)}〉−−−−−−−−−−−−−−−−−−−−−−−−−−→• l[P ′]

Γ ∪ {h},∆′ . l1[P1]
〈ε · l1:a〈V1〉 · {l1:newl(h1,P1)}〉−−−−−−−−−−−−−−−−−−−→• l1[P ′1]

Γ ∪ {h},∆′ . l2[P2]
〈ε · l2:a〈V2〉 · ε〉−−−−−−−−−→• l2[P ′2]

Applying rule NewL, we get

Γ ∪ {h1},∆ . l[P]
〈ε · {l.r1:a〈V 〉,l.r2:a〈V 〉} · ε〉−−−−−−−−−−−−−−−−−−→• l[P ′] ‖ h[P]

Γ ∪ {h},∆′ . l1[P1]
〈ε · {h1:a〈V1〉} · ε〉−−−−−−−−−−−→• l1[P ′1] ‖ h1[P1]

Applying rule Act we get

Γ ∪ {h1},∆ . l[P]
〈ε · {l.r1:a〈V 〉,l.r2:a〈V 〉} · ε〉−−−−−−−−−−−−−−−−−−→ l[P ′] ‖ h[P]

Γ ∪ {h},∆′ . l1[P1]
〈ε · {l1:a〈V1〉} · ε〉−−−−−−−−−−−→ l1[P ′1] ‖ h1[P1]

Γ ∪ {h},∆′ . l2[P2]
〈ε · {l2:a〈V2〉} · ε〉−−−−−−−−−−−→ l2[P ′2]

Finally, applying rule Comp we get

Γ ∪ {h},∆′ . l1[P1] ‖ l2[P2]
〈ε · {l1:a〈V1〉,l2:a〈V2〉} · ε〉−−−−−−−−−−−−−−−−−→ l1[P ′1] ‖ h1[P1] ‖ l2[P ′2]

Γ . l[P] ‖ l1[P1] ‖ l2[P2]
〈ε · ε · ε〉−−−−−→ l[P ′] ‖ h[P] ‖ l1[P ′1] ‖ h1[P1] ‖ l2[P ′2]

Transition relation −→ as a fixpoint. Because of the format of rule Comp, which
does not prima facie obey known SOS rule formats [21], or conform to the stan-
dard notion of transition system specification [5], the question remains of which
relation the rules in Figures 4 and 5 define. Instead of trying to turn our rules
into equivalent rules in an appropriate format, we answer this question directly,
by providing a fixpoint definition for −→. We use the fixpoint construction intro-
duced by Przymusinski for the three-valued semantics of logic programs [23].

Let v be the ordering on pairs of relations in T = G ×K×L×K defined as:

〈R1, R2〉 v 〈T1, T2〉 ⇐⇒ R1 ⊆ T1 ∧ T2 ⊆ R2

As products of complete lattices, (T ,⊆) and (T 2,v) are complete lattices [10].
One can read the Comp rule in Figures 5 as the definition of an operator F :
T 2 → T 2 which operates on pairs of sub and over-approximations of →. Let
→0 be the relation in T 2 obtained as the least relation satisfying the rules in
Figures 4 and 5, with rule Comp omitted. Operator F is then defined as follows:

F(R1, R2) = (→0 ∪R1 ∪ r(→0 ∪R1, R2), R2 ∩ r(R2,→0 ∪R1))

r(R1, R2) = {t ∈ T | t = (Γ,C1 ‖ C2, 〈π · σ · ω〉, C′1 ‖ C′2)

∧ comp(Γ,C1, C2, π, σ, ω, C
′
1, C

′
2, R1, R2)}

where the predicate comp is defined as follows:

comp(Γ,C1, C2, π, σ, ω, C
′
1, C

′
2, R1, R2) ⇐⇒

∃π1, π2, σ1, σ2, ω1, ω2, ∆1, ∆2, Γ
′,

Γ ′ = Γ ∪ Γ (C1) ∪ Γ (C2)

∧ π = π1 ∪ π2
∧ fn(Γ ′)]∆1]∆2 = N
∧ σ = seval(Γ ′, σ1 ∪ σ2)

∧ ω = aeval(Γ ′, ω1 ∪ ω2)

∧ (Γ ′ ∪∆1, C1, 〈π1 · σ1 · ω1〉, C ′1) ∈ R1

∧ (Γ ′ ∪∆2, C2, 〈π2 · σ2 · ω2〉, C ′2) ∈ R1

∧ Γ ′ . LC1 ‖ C2Mπ |=R2 π

where Γ . C |=R {li : ai | i ∈ I} means that, for all i ∈ I, Γ . C |=R li : ai, and
where Γ . C |=R l : a stands for:

¬(∃π, σ, ω, V, C ′, (Γ,C, 〈π · {l : a〈V 〉} ∪ σ · ω〉, C ′) ∈ R)

The definition of the predicate comp mimics the definition of rule Comp,
with all the conditions in the premises appearing as clauses in comp, but where
the positive transition conditions in the premises are replaced by transitions
in the sub-approximation R1, and negative transition conditions (appearing in
the Γ ′ . LC1 ‖ C2Mπ |= π condition) are replaced by equivalent conditions with
transitions not belonging to the over-approximation R2. With the definitions
above, if R1 is a sub-approximation of →, and R2 is an over-approximation of

→, then we have R1 ⊆ π1(F(R1, R2)) and π2(F(R1, R2)) ⊆ R2, where π1, π2
are the first and second projections. In other terms, given a pair of sub and over
approximations of →, F computes a pair of better approximations.

From this definition, if it is easy to show that F is order-preserving:

Lemma 1. For all R1, T1, R2, T2 ∈ T 2, if (R1, R2) v (T1, T2), then F(R1, R2) v
F(T1, T2).

Since F is order-preserving, it has a least fixpoint, F∗ = (D,U), by the Knaster-
Tarski theorem. We can then define → to be the first projection of F∗, namely
D. With the definition of LCMπ we have adopted, and noting that it provides
a form of stratification with the number of locations in a location graph with
non-empty priority constraints, it is also possible to show that →= U , meaning
that → as just defined is complete, using the terminology in [27]. In fact, using
the terminology in [27], we can prove the theorem below, whose proof we omit
for lack of space:

Theorem 1. The relation → as defined above is the least well-supported model
of the rules in Figures 4 and 5. Moreover → is complete.

4 Discussion

We discuss in this section the various features of the G-Kells framework and
relevant related work.

Introductory example. Let’s first revisit Example 3 to see how we can further
model the behavior of its different components. We can add, for instance, a crash
action to the virtual machine locations, which can be triggered by a process

transition at a virtual machine location of the form P
〈ε · ε · ε · kill(∗)〉−−−−−−−−−−→ 0 with the

following evaluation function:

evalω(Γ, l, kill(∗)) = {kill(h) | ∃r, l.r _ h ∈ Γ}

yielding, for instance, the following transition (where u includes all free names
in V0[P] ‖ C[PC] ‖ CC[PCC]):

u, {V0.0 _ C, V0.1 _ CC} . V0[P] ‖ C[PC] ‖ CC[PCC]
〈ε · ε · ε〉−−−−−→ V0[0] ‖ 0 ‖ 0

This crash behavior can be extended to an arbitrary location graph residing in a
virtual machine, by first discovering the location graph inside a virtual machine
via the gquery primitive, and then killing all locations in the graph as illustrated
above.

Early style. Our operational semantics for location graphs is specified in an early
style [24], with values in labels manifesting the results of successful communica-
tion. This allows us to remain oblivious to the actual forms of synchronization
used. For instance, one could envisage pattern matching as in the ψ-calculus [3],

Jl[P]K = l[P]

Jl[C1, . . . , Cn ? G]K = l1[C1] ‖ l.1 _ l1 ‖ . . . ‖ ln[Cn] ‖ l.n _ ln ‖ l[JGK]
J0K = 0

J〈π · l : a · σ〉.GK = 〈JπK · {l : a} · JσK〉.JGK
JG1 | G2K = JG1K | JG2K
JµX.GK = µX. JGK
J{li : ai | i ∈ I}K = {i : ai | i ∈ I}

evalπ(Γ, l, i : ai) = l.i : ai evalσ(Γ, l, i : ai) = l.i : ai

Fig. 6. Encoding CAB in the G-Kells framework

or even bi-directional pattern matching: for instance we could have a process syn-
chronization constraint r : a〈x, V 〉 matching an offered interaction h : a〈W, y〉,
which translate into matching located synchronization constraints l.r : a〈W,V 〉
and h : a〈W,V 〉.

Mobility vs higher-order. Our operational semantics comprises both mobility fea-
tures with location binding, and higher-order features with swapping and higher-
order interactions. One could wonder whether these features are all needed as
primitives. For instance, one could argue that mobility features are enough to
model higher-order phenomena as in the π-calculus [24]. Lacking at this point
a behavioral theory for the G-Kells framework, we cannot answer the question
definitely here. But we doubt that mobility via location binding is sufficient to
faithfully encode higher-order communication. In particular, note that we have
contexts (location graphs) that can distinguish the two cases via the ability to
kill locations selectively.

Directed graphs vs acyclic directed graphs. Location graphs form directed graphs.
One could wonder whether to impose the additional constraints that such graphs
be acyclic. While most meaningul examples of ubiquitous systems and software
structures can be modeled with acyclic directed graphs, our rules for location
graphs function readily with arbitrary graphs. Enforcing the constraint that all
evolutions of a location graph keep it acyclic does not seem necessary.

Relationship with CAB. The G-Kells model constitutes a conservative extension
of CAB. A straightforwward encoding of CAB in the G-Kells framework can be
defined as in Figure 6, with translated glues JGK defined with the same LTS,
mutatis mutandis, as CAB glues. The following proposition is then an easy
consequence of our definitions:

Proposition 1. Let C be a CAB component. We have C
l:a−→ C ′ if and only if

JCK
〈ε · {l:a} · ε〉−−−−−−−→ JC ′K.

Graph constraints in rules. For simplicity, the evaluation functions seval and
aeval have been defined above with only a simple graph constraint in the first
clause of the seval definition. One can parameterize these definitions with ad-
ditional graph constraints to enforce different policies. For instance, one could
constrain the use of the swap, kill and and edge removal operations to locations
dominating the target location by adding a constraint of the form l _∗ h to each
of the clauses in the definition of aeval, where l _∗Γ h means that there exists
a (possibly empty) chain l.r _ l1, l1.r1 _ l2, . . . , ln−1.rn−1 _ ln, ln.rn _ h
linking l to h in the location graph Γ . Similar constraints could be added to rule
AddE. Further constraints could be added to rule Gquery to further restrict
the discovery of subgraphs, for instance, preventing nodes other than immediate
children to be discovered.

Types and capabilities. The framework presented in this paper is an untyped one.
However, introducing types similar to i/o types capabilities in the π-calculus [24]
would be highly useful. For instance, edges of a location graph can be typed, per-
haps with as simple a scheme as different colors to reflect different containment
and visibility semantics, which can be exploited in the definition of evaluation
functions to constrain effects and synchronization. In addition, location, role and
channel names can be typed with capabilities constraining the transfer of rights
from one location to another. For instance, transferring a location name l can
come with the right to swap the behavior at l, but not with the right to kill
l, or with the right to bind roles of l to locations, but not with the ability to
swap the behavior at l. We believe these capabilities could be useful in enforcing
encapsulation and access control policies.

Relation with the ψ-calculus framework and SCEL. We already remarked that
our use of environments is reminiscent of the use of frames in the ψ-calculus
framework [3]. An important difference with the ψ-calculus framework is the
fact that we allow interactions to depend on constraints involving the global
environment, in our case the structure of the location graph. Whether one can
faithfully encode the G-Kells framework (with mild linguistic assumptions on
processes) with the ψ-calculus framework remains to be seen.

On the other hand, it would seem worthwhile to pursue the extension of the
framework presented here with ψ-calculus-like assertions. We wonder in particu-
lar what relation the resulting framework would have with the SCEL language for
autonomous and adaptive systems [12]. The notion of ensemble, being assertion-
based, is more fluid than our notion of location graph, but it does not have the
ability to superimpose on ensembles the kind of control actions, such as swapping
and killing, that the G-Kells framework allows.

Relation with SHR. The graph manipulation capabilities embedded in the G-
Kells framework are reminiscent of synchronized hyperdege replacement (SHR)
systems [18]. In SHR, multiple hyperedge replacements can be synchronized to
yield an atomic transformation of the underlying hypergraph in conjunction with
information exchange. Intuitively, it seems one can achieve much the same effects

with G-Kells: located effects can atomically build a new subgraph and modify
the existing one, and they can be synchronized across multiple locations thanks
to synchronization constraints. In contrast, SHR systems lack priorities and the
internalization of hyperedge replacement rules (the equivalent of our processes)
in graph nodes to account for inherent dynamic reconfiguration capabilities. We
conjecture that SHR systems can be faithfully encoded in the G-Kells framework.

5 Conclusion

We have introduced the G-Kells framework to lift limitations in existing compu-
tational models for ubquitous and reconfigurable software systems, in particular
the ability to describe dynamic structures with sharing, where different aggre-
gates or composites can share components. Much work remains to be done, how-
ever. We first intend to develop the behavioral theory of our framework. Indeed
we hope to develop a first-order bisimulation theory for the G-Kells framework,
avoiding the difficulties inherent in mixing higher-order features with passiva-
tion described in [19]. We also need to formally compare G-Kells with several
other formalisms, including SHR systems and the ψ-calculus framework. And we
definitely need to develop a typed variant of the framework to exploit the rich
set of capabilities that can be attached to location names.

Ackowledgements

Damien Pous suggested the move to an early style semantics. The paper was
much improved thanks to comments by Ivan Lanese on earlier versions.

References

1. C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Modeling component
connectors in reo by constraint automata. Sci. Comput. Program., 61(2), 2006.

2. F. Barbier, B. Henderson-Sellers, A. Le Parc, and J.M. Bruel. Formalization of the
whole-part relationship in the unified modeling language. IEEE Trans. Software
Eng., 29(5), 2003.

3. J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: a framework
for mobile processes with nominal data and logic. Logical Methods in Computer
Science, 7(1), 2011.

4. S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based
systems. In CONCUR, volume 5201 of LNCS. Springer, 2008.

5. R. N. Bol and J. F. Groote. The meaning of negative premises in transition system
specifications. J. ACM, 43(5):863–914, 1996.

6. M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: the
calculus of boxed ambients. ACM. Trans. Prog. Languages and Systems, 26(1),
2004.

7. L. Cardelli and A. Gordon. Mobile Ambients. Theoretical Computer Science,
240(1), 2000.

8. G. L. Cattani and P. Sewell. Models for name-passing processes: interleaving and
causal. Information and Computation, 190(2), 2004.

9. R. Cleaveland, G. Lüttgen, and V. Natarajan. Priority in process algebra. In
Handbook of Process Algebra. Elsevier, 2001.

10. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order (2nd ed.).
Cambridge University Press, 2002.

11. P.C. David, T. Ledoux, M. Léger, and T. Coupaye. Fpath and fscript: Language
support for navigation and reliable reconfiguration of fractal architectures. Annals
of Telecommunications, 64(1-2), 2009.

12. R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal approach to auto-
nomic systems programming: The SCEL language. ACM Trans. on Autonomous
and Adaptive Systems, 9(2), 2014.

13. C. Di Giusto and J.-B. Stefani. Revisiting glues for component-based systems. In
COORDINATION 2011, volume 6721 of LNCS. Springer, 2011.

14. G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised
hyperedge replacement as a model for service oriented computing. In FMCO 2005,
volume 4111 of LNCS. Springer, 2005.

15. J. L. Fiadeiro and A. Lopes. A model for dynamic reconfiguration in service-
oriented architectures. Software and System Modeling, 12(2), 2013.

16. D. Hirschkoff, T. Hirschowitz, D. Pous, A. Schmitt, and J.-B. Stefani. Component-
Oriented Programming with Sharing: Containment is not Ownership. In GPCE
2005, volume 3676 of LNCS. Springer, 2005.

17. P. Kruchten. Architectural blueprints – The 4+1 view model of software architec-
ture. IEEE Software, 12(6), 1995.

18. I. Lanese and U. Montanari. Mapping fusion and synchronized hyperedge replace-
ment into logic programming. Theory and Practice of Logic Programming, 7(1-2),
2007.

19. S. Lenglet, A. Schmitt, and J.B. Stefani. Characterizing contextual equivalence in
calculi with passivation. Information and Computation, 209(11), 2011.

20. R. Milner. The Space and Motion of Communicating Agents. Cambridge University
Press, 2009.

21. M. R. Mousavi, M. A. Reniers, and J. F. Groote. SOS formats and meta-theory:
20 years after. Theoretical Computer Science, 373(3), 2007.

22. F. Oquendo. π-ADL: An Architecture Description Language based on the Higher-
Order π-Calculus for Specifying Dynamic and Mobile Software Architectures. ACM
Software Engineering Notes, 29(4), 2004.

23. T.C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13, 1990.

24. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

25. A. Schmitt and J.-B. Stefani. The Kell Calculus: A Family of Higher-Order Dis-
tributed Process Calculi. In Global Computing, volume 3267 of LNCS. Springer,
2005.

26. S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee. A modular formal semantics
for ptolemy. Mathematical Structures in Computer Science, 23(4), 2013.

27. R. J. van Glabbeek. The meaning of negative premises in transition system speci-
fications II. J. Log. Algebr. Program., 60-61, 2004.

28. M. Wermelinger and J. L. Fiadeiro. A graph transformation approach to software
architecture reconfiguration. Sci. Comput. Program., 44(2), 2002.

Bisimulations up-to:
beyond first-order transition systems

Jean-Marie Madiot1, Damien Pous1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France,
2 Università di Bologna, Italy, INRIA

Abstract. The bisimulation proof method can be enhanced by employ-
ing ‘bisimulations up-to’ techniques. A comprehensive theory of such
enhancements has been developed for first-order (i.e., CCS-like) labelled
transition systems (LTSs) and bisimilarity, based on the notion of com-
patible function for fixed-point theory.
We transport this theory onto languages whose bisimilarity and LTS go
beyond those of first-order models. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilar-
ities onto the first-order ones. This allows us to reuse directly the large
corpus of up-to techniques that are available on first-order LTSs. The
only ingredient that has to be manually supplied is the compatibility of
basic up-to techniques that are specific to the new languages. We investi-
gate the method on the π-calculus, the λ-calculus, and a (call-by-value)
λ-calculus with references.

1 Introduction

One of the keys for the success of bisimulation is its associated proof method,
whereby to prove two terms equivalent, one exhibits a relation containing the pair
and one proves it to be a bisimulation. The bisimulation proof method can be
enhanced by employing relations called ‘bisimulations up-to’ [14, 19, 20]. These
need not be bisimulations; they are simply contained in a bisimulation. Such
techniques have been widely used in languages for mobility such as π-calculus
or higher-order languages such as the λ-calculus, or Ambients (e.g., [23, 15, 11]).

Several forms of bisimulation enhancements have been introduced: ‘bisim-
ulation up-to bisimilarity’ [16] where the derivatives obtained when playing
bisimulation games can be rewritten using bisimilarity itself; ‘bisimulation up-
to transitivity’ where the derivatives may be rewritten using the up-to relation;
‘bisimulation up-to-context’ [21], where a common context may be removed from
matching derivatives. Further enhancements may exploit the peculiarities of the
definition of bisimilarity on certain classes of languages: e.g., the up-to-injective-
substitution techniques of the π-calculus [7, 23], techniques for shrinking or en-
larging the environment in languages with information hiding mechanisms (e.g.,
existential types, encryption and decryption constructs [1, 25, 24]), frame equiv-
alence in the psi-calculi [17], or higher-order languages [12, 10]. Lastly, it is im-
portant to notice that one often wishes to use combinations of up-to techniques.

For instance, up-to context alone does not appear to be very useful; its strength
comes out in association with other techniques, such as up-to bisimilarity or
up-to transitivity.

The main problem with up-to techniques is proving their soundness (i.e.
ensuring that any ‘bisimulation up-to’ is contained in bisimilarity). In particular,
the proofs of complex combinations of techniques can be difficult or, at best,
long and tedious. And if one modifies the language or the up-to technique, the
entire proof has to be redone from scratch. Indeed the soundness of some up-to
techniques is quite fragile, and may break when such variations are made. For
instance, in certain models up-to bisimilarity may fail for weak bisimilarity, and
in certain languages up-to bisimilarity and context may fail even if bisimilarity is
a congruence relation and is strong (treating internal moves as any other move).

This problem has been the motivation for the development of a theory of en-
hancements, summarised in [19]. Expressed in the general fixed-point theory on
complete lattices, this theory has been fully developed for both strong and weak
bisimilarity, in the case of first-order labelled transition systems (LTSs) where
transitions represent pure synchronisations among processes. In this framework,
up-to techniques are represented using compatible functions, whose class enjoys
nice algebraic properties. This allows one to derive complex up-to techniques
algebraically, by composing simpler techniques by means of a few operators.

Only a small part of the theory has been transported onto other forms of tran-
sition systems, on a case by case basis. Transferring the whole theory would be a
substantial and non-trivial effort. Moreover it might have limited applicability,
as this work would probably have to be based on specific shapes for transitions
and bisimilarity (a wide range of variations exist, e.g., in higher-order languages).

Here we explore a different approach to the transport of the theory of bisim-
ulation enhancements onto richer languages. The approach consists in exhibiting
fully abstract translations of the more sophisticated LTSs and bisimilarities onto
first-order LTSs and bisimilarity. This allows us to import directly the existing
theory for first-order bisimulation enhancements onto the new languages. Most
importantly, the schema allows us to combine up-to techniques for the richer
languages. The only additional ingredient that has to be provided manually is
the soundness of some up-to techniques that are specific to the new languages.
This typically includes the up-to context techniques, since those contexts are not
first-order.

Our hope is that the method proposed here will make it possible to obtain a
single formalised library about up-to techniques, that can be reused for a wide
range of calculi: currently, all existing formalisations of such techniques in a proof
assistant are specific to a given calculus: π-calculus [5, 4], the psi-calculi [17], or
a miniML language [6].

We consider three languages: the π-calculus, the call-by-name λ-calculus,
and an imperative call-by-value λ-calculus. Other calculi like the Higher-Order
π-calculus can be handled in a similar way; we omit the details here for lack of
space. We moreover focus on weak bisimilarity, since its theory is more delicate
than that of strong bisimilarity. When we translate a transition system into a

2

first-order one, the grammar for the labels can be complex (e.g. include terms,
labels, or contexts). What makes the system ‘first-order’ is that labels are taken
as syntactic atomic objects, that may only be checked for syntactic equality. Note
that full abstraction of the translation does not imply that the up-to techniques
come for free: further conditions must be ensured. We shall see this with the
π-calculus, where early bisimilarity can be handled but not the late one.

Forms of up-to context have already been derived for the languages we con-
sider in this paper [11, 23, 22]. The corresponding soundness proofs are difficult
(especially in λ-calculi), and require a mix of induction (on contexts) and coin-
duction (to define bisimulations). Recasting up-to context within the theory
of bisimulation enhancements has several advantages. First, this allows us to
combine this technique with other techniques, directly. Second, substitutivity
(or congruence) of bisimilarity becomes a corollary of the compatibility of the
up-to-context function (in higher-order languages these two kinds of proofs are
usually hard and very similar). And third, this allows us to decompose the up-to
context function into smaller pieces, essentially one for each operator of the lan-
guage, yielding more modular proofs, also allowing, if needed, to rule out those
contexts that do not preserve bisimilarity (e.g., input prefix in the π-calculus).

The translation of the π-calculus LTS into a first-order LTS follows the
schema of abstract machines for the π-calculus (e.g., [26]) in which the issue
of the choice of fresh names is resolved by ordering the names. Various forms
of bisimulation enhancements have appeared in papers on the π-calculus or di-
alects of it. A translation of higher-order π-calculi into first-order processes has
been proposed by Koutavas et al [8]. While the shape of our translations of λ-
calculi is similar, our LTSs differ since they are designed to recover the theory
of bisimulation enhancements. In particular, using the LTSs from [8] would lead
to technical problems similar to those discussed in Remark 2. In the λ-calculus,
limited forms of up-to techniques have been developed for applicative bisimilar-
ity, where the soundness of the up-to context has still open problems [12, 11].
More powerful versions of up-to context exist for forms of bisimilarity on open
terms (e.g., open bisimilarity or head-normal-form bisimilarity) [13]. Currently,
the form of bisimilarity for closed higher-order terms that allows the richest
range of up-to techniques is environmental bisimilarity [22, 9]. However, even in
this setting, the proofs of combinations of up-to techniques are usually long and
non-trivial. Our translation of higher-order terms to first-order terms is designed
to recover environmental bisimilarity.

In Section 6, we show an example of how the wide spectrum of up-to tech-
niques made available via our translations allows us to simplify relations needed
in bisimilarity proofs, facilitating their description and reducing their size.

2 First-order bisimulation and up-to techniques

A first-order Labelled Transition System, briefly LTS, is a triple (Pr,Act,−→)
where Pr is a non-empty set of states (or processes), Act is the set of actions (or
labels), and −→ ⊆ Pr × Act × Pr is the transition relation. We use P,Q,R to

3

range over the processes of the LTS, and µ to range over the labels in Act, and,

as usual, write P
µ−→ Q when (P, µ,Q) ∈ −→. We assume that Act includes a

special action τ that represents an internal activity of the processes. We derive
bisimulation from the notion of progression between relations.

Definition 1. Suppose R,S are relations on the processes of an LTS. Then R
strongly progresses to S, written R sp S, if R ⊆ S and if P R Q implies:

– whenever P
µ−→ P ′ there is Q′ s.t. Q

µ−→ Q′ and P ′ S Q′;
– whenever Q

µ−→ Q′ there is P ′ s.t. P
µ−→ P ′ and P ′ S Q′.

A relation R is a strong bisimulation if R sp R; and strong bisimilarity, ∼,
is the union of all strong bisimulations.

To define weak progression we need weak transitions, defined as usual: first,

P
µ̂−→ P ′ means P

µ−→ P ′ or µ = τ and P = P ′; and
µ̂

=⇒ is =⇒ µ̂−→=⇒ where
=⇒ is the reflexive transitive closure of

τ−→. Weak progression, R wp S, and
weak bisimilarity, ≈, are obtained from Definition 1 by allowing the processes to

answer using
µ̂

=⇒ rather than
µ−→.

Below we summarise the ingredients of the theory of bisimulation enhance-
ments for first-order LTSs from [19] that will be needed in the sequel. We use
f and g to range over functions on relations over a fixed set of states. Each
such function represents a potential up-to technique; only the sound functions,
however, qualify as up-to techniques:

Definition 2. A function f is sound for ∼ if R sp f(R) implies R ⊆ ∼, for
all R; similarly, f is sound for ≈ if R wp f(R) implies R ⊆ ≈, for all R.

Unfortunately, the class of sound functions does not enjoy good algebraic
properties. As a remedy to this, the subset of compatible functions has been
proposed. The concepts in the remainder of the section can be instantiated with
both strong and weak bisimilarities; we thus use p to range over sp or wp.

Definition 3. We write f p g when R p S implies f(R) p g(S) for all
R and S. A monotone function f on relations is p-compatible if f p f .

In other terms [19], f is p-compatible iff f ◦ p ⊆ p ◦ f where p(S) is the
union of all R such that R p S and ◦ denotes function composition. Note that
R p S is equivalent to R ⊆ p(S).

Lemma 1. If f is sp-compatible, then f is sound for ∼; if f is wp-compatible,
then f is sound for ≈.

Simple examples of compatible functions are the identity function and the func-
tion mapping any relation onto bisimilarity (for the strong or weak case, respec-
tively). The class of compatible functions is closed under function composition
and union (where the union ∪F of a set of functions F is the point-wise union

4

mapping R to
⋃
f∈F f(R)), and thus under omega-iteration (where the omega-

iteration fω of a function f maps R to
⋃
n∈N f

n(R)).
Other examples of compatible functions are typically contextual closure func-

tions, mapping a relation into its closure w.r.t. a given set of contexts. For such
functions, the following lemma shows that the compatibility of up-to-context
implies substitutivity of (strong or weak) bisimilarity.

Lemma 2. If f is sp-compatible, then f(∼) ⊆ ∼; similarly if f is wp-compatible,
then f(≈) ⊆ ≈.

Certain closure properties for compatible functions however only hold in the
strong case. The main example is the chaining operator _, which implements
relational composition:

f_g (R) , f(R) g(R)

where f(R) g(R) indicates the composition of the two relations f(R) and g(R).
Using chaining we can obtain the compatibility of the function ‘up to transitivity’
mapping any relation R onto its reflexive and transitive closure R?. Another
example of sp-compatible function is ‘up to bisimilarity’ (R 7→ ∼R∼).

In contrast, in the weak case bisimulation up to bisimilarity is unsound. This
is a major drawback in up-to techniques for weak bisimilarity, which can be
partially overcome by resorting to the expansion relation & [3]. Expansion is
an asymmetric refinement of weak bisimilarity whereby P & Q holds if P and
Q are bisimilar and, in addition, Q is at least as efficient as P , in the sense
that Q is capable of producing the same activity as P without ever perform-
ing more internal activities (the τ -actions); see Appendix A for its definition.
Up-to-expansion yields a function (R 7→ &R.) that is wp-compatible. As a
consequence, the same holds for the ‘up-to expansion and contexts’ function.
More sophisticated up-to techniques can be obtained by carefully adjusting the
interplay between visible and internal transitions, and by taking into account
termination hypotheses [19].

Some further compatible functions are the functions sp and wp themselves
(indeed a function f is p-compatible if f ◦ p ⊆ p ◦ f , hence trivially f can be
replaced by p itself). Intuitively, the use of sp and wp as up-to techniques means
that, in a diagram-chasing argument, the two derivatives need not be related;
it is sufficient that the derivatives of such derivatives be related. Accordingly,
we sometimes call functions sp and wp unfolding functions. We will use sp in
the example in Section 6 and wp in Sections 4 and 5, when proving the wp-
compatibility of the up to context techniques.

Last, note that to use a function f in combinations of up-to techniques, it
is actually not necessary that f be p-compatible: for example proving that f
progresses to f ∪ g and g progresses to g is enough, as then f ∪ g would be
compatible. Extending this reasoning allows us to make use of ‘second-order up-
to techniques’ to reason about compatibility of functions. When F is a set of
functions, we say that F is p-compatible up to if for all f in F , it holds that
f p (g ∪ (∪F))ω for a function g that has already been proven compatible.
(We sometimes say that F is p-compatible up to g, to specify which compatible

5

function is employed.) Lemma 1 and 2 remain valid when ‘f is compatible’ is
replaced by ‘f ∈ F and F is compatible up to’.

Terminology We will simply say that a function is compatible to mean that it
is both sp-compatible and wp-compatible; similarly for compatibility up to. In
languages defined from a grammar, a context C is a term with numbered holes
[·]1, . . . , [·]n, and each hole [·]i can appear any number of times in C.

3 The π-calculus

The syntax and operational semantics of the π-calculus are recalled in Ap-
pendix B. We consider the early transition system, in which transitions are of
the forms

P
ab7−→π P ′ P

ab7−→π P ′ P
a(b)7−→π P ′ .

In the third transition, called bound output transition, name b is a binder for
the free occurrences of b in P ′ and, as such, it is subject to α-conversion. The
definition of bisimilarity takes α-conversion into account. The clause for bound
output of strong early bisimilarity says (fn(Q) indicates the names free in Q):

– if P
a(b)7−→π P

′ and b /∈ fn(Q) then Q
a(b)7−→π Q

′ for some Q′ such that P ′ ∼ Q′.

(The complete definition of bisimilarity is recalled in Appendix B). When trans-
lating the π-calculus semantics to a first-order one, α-conversion and the condi-
tion b /∈ fn(Q) have to be removed. To this end, one has to force an agreement
between two bisimilar process on the choice of the bound names appearing in
transitions. We obtain this by considering named processes (c, P) in which c is
bigger or equal to all names in P . For this to make sense we assume an enu-
meration of the names and use ≤ as the underlying order, and c + 1 for name
following c in the enumeration; for a set of names N , we also write c ≥ N to
mean c ≥ a for all a ∈ N .

The rules below define the translation of the π-calculus transition system to
a first-order LTS. In the first-order LTS, the grammar for labels is the same as
that of the original LTS; however, for a named process (c, P) the only name that
may be exported in a bound output is c+1; similarly only names that are below
or equal to c+ 1 may be imported in an input transition. (Indeed, testing for all
fresh names b > c is unnecessary, doing it only for one (b = c + 1) is enough.)
This makes it possible to use the ordinary definition of bisimilarity for first-order
LTS, and thus recover the early bisimilarity on the source terms.

P
τ7−→π P

′

(c, P)
τ−→ (c, P ′)

P
ab7−→π P

′

(c, P)
ab−→ (c, P ′)

b ≤ c
P

ab7−→π P
′

(c, P)
ab−→ (c, P ′)

b ≤ c

P
ab7−→π P

′

(c, P)
ab−→ (b, P ′)

b = c+ 1
P

a(b)7−→π P
′

(c, P)
a(b)−→ (b, P ′)

b = c+ 1

6

We write π1 for the first-order LTS derived from the above translation of
the π-calculus. Although the labels of the source and target transitions have a
similar shape, the LTS in π1 is first-order because labels are taken as purely
syntactic objects (without α-conversion). We write ∼e and ≈e for strong and
weak early bisimilarity of the π-calculus.

Theorem 1. Assume c ≥ fn(P) ∪ fn(Q). Then we have: P ∼e Q iff (c, P) ∼
(c,Q), and P ≈e Q iff (c, P) ≈ (c,Q).

The above full abstraction result allows us to import the theory of up-to tech-
niques for first-order LTSs and bisimilarity, both in the strong and the weak case.
We have however to prove the soundness of up-to techniques that are specific to
the π-calculus. Function isub implements ‘up to injective name substitutions’:

isub(R) , {((d, Pσ), (d,Qσ)) s.t. (c, P) R (c,Q), fn(Pσ) ∪ fn(Qσ) ≤ d,
and σ is injective on fn(P) ∪ fn(Q) } .

A subtle drawback is the need of another function manipulating names, str,
allowing us to replace the index c in a named process (c, P) with a lower one:

str(R) , {((d, P), (d,Q)) s.t. (c, P) R (c,Q) and fn(P,Q) ≤ d } .

Lemma 3. The set {isub, str} is compatible up to.

The up-to-context function is decomposed into a set of smaller context func-
tions, called initial [19], one for each operator of the π-calculus. The only excep-
tion to this is the input prefix, since early bisimilarity in the π-calculus is not
preserved by this operator. We write Co, Cν , C!, C|, and C+ for these initial context
functions, respectively returning the closure of a relation under the operators of
output prefix, restriction, replication, parallel composition, and sum.

Definition 4. If R is a relation on π1, we define Co(R), Cν(R), C!(R), C|(R)
and C+(R) by saying that whenever (c, P) R (c,Q),

– (c, ab.P) Co(R) (c, ab.Q), for any a, b with a, b ≤ c,
– (c, νa.P) Cν(R) (c, νa.Q),
– (c, !P) C!(R) (c, !Q);

and, whenever (c, P1) R (c,Q1) and (c, P2) R (c,Q2),

– (c, P1 | Q1) C|(R) (c, P2 | Q2),
– (c, P1 +Q1) C+(R) (c, P2 +Q2).

While bisimilarity in the π-calculus is not preserved by input prefix, a weaker
rule holds (where = can be ∼e or ≈e):

P = Q and P{c/b} = Q{c/b} for each c free in P,Q

a(b).P = a(b).Q
(1)

We define Ci, the function for input prefix, accordingly: we have (d, a(b).P) Ci(R)
(d, a(b).Q) if a ≤ d and (d+ 1, P{c/b}) R (d+ 1, Q{c/b}) for all c ≤ d+ 1.

7

Theorem 2. The set {Co, Ci, Cν , C!, C|, C+} is sp-compatible up to isub ∪ str.

Weak bisimilarity is not preserved by sums, only by guarded sums, whose
function is Cg+ , Cω+ ◦ (Co ∪ Ci).

Theorem 3. The set {Co, Ci, Cν , C!, C|, Cg+} is wp-compatible up to isub∪str∪b
where b = (R 7→ ∼R∼) is ‘up to bisimilarity’.

The compatibility of these functions is not a logical consequence of the up
to context results in the π-calculus; instead we prove them from scratch (see
Appendix B), with the benefit of having a separate proof for each initial context.

As a byproduct of the compatibility of these initial context functions, and
using Lemma 2, we derive the standard substitutivity properties of strong and
weak early bisimilarity, including the rule (1) for input prefix.

Corollary 1. In the π-calculus, relations ∼e and ≈e are preserved by the op-
erators of output prefix, replication, parallel composition, restriction; ∼e is also
preserved by sum, whereas ≈e is only preserved by guarded sums. Moreover, rule
(1) is valid both for ∼e and ≈e.

Remark 1. Late bisimilarity makes use of transitions P
a(b)7−→π P ′ where b is

bound, the definition of bisimulation containing a quantification over names.
To capture this bisimilarity in a first-order LTS we would need to have two
transitions for the input a(b): one to fire the input a, leaving b uninstantiated, and
another to instantiate b. While such a translation does yield full abstraction for
both strong and weak late bisimilarities, the decomposition of an input transition
into two steps prevents us from obtaining the compatibility of up to context.

4 Call-by-name λ-calculus

To study the applicability of our approach to higher-order languages, we inves-
tigate the pure call-by-name λ-calculus, referred to as ΛN in the sequel.

We use M,N to range over the set Λ of λ-terms, and x, y, z to range over
variables. The standard syntax of λ-terms, and the rules for call-by-name reduc-
tion, are recalled in Appendix C. We assume the familiar concepts of free and
bound variables and substitutions, and identify α-convertible terms. The only
values are the λ-abstractions λx.M . In this section and in the following one,
results and definitions are presented on closed terms; extension to open terms
is made using closing abstractions (i.e., abstracting on all free variables). The
reduction relation of ΛN is 7−→n, and Z=⇒n its reflexive and transitive closure.

As bisimilarity for the λ-calculus we consider environmental bisimilarity [22,
9], which allows a set of up-to techniques richer than Abramsky’s applicative
bisimilarity [2], even if the two notions actually coincide, together with contex-
tual equivalence. Environmental bisimilarity makes a clear distinction between
the tested terms and the environment. An element of an environmental bisim-
ulation has, in addition to the tested terms M and N , a further component

8

E , the environment, which expresses the observer’s current knowledge. When
an input from the observer is required, the arguments supplied are terms that
the observer can build using the current knowledge; that is, terms obtained by
composing the values in E using the operators of the calculus. An environmental
relation is a set of elements each of which is of the form (E ,M,N) or E , and
where M,N are closed terms and E is a relation on closed values. We use X ,Y
to range over environmental relations. In a triple (E ,M,N) the relation compo-
nent E is the environment, and M,N are the tested terms. We write M XE N
for (E ,M,N) ∈ X . We write E? for the closure of E under contexts. We only
define the weak version of the bisimilarity; its strong version is obtained in the
expected way.

Definition 5. An environmental relation X is an environmental bisimulation if

1. M XE N implies:
(a) if M 7−→n M

′ then N Z=⇒n N
′ and M ′ XE N ′;

(b) if M = V then N Z=⇒n W and E ∪{(V,W)} ∈ X (V and W are values);
(c) the converse of the above two conditions, on N ;

2. if E ∈ X then for all (λx.P, λx.Q) ∈ E and for all (M,N) ∈ E? it holds that
P{M/x} XE Q{N/x}.

Environmental bisimilarity, ≈env, is the largest environmental bisimulation.

For the translation of environmental bisimilarity to first-order, a few issues
have to be resolved. For instance, an environmental bisimilarity contains both
triples (E ,M,N), and pure environments E , which shows up in the difference
between clauses (1) and (2) of Definition 5. Moreover, the input supplied to
tested terms may be constructed using arbitrary contexts.

We write ΛN1 for the first-order LTS resulting from the translation of ΛN .
The states of ΛN1 are sequences of λ-terms in which only the last one need not
be a value. We use Γ and ∆ to range over sequences of values only; thus (Γ,M)
indicates a sequence of λ-values followed by M ; and Γi is the i-th element in Γ .

For an environment E , we write E1 for an ordered projection of the pairs in
E on the first component, and E2 is the corresponding projection on the second
component. In the translation, intuitively, a triple (E ,M,N) of an environmental
bisimulation is split into the two components (E1,M) and (E2, N). Similarly, an
environment E is split into E1 and E2. We write C[Γ] for the term obtained by
replacing each hole [·]i in C with the value Γi. The rules for transitions in ΛN1

are as follows:

M 7−→n M
′

(Γ,M)
τ−→ (Γ,M ′)

Γi(C[Γ]) 7−→n M
′

Γ
i,C−→ (Γ,M ′)

(2)

The first rule says that if M reduces to M ′ in ΛN then M can also reduce
in ΛN1, in any environment. The second rule implements the observations in
clause (2) of Definition 5: in an environment Γ (only containing values), any
component Γi can be tested by supplying, as input, a term obtained by filling

9

a context C with values from Γ itself. The label of the transition records the
position i and the context chosen. As the rules show, the labels of ΛN1 include
the special label τ , and can also be of the form i, C where i is a integer and C
a context.

Theorem 4. M ≈env
E N iff (E1,M) ≈ (E2, N) and E ∈ ≈env iff E1 ≈ E2.

(The theorem also holds for the strong versions of the bisimilarities.) Again,
having established full abstraction with respect to a first-order transition system
and ordinary bisimilarity, we can inherit the theory of bisimulation enhance-
ments. We have however to check up-to techniques that are specific to environ-
mental bisimilarity. A useful such technique is ‘up to environment’, which allows
us to replace an environment with a larger one; w(R) is the smallest relation
that includes R and such that, whenever (V, Γ,M) w(R) (W,∆,N) then also
(Γ,M) w(R) (∆,N), where V and W are any values. (Here w stands for ‘weaken-
ing’ as, from Lemmas 2 and 4, if (V, Γ,M) ≈ (W,∆,N) then (Γ,M) ≈ (∆,N).)

Lemma 4. Function w is compatible.

Somehow dual to weakening is the strengthening of the environment, in which
a component of an environment can be removed. However this is only possible if
the component removed is ‘redundant’, that is, it can be obtained by gluing other
pieces of the environment within a context; strengthening is captured by the
following str function: (Γ,Cv[Γ],M) str(R) (∆,Cv[∆], N) whenever (Γ,M) R
(∆,N) and Cv is a value context (i.e., the outermost operator is an abstraction).
We derive the compatibility up to of str in Theorem 5.

For up-to context, we need to distinguish between arbitrary contexts and
evaluation contexts. There are indeed substitutivity properties, and correspond-
ing up-to techniques, that only hold for the latter contexts. A hole [·]i of a context
C is in a redex position if the context obtained by filling all the holes but [·]i
with values is an evaluation context. Below C ranges over arbitrary contexts,
whereas E ranges over contexts whose first hole is in redex position.

C(R) ,
{

((Γ,C[Γ]), (∆,C[∆])) s.t.Γ R ∆
}

Ce(R) ,
{

((Γ,E[M,Γ]), (∆,E[N,∆])) s.t. (Γ,M) R (∆,N)
}

Theorem 5. The set {str, C, Ce} is sp-compatible up to the identity function,
and wp-compatible up to wp ∪ e where e , (R 7→ &R.) is ‘up to expansion’.

For the proof, we establish the progression property separately for each func-
tion in {str, C, Ce}, using simple diagram-chasing arguments (together with in-
duction on the structure of a context). Once more, the compatibility of the up
to context functions entails also the substitutivity properties of environmental
bisimilarity. In [22] the two aspects (substitutivity and up-to context) had to be
proved separately, with similar proofs. Moreover the two cases of contexts (arbi-
trary contexts and evaluation contexts) had to be considered at the same time,
within the same proof. Here, in contrast, the machinery of compatible function
allows us to split the proof into two simpler proofs.

10

Remark 2. A transition system ensuring full abstraction as in Theorem 4 does
not guarantee the compatibility of the up-to techniques specific to the language
in consideration. For instance, a simpler and maybe more natural alternative to
the second transition in (2) is the following one:

Γ
i,C−→ (Γ, Γi(C[Γ]))

(3)

With this rule, full abstraction holds, but up-to context is unsound: for any Γ
and ∆, the singleton relation {(Γ,∆)} is a bisimulation up to C: indeed, using
rule (3), the derivatives of the pair Γ,∆ are of the shape Γi(C[Γ]), ∆i(C[∆]), and
they can be discarded immediately, up to the context [·]iC. If up-to context were
sound then we would deduce that any two terms are bisimilar. (The rule in (2)
prevents such a behaviour since it ensures that the tested values are ‘consumed’
immediately.)

5 Imperative call-by-value λ-calculus

In this section we study the addition of imperative features (higher-order ref-
erences, that we call locations), to a call-by-value λ-calculus. It is known that
finding powerful reasoning techniques for imperative higher-order languages is
a hard problem. The language, ΛR, is a simplified variant of that in [10, 22].
The syntax of terms, values, and evaluation contexts, as well as the reduction
semantics are given in Figure 1. A λ-term M is run in a store: a partial function
from locations to closed values, whose domain includes all free locations of both
M and its own co-domain. We use letters s, t to range over stores. New store
locations may be created using the operator ν`M ; the content of a store loca-
tion ` may be rewritten using set`V , or read using get`V (the former instruction
returns a value, namely the identity I , λx.x, and the argument of the latter
one is ignored). We denote the reflexive and transitive closure of 7−→R by Z=⇒R.

Note that in contrast with the languages in [10, 22], locations are not directly
first-class values; the expressive power is however the same: a first-class location
` can always be encoded as the pair (get`, set`).

We present the first-order LTS for ΛR, and then we relate the resulting strong
and weak bisimilarities directly with contextual equivalence (the reference equiv-
alence in λ-calculi). Alternatively, we could have related the first-order bisimi-
larities to the environmental bisimilarities of ΛR, and then inferred the corre-
spondence with contextual equivalence from known results about environmental
bisimilarity, as we did for ΛN .

We write (s;M) ↓ when M is a value; and (s;M) ⇓ if (s;M) Z=⇒R↓. For
the definition of contextual equivalence, we distinguish the cases of values and
of arbitrary terms, because they have different substitutivity properties: values
can be tested in arbitrary contexts, while arbitrary terms must be tested only
in evaluation contexts. As in [22], we consider contexts that do not contain free
locations (they can contain bound locations). We refer to [22] for more details
on these aspects.

11

M ::= x |MM | ν`M | V V ::= λx.M | set` | get` E ::= [·] | EV |ME

(s; (λx.M)V) 7−→R (s;M{V/x})
` /∈ dom(s)

(s; ν`M) 7−→R (s[` 7→ I];M)

` ∈ dom(s)

(s; get`V) 7−→R (s; s[`])

` ∈ dom(s)

(s; set`V) 7−→R (s[` 7→ V]; I)

(s;M) 7−→R (s′;M ′)

(s;E[M]) 7−→R (s′;E[M ′])

Fig. 1. The imperative λ-calculus

Definition 6. – For values V , W , we write (s;V) ≡ (t;W) when (s;C[V])⇓
iff (t;C[W])⇓, for all location-free context C.

– For terms M and N , we write (s;M) ≡ (t;N) when (s;E[M])⇓ iff (t;E[N])⇓,
for all location-free evaluation context E.

We now define ΛR1, the first-order LTS for ΛR. The states and the transitions
for ΛR1 are similar to those for the pure λ-calculus of Section 4, with the addition
of a component for the store. The two transitions (2) of call-by-name λ-calculus
become:

(s;M) 7−→R (s′;M ′)

(s;Γ,M)
τ−→ (s′;Γ,M ′)

Γ ′ = Γ, getset(r) (s] r[Γ ′];Γi(C[Γ ′])) 7−→R (s′;M ′)

(s;Γ)
i,C,cod(r)−−−−−−−→ (s′;Γ ′,M ′)

The first rule is the analogous of the first rule in (2). The important differences
are on the second rule. First, since we are call-by-value, C now ranges over
Cv, the set of value contexts (i.e., contexts of the form λx.C ′) without free
locations. Moreover, since we are now imperative, in a transition we must permit
the creation of new locations, and a term supplied by the environment should be
allowed to use them. In the rule, the new store is represented by r (whose domain
has to be disjoint from that of s). Correspondingly, to allow manipulation of
these locations from the observer, for each new location ` we make set` and get`
available, as an extension of the environment; in the rule, these are collectively
written getset(r), and Γ ′ is the extended environment. Finally, we must initialise
the new store, using terms that are created out of the extended environment
Γ ′; that is, each new location ` is initialised with a term D`[Γ

′] (for D` ∈
Cv). Moreover, the contexts D` chosen must be made visible in the label of the
transition. To take care of these aspects, we view r as a store context, a tuple of
assignments ` 7→ D`. Thus the initialisation of the new locations is written r[Γ ′];
and, denoting by cod(r) the tuple of the contexts D` in r, we add cod(r) to the
label of the transition. Note also that, although C and D` are location-free, their
holes may be instantiated with terms involving the set` and get` operators, and
these allow manipulation of the store.

12

Once more, on the (strong and weak) bisimilarities that are derived from this
first-order LTS we can import the theory of compatible functions and bisimula-
tion enhancements. Concerning additional up-to functions, specific to ΛR, the
functions w, str, C and Ce are adapted from Section 4 in the expected manner—
contexts Cv, C and E must be location-free. A further function for ΛR is store,
which manipulates the store by removing locations that do not appear elsewhere
(akin to garbage collection); thus, store(R) is the set of all pairs

((s] r[Γ ′];Γ ′,M), (t] r[∆′];∆′, N))

such that (s;Γ,M) R (t;∆,N), and with Γ ′ = Γ, getset(r) and∆′ = ∆, getset(r).

Lemma 5. The set {w, str, Ce, store, C} is sp-compatible up to the identity func-
tion and is wp-compatible up to wp ∪ e.

The techniques C and Ce allow substitutivity under location-free contexts,
from which we can derive the soundness part of Theorem 6.

Theorem 6. (s;M) ≡ (t;N) iff (s;M) ≈ (t;N).

Proof (sketch). Soundness (⇐) follows from congruence by Ce (Lemmas 5 and 2)
and completeness (⇒) is obtained by standard means. See Appendix D for de-
tails.

Note that substitutivity of bisimilarity is restricted either to values (C), or
to evaluation contexts (Ce). The following lemma provides a sufficient condition
for a given law between arbitrary terms to be preserved by arbitrary contexts.

Lemma 6. Let � be any of the relations ∼,≈, and &. Suppose L, R are ΛR
terms with (s;Γ,L) � (s;Γ,R) for all environments Γ and stores s. Then also
(s;Γ,C[L]) � (s;Γ,C[R]), for any store s, environment Γ and context C.

Proof (sketch). We first prove a simplified result in which C is an evaluation
context, using techniques Ce and store. We then exploit this partial result together
with up-to expansion to derive the general result. See Appendix D for more
details.

We use this lemma at various places in the example we cover in Section 6.
For instance we use it to replace a term N1 , (λx.E[x])M (with E an evaluation
context) withN2 , E[M], under an arbitrary context. Such a property is delicate
to prove, even for closed terms, because the evaluation ofM could involve reading
from a location of the store that itself could contain occurrences of N1 and N2.

6 An example

We conclude by discussing an example from [10]. It consists in proving a law
between terms of ΛR extended with integers, operators for integer addition and

13

subtraction, and a conditional—those constructs are straightforward to accom-
modate in the presented framework. For readability, we also use the standard
notation for store assignment, dereferencing and sequence: (` := M) , set`M ,
!` , get`I, and M ;N , (λx.N)M where x does not appear in N . The two terms
are the following ones:

– M , λg.ν` ` := 0; g(incr`); if !` mod 2 = 0 then I else Ω
– N , λg.g(F); I,

where incr` , λz.` := !` + 2, and F , λz.I. Intuitively, those two terms are
weakly bisimilar because the location bound by ` in the first term will always
contain an even number.

This example is also considered in [22] where it is however modified to fit
the up-to techniques considered in that paper. The latter are less powerful than
those available here thanks to the theory of up-to techniques for first-order LTSs
(e.g., up to expansion is not considered in [22]—its addition to environmental
bisimulations is non-trivial, having stores and environments as parameters).

We consider two proofs of the example. In comparison with the proof in [22]:
(i) we handle the original example from [10], and (ii) the availability of a broader
set of up-to techniques and the possibility of freely combining them allows us to
work with smaller relations. In the first proof we work up to the store (through
the function store) and up to expansion—two techniques that are not available in
[22]. In the second proof we exploit the up-to-transitivity technique of Section 2,
which is only sound for strong bisimilarity, to further reduce the size of the
relation we work with.

First proof. We first employ Lemma 6 to reach a variant similar to that of [22]:
we make a ‘thunk’ out of the test in M , and we make N look similar. More
precisely, let test` , λz.if !` mod 2 = 0 then I else Ω, we first prove that

– M ≈M ′ , λg.ν` ` := 0; g(incr`); test`I, and
– N ≈ N ′ , λg.g(F);FI.

It then suffices to prove that M ′ ≈ N ′, which we do using the following relation:

R ,
{(
s,M ′, (incr`, test`)`∈˜̀

)
,
(
∅, N ′, (F, F)`∈˜̀

)
s.t. ∀` ∈ ˜̀, s(`) is even

}
.

The initial pair of terms is generalised by adding any number of private locations,
since M ′ can use itself to create more of them. Relation R is a weak bisimulation
up to store, C and expansion. More details can be found in Appendix E.

Second proof. Here we also preprocess the terms using Lemma 6, to add a few
artificial internal steps to N , so that we can carry out the reminder of the
proof using strong bisimilarity, which enjoys more up-to techniques than weak
bisimilarity:

– M ≈M ′ , λg.ν` ` := 0; g(incr`); test`I,
– N ≈ N ′′ , λg.I; I; g(incr0); test0I.

14

where incr0 and test0 just return I on any input, taking the same number of
internal steps as incr` and test`. We show that M ′ ∼ N ′′ by proving that the
following relation R is a strong bisimulation up to unfolding, store, weakening,
strengthening, transitivity and context (a technique unsound in the weak case):

S , {(M ′, N ′′)} ∪ {(` 7→ 2n, incr`, test`) , (∅, incr0, test0) s.t. n ∈ N}

This relation uses a single location; there is one pair for each integer that can
be stored in the location. In the diagram-chasing arguments for S, essentially a
pair of derivatives is proved to be related under the function

sp ◦ sp ◦ star ◦ (str ∪ store ∪ C ∪ w)ω

where star : R 7→ R? is the reflexive-transitive closure function. (Again, we refer
to Appendix E for more details.)

The difference between the relation R in the first proof and the proofs in
[10, 22] is that R only requires locations that appear free in the tested terms; in
contrast, the relations in [10, 22] need to be closed under all possible extensions
of the store, including extensions in which related locations are mapped onto
arbitrary context-closures of related values. We avoid this thanks to the up-to
store function. The reason why, both in [10, 22] and in the first proof above,
several locations have to be considered is that, with bisimulations akin to envi-
ronmental bisimulation, the input for a function is built using the values that
occur in the candidate relation. In our example, this means that the input for
a function can be a context-closure of M and N ; hence uses of the input may
cause several evaluations of M and N , each of which generates a new location.
In this respect, it is surprising that our second proof avoids multiple allocations
(the candidate relation S only mentions one location). This is due to the massive
combination of up-to techniques whereby, whenever a new location is created, a
double application of up to context (the ‘double’ is obtained from up-to transi-
tivity) together with some administrative work (given by the other techniques)
allows us to absorb the location.

Acknowledgement

The authors acknowledge support from the ANR projects 2010-BLAN-0305 Pi-
Coq and 12IS02001 PACE.

References

1. M. Abadi and A.D. Gordon. A bisimulation method for cryptographic protocols.
In Chris Hankin, editor, ESOP’98, volume 1381 of LNCS, pages 12–26. Springer,
1998.

2. S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics in
Functional Programming, pages 65–116. Addison-Wesley, 1989.

15

3. S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Informatica, 29:737–760, 1992.

4. K. Chaudhuri, M. Cimini, and D. Miller. Formalization of the bisimulation-up-to
technique and its meta theory. Draft, 2014.

5. D. Hirschkoff. A full formalisation of pi-calculus theory in the calculus of construc-
tions. In TPHOLs, volume 1275 of LNCS, pages 153–169. Springer, 1997.

6. C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of parameterization
in coinductive proof. In POPL, pages 193–206. ACM, 2013.

7. A. Jeffrey and J. Rathke. Towards a theory of bisimulation for local names. In
LICS, pages 56–66, 1999.

8. V. Koutavas and M. Hennessy. First-order reasoning for higher-order concurrency.
Computer Languages, Systems & Structures, 38(3):242–277, 2012.

9. V. Koutavas, P. B. Levy, and E. Sumii. From applicative to environmental bisim-
ulation. Electr. Notes Theor. Comput. Sci., 276:215–235, 2011.

10. V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order
imperative programs. In POPL’06, pages 141–152. ACM, 2006.

11. S.B. Lassen. Relational reasoning about contexts. In Higher-order operational
techniques in semantics, pages 91–135. Cambridge University Press, 1998.

12. S.B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD
thesis, Department of Computer Science, University of Aarhus, 1998.

13. S.B. Lassen. Bisimulation in untyped lambda calculus: Böhm trees and bisimula-
tion up to context. Electr. Notes Theor. Comput. Sci., 20:346–374, 1999.

14. M. Lenisa. Themes in Final Semantics. Ph.D. thesis, Università di Pisa, 1998.
15. M. Merro and F. Zappa Nardelli. Behavioral theory for mobile ambients. J. ACM,

52(6):961–1023, 2005.
16. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
17. J.Å. Pohjola and J. Parrow. Bisimulation up-to techniques for psi-calculi. Draft,

2014.
18. D. Pous. Techniques modulo pour les bisimulations. Phd thesis, École Normale

Supérieure de Lyon, February 2008.
19. D. Pous and D. Sangiorgi. Enhancements of the bisimulation proof method. In

Advanced Topics in Bisimulation and Coinduction. Cambridge University Press,
2012.

20. J. Rot, M. Bonsangue, and J. Rutten. Coalgebraic bisimulation-up-to. In SOF-
SEM’13, volume 7741 of LNCS, pages 369–381. Springer, 2013.

21. D. Sangiorgi. On the bisimulation proof method. J. of MSCS, 8:447–479, 1998.
22. D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-

order languages. ACM Trans. Program. Lang. Syst., 33(1):5, 2011.
23. D. Sangiorgi and D. Walker. The Pi-Calculus: a theory of mobile processes. Cam-

bridge University Press, 2001.
24. E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. Theor. Comput.

Sci., 375(1-3):169–192, 2007.
25. E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion. J.

ACM, 54(5), 2007.
26. N.D. Turner. The polymorphic pi-calculus: Theory and Implementation. PhD

thesis, Department of Computer Science, University of Edinburgh, 1996.

16

A First-order bisimulation and up-to techniques

Definition 7 (weak bisimilarity). A relation R on processes is a weak bisim-
ulation if whenever P R Q:

– if P
µ−→ P ′ then Q

µ̂
=⇒ Q′ and P ′ R Q′;

– if Q
µ−→ Q′ then P

µ̂
=⇒ P ′ and P ′ R Q′.

We write ≈ for the largest weak bisimulation, and call it weak bisimilarity.

Definition 8 (expansion). A relation R on processes is an expansion relation
if whenever P R Q:

– if P
µ−→ P ′ then Q

µ̂−→ Q′ and P ′ R Q′.

– if Q
µ−→ Q′ then P

µ
=⇒ P ′ and P ′ R Q′;

We write & for the largest expansion relation, and simply call it expansion.

B The π-calculus

The syntax of the π-calculus is the following:

P ::= 0 | a(b).P | ab.P | P |P | νa P | !P

(other operators, such as matching and mismatching, could be added). The op-
erational semantics is described by the rules for 7−→π below. We assume that α-
convertible terms are identified. The grammar of labels is µ ::= τ | ab | ab | a(b).

out
ab.P

ab7−→π P
inp

a(b).P
ac7−→π P{c/b}

sum-l
P

µ7−→π P
′

P +Q
µ7−→π P

′

par-l
P

µ7−→π P
′

P | Q µ7−→π P
′ | Q

bn(µ) ∩ fn(Q) = ∅

comm-l
P

ab7−→π P
′ Q

ab7−→π Q
′

P | Q τ7−→π P
′ | Q′

close-l
P

a(b)7−→π P
′ Q

ab7−→π Q
′

P | Q τ7−→π νb (P ′ | Q′)
b /∈ fn(Q) res

P
µ7−→π P

′

νa P
µ7−→π νa P ′

a /∈ n(µ)

open
P

ab7−→π P
′

νb P
a(b)7−→π P

′
a 6= b rep

P | !P µ7−→π P
′

!P
µ7−→π P

′

Definition 9 (Bisimilarity in π). A relation R is a strong early bisimulation
in the π-calculus if, whenever P R Q:

17

1. if P
a(b)7−→π P

′ and b /∈ fn(Q) then Q
a(b)7−→π Q

′ for some Q′ such that P ′ R Q′,

2. if P
µ7−→π P

′ and µ is not a bound output, then Q
µ7−→π Q

′ for some Q′ such
that P ′ R Q′,

3. the converse of (1) and (2), on Q.

Early bisimilarity, ∼e, is the union of all early bisimulations.

The weak version of early bisimilarity, weak early bisimilarity, written ≈e, is

obtained in the standard way: the transition Q
a(b)7−→π Q

′ in clause (1) is replaced

by Q
a(b)
Z=⇒π Q

′; and similarly the transition Q
µ7−→π Q′ in (2) is replaced by

Q
µ̂

=⇒ Q′.

Proof excerpts for Theorem 2 and and 3: Theorem 2 is proven modularly, by
proving a progression for each initial context function. The progressions for The-
orem 3 are similar, except general choice is not compatible in the weak case, and
we need one more up-to technique for case of the replication. We write p when
the progression stands for both sp and wp. The proofs largely follows the ones
from [18], the differences accounting for the cases when extrusion is involved. In
some of those cases we use the notation N , (str ◦ Cν) ∪ id.

– Co p id,
– Ci p str,
– Cν p Cν ∪ isub,
– C+ sp id,
– Cg+ wp str,
– C| p N ◦ C|,
– C! sp Cω| ◦N ◦ C

ω
| ◦ (C! ∪ str)),

– C! wp Cω| ◦N ◦ C
ω
| ◦ (C! ∪ str)) ∪ Cω| ◦ (id ∪ C!).

In the last two cases we see twice the use of Cω| , while only one is necessary in

CCS. This is because in the π-calculus, Lemma 5.17 from [18] characterising the

transitions from a replicated process, becomes the following: if !P
α−→ Q then

one of the following holds:

– Q = !P |P0 |P | . . . |P with P
α−→ P0, or when α = τ it can be as well:

– Q = !P |P0 |P | . . . |P |P1 |P | . . . |P with P
ab−→ Pi and P

ab−→ P1−i or

– Q = (νb)(!P |P0 |P | . . . |P |P1) |P | . . . |P with P
a(b)−→ Pi and P

ab−→ P1−i,

the last case being unnecessary in the case of CCS.

C The λ-calculus

The set Λ of pure λ-terms is defined by:

M,N ::= x | λx.M |MN

18

We write Λ0 for the subset of closed terms. The call-by-name reduction relation
7−→n is the least relation over Λ0 that is closed under the following rules.

(λx.M)N 7−→n M{N/x}
M 7−→n M

′

MN 7−→n M
′N

We write Z=⇒n for the reflexive and transitive closure of 7−→n. The values are
the terms of the form λx.M . In call-by-name evaluation contexts are described
by the following grammar:

C := CM | [·]

(Symbol C is used also for arbitrary contexts; it will be explicitly indicated when
C refers to evaluation contexts.)

D Imperative call-by-value λ-calculus

Here we give more details on a few results for the imperative λ-calculus ΛR.
Specifically, first the relationship between contextual equivalence in ΛR and
bisimilarity on the target first-order LTS (Theorem 6 of the main text); then
Lemma 6 of the main text, and then Theorem 7 that is used in examples (as an
instantiation of Lemma 6).

Lemma 7. If (s;M) ≈ (t;N) then (s;M) ≡ (t;N).

Proof. Let E be an evaluation context. Since Ce is compatible up to (Lemma 5)
by Lemma 2 we know ≈ is a Ce-congruence, hence (s;E[M]) ≈ (t;E[N]).

Suppose now (s;E[M]) reaches a value. Then we can derive a
i,C,cod(r)

=⇒ tran-
sition from it, and by weak bisimulation we can derive the same transition
from (t;E[N]), meaning it also reaches a value. This means (s;E[M])⇓ implies
(t;E[N])⇓ and we conclude by symmetry.

Lemma 8. If (s;M) ≡ (t;N) then (s;M) ≈ (t;N).

Proof. We prove a slightly stronger result, that the relation R below is a weak
bisimulation (E ranges over location-free evaluation contexts).

R ,
{

((s;Γ,M), (t;∆,N)) s.t. ∀E (s;E[M,Γ])⇓ iff (t;E[N,∆])⇓
}

(4)

Case 1: τ transition. When (s;M) 7−→R (s′;M) we can easily see that (s;E[M,Γ])⇓
iff (s′;E[M ′, Γ])⇓ by determinism of 7−→R, so we have in fact (s′;Γ,M ′) R
(t;∆,N) and the transition

τ−→ is caught up with no transition at all.

Case 2: i, C, cod(r) transition from (s;Γ,M) to (s′;Γ ′′,M ′). (verifying (∗)
below) means that M is a value V and thus (s;M) ⇓. By choosing E = [·]1 and
u = ∅ in (4) we know that (t;N)⇓ and thus (t;N) Z=⇒R (t′;W) for some value
W .

19

Hence, we easily get the weak transition (t;∆,N)
i,C,cod(r)

=⇒ (t′′;∆′′, N ′) through
(t′;∆,W), verifying (∗∗) below.

Γ ′ = Γ, V Γ ′′ = Γ ′, getset(r) (r[Γ ′′]] s;Γ ′i (C[Γ ′′])) 7−→R (s′;M ′) (∗)
∆′ = ∆,W ∆′′ = ∆′, getset(r) (r[∆′′]] t′;∆′i(C[∆′′])) 7−→R (t′′;N ′) (∗∗)

We prove now (s′;Γ ′′,M ′) R (t′′;∆′′, N ′). Let E be any location-free evalu-
ation context, we prove:

(s′;E[M ′, Γ ′′]) ⇓ iff (t′′;E[N ′, ∆′′]) ⇓ . (5)

Backtracking one step using (∗) and (∗∗) it is enough to prove

(r[Γ ′′]] s;E[Γ ′i (C[Γ ′′]), Γ ′′]) ⇓ iff (r[Γ ′′]] t′;E[∆′i(C[∆′′]), ∆′′]) ⇓ (6)

which we do by exhibiting an evaluation context F for which we already have
(by instantiating with F the definition of R) the equation (7) below, and that
each member of (6) is a derivative of the corresponding member of (7).

(s;F [M,Γ]) ⇓ iff (t;F [N,∆]) ⇓ (7)

For that we choose

F , let x = [·]1 in ν`1 . . . ν`n `1 := C•1 ; . . . ; `n := C•n; E•[[·]•i (C•),−]

where r is the collection of `i 7→ Ci and we write D• for a context D where the
holes destined to get`i and set`i are already filled, and the holes destined to get
the values V and W are filled with x.

The lemma below is Lemma 6 of the main text.

Lemma 9. Let � be any of the relations ∼,≈, and &. Suppose L, R are ΛR
terms with (s;Γ,L) � (s;Γ,R) for all environments Γ and stores s. Then also
(s;Γ,C[L]) � (s;Γ,C[R]), for any store s, environment Γ and context C.

We give the proof for & as it is the most general case. Also remark that the
last Γ is not necessary, as it can be encoded into the C.

The proof goes as follows: (1) we first prove a simplified result in which the
context C is an evaluation context, using techniques Ce and store. (2) We then
exploit (1) to derive another partial result where C is a context whose holes are
not in evaluation position, and achieve the proof using up to expansion and (1)
when a hole is freed.

These classes of contexts are enough to cover all cases and the proofs (1) and
(2) focus on very different parts of the problem. This separation is necessary: side
effects of the store would make quite convoluted a naive bisimulation candidate,
on which case analyses prove difficult.

Lemma 10 handles (1) and Lemma 11 handles (2).

20

Lemma 10. Suppose that for all s and Γ , we have (s;Γ,L) & (s;Γ,R). Then for
all s, Γ and evaluation context F with free locations, (s;Γ, F [L]) & (s;Γ, F [R]).

Proof. Let A be the list of set` and get` for all location ` in F . Then it is easy to
get F ′ from F such that F = F ′[−, A] and F ′ is location-free. By hypothesis we
know (s;Γ,A,L) & (s;Γ,A,R) on which we apply precongruence for evaluation
contexts Ce to get (s;Γ,A, F ′[L,A]) & (s;Γ,A, F ′[R,A]). By weakening w we get
(s;Γ, F ′[L,A]) & (s;Γ, F ′[R,A]).

Lemma 11. Let L, R be ΛR terms with (s;Γ,L) & (s;Γ,R) for all environment
Γ and store s. Then Suppose C is a multi hole context, such that no hole is in
evaluation position in C. Then for all store s we know (s;C[L]) & (s;C[R]).

Proof. Let R relate each configuration ((` 7→ C`v[L])`; C̃v[L], C[L]) to the one
where R replaces L: ((` 7→ C`v[R])`; C̃v[R], C[R]) for all (C`v)` and C̃v families of
value contexts (of the form λx.C ′), and C context without any hole in evaluation
position. For short we write sL, sR, ΓL, and ΓR the corresponding stores and en-
vironments. We run simultaneously the transitions from both sides (sL;ΓL, C[L])
and (sR;ΓR, C[R]) as they have always the same shape.

We prove R is an expansion relation up to expansion. We rely on the fact
that L and R will never be run directly in this proof.

Case 1: τ action. Since in L in C[L] (and R in C[R]) is not in evaluation po-
sition, both sides will do the same kind of transition, being completely oblivious
to L/R. The resulting configurations will be (s′L;ΓL, C

′[L]) and (s′R;ΓR, C
′[R]).

(Even if a set` or a get` is involved, L/R part may go to or from the store, but
this will keep the same shape.)

The only part of the invariant of the relation that is not maintained is that
L/R may appear in evaluation position, if C ′[L] = E[L,L] (where [·]1 is in
evaluation position and [·]2 may appear everywhere).

In this case, we remark that F , E[−, L] is an evaluation context, on which
we can apply Lemma 10 to have (s′L;ΓL, E[L,L]) & (s′L;ΓL, E[R,L]) and now
since R is not in evaluation position, the context C2 = E[R,−] is a context with
no hole in evaluation position, hence (s′L;ΓL, E[R,L]) R (s′R;ΓR, E[R,R]) and
we have closed the diagram.

Note that it may happen that even if E[L,−] doesn’t have holes in evaluation
position, E[R,−] does. In this case, we just use Lemma 10 while there are still
such holes, and the progression to &R still holds (& is transitive).

Case 2: visible action. First, C[L] is a value iff C[R] is a value so they have
the same visible actions of the form i,D, cod(r). We end up in the same shape of
configurations we had for the τ transition above, and proceed the same to close
the diagram.

Finally we have proven that R progresses to &R (expansion up to expansion).
In the strong case, we would have proven R progresses to ∼R, and in the weak
case we would have proven that it progresses to both ≈R and R≈, which is
necessary because in the weak case, one can use “up to ≈” only when ≈ is not
on the same side as the challenge.

21

In the following R+ is the transitive closure of R. We prove here Theorem 7
(using Lemma 12) since we use (simple instances of) it in Section 6.

Lemma 12. Suppose that E and E′ are evaluation contexts and that for all
value V value and store s, we have (s;E[V]) 7−→+

R (s;E′[V]). Then for all envi-
ronment Γ and store s, we have (s;Γ,E[M]) & (s;Γ,E′[M]).

Proof. For a given Γ we consider R = {(s;Γ,E[M]), (s;Γ,E′[M]) | s,M} and
the transitions from both sides:

1. when M is not a value, (s;M) 7−→R (s′;M ′) and the only transition from
both sides is a τ staying knowingly in the relation.

2. (left to right) when M = V by hypothesis (s;Γ,E[V])
τ−→+s(;Γ,E′[V]) so

the first transition from the left-hand side is a τ . We use up to expansion to
reach (s;Γ,E′[V]) which is equal to the right-hand side, and conclude up to
reflexivity.

3. (right to left) when M = V and the right-hand side makes some transition

(s;Γ,E′[V])
α−→ (s′;Γ ′, N ′) we know in fact that (s;Γ,E[V])

τ−→+(s;Γ,E′[V])

so (s;Γ,E′[V]) =⇒ α−→ (s′;Γ ′, N ′) and we conclude again up to reflexivity.

We proved R is an expansion relation up to expansion and reflexivity.

Remark 3. To get to Theorem 7 we combine (in Lemma 6) proofs for evaluation
contexts (Lemma 12) and for non-evaluation contexts (Lemma 11). This separa-
tion is critical, as handling all contexts together would yield a much bigger and
error-prone bisimulation candidate as L and R in Lemma 11 would be replaced
by all intricate combinations of E and E′.

Remark 4. In the proofs leading to Theorem 7 we universally quantify over con-
texts several times, but we use up to context techniques only a few times. This
makes sense, as those are arbitrary contexts with locations containing arbitrary
terms that are not necessarily values; we needed tight control over them, and
the resulting fine-tuned proof can now be used as a black box.

Remark 5. To see why separating the proof into Lemma 10 Lemma 11 is nec-
essary one must go through several naive steps when expanding the candidate
relation relating (∅; C[(λx.E[x])M]) to (∅;C[E[M]]).

– there can be a location ` both in C and M . For instance, C could be
set`(Cv);C2 where Cv is a value context, so the store must be able to con-
tain s = (` 7→ Cv[(λx.E[x])M]) on the left, where it contains s′ = (` 7→
Cv[E[M]]) on the right.

– then C can be [·] so we must be able to compare (s; (λx.E[x])M) to (s′;E[M])
which calls on how to relate (s;M) to (s′;M), for instance it implies proving
that either both or none reach a value, which we don’t know yet, because
that is similar to what we already intended to prove (we get into a circular
argument).

22

Theorem 7. Suppose that E and E′ are evaluation contexts and that for all
value V value and store s, we have (s;E[V]) 7−→∗R (s;E′[V]). Then for all envi-
ronment s and context C, we have (s;C[E[M]]) & (s;C[E′[M]]).

Proof. Consequence of Lemma 12 and Lemma 6.

E Example from Section 6

Continuing from Section 6, we show that the relation

R =
{(
s;M ′, (incr`, test`)`∈˜̀

)
,
(
∅;N ′, (F, F)`∈˜̀

)
s.t. ∀` ∈ ˜̀, s(`) is even

}
is a weak bisimulation up to store, C and expansion. We write (s;Γ˜̀) for the
left-hand side of a pair in R and (∅;∆˜̀) for the right-hand side.

Consider a transition 1, C, cod(r) from M ′ and N ′. We write below Γ ′ for
Γ˜̀, getset(r) and ∆′ for ∆˜̀, getset(r).

– (s;Γ˜̀)
1,C,cod(r)−−−−−−−→ (s] r[Γ ′];Γ ′, ν` ` := 0;C[Γ ′](incr`); test`I)

– (∅;∆˜̀)
1,C,cod(r)−−−−−−−→ (r[∆′];∆′, C[∆′](F);FI)

In the first line, we make the configuration run two τ transitions, so that ν` and
` := 0 get executed. Now we have a new store s′ = s] (` 7→ 0) (s′(`) is even, so
in this respect we stay in the bisimulation candidate).

Now the main term is C[Γ ′](incr`); test`I) which can be rewritten to D[Γ˜̀·`,
getset(r)] for some contextD. On the right-hand side C[∆′](F);FI can be rewrit-
ten to D[∆˜̀·`, getset(r)] as well. By construction (s′;Γ˜̀·`) R (∅;∆˜̀·`) hence

(s′] r[Γ ′];Γ˜̀·`, getset(r)) store(R) (r[∆′];∆˜̀·`, getset(r)) .

Now we apply C with the context D, then the weakening w to remove incr` and
test` to reach the pair we wanted.

Now that we handled M ′ and N ′, let us look at any transition i, C, cod(r)
coming from some incr` (and F on the other side). It will result in I on both sides
(the argument C is discarded), with s(`) being updated to s(`)+2 which stays in
the relation. The store is augmented with r[Γ ′] and r[∆′] and the environment
with getset(r) which can be safely removed by the store technique as we did
before. The same is done when a test` is run: both sides reduce to I, the argument
is discarded, and the r part of the transition is garbage-collected.

We now present some details for the second proof of the example. We show
that the relation

S = {(M ′, N ′′)} ∪ {(` 7→ 2n; incr`, test`) , (∅; incr0, test0) s.t. n ∈ N}

is a strong bisimulation up to unfolding, store, weakening, strengthening, transi-
tivity and context.

23

This up-to technique, unsound in the weak case (transitivity is unsound), is
powerful enough to make the bisimulation considerably smaller. Proving that
the second member of S progresses to itself (up to store) is straightforward. We
focus on the following transitions from M ′ and N ′′:

(∅,M ′) 1,C,cod(r)−−−−−−−→ (r[Γ]; Γ, ν` ` := 0;C[Γ](incr`);test`I) , H1

(∅, N ′′) 1,C,cod(r)−−−−−−−→ (r[∆]; ∆, I; I; C[∆](incr0);test0I) , H2

where Γ = M ′, getset(r) and ∆ = N ′′, getset(r). We use sp as an up-to tech-
nique3 twice to run two steps of reduction on both sides:

H1
τ−→ τ−→ H ′1 and H2

τ−→ τ−→ H ′2 .

This way we trigger ν` and ` := 0 and obtain two configurations H ′1 and H ′2
that can be related using a few up-to functions:

(r[Γ]] (` 7→ 0); Γ, C[Γ](incr`); test`I) = H ′1

w(C(store(str(S)))) (r[Γ]; Γ, C[Γ](incr0); test0I)

C(store(S)) (r[∆]; ∆, C[∆](incr0); test0I) = H ′2 .

We detail below how we go from the first to the second line. We write Γ` ,
incr`, test` and Γ0 , incr0, test0.

(` 7→ 0;Γ`) S (∅;Γ0)
(` 7→ 0;Γ`,M

′) str(−) (∅;Γ0,M
′)

(r[Γ]] ` 7→ 0;Γ`, Γ) store(−) (r[Γ];Γ0, Γ)
(r[Γ]] ` 7→ 0;Γ`, Γ, C[Γ](incr`); test`I)) C(−) (r[Γ];Γ0, Γ, C[Γ](incr0); test0I)
(r[Γ]] ` 7→ 0; Γ,C[Γ](incr`); test`I)) w(−) (r[Γ]; Γ,C[Γ](incr0); test0I)

Going from the second to the third line is easier:

(∅;M ′) S (∅;N ′′)
(r[Γ];Γ) store(S) (r[∆];∆)
(r[Γ];Γ,C[Γ](incr0); test0I) C(store(S)) (r[∆];∆,C[∆](incr0); test0I)

Finally we proved that H1 f(S) H2 where f = sp◦sp◦ star◦ (str∪ store∪C∪w)ω

is a compatible function, and hence S sp f(S) ∪ store(S) (not forgetting the
second member of S).

To conclude, S, as a strong bisimulation up to (unfolding, store, weakening,
strengthening, transitivity and context), is included in ∼.

3 If
τ−→ is deterministic then (

τ−→ R τ←−) ⊆ sp(R).

24

Coinduction up to in a fibrational setting

Filippo Bonchi, Daniela Petrisan, Damien Pous, Jurriaan Rot

To cite this version:

Filippo Bonchi, Daniela Petrisan, Damien Pous, Jurriaan Rot. Coinduction up to
in a fibrational setting. CSL-LICS, Jul 2014, Vienne, Austria. ACM, pp.1-12,
<10.1145/2603088.2603149>. <hal-00936488v2>

HAL Id: hal-00936488

https://hal.archives-ouvertes.fr/hal-00936488v2

Submitted on 15 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00936488v2

Coinduction Up-To in a Fibrational Setting ∗

Filippo Bonchi Daniela Petrişan

Damien Pous †

LIP, CNRS, INRIA, ENS Lyon,
Université de Lyon, UMR 5668

{filippo.bonchi,daniela.petrisan,damien.pous}
@ens-lyon.fr

Jurriaan Rot ‡

LIACS - Leiden University, CWI

j.c.rot@liacs.leidenuniv.nl

Abstract

Bisimulation up-to enhances the coinductive proof method for
bisimilarity, providing efficient proof techniques for checking prop-
erties of different kinds of systems. We prove the soundness of such
techniques in a fibrational setting, building on the seminal work of
Hermida and Jacobs. This allows us to systematically obtain up-to
techniques not only for bisimilarity but for a large class of coinduc-
tive predicates modelled as coalgebras. By tuning the parameters
of our framework, we obtain novel techniques for unary predicates
and nominal automata, a variant of the GSOS rule format for simi-
larity, and a new categorical treatment of weak bisimilarity.

Categories and Subject Descriptors F.3 [Logics and meanings of
programs]; F.4 [Mathematical logic and formal languages]

General Terms Theory.

Keywords fibrations, coinductive predicates, bisimulation up-to,
GSOS, up-to techniques, similarity, bialgebras, nominal automata.

1. Introduction

1.1 Coinduction up-to

The rationale behind coinductive up-to techniques is the following.
Suppose you have a characterisation of an object of interest as a
greatest fixed-point. For instance, behavioural equivalence in CCS
is the greatest fixed-point of a monotone function B on relations,
describing the standard bisimulation game. This means that to
prove two processes equivalent, it suffices to exhibit a relation R
that relates them, and which is a B-invariant, i.e., R ⊆ B(R).
Such a task can however be painful or inefficient, and one could
prefer to exhibit a relation which is only a B-invariant up to some
function A, i.e., R ⊆ B(A(R)).

Not every function A can safely be used: A should be sound for
B, meaning that any B-invariant up to A should be contained in a
B-invariant. Instances of sound functions for behavioural equiva-
lence in process calculi usually include transitive closure, context
closure and congruence closure. The use of such techniques dates
back to Milner’s work on CCS [21]; a famous example of an un-
sound technique is that of weak bisimulation up to weak bisimi-
larity. Since then, coinduction up-to proved useful, if not essential,

∗ Extended version of the paper with the same title, to appear in Proc. CSL-
LICS 2014, July 14–18, 2014, Vienna, Austria, and to be available at
http://dx.doi.org/10.1145/2603088.2603149
† The first three authors acknowledge support from the ANR projects 2010-
BLAN-0305 PiCoq and 12IS02001 PACE.
‡ The research of this author has been funded by the Netherlands Organ-
isation for Scientific Research (NWO), CoRE project, dossier number:
612.063.920.

in numerous proofs about concurrent systems (see [25] for a list of
references); it has been used to obtain decidability results [8], and
more recently to improve standard automata algorithms [7].

The theory underlying these techniques was first developed by
Sangiorgi [27]. It was then reworked and generalised by one of the
authors to the abstract setting of complete lattices [24, 25]. The key
observation there is that the notion of soundness is not composi-
tional: the composition of two sound functions is not necessarily
sound itself. The main solution to this problem consists in restrict-
ing to compatible functions, a subset of the sound functions which
enjoys nice compositionality properties and contains most of the
useful techniques.

An illustrative example of the benefits of a modular theory
is the following: given a signature Σ, consider the congruence
closure function, that is, the function Cgr mapping a relation R
to the smallest congruence containing R. This function has proved
to be useful as an up-to technique for language equivalence of
non-deterministic automata [7]. It can be decomposed into small
pieces as follows: Cgr = Trn ◦ Sym ◦ Ctx ◦ Rfl , where Trn
is the transitive closure, Sym is the symmetric closure, Rfl is
the reflexive closure, and Ctx is the context closure associated
to Σ. Since compatibility is preserved by composition (among
other operations), the compatibility of Cgr follows from that of its
smaller components. In turn, transitive closure can be decomposed
in terms of relational composition, and context closure can be
decomposed in terms of the smaller functions that close a relation
with respect to Σ one symbol at a time. Compatibility of such
functions can thus be obtained in a modular way.

A key observation in the present work is that when we move
to a coalgebraic presentation of the theory, compatible functions
generalise to functors equipped with a distributive law (Section 3).

1.2 Fibrations and coinductive predicates

Coalgebras are a tool of choice for describing state based systems:
given a functor F determining its type (e.g., labelled transition sys-
tems, automata, streams), a system is just an F -coalgebra (X, ξ).
When F has a final coalgebra (Ω, ω), this gives a canonical notion
of behavioural equivalence [17]:

X

ξ

��

J·K
// Ω

ω

��

FX
F J·K

// FΩ

two states x, y ∈ X are equivalent if they are mapped to the same
element in the final coalgebra.

When the functor F preserves weak pullbacks—which we
shall assume throughout this introductory section for the sake of

1 2014/5/15

http://dx.doi.org/10.1145/2603088.2603149

simplicity—behavioural equivalence can be characterised coin-
ductively using Hermida-Jacobs bisimulations [14, 30]: given an
F -coalgebra (X, ξ), behavioural equivalence is the largest B-
invariant for a monotone function B on RelX , the poset of binary
relations over X . This function B can be decomposed as

B , ξ
∗ ◦ Rel(F)X : RelX → RelX

Let us explain the notations used here. We consider the category Rel
whose objects are relations R⊆X2 and morphisms from R⊆X2

to S⊆Y 2 are maps from X to Y sending pairs in R to pairs in
S. For each set X the poset RelX of binary relations over X is
a subcategory of Rel, also called the fibre over X . The functor
F has a canonical lifting to Rel, denoted by Rel(F). This lifting
restricts to a functor Rel(F)X : RelX → RelFX , which in this
case is just a monotone function between posets. The monotone
function ξ∗ : RelFX → RelX is the inverse image of the coalgebra
ξ mapping a relation R ⊆ (FX)2 to (ξ × ξ)−1(R).

To express other predicates than behavioural equivalence, one
can take arbitrary liftings of F to Rel, different from the canonical

one. Any lifting F yields a functor B defined as

B , ξ
∗ ◦ FX : RelX → RelX (†)

The final coalgebra, or greatest fixed-point for such a B is called

a coinductive predicate [13, 14]. By taking appropriate F , one can
obtain, for instance, various behavioural preorders: similarity on
labelled transition systems (LTSs), language inclusion on automata,
or lexicographic ordering of streams.

This situation can be further generalised using fibrations. We
refer the reader to the first chapter of [16] for a gentle introduction,
or to Section 2 for succinct definitions. The functor p : Rel → Set
mapping a relation R ⊆ X2 to its support set X is a fibration,
where the inverse image ξ∗ is just the reindexing functor of ξ. By
choosing a different fibration than Rel, one can obtain coinductive
characterisations of objects that are not necessarily binary relations,
e.g., unary predicates like divergence, ternary relations, or metrics.

Our categorical generalisation of compatible functions provides
a natural extension of this fibrational framework with a systematic
treatment of up-to techniques: we provide functors (i.e., monotone
functions in the special case of the Rel fibration) that are compatible
with those functors B corresponding to coinductive predicates.

For instance, when the chosen lifting F is a fibration map, the
functor corresponding to a technique called “up to behavioural
equivalence” is compatible (Theorem 1). The canonical lifting of
a functor is always such a fibration map, so that when F is the
functor for LTSs, we recover the soundness of the very first up-to
technique from the literature, namely “bisimulation up to bisimi-
larity” [21]. One can also check that another lifting of this same
functor but in another fibration yields the divergence predicate, and
is a fibration map. We thus obtain the validity of the “divergence up
to bisimilarity” technique.

1.3 Bialgebras and up to context

Another important class of techniques comes into play when con-
sidering systems with an algebraic structure on the state space (e.g.,
the syntax of a process calculus). A minimal requirement for such
systems usually is that behavioural equivalence should be a congru-
ence. In the special case of bisimilarity on LTSs, several rule for-
mats have been proposed to ensure such a congruence property [1].
At the categorical level, the main concept to study such systems
is that of bialgebras. Assume two endofunctors T, F related by a
distributive law λ : TF ⇒ FT . A λ-bialgebra consists in a triple
(X,α, ξ) where (X,α) is a T -algebra, (X, ξ) is an F -coalgebra,
and a diagram involving λ commutes. It is well known that in such
a bialgebra, behavioural equivalence is a congruence with respect
to T [31]. This is actually a generalisation of the fact that bisimi-

larity is a congruence for all GSOS specifications [3]: GSOS spec-
ifications are in one-to-one correspondence with distributive laws
between the appropriate functors [2, 31].

This congruence result can be strengthened into a compatibility
result [26]: in any λ-bialgebra, the contextual closure function
that corresponds to T is compatible for behavioural equivalence.
By moving to fibrations, we generalise this result so that we can
obtain up to context techniques for arbitrary coinductive predicates:
unary predicates like divergence, by using another fibration than
Rel; but also other relations than behavioural equivalence, like the
behavioural preorders mentioned above, or weak bisimilarity.

The technical device we need to establish this result is that
of bifibrations, fibrations p whose opposite functor pop is also a
fibration. We keep the running example of the Rel fibration for
the sake of clarity; the results are presented in full generality in
the remaining parts of the paper. In such a setting, any morphism
f : X → Y in Set has a direct image

∐
f : RelX → RelY . Now

given an algebra α : TX → X for a functor T on Set, any lifting

T of T gives rise to a functor on the fibre above X , defined dually
to (†):

C ,
∐

α ◦ TX : RelX → RelX (‡)

When we take for T the canonical lifting of T in Rel, then C is
the contextual closure function corresponding to the functor T .
We shall see that we sometimes need to consider variations of the
canonical lifting to obtain a compatible up-to technique (e.g., up to
“monotone” contexts for checking language inclusion of weighted
automata—Section 5.1).

Now, starting from a λ-bialgebra (X,α, ξ), and given two lift-

ings T and F of T and F , respectively, the question is whether the
above functor C is compatible with the functor B defined earlier
in (†). The simple condition we give in this paper is the following:
the distributive law λ : TF ⇒ FT should lift to a distributive law
λ : T F ⇒ F T (Theorem 2).

This condition is always satisfied in the bifibration Rel, when

T and F are the canonical liftings of T and F . Thus we obtain
as a corollary the compatibility of bisimulation of up to context in
λ-bialgebras, which is the main result from [26]—soundness was
previously observed by Lenisa et al. [19, 20] and then Bartels [2].

The present work allows us to go further in several directions,
as illustrated below.

1.4 Contributions and Applications

The main contribution of this paper is the abstract framework
developed in Section 4; it allows us to derive the soundness of a
wide range of both novel and well-established up-to techniques for
arbitrary coinductive predicates. Sections 5 and 6 are devoted to
several such applications, which we describe now.

When working in the predicate fibration on Set, one can char-
acterise some formulas from modal logic as coinductive predicates
(see [9] for an account of coalgebraic modal logic). Our frame-
work allows us to introduce up-to techniques in this setting: we
consider the formula νx.〈τ 〉x in Section 5.2, and we provide a
technique called “divergence up to left contexts and behavioural
equivalence”. We use it to prove divergence of a simple process us-
ing a finite invariant, while the standard method requires an infinite
one.

One can also change the base category: by considering the fibra-
tion of equivariant relations over nominal sets, we show how to ob-
tain up-to techniques for language equivalence of non-deterministic
nominal automata [4]. In Section 5.3, these techniques allow us to
prove the equivalence of two nominal automata using an orbit-finite
relation, where the standard method would require an infinite one
(recall that the determinisation of a nominal automaton is not nec-
essarily orbit-finite).

2 2014/5/15

Another benefit of the presented theory is modularity w.r.t.
the liftings chosen to define coinductive predicates: two liftings
can be composed, and we give sufficient conditions for deriving
compatible functors for the composite lifting out of compatible
functors for its sub-components (Section 6). We give two examples
of such a situation: similarity, and weak bisimilarity on LTSs.

By using Hughes and Jacobs’ definition of similarity [15], we
obtain that for “up to context” to be compatible it suffices to start
from a monotone distributive law (Section 6.1). In the special case
of LTSs, this monotonicity condition amounts to the positive GSOS
rule format [12]: GSOS [3] without negative premises.

In Section 6.2 we propose a novel characterisation of weak
bisimilarity on LTSs, that fits into our framework. This allows us
to give a generic condition for “up to context” to be compatible
(and hence weak bisimilarity to be a congruence). In particular,
this condition rules out the sum operation from CCS, which is well
known not to preserve weak bisimilarity.

2. Preliminaries

We refer the reader to [16] for background on fibrations and recall
here basic definitions.

Definition 1. A functor p : E → B is called a fibration when for
every morphism f : X → Y in B and every R in E with p(R) = Y

there exists a map f̃R : f∗(R)→ R such that p(f̃R) = f satisfying
the universal property: For all maps g : Z → X in B and
u : Q → R in E sitting above fg (i.e., p(u) = fg) there is a

unique map v : Q→ f∗(R) such that u = f̃Rv and p(v) = g.

Q

∃!v %%

∀u

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

f∗(R)
f̃R

// R

Z

g
&&▲

▲▲
▲▲

▲▲
▲

fg

**❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

X
f

// Y

For X in B we denote by EX the fibre above X , i.e., the
subcategory of E with objects mapped by p to X and arrows sitting
above the identity on X .

A map f̃ as above is called a Cartesian lifting of f and is unique
up to isomorphism. If we make a choice of Cartesian liftings, the
association R 7→ f∗(R) gives rise to the so-called reindexing
functor f∗ : EY → EX .

The fibrations considered in this paper are bicartesian (both E
and B have a bicartesian structure strictly preserved by p) and split,
i.e., the reindexing functors behave well with respect to composi-
tion and identities: (1X)∗ = 1EX and (f ◦ g)∗ = g∗ ◦ f∗.

A functor p : E → B is called a bifibration if both p : E → B
and pop : Eop → Bop are fibrations. A fibration p : E → B is a
bifibration if and only if each reindexing functor f∗ : EY → EX
has a left adjoint

∐
f ⊣ f

∗, see [16, Lemma 9.1.2].

Example 1. Let Pred be the category of predicates: objects are
pairs of sets (P,X) with P ⊆ X and morphisms f : (P,X) →
(Q,Y) are arrows f : X → Y that can be restricted to f

∣∣
P
: P →

Q.
Similarly, we can consider the category Rel whose objects are

pairs of sets (R,X) with R ⊆ X2 and morphisms f : (R,X) →
(S, Y) are arrows f : X → Y such that f × f can be restricted to

f × f
∣∣
R
: R→ S.

The functors mapping predicates, respectively, relations to their
underlying sets are bifibrations. The fibres PredX and RelX sitting

aboveX are the posets of subsets ofX , respectively relations onX ,
ordered by inclusion. The reindexing functors are given by inverse
image and their left adjoints by direct image.

Given fibrations p : E → B and p′ : E ′ → B and F : B → B,

we call F : E → E ′ a lifting of F when p′F = Fp. Notice that a

lifting F restricts to a functor between the fibres FX : EX → EFX .
When the subscript X is clear from the context we will omit it.

A fibration map between p : E → B and p′ : E ′ → B is a pair

(F, F) such that F is a lifting of F that preserves the Cartesian

liftings: (Ff)∗F = Ff∗ for any B-morphism f . We denote by
Fib(B) the category of fibrations with base B.

Example 2. A Set-endofunctor T has a canonical relation lifting
Rel(T) : Rel → Rel. Represent R ∈ RelX as a jointly mono span
X ← R → X and apply T . Then Rel(T)(R) is obtained by
factorising the induced map TR→ TX×TX . When T preserves
weak pullbacks, (Rel(T), T) is a fibration map (see e.g. [15]).

3. Compatible Functors

Given two monotone functions A,B : C → C on a complete lattice
C, A is said to be B-compatible if AB ⊆ BA. In [25, Theorem
6.3.9], it is shown that any B-compatible function A is sound, that
is, it can be used as an up-to technique: every B-invariant up to A
is included in a B-invariant.

This result is an instance of a more general fact which holds
in any category C with countable coproducts and for any pair of
endofunctors A,B equipped with a distributive law γ : AB ⇒
BA. Indeed, following the proof of [2, Theorem 3.8], for any
BA-coalgebra ξ (that is a B-invariant up to A) one can find a
B-coalgebra ζ (that is a B-invariant) making the next diagram
commutative.

X

ξ

��

κ0 // AωX

ζ

��

BAX
Bκ1

// BAωX

(Here Aω denotes the coproduct
∐

i≤ω A
i of all finite iterations of

A and κ0, κ1 are the injections of X and AX respectively, into
AωX . Alternatively, we can replace the countable coproduct Aω

by the free monad on A, assuming the latter exists. In this case, the
result is an instance of the generalized powerset construction [28].)

Similarly, that compatible functions preserve bisimilarity [25,
Lemma 6.4.3] is an instance of the well-known fact [31] that a final
B-coalgebra νB lifts to a final γ-bialgebra for γ : AB ⇒ BA.
When C is a lattice, this entails that A(νB) ⊆ νB. For instance,
if B is a predicate for bisimilarity and A is the congruence closure
function, we obtain that bisimilarity is a congruence whenever the
congruence closure function is compatible.

As discussed in the Introduction, the main interest in compatible
functions comes from their nice compositionality properties. This
leads us to define compatibility of arbitrary functors of type C → C′

rather than just endofunctors.

Definition 2. Consider two endofunctors B : C → C and B′ :
C′ → C′. We say that a functor A : C → C′ is (B,B′)-compatible
when there exists a natural transformation γ : AB ⇒ B′A.

Notice that the pair (A, γ) is a morphism between endofunctors
B and B′ in the sense of [20]. Since the examples dealt with in
this paper involve only poset fibrations, we will omit the natural
transformation γ from the notation. Moreover, given an endofunc-
tor B : C → C, we will simply write that A : Cn → Cm is
B-compatible, when A is (Bn, Bm)-compatible.

This definition makes it possible to use the internal notions of
product and pairing to emphasise the compositionality aspect. For

3 2014/5/15

instance, coproduct becomes a compatible functor by itself, rather
than a way to compose compatible functors.

Proposition 1. Compatible functors are closed under the following
constructions:

(i) composition: if A is (B,C)-compatible and A′ is (C,D)-
compatible, then A′ ◦A is (B,D)-compatible;

(ii) pairing: if (Ai)i∈ι are (B,C)-compatible, then 〈Ai〉i∈ι is
(B,Cι)-compatible;

(iii) product: if A is (B,C)-compatible and A′ is (B′, C′)-
compatible, then A× A′ is (B×B′, C×C′)-compatible;

Moreover, for an endofunctor B : C → C,

(iv) the identity functor Id : C → C is B-compatible;

(v) the constant functor to the carrier of any B-coalgebra is B-
compatible, in particular the final one if it exists;

(vi) the coproduct functor
∐

: Cι → C is (Bι, B)-compatible.

4. Up-to Techniques in a Fibration

Throughout this section we fix a bifibration p : E → B, an end-

ofunctor F : B → B, a lifting F : E → E of F and a coalgebra
ξ : X → FX . Intuitively, the studied system lives in the base cate-
gory B while its properties live in EX , the fibre above X . We thus
instantiate the category C from the previous section with EX .

As explained in the Introduction (†), we discuss proof tech-
niques for the properties modelled as final coalgebras of the func-

tor ξ∗ ◦ FX : EX → EX , that we refer hereafter as F ξ. In Rel,

when F is the canonical lifting, Rel(F)ξ-coalgebras are exactly
the Hermida-Jacobs bisimulations [14].

To obtain sound techniques for F ξ, it suffices to find F ξ-
compatible endofunctors on EX . We provide such functors by giv-

ing conditions on the liftingF , abstracting away from the coalgebra
ξ at hand.

4.1 Compatibility of Behavioural Equivalence Closure

The most basic technique is up to behavioural equivalence, a prime
example of which is Milner’s up to bisimilarity [21], where a
relation R is mapped into∼R∼. If f is the unique morphism from
ξ to a finalF -coalgebra (assumed to exist), behavioural equivalence
is the kernel of f . This leads us to consider the functor

Bhv = f
∗ ◦
∐

f : EX → EX .

For the fibrations Pred → Set and Rel → Set the functor Bhv
maps a predicate, respectively a relation, to its closure under be-
havioural equivalence. The compatibility of Bhv is an instance of:

Theorem 1. Suppose that (F , F) is a fibration map. For any F -
coalgebra morphism f : (X, ξ) → (Y, ζ), the functor f∗ ◦

∐
f is

F ξ-compatible.

Proof sketch. We exhibit a natural transformation

f
∗ ◦
∐

f ◦ (ξ
∗ ◦ F)⇒ (ξ∗ ◦ F) ◦ f∗ ◦

∐
f

obtained by pasting the 2-cells (a), (b), (c), (d) in the following
diagram:

EX
F // EFX

ξ∗
//

∐
Ff

&&▼
▼▼

▼▼
▼

⇓(b)

EX

∐
f

//

⇓(d)

EY
f∗

//
88

ζ∗qq
qq
qq
q

⇓(c)

EX

EFY
(Ff)∗

&&▼
▼▼

▼▼
▼

⇓(a)

EX

∐
f

// EY
f∗

//

F
88qqqqqqq
EX

F // EFX

ξ∗
// EX

(a) Since (F, F) is a fibration map we have that

Ff
∗ = (Ff)∗F

(b) is a consequence of Lemma 3 in Appendix B.

(c) is a natural isomorphism and comes from the fact that f is a
coalgebra map and the fibration is split.

(d) is obtained from (c) using the counit of
∐

f ⊣ f
∗ and the unit

of
∐

Ff ⊣ (Ff)∗.

(Note that this proof decomposes into a proof that
∐

f is (F ξ, F ζ)-

compatible, by pasting (b) and (d), and a proof that f∗ is (F ζ , F ξ)-
compatible, by pasting (a) and (c). These two independent results
can be composed by Proposition 1(i) to obtain the theorem.)

Corollary 1. If F is a Set-functor preserving weak pullbacks
then the behavioural equivalence closure functor Bhv is Rel(F)ξ-
compatible.

Proof. (Rel(F), F) is a fibration map whenever F preserves weak
pullbacks (see e.g. [15]).

From Theorem 1 we also derive the soundness of up-to Bhv for
unary predicates: the monotone predicate liftings used in coalge-
braic modal logic [9] are fibration maps [17], thus the hypothesis
of Theorem 1 are satisfied.

4.2 Compatibility of Equivalence Closure

In this section we show that compatibility of equivalence closure
can be modularly derived from compatibility of reflexive, symmet-
ric and transitive closures. For the latter it suffices to prove that
relational composition is compatible. Composition of relations can
be expressed in a fibrational setting, by considering the category
Rel ×Set Rel obtained as a pullback of the fibration Rel → Set
along itself:

Rel×Set Rel

��

❴
✤

// Rel

��

Rel // Set

Then relational composition is a functor ⊗ : Rel ×Set Rel → Rel
mapping R,S ⊆ X ×X to their composition. As we will see as a
corollary of Proposition 2, when proving compatibility of relational

composition with respect to F ξ we can abstract away from the
coalgebra ξ and simply use that ⊗ is a morphism of endofunctors

from F
2

to F .
Compatibility of symmetric and reflexive closures can be

proved following the same principle. This leads us to consider
for an arbitrary fibration E → B its n-fold product in the category
Fib(B), denoted by E×Bn → B. The objects in E×Bn are tuples of
objects in E belonging to the same fibre. This product is computed

fibrewise, that is, E×Bn
X =EnX . For n=0 we have E0=B.

Hereafter, we are interested in functors G : E×Bn → E that
are liftings of the identity functor on B: for each X in B we have
functors GX : EnX → EX . Then relational composition is just an
instance of G for n=2.

Proposition 2. Let G : E×Bn → E be a lifting of the identity,

with a natural transformation GF
n
⇒ FG. Then GX is F ξ-

compatible.

We list now several applications of the proposition for the fibra-
tion Rel→ Set.

(n=0) Let Rfl : Set→ Rel be the functor mapping each set X to ∆X ,

the identity relation on X . RflX is F ξ-compatible if

∆FX ⊆ F∆X . (∗)

4 2014/5/15

(n=1) Let Sym : Rel → Rel be the functor mapping each relation

R ⊆ X2 to its converse R−1 ⊆ X2. SymX is F ξ-compatible

if for all relations R ⊆ X2

F (R)−1 ⊆ F (R−1). (∗∗)

(n=2) Let ⊗ : Rel ×Set Rel → Rel be the relational composition

functor. Then ⊗X is F ξ-compatible if for all R,S ⊆ X2

FR⊗ FS ⊆ F (R ⊗ S) (∗∗∗)

If moreover T1, T2 : RelX → RelX are two F ξ-compatible
functors, their pointwise composition T1⊗T2 = ⊗X ◦〈T1, T2〉
is F ξ-compatible by Proposition 1 (i,ii).

The transitive closure functor Trn is obtained from⊗ in a modular
way:

Trn =
∐

i≥0

(−)i : EX → EX

where (−)0 = Id and (−)i+1 = Id ⊗ (−)i. Using Proposition 1
we get

Corollary 2. If F is a Set-functor then the reflexive and sym-
metric closure functors RflX and SymX are Rel(F)ξ-compatible.
Moreover, ifF preserves weak pullbacks, then the transitive closure
functor TrnX is Rel(F)ξ-compatible.

Proof. The above conditions (∗) and (∗∗) always hold for the

canonical lifting F = Rel(F); (∗∗∗) holds for Rel(F) when F
preserves weak pullbacks.

By compositionality (Proposition 1), one can then deduce com-
patibility of the equivalence closure functor: this functor can be de-

fined as Eqv , Trn ◦ (Id + Sym +Rfl), where + denotes binary
coproduct.

WhenF ξ has a final coalgebra S, one can define a “self closure”

EX-endofunctor Slf = S̃ ⊗ Id ⊗ S̃, where S̃ : EX → EX is
the constant to S functor. Thanks to Proposition 1, the functor Slf

is F ξ-compatible whenever (∗∗∗) holds. When F preserves weak

pullbacks and F is instantiated to the canonical lifting Rel(F), Slf
coincides with Bhv since S is just behavioural equivalence in this
case. If instead we consider the lifting that yields weak bisimilarity
(to be defined in Section 6.2), Slf corresponds to a technique
called “weak bisimulation up to weak bisimilarity”, while Bhv
corresponds to “weak bisimulation up to (strong) bisimilarity”.

4.3 Compatibility of Contextual Closure

For defining contextual closure, we assume that the state space
of the coalgebra is equipped with an algebraic structure. More
precisely, we fix a bialgebra for a distributive law λ : TF ⇒ FT ,
that is, a triple (X,α, ξ), where α : TX → X is a an algebra and
ξ : X → FX is a coalgebra such that the next diagram commutes:

TX X FX

TFX FTX

Tξ

α ξ

λX

Fα

Theorem 2. Let T , F : E → E be liftings of T and F . If λ : T F ⇒
F T is a natural transformation sitting above λ, then

∐
α ◦T is

F ξ-compatible.

Proof sketch. We exhibit a natural transformation

(
∐

α ◦ T) ◦ (ξ
∗ ◦ F)⇒ (ξ∗ ◦ F) ◦ (

∐
α ◦ T) .

This is achieved in Figure 1 by pasting five natural transformations,
obtained as follows:

(a) is the counit of the adjunction
∐

λX
⊣ λ∗

X .

(b) comes from λ being a lifting of λ.

(c) comes from the bialgebra condition, the fibration being split,
and the units and counits of the adjunctions

∐
α ⊣ α

∗,
∐

Fα ⊣
(Fα)∗, and

∐
λX
⊣ λ∗

X .

(d) arises since T is a lifting of T , using the universal property of
the Cartesian lifting (Tξ)∗.

(e) comes from F being a lifting of F , combined with the unit and
counit of the adjunction

∐
α ⊣ α

∗.

(Note that like for Theorem 1, this proof actually decomposes into

a proof that T is (F ξ, (Tξ)
∗ ◦ λ∗

X)-compatible, and a proof that∐
α is ((Tξ)∗ ◦ λ∗

X , F ξ)-compatible.)

When the fibration at issue is Rel→ Set and T is the canonical
lifting Rel(T), one can easily check that

∐
α◦Rel(T) applied to a

relation R gives exactly its contextual closure as described in [26].
For this reason, we abbreviate

∐
α◦Rel(T) to Ctx . When more-

over F is the canonical lifting Rel(F), we get:

Corollary 3 ([26, Theorem 4]). If F, T are Set-functors and
(X,α, ξ) is a bialgebra for λ : TF ⇒ FT . The contextual clo-
sure functor Ctx is Rel(F)ξ-compatible.

Proof. The canonical lifting Rel(−) is a 2-functor [17, Exercise

4.4.6]. Therefore λ = Rel(λ) fulfils the assumption of Theorem 2.

Our interest in Theorem 2 is not restricted to prove compatibil-
ity of up to Ctx . By taking non canonical liftings of T , one derives
novel and effective up-to techniques, such as the monotone contex-
tual closure and the left-contextual closure defined in Sections 5.1

and 5.2. In order to apply Theorem 2 for situations when either T

or F is not the canonical relation lifting, one has to exhibit a λ sit-

ting above λ. In Rel, such a λ exists if and only if for all relations

R ⊆ X2, the restriction of λX ×λX to T FR corestricts to F TR.
A similar condition has to be checked for Pred→ Set.

4.4 Abstract GSOS

For several applications, it is convenient to consider natural trans-
formations of a slightly different type λ : T (F × Id)⇒ FT, where
T is the free monad over T . These are called abstract GSOS specifi-
cations since, as shown in [31], they generalise GSOS rules to any
behaviour endofunctor F . Each such λ induces a distributive law
λ† : T(F × Id) ⇒ (F × Id)T of the monad T over the copointed
functor F × Id, whose bialgebras are the objects of our interest
(see Appendix B.3). In order to prove compatibility via Theorem

2, one should exhibit a λ† sitting above λ†. The following lemma
simplifies such a task.

Lemma 1. Let λ : T (F × Id)⇒ F T be a natural transformation

sitting above λ : T (F × Id)⇒ FT. Then there exists a λ† : T(F ×
Id)⇒ (F × Id)T sitting above λ† : T(F × Id)⇒ (F × Id)T.

For a bialgebra (X,α, 〈ξ, id〉), the existence of λ† ensures, via

Theorem 2, compatibility w.r.t. (F × Id)〈ξ,id〉 , which is not exactly

F ξ. However, this difference is harmless in poset fibrations: coal-
gebras for the two functors coincide, and for any pointed functor A

compatible with (F × Id)〈ξ,id〉, every F ξ-invariant up to A is also

an (F × Id)〈ξ,id〉-invariant up to A.

5 2014/5/15

EX EFX EX ETX EX

ETFX

EFTX EFTX

EX ETX EX EFX EX

⇓ (d)

F ξ∗

T

⇓ (b)

T
∐

α

⇓ (c)

(Tξ)∗
∐

λX

⇓ (a)
λ∗
X

⇓ (e)

∐
Fα

T
∐

α

F

F ξ∗

Figure 1. Compatibility of contextual closure in a fibration

5. Examples

5.1 Inclusion of weighted automata

To illustrate how to instantiate the above framework, we consider
weighted automata. We first give a short description of their coal-
gebraic treatment [6]. For a semiring S and a set X , we denote by

S
X
ω the set of functions f : X → S with finite support. These func-

tions can be thought of as linear combinations
∑

x∈X f(x) ·x, and

in fact S−
ω : Set→ Set is the monad sending each set X to the free

semi-module generated by X .
A weighted automaton over a semiring S with alphabet A is

a pair (X, 〈o, t〉), where X is a set of states, o : X → S is an
output function associating to each state its output weight and

t : X → (SX
ω)A is a weighted transition relation. Denoting by

F the functor S × (−)A, weighted automata are thus coalgebras

for the composite functor FS−
ω . By the generalised powerset con-

struction [28], they induce bialgebras for the functor F , the monad
S
−
ω , and the distributive law λ : S−

ωF ⇒ FS−
ω given for all sets

X by λX(
∑
ri(si, ϕi)) = 〈

∑
risi, λa.

∑
riϕi(a)〉. Indeed ev-

ery (X, 〈o, t〉) induces a bialgebra (SX
ω , µ, 〈o

♯, t♯〉) where µ is the

multiplication of S−
ω and 〈o♯, t♯〉 : SX

ω → S × (SX
ω)A is the linear

extension of 〈o, t〉, defined as (Fµ) ◦ λ ◦ (S
〈o,t〉
ω).

For a concrete example we take the semiring R
+ of positive

real numbers. A weighted automaton is depicted on the left below:

arrows x
a,r
→ y mean that t(x)(a)(y) = r and arrows x

r
⇒ mean

that o(x) = r.

x
0
��

a,1
''
y
1
��

a,1

��

a,1

gg

x
0
KS

a // y
1
KS

a // x+y
1
KS

a // · · ·

y
0
��

a
// x+y
1
��

a
// x+2y

2
��

a
// · · ·

(1)

On the right is depicted (part of) the corresponding bialgebra: states

are elements of (R+)Xω (hereafter denoted by v, w), arrows v
a
→ w

mean that t♯(v)(a) = w and arrows v
r
⇒ mean that o♯(v) = r.

Whenever S carries a partial order≤, one can take the following

lifting F : Rel→ Rel of F defined for R ⊆ X2 by:

{((r, ϕ), (s, ψ)) | r ≤ s ∧ ∀a.ϕ(a) R ψ(a)} ⊆ (FX)2.

Then the functor F 〈o♯,t♯〉 = 〈o
♯, t♯〉∗◦F : RelX → RelX maps

a relation R ⊆ X2 into

{(x, y) | o♯(x) ≤ o
♯(y) ∧ ∀a.t♯(x)(a) R t

♯(y)(a)} .

The carrier of a final F 〈o♯,t♯〉-coalgebra is a relation, denoted

by -, which we call inclusion: when S is the Boolean semiring, it
coincides with language inclusion of non-deterministic automata.

For any two v, w ∈ S
X
ω , one can prove that v - w by

exhibiting a F 〈o♯,t♯〉-invariant relating them. These invariants are

usually infinite, since there are infinitely many reachable states in

a bialgebra SX
ω , even for finite X . This is the case when trying to

check x - y in (1): we should relate infinitely many reachable
states.

In order to obtain finite proofs, we exploit the algebraic structure
of bialgebras and employ an up to context technique. To this end,
we use the canonical lifting of the monad S

−
ω , defined for all

R ⊆ X2 as

Rel(S−
ω)(R) =

{(∑
rixi,

∑
riyi

)
| xi R yi

}

We prove that the endofunctor Ctx =
∐

µ ◦Rel(S
−
ω) isF 〈o♯,t♯〉-

compatible by Theorem 2: it suffices to check that for any relation

R on X , the restriction of λX×λX to Rel(S−
ω)F (R) corestricts to

FRel(S−
ω)(R). This is the case when for all n1,m1, n2,m2 ∈ S

such that n1 ≤ m1 and n2 ≤ m2, we have (a) n1+n2 ≤ m1+m2

and (b) n1 · n2 ≤ m1 · m2. These two conditions are satisfied,
e.g., in the Boolean semiring or in R

+ and thus, in these cases,

we can prove inclusion of automata using F 〈o♯,t♯〉-invariants up

to Ctx . For example, in (1), the relation R = {(x, y), (y, x+y)}
is a F 〈o♯,t♯〉-invariant up to Ctx (to check this, just observe that

(x+y, x+2y) ∈ Ctx (R)). This finite relation thus proves x - y.

Unfortunately, condition (b) fails for the semiring R of (all)
real numbers. Nevertheless, our framework allows us to define
another up-to technique, which we call “up to monotone contextual
closure”. It is obtained by composing

∐
µ and a non-canonical

lifting of R−
ω :

R
−
ω (R) =

{(∑
rixi,

∑
riyi

)
|
ri ≥ 0⇒ xi R yi
ri < 0⇒ yi R xi

}

The restriction of λX × λX to R
−
ωF (R) corestricts to FR−

ω (R).
Therefore, by Theorem 2, the monotone contextual closure is

F 〈o♯,t♯〉-compatible.

5.2 Divergence of processes

Up-to techniques can be instrumental in proving unary predicates.
We take the fibration Pred → Set and we focus on the diver-
gence predicate νu.〈τ 〉u defined on LTSs. The latter are coalge-
bras ξ : X → F (X) for the Set-functor FX = Pω(L × X),
where L = {a, a, b, b . . . , τ} is a set of labels containing a spe-
cial symbol τ and Pω is the finite powerset functor. We lift F to

F
〈τ〉

: Pred→ Pred, defined for all sets X as

F
〈τ〉
X (P ⊆ X) = {S ∈ FX | ∃(τ, x) ∈ S, x ∈ P}.

The final F
〈τ〉
ξ -coalgebra consists precisely of all the states in

X satisfying νu.〈τ 〉u. Hence, to prove that a state p diverges, it

suffices to exhibit an F
〈τ〉
ξ -invariant containing p.

6 2014/5/15

When the LTS is specified by some process algebra, such invari-
ants might be infinite. Suppose for instance that we have a parallel
operator defined by the following GSOS rules and their symmetric
counterparts:

x
l
→ x′

x|y
l
→ x′|y

x
a
→ x′ y

a
→ y′

x|y
τ
→ x′|y′

.

Consider the processes p
a
→ p|p and q

a
→ q. To prove that p|q

diverges, any invariant should include all the states that are on the

infinite path p|q
τ
→ (p|p)|q

τ
→

Instead, an intuitive proof would go as follows: assuming that
p|q diverges one has to prove that the τ successor (p|p)|q also di-
verges. Rather than looking further for the τ -successors of (p|p)|q,
observe that

(a) since p|q diverges by hypothesis, then also (p|q)|p diverges,
and

(b) since (p|q)|p is bisimilar (i.e., behavioural equivalent) to
(p|p)|q, then also (p|p)|q diverges.

Formally, (b) corresponds to using the functor Bhv from Sec-
tion 4.1. For (a) we define the left contextual closure functor as

Ctx ℓ(P⊆X) = {(. . . (x|y1)| . . .)|yn | x ∈ P, yi ∈ X}. In-

deed, it is easy to see that P = {p|q} is an F
〈τ〉
ξ -invariant up to

Bhv ◦ Ctx ℓ, i.e, P ⊆ F
〈τ〉
ξ ◦ Bhv ◦ Ctx ℓ(P).

In order to prove soundness of this “up to behavioural equiva-
lence and left contextual closure”, we show compatibility of Bhv

and Ctx ℓ separately. For the former, we note that F
〈τ〉

is defined

exactly as in coalgebraic modal logic [9, 13] and thus (F
〈τ〉
, F)

is a fibration map: Theorem 1 applies. The functor Ctx ℓ is defined
just as Ctx , but instead of the canonical lifting of the endofunctor
for binary operations T (X) = X×X we use the predicate lifting

T (P ⊆ X) = P×X ⊆ TX . The conditions of Lemma 1 are met
for the distributive law given by the above GSOS rules (see Ap-

pendix C). The functor Ctx ℓ can be seen to be the composition∐
µ ◦ T where T is the free monad on T and µ is the multiplication

of T. We can thus apply Theorem 2 and obtain its compatibility.

5.3 Equivalence of nominal automata

Nominal automata and variants [4] have been considered as a
means of studying languages over infinite alphabets, but also for the
operational semantics of process calculi [22]. We refer the reader
to [23] for background on the category Nom of nominal sets. These
are sets equipped with actions of the group of permutations on a
countable set A of names, satisfying an additional finite support
condition.

Consider the nominal automaton below. The part reachable
from state ∗ corresponds to [5, Example I.1].

∗

a

�� a // a

b

�� a // ⊤

a

��

⋆

a
::✉✉✉✉✉✉ b // a′ b

yy
a
OO

It is important to specify how to read this drawing: the represented
nominal automaton has as state space the orbit-finite nominal set
{∗} + {⋆} + A + A

′ + {⊤}, where A′ is a copy of A. It suffices
in this case to give only one representative of each of the five
orbits: we span all the transitions and states of the automaton by
applying all possible finite permutations to those explicitly written.

For example, the transition a
c
→ a is obtained from a

b
→ a by

applying the transposition (b c) to the latter.

With this semantics in mind, one can see that the state ∗ accepts
the language of words in the alphabet A where some letter appears
twice: it reads a word in A, then it nondeterministically guesses
that the next letter will appear a second time and verifies that this
is indeed the case. The state ⋆ accepts the same language, in a
different way: it reads a first letter, then guesses if this letter will be
read again, or, if a distinct letter—nondeterministically chosen—
will appear twice.

Formally, nominal automata are FPω-coalgebras 〈o, t〉 where

F : Nom → Nom is given by FX = 2 × XAand the monad Pω

is the finitary version of the power object functor in the category of
nominal sets (mapping a nominal set to its finitely-supported orbit-
finite subsets). In our example, o(a) = 0 and t(a) is the following
map:

t(a) =

{
b 7→ {a} b#a
a 7→ {⊤}

By the generalised powerset construction [28], 〈o, t〉 induces a
deterministic nominal automata, which is a bialgebra on Pω(X)
with the algebraic structure given by union. To prove that ∗ and ⋆
accept the same language, we should play the bisimulation game
in the determinisation of the automaton. However, the latter has
infinitely many orbits and a rather complicated structure. A bisim-
ulation constructed like this will thus have infinitely many orbits.
Instead, we can show that the orbit-finite relation spanned by the
four pairs

({∗}, {⋆}), ({a}, {a, a′}), ({⊤}, {a,⊤}), ({∗}, A′)

is a bisimulation up to congruence (w.r.t. union).
The soundness of this technique is established in Appendix D

using the fibration Rel(Nom)→ Nom of equivariant relations. We
derive the compatibility of contextual closure using Theorem 2, and
compatibility of the transitive, symmetric, and reflexive closures
using Proposition 2. Compatibility of congruence closure follows
from Proposition 1(i).

6. Compositional Predicates

In this section we consider a structured way of defining coinduc-
tive predicates, by composing lifted functors. Assume a fibration
p : E → B and a functor ⊗ : E ×B E → E . Given two liftings

F1, F2 : E → E of the same endofunctor F on B, one can then de-

fine a composite lifting⊗◦〈F1, F2〉, which we denote by F1⊗F2.
We will instantiate this to the fibration Rel → Set with relational
composition for ⊗, to define simulation and weak bisimulation as
coinductive predicates.

One advantage of this approach is that the compatibility of up-
to-context can be proved in a modular way.

Theorem 3. Let T be a lifting of T having a γ : T⊗ ⇒ ⊗T
2

above Id: T ⇒ T . Let both F1 and F2 be liftings of F . If

λ1 : T F1 ⇒ F1 T and λ2 : T F2 ⇒ F2 T sit above the same
λ : TF ⇒ FT , then there exists λ : T (F1 ⊗ F2) ⇒ (F1 ⊗ F2)T
above λ.

Notice that the canonical lifting Rel(T) always satisfies the first
hypothesis of the theorem when ⊗ is relational composition.

6.1 Simulation up-to

We recall simulations for coalgebras as introduced in [15]. An
endofunctor F on Set is said to be ordered if it factors through the
forgetful functor from Pre (the category of preorders) to Set: this
means that for every X , FX is equipped with a preorder ⊑FX .

An ordered functor gives rise to a constant relation lifting ⊑ of

F defined as ⊑(R ⊆ X2) = ⊑FX . Then the lax relation lifting

7 2014/5/15

Rel(F)⊑ is defined as

Rel(F)⊑ = ⊑⊗ Rel(F)⊗⊑

where ⊗ is relational composition. For a coalgebra ξ : X → FX ,

the coalgebras for the endofunctor ξ∗◦Rel(F)⊑X—which we denote

as Rel(F)⊑ξ —are called simulations; the final one is called similar-

ity. We list two examples of ordered functors and their associated
notion of simulations, and refer to [15] for many more.

Example 3. For weighted automata on a semiring S equipped with

a partial order ≤, the functor FX = S × XA is ordered with
⊑FX defined as (s, φ) ⊑FX (r, ψ) iff s ≤ r and φ = ψ. It is

immediate to see that Rel(F)⊑ coincides with the lifting F defined
in Section 5.1.

For LTSs, the functor FX = Pω(A×X) is ordered with subset

inclusion ⊆. In this case a simulation is a relation R ⊆ X2 such

that for all (x, y) ∈ R: if x
a
−→ x′ then there exists y′ such that

x′ a
−→ y′ and x′Ry′.

An ordered functor F is called stable if (Rel(F)⊑, F) is a
fibration map [15]. Since polynomial functors are stable, as well as
the one for LTSs [15], the following results hold for the coalgebras
in Example 3.

Proposition 3. If F is a stable ordered functor, then Bhv , Slf , and

Trn are Rel(F)⊑ξ -compatible.

Proof. Compatibility of Bhv comes from Theorem 1. Compatibil-
ity of Slf and Trn comes from Proposition 2: stable functors satisfy
(∗∗∗) [15, Lemma 5.3].

We proceed to consider the compatibility of up to context, for
which we assume an abstract GSOS specification λ : T (F×Id)⇒

FT. By Theorem 3, proving compatibility w.r.t. Rel(F)⊑ξ is re-

duced to proving compatibility w.r.t. its components Rel(F) and

⊑. For the former, compatibility comes immediately from the proof
of Corollary 3. For the latter, we need to assume that the abstract
GSOS specification is monotone, i.e, such that for any setX , the re-
striction of λX×λX to Rel(T)(⊑FX ×∆X) corestricts to⊑FTX.
If T is a polynomial functor representing a signature, then this
means that for any operator σ (of arity n) we have

b1 ⊑FX c1 . . . bn ⊑FX cn

λX(σ(b,x)) ⊑FTX λX(σ(c,x))

where b,x = (b1, x1), . . . , (bn, xn) with xi ∈ X and similarly
for c,x. If ⊑ is the order on the functor for LTSs, monotonicity
corresponds to the positive GSOS format [12] which, as expected,
is GSOS [3] without negative premises. Monotonicity turns out to
be precisely the condition needed to apply Lemma 1, yielding

Proposition 4. Let λ be a monotone abstract GSOS specification

and (X,α, 〈ξ, id〉) be a λ†-bialgebra. Then Ctx is (Rel(F)⊑ ×
Id)〈ξ,id〉-compatible.

6.2 Weak bisimulation-up-to

A weak bisimulation is a relation R ⊆ X2 on the states of an LTS

such that for every pair (x, y) ∈ R: (1) if x
l
−→ x′ then y

l
⇒ y′ with

(x′, y′) ∈ R and (2) if y
l
−→ y′ then x

l
⇒ x′ with (x′, y′) ∈ R.

Here → and ⇒ are two LTSs, i.e., coalgebras for the functor
FX = Pω(L×X), and ⇒ is the saturation [21] of →. Weak
bisimilarity can alternatively be reduced to strong bisimilarity on
⇒, but the associated proof method is rather tedious. To remain
faithful to the above definition, we define weak bisimulations via
the following lifting of F×F :

F × F = ρ⊗ Rel(F × F)[⊇⊆]
,

where ρ is the constant functor defined as ρ(R ⊆ X2) =
{((U, V), (V,U)) | U, V ∈ FX} and Rel(F × F)[⊇⊆] is the lax
relation lifting of F ×F for the ordering (U1, V1)[⊇⊆](U2, V2) iff
U2 ⊆ U1 and V1 ⊆ V2.

For an intuition, observe that an F × F -coalgebra is a pair
〈ξ1, ξ2〉 : X → FX × FX of LTSs that we denote with→1 and

→2. An invariant for Rel(F ×F)
[⊇⊆]
〈ξ1,ξ2〉

is a relation R ⊆ X2 such

that for each (x, y) ∈ R: (1) if y
l
−→1 y

′ then x
l
−→1 x

′ with x′Ry′,

and (2) if x
l
−→2 x

′ then y
l
−→2 y

′ with x′Ry′. Composing with ρ
“flips” the LTSs→1 and→2: an invariant for F × F 〈ξ1,ξ2〉 is now

an R ⊆ X2 such that: (1) if y
l
−→1 y

′ then x
l
−→2 x

′ with x′Ry′,

and (2) if x
l
−→1 x′ then y

l
−→2 y′ with x′Ry′. It is easy to see

that for 〈ξ1, ξ2〉 = 〈→,⇒〉, coalgebras for F × F 〈ξ1,ξ2〉 are weak
bisimulations and the final coalgebra is weak bisimilarity.

In Appendix E, we show that (F × F, F) is a fibration map and
by Theorem 1 we now obtain the following.

Corollary 4. Bhv is F × F 〈ξ1,ξ2〉-compatible.

For 〈ξ1, ξ2〉 = 〈→,⇒〉, behavioural equivalence is simply
strong bisimilarity. Consequently, Corollary 4 actually gives the
compatibility of weak bisimulation up to strong bisimilarity [25].
One could wish to use up to Slf or up to Trn for weak bisimu-
lations. However, the condition (∗∗∗) from Section 4.2 fails, and
indeed, weak bisimulations up to weak bisimilarity or up to transi-
tivity are not sound [25].

For up to context, we use Theorem 3 to reduce compatibility

w.r.t. F × F to compatibility w.r.t. ρ and Rel(F × F)[⊇⊆] (for
which we can reuse the result of the previous section).

Proposition 5. Let λ : T (F × Id) ⇒ FT be a positive GSOS

specification and (X,α, 〈ξ1, id〉) and (X,α, 〈ξ2, id〉) be two λ†-

bialgebras then Ctx is (F × F × Id)〈ξ1,ξ2,id〉-compatible.

The above proposition requires both→ and⇒ to be models [1]
of the same positive GSOS specification λ. This means that the
rules of λ should be sound for both → and ⇒. For instance, in
the case of CCS,⇒ is not a model of λ because the rule for non-
deterministic choice is not sound for⇒. Nevertheless, we can use
our framework to prove the compatibility of weak bisimulation up
to contextual closure w.r.t. the remaining operators.

7. Directions for future work

Our nominal automata example leads us to expect that the frame-
work introduced in this paper will lend itself to obtaining a clean
theory of up-to techniques for name-passing process calculi. For
instance, we would like to understand whether the congruence rule
format proposed by Fiore and Staton [11] can fit in our setting: this
would provide general conditions under which up-to techniques re-
lated to name substitution are sound in such calculi.

Another interesting research direction is suggested by the di-
vergence predicate we studied in Section 5.2. Other formulas of
(coalgebraic) modal logic [9] can be expressed by taking different
predicate liftings, and yield different families of compatible func-
tors. This suggests a connection with the proof systems in [10, 29]:
we can regard proofs in those systems as invariants up to some com-
patible functors. By using our framework and the logical distribu-
tive laws of [18], we hope to obtain a systematic way to derive or
enhance such proof systems, starting from a given abstract GSOS
specification.

Acknowledgments

We are grateful to the anonymous reviewers for their constructive
comments, and in particular to the one who noticed that our no-

8 2014/5/15

tion of compatible functor was just an instance of morphisms of
endofunctors. We would also like to thank Alexander Kurz and
Alexandra Silva for the stimulating discussions that eventually led
to the example on nominal automata; Marcello Bonsangue, Tom
Hirschowitz and Henning Kerstan for comments on preliminary
versions of the paper; Ichiro Hasuo for the inspiring talk at Bel-
lairs Workshop on Coalgebras.

References

[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational seman-
tics. In Handbook of Process Algebra, pages 197–292. Elsevier, 2001.

[2] F. Bartels. Generalised coinduction. MSCS, 13(2):321–348, 2003.

[3] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. In
POPL, pages 229–239. ACM, 1988.

[4] M. Bojanczyk, B. Klin, and S. Lasota. Automata with group actions.
In LICS, pages 355–364, 2011.

[5] M. Bojanczyk, B. Klin, S. Lasota, and S. Torunczyk. Turing machines
with atoms. In LICS, pages 183–192, 2013.

[6] F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A
coalgebraic perspective on linear weighted automata. Inf. and Comp.,
211:77–105, 2012.

[7] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations
up to congruence. In POPL, pages 457–468. ACM, 2013.

[8] D. Caucal. Graphes canoniques de graphes algébriques. ITA, 24:339–
352, 1990.

[9] C. Cı̂rstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal
logics are coalgebraic. Comput. J., 54(1):31–41, 2011.

[10] M. Dam. Compositional proof systems for model checking infinite
state processes. In CONCUR, volume 962 of LNCS, pages 12–26.
Springer, 1995.

[11] M. Fiore and S. Staton. A congruence rule format for name-passing
process calculi. Inf. and Comp., 207(2):209–236, 2009.

[12] M. Fiore and S. Staton. Positive structural operational semantics and
monotone distributive laws. In CMCS, page 8, 2010.

[13] I. Hasuo, K. Cho, T. Kataoka, and B. Jacobs. Coinductive predicates
and final sequences in a fibration. In MFPS, 2013.

[14] C. Hermida and B. Jacobs. Structural induction and coinduction in a
fibrational setting. Inf. and Comp., 145:107–152, 1997.

[15] J. Hughes and B. Jacobs. Simulations in coalgebra. TCS, 327(1-2):71–
108, 2004.

[16] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

[17] B. Jacobs. Introduction to coalgebra. Towards mathematics of states
and observations, 2014. Draft.

[18] B. Klin. Bialgebraic operational semantics and modal logic. In LICS,
pages 336–345. IEEE, 2007.

[19] M. Lenisa. From set-theoretic coinduction to coalgebraic coinduction:
some results, some problems. ENTCS, 19:2–22, 1999.

[20] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors,
pointed and co-pointed endofunctors, monads and comonads. ENTCS,
33:230–260, 2000.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[22] U. Montanari and M. Pistore. History-dependent automata: An intro-
duction. In SFM, LNCS, pages 1–28. Springer, 2005.

[23] A. M. Pitts. Nominal Sets. Cambridge University Press, 2013.

[24] D. Pous. Complete lattices and up-to techniques. In APLAS, volume
4807 of LNCS, pages 351–366. Springer, 2007.

[25] D. Pous and D. Sangiorgi. Enhancements of the bisimulation proof
method. In Advanced Topics in Bisimulation and Coinduction, pages
233–289. Cambridge University Press, 2012.

[26] J. Rot, F. Bonchi, M. Bonsangue, D. Pous, J. Rutten, and A. Silva. En-
hanced coalgebraic bisimulation. To appear in MSCS, 2014. Available
at http://www.liacs.nl/~jrot/up-to.pdf.

[27] D. Sangiorgi. On the bisimulation proof method. MSCS, 8:447–479,
1998.

[28] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the
powerset construction, coalgebraically. In FSTTCS, pages 272–283,
2010.

[29] A. Simpson. Sequent calculi for process verification: Hennessy-
Milner logic for an arbitrary GSOS. JLAP, 60–61:287–322, 2004.

[30] S. Staton. Relating coalgebraic notions of bisimulation. LMCS, 7(1),
2011.

[31] D. Turi and G. D. Plotkin. Towards a mathematical operational
semantics. In LICS, pages 280–291. IEEE, 1997.

9 2014/5/15

http://www.liacs.nl/~jrot/up-to.pdf

A. Proofs for Section 3

The following Proposition generalises the compositionality results
for compatible functions on lattices, see [24] or [25, Proposi-
tion 6.3.11].

Proposition 1. Compatible functors are closed under the following
constructions:

(i) composition: if A is (B,C)-compatible and A′ is (C,D)-
compatible, then A′ ◦A is (B,D)-compatible;

(ii) pairing: if (Ai)i∈ι are (B,C)-compatible, then 〈Ai〉i∈ι is
(B,Cι)-compatible;

(iii) product: if A is (B,C)-compatible and A′ is (B′, C′)-
compatible, then A× A′ is (B×B′, C×C′)-compatible;

Moreover, for an endofunctor B : C → C,

(iv) the identity functor Id : C → C is B-compatible;

(v) the constant functor to the carrier of any B-coalgebra is B-
compatible, in particular the final one if it exists;

(vi) the coproduct functor
∐

: Cι → C is (Bι, B)-compatible.

Proof. (i) Given γ : AB ⇒ CA and γ′ : A′C ⇒ DA′ we
obtain

A′AB
A′γ +3 A′CA

γ′A +3 DA′A

(ii) Given natural transformations γi : AiB ⇒ CAi for all i ∈ ι
we obtain a natural transformation

〈Ai〉i∈ιB Cι〈Ai〉i∈ι

〈AiB〉i∈ι

〈γi〉i∈ι +3 〈CAi〉i∈ι

(iii) Given γ : AB ⇒ CA and γ′ : A′B′ ⇒ C′A′ we construct
γ × γ′ : (A× A′)(B ×B′)⇒ (C × C′)(A× A′).

Items (iv), (v) and (vi) are trivial. For example, the latter is imme-
diate using the universal property of the coproduct.

B. Proofs for Section 4

The next simple Lemma about liftings in fibrations will be used
throughout this appendix, e.g., to prove Proposition 2, but also
Theorem 2.

Lemma 2. Let p : E → B and p′ : E ′ → B be two fibrations

and assume T : E → E ′ is the lifting of a functor T : B → B.
Consider a B-morphism f : X → Y . Then there exists a natural
transformation:

θ : T ◦ f∗ ⇒ (Tf)∗ ◦ T : EY → E
′
TX .

Proof. In order to define θR for someR in EY , we use the universal

property of the Cartesian lifting T̃ fT (R). In a diagram:

T (f∗(R))

(Tf)∗(TR) TR

TX TY

T (f̃R)

T̃ fTR

θR

Tf

(2)

Lemma 3. Let p : E → B be a bifibration and assume F : E → E
is the lifting of a functor F : B → B. Consider a B-morphism
f : X → Y . Then there exists a natural transformation:

ρ :
∐

Ff ◦ F ⇒ F ◦
∐

f : EX → EFY .

Proof. The proof uses the universal property of the opcartesian lift-
ings. Equivalently, from Lemma 2 we have a natural transformation

Ff∗ ⇒ (Ff)∗F . Taking the adjoint transpose via
∐

Ff ⊣ (Ff)∗

we get a natural transformation
∐

Ff Ff
∗ ⇒ F . A further ad-

joint transpose via the adjunction
∐

f ⊣ f∗ yields the desired

ρ :
∐

FfF ⇒ F
∐

f .

B.1 Proofs for Section 4.2

In this section we prove Proposition 2. For the sake of clarity we

explain how F
n

is defined for n = 2. Recall that E×BE is obtained
as a pullback of p along p in Cat.

For a lifting F of F , the functor F
2

makes the next diagram
commute.

E ×B E //

��

F
2

''

E

p

��

F

%%▲
▲▲

▲▲
▲

E ×B E
❴
✤

//

��

E

p

��

E
p

//

F ''P
PP

PP
PP B

F

&&▲
▲▲

▲▲
▲

E
p

// B

This means that on each fibre we have

F
n

X = (FX)n : EnX → E
n
FX .

As a consequence of Lemma 2 we obtain:

Lemma 4. Let p : E → B and assume G : E×Bn → E is a lifting
of the identity on B. If f : X → Y is a B-morphism, there is a
canonical natural transformation

θ : G(f∗)n ⇒ f
∗
G : EY → EGX .

Proof. This is an instance of Lemma 2 for T = Id and T = G. We
also use that the Cartesian lifting of a B-morphism f in E×Bn is
(f∗)n, where f∗ is the Cartesian lifting in E .

Proposition 2. Let G : E×Bn → E be a lifting of the identity on B
such that there exists a natural transformation GF

n
⇒ FG. Then

GX is F ξ-compatible.

Proof. Consider the natural transformation obtained as the compo-
sition

GX(ξ∗)n(F)n ⇒ ξ
∗
GX(F)n ⇒ ξ

∗
FGX

and use that (ξ∗ ◦ F)n = (ξ∗)n ◦ (F)n. The first natural transfor-
mation comes from Lemma 4 applied for ξ.

B.2 Proofs for Section 4.3

In the next Theorem we only use that the fibration p : E → B is a

bifibration and is split. 1

Theorem 2. Let T , F : E → E be liftings of T and F . If λ : T F ⇒
F T is a natural transformation sitting above λ, then

∐
α ◦T is

F ξ-compatible.

1 The Beck-Chevalley condition is not required for the functors
∐

f .

10 2014/5/15

Proof. We exhibit a natural transformation
∐

α ◦ T ◦ ξ
∗ ◦ F ⇒ ξ∗ ◦ F ◦

∐
α ◦ T .

This is achieved in Figure 1 by pasting five natural transformations,
obtained as follows:

(a) is the counit of the adjunction
∐

λX
⊣ λ∗

X .

(b) comes from λ being a lifting of λ, see Lemma 5.

(c) comes from the bialgebra condition, the fibration being split,
and the units and counits of the adjunctions

∐
α ⊣ α

∗,
∐

Fα ⊣
(Fα)∗, and

∐
λX
⊣ λ∗

X . See Lemma 6.

(d) arises since T is a lifting of T , using the universal property of
the Cartesian lifting (Tξ)∗, see Lemma 2.

(e) comes from F being a lifting of F , combined with the unit and
counit of the adjunction

∐
α ⊣ α

∗, see Lemma 3.

Lemma 5. Consider a fibration p : E → B, two B-endofunctors

F, T with corresponding liftings T , F . Assume λ : TF ⇒ FT is

a natural transformation and λ : TF ⇒ FT sits above λ. Then
there exists a 2-cell as in the diagram below:

EX EFX ETFX

EX ETX EFTX

F

id

T

T F

λ∗
X⇓ (3)

Proof. For R ∈ EFTX the R-component of the required natural
transformation is the dashed line in the diagram below and is
obtained using the universal property of the Cartesian lifting of λX .

TFR

λ∗(FTR) FTR

TFX FTX

λR

λ̃FTR

λX

(4)

The naturality in R can be easily checked and is a consequence of
the uniqueness of the factorisation.

Lemma 6. Given (X,α, ξ) an λ-bialgebra as in (5)

TX X FX

TFX FTX

α

Tξ

ξ

Fα

λX

(5)

and p : E → B a split fibration, there exists a 2-cell

ETFX ETX EX

EFTX EFX EX

(Tξ)∗

∐
λX

∐
α

∐
Fα

ξ∗

id⇓ (6)

Proof. We obtain the required natural transformation as the com-
posite of the natural transformations of (7) below.

∐
α ◦(Tξ)

∗

⇓ (
∐

λ ⊣ λ
∗)

∐
α ◦(Tξ)

∗ ◦ λ∗ ◦
∐

λ

⇓ (
∐

Fα ⊣ (Fα)∗)

∐
α ◦(Tξ)

∗ ◦ λ∗ ◦ (Fα)∗ ◦
∐

Fα ◦
∐

λ

⇓ (bialg)

∐
α ◦α

∗ ◦ ξ∗ ◦
∐

Fα ◦
∐

λ

⇓ (
∐

α ⊣ α
∗)

ξ∗ ◦
∐

Fα ◦
∐

λ
(7)

Except for the third one, these 2-cells are obtained from the
units or counits of the adjunctions recalled on the right column. The
third natural transformation is actually an isomorphism and arises
from (X,α, ξ) being a bialgebra and the fibration being split.

B.3 Proofs for Section 4.4

In this section we will prove Lemma 1. First we recall some basic
facts on the free monad T over a functor T on some category C.

Assuming T has free algebras over any X in C one can show
that the free monad T over T exists. We can define TX as the
free T -algebra on X , or equivalently, as the initial algebra for the
functor X + T (−). Thus for each X in C one has an isomorphism

[ηX , κX] : X + TTX → TX.

The η above gives the unit of the monad T. The monad multiplica-
tion µ : TTX → TX is given as the unique morphism obtained by
equipping TX with the TX + T (−)-algebra structure [id, κX].

Recall from [31] that there exists a bijective correspondence
between natural transformations

λ : T (F × Id)⇒ FT

and distributive laws

λ
† : T(F × Id)⇒ (F × Id)T.

We briefly recall here how λ† is obtained from λ. For X in B, we
equip (F × Id)TX with a FX × X + T (−)-algebra structure,
given by the sum of :

FX ×X
(F×Id)ηX // (F × Id)TX

FTTX
FµX // FTX

T (F × Id)TX

λTX

77♣♣♣♣♣♣♣♣♣♣♣

Tπ2TX
''◆

◆◆
◆◆

◆◆
◆◆

◆◆
//❴❴❴❴❴❴❴❴❴ (F × Id)TX

OO

��

TT
κX

// TX

11 2014/5/15

Hence λ
†
X is defined as the unique (F × Id)X + T (−)-algebra

morphism:

TT(F × Id)X
T (λ

†
X

)
//

κ(F×Id)X

��

T (F × Id)TX

〈FµXλTX κX (Tπ2T)X〉

��

T(F × Id)X
λ
†
X //❴❴❴❴ (F × Id)TX

(F × Id)X

η(F×Id)X

OO

(F×Id)ηX

66♥♥♥♥♥♥♥♥♥♥♥♥

(8)

The following technical lemma is needed to establish that when-

ever the lifting of T of a functor T has free algebras, the free monad

over T is the lifting of the free monad over T .

Lemma 7. Consider a lifting T of a B-endofunctor T and assume

T has free algebras.

1. The functor p : E → B has a right adjoint 1 : B → E inducing

an adjunction2

Alg(T) ⊥ Alg(T)

Alg(p)

Alg(1)

2. The functor Alg(p) preserves the initial algebras.

3. When P ∈ EX for some X in B, the free T -algebra over P sits
above the free T -algebras over X .

4. The free monad T over T exists and is a lifting of the free monad
T over T .

Proof. 1. Since the fibration considered here is bicartesian, one
can define 1(X) as the terminal object in EX . Then the state-
ment of this item is an immediate consequence of [14, Theo-
rem 2.14].

2. follows because Alg(p) is a left adjoint.

3. follows from item 1) applied for the lifting P + T of X + T .

4. is an immediate consequence of item 3).

Lemma 1. Consider a lifting T of a B-endofunctor T and as-

sume T has free algebras. Let λ : T (F × Id) ⇒ FT be a nat-
ural transformation sitting above λ : T (F × Id) ⇒ FT. Then

λ
†
: T(F × Id) ⇒ (F × Id)T sits above λ† : T(F × Id) ⇒

(F × Id)T.

Proof. We know that TX is the free T -algebra on X . Let

[ηX , κX] : X + TTX → TX

denote the initial X + T (−)-algebra. Similarly, let

[ηP , κP] : P + TTP → TP

denote the initial P + T (−)-algebra. By Lemma 7 we know that
when P ∈ EX we have that [ηP , κP] is a lifting of [ηX , κX].

2 The functor Alg stems from the 2-categorical notion of inserter, see [33]
or [14, Theorem 2.14,Appendix A.5] for a concise exposition.

For P ∈ EX the map λ
†
P is defined similarly to (8), as the

unique map such that:

TT(F × Id)P
T (λ

†
P
)
//

κ
(F×Id)P

��

T (F × Id)TP

〈FµP λ
TP κP (Tπ2T)P 〉

��

T(F × Id)P
λ
†
P //❴❴❴❴ (F × Id)TP

(F × Id)P

η
(F×Id)P

OO

(F×Id)ηP

77♥♥♥♥♥♥♥♥♥♥♥

(9)

By Lemma 7 we have that the (F × Id)P +T (−)-algebras T(F ×
Id)P and (F × Id)TP of diagram (9) sit above the (F × Id)X +
T (−)-algebras T(F × Id)X , respectively (F × Id)TX of di-

agram (8). By uniqueness of λ
†
X it follows that λ

†
P sits above

λ
†
X .

C. Details on Divergence

In this appendix, we discuss some details for showing compatibility

of Ctx ℓ that were omitted in the main text for lack of space.
First of all, observe that the GSOS rules defining the parallel

operator corresponds to a distributive law λ : T (F × Id) ⇒ FT,
which is defined for all sets X , x, y ∈ X and S, T ∈ Pω(L×X)
as

(S, x), (T, y) 7→ {(l, x′|y) | (l, x′) ∈ S}

∪ {(l, x|y′) | (l, y′) ∈ T}

∪ {(τ, x′|y′) | ∃a, (a, x′) ∈ S ∧ (a, y′) ∈ T}

∪ {(τ, x′|y′) | ∃a, (a, x′) ∈ S ∧ (a, y′) ∈ T}.

Intuitively, S and T are the sets of transitions of the states x and y.
The first set {(l, x′|y) | (l, x′) ∈ S} corresponds to the first GSOS
rule

x
l
→ x′

x|y
l
→ x′|y

and similarly for the others.

By virtue of Lemma 1, to prove compatibility of Ctx ℓ, we
only have to show that for all predicates P ⊆ X , the restriction

of λX to T (F
〈τ〉
× Id)P corestricts to F

〈τ〉
TP , that is when-

ever (S, x), (T, y) ∈ T (F
〈τ〉
× Id)P , then λX((S, x), (T, y)) ∈

F
〈τ〉

TP .

The latter means, by definition of F
〈τ〉

, that there exists a

(τ, t) ∈ λX((S, x), (T, y)) such that t ∈ TP . This can be proved

as follows: since S ∈ F
〈τ〉
P , then there exists (τ, x′) ∈ S such

that x′ ∈ P . By definition of λX , (τ, x′|y) ∈ λX((S, x), (T, y)).
Finally, since x′ ∈ P , then x′|y ∈ TP .

D. Details on Nominal Automata

In this section we assume the reader has some familiarity with
nominal sets, see [23].

D.1 The base category

We denote by A a countable set of names. The category Nom of
nominal sets has as objects sets X equipped with an action · :
Sym(A)×X → X of the group of finitely supported permutations
on A (that is, permutations generated by transpositions of the form
(a b)) and such that each x ∈ X has a finite support. Morphisms

12 2014/5/15

in Nom are equivariant functions, i.e., functions that preserve the
group action.

D.2 The fibration at issue

It is well known that Nom can equivalently be described as a
Grothendieck topos. Since Nom is a regular category, by [16, Ob-
servation 4.4.1] we know that the subobject fibration on Nom is in
fact a bifibration. Furthermore, by a change-of-base situation de-
scribed below we obtain the bifibration Rel(Nom) → Nom, see
also [16, Example 9.2.5(ii)]

Rel(Nom) //

��

Sub(Nom)

��

Nom
I 7→I×I

// Nom

Objects of Rel(Nom) are equivariant relations. That is, if X is a

nominal set, a nominal relation on X is just a subset R ⊆ X2

such that xRy implies (π · x)R(π · y) for all permutations π. This
bifibration is also split and bicartesian.

D.3 The functors and the distributive law

We will use the following Nom-endofunctors:

1. F : Nom→ Nom given by FX = 2×XA, where 2 = {0, 1}
is equipped with the trivial action and XA is given by the

internal hom. Concretely, an element f ∈ XA is a function
f : A → X such that there exists a finite subset S ⊆ A and
f(π(a)) = π · f(a) for all names a ∈ A and permutations
π ∈ Sym(A) fixing the elements of S.

2. Pω : Nom→ Nom that maps a nominal setX to its orbit-finite
finitely supported subsets. In particular one can check that Pω

is a monad and let µ denote its multiplication, given by union.

The functors Pω and F are related by a distributive law

λ : PωF ⇒ FPω.

For a nominal set X , the map λX is given by the product of the
morphisms acting on S ∈ PωF (X) by

S 7→ 1 ∈ 2 iff 1 ∈ (Pωτ1)(S)

and

S 7→ λa.{x ∈ X|∃f ∈ (Pωτ2)(S). f(a) = x} ∈ (PωX)A

where τ1, τ2 are the projections from FX to 2, respectively XA.

D.4 The liftings

The distributive law λ can be lifted to Rel(Nom), see [17, Exercise
4.4.6].

Rel(λ) : Rel(Pω)Rel(F)⇒ Rel(F)Rel(Pω).

Concretely, for R ∈ Rel(Nom)X , the nominal relation Rel(F)(R)
is given by (o, f) Rel(F)(R) (o′, f ′) iff o = o′ and for all a ∈ A

we have f(a)Rf ′(a).
On the other hand Rel(Pω) is given by S Rel(Pω)(R) S

′ iff
for all x ∈ S exists y ∈ S′ with xRy and for all y ∈ S′ exists
x ∈ S with xRy. As for Rel(λ)R, this is obtained as the restriction
of λR × λR to Rel(Pω)Rel(F)(R).

D.5 Soundness of bisimulation up to congruence

Nondeterministic nominal automata [4] can be modelled as FPω-
coalgebras, while deterministic nominal automata are represented
as F -coalgebras. The classical notion of finiteness is replaced by
orbit-finiteness—from a categorical perspective this makes sense,

since orbit-finite nominal sets are exactly the finitely presentable
objects in the lfp category Nom.

The generalised powerset construction [28] can be applied in
this situation as well, that is, a nondeterministic nominal automata
modelled as a coalgebra

〈o, t〉 : X → 2× Pω(X)A

yields an F -coalgebra structure

〈o♯, t♯〉 : PωX → 2× (PωX)A,

on PωX , given by the composite F (µ)◦λ◦Pω(〈o, t〉). The reason
why determinisation fails in a nominal setting [4] is that the finitary
power object functor Pω does not preserve orbit finiteness. This is
the case in the example of Section 5.3.

Notice that (PωX,µ, 〈o
♯, t♯〉) is a λ-bialgebra.

The fibrations Rel(Nom) → Nom and Sub(Nom) → Nom
are well-founded in the sense of [13]. To prove this we can ap-
ply [13, Lemma 3.4], which gives as a sufficient condition for well-
foundedness: that the fibre above each finitely presentable object
be finite. Indeed, recall from [32] that finitely presentable nominal
sets are the orbit-finite ones. Then, it is easy to check that a nominal
set with n orbits has 2n equivariant nominal subsets.

Hence, by [Theorem 3.7][13], the final Rel(F)〈o,t〉-coalgebra
exists and can be computed as the limit of an ωop-chain in the fibre
Rel(Nom)X . We will use this coinductive predicate to prove that
two states of a nominal automata accept the same language.

We can apply Theorem 2 to prove that the contextual closure
Ctx =

∐
µ ◦Rel(Pω) is Rel(F)〈o♯,t♯〉-compatible.

Thus bisimulation up to context is a valid proof technique for
nominal automata.

Moreover, we can apply Proposition 2 to prove compatibility
of the up to reflexive, symmetric and transitive closure techniques,
respectively.

(n=0) Let Rfl : Nom → Rel(Nom) be the functor mapping each
nominal set X to ∆X , the identity relation on X . Then RflX is
Rel(F)〈o,t〉-compatible since ∆FX = Rel(F)∆X .

(n=1) Let Sym : Rel(Nom) → Rel(Nom) be the functor mapping

each nominal relation R ⊆ X2 to its converse R−1 ⊆ X2.
SymX is F 〈o,t〉-compatible since F (R)−1 ⊆ F (R−1) for all

relations R ⊆ X2.

(n=2) Let⊗ : Rel(Nom)×Nom Rel(Nom)→ Rel(Nom) be the nomi-
nal relational composition functor. Composition of nominal re-
lations is computed just as in Set and one can show that Rel(F)
preserves it. Thus ⊗ is Rel(F)〈o,t〉-compatible.

Employing Proposition 1 and the fact that congruence closure is
obtained as the composition of the equivalence, context and reflex-
ive closure functors we derive that bisimulation up to congruence
is a sound technique.

D.6 The concrete example

The nondeterministic nominal automaton of Section 5.3 (reported
on the left below) is given formally by an FPω-coalgebra 〈o, t〉 on
the nominal set 1 + 1 + A + A + 1. For simplicity we denote the

13 2014/5/15

{∗}

a

��

R ❴❴❴❴❴❴❴❴❴ {⋆}

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{∗}

a

��

R ❴❴❴❴❴❴❴❴❴ A
′

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{a}

a

��

R ❴❴❴❴❴❴ {a, a′}

a

��

{⊤}
Cgr(R)

{a,⊤}

{a}

b

��

R ❴❴❴❴❴❴ {a, a′}

b

��

{a}
Cgr(R)

{a, a′}

{⊤}

a

��

R ❴❴❴❴❴❴ {a,⊤}

a

��

{⊤}
Cgr(R)

{⊤}

{⊤}

b

��

R ❴❴❴❴❴❴ {a,⊤}

b

��

{⊤}
Cgr(R)

{a,⊤}

Figure 2. Proving R to be a bisimulation up to congruence

second copy of A by A′. The map 〈o, t〉 is given below on the right.

∗

a

�� a // a

b

�� a // ⊤

a

��

⋆

a
::✉✉✉✉✉✉ b // a′ b

yy
a
OO

∗ 7→ (0, a 7→ {∗, a})

a 7→

(
0,

{
b 7→ {a} b#a

a 7→ {⊤}

)

⋆ 7→
(
0, a 7→ {a} ∪ A′ \ {a′}

)

a
′ 7→

(
0,

{
b 7→ {a′} b#a

a 7→ {a}

)

⊤ 7→ (1, a 7→ {⊤})

The determinisation of this automaton has infinitely many or-
bits. For example, the determinisation of the part reachable from ∗
is partially represented by

{∗}
a // {∗, a}

b��

a // {∗, a,⊤}

b��

abb

{∗, a, b}
a,b

//

c��

{∗, a, b,⊤}
c��

a,bbb

..

.
..
.

However, we can prove that ∗ and ⋆ accept the same language,
showing that the nominal relation R spanned by

({∗}, {⋆}), ({a}, {a, a′}), ({⊤}, {a,⊤}), ({∗}, A′)

is a bisimulation up to congruence, that is,R ⊆ Rel(F)〈o♯,t♯〉Cgr(R).
This is shown in Figure 2: for each pair in R, we check that the

successors are in Cgr(R). Note that for the pairs ({a}, {a, a′})
and ({⊤}, {a,⊤}), in the second and third rows, one needs to
check the successors for a and for a fresh name b. Instead for the
pairs ({∗}, {⋆}) and ({∗}, A′) in the first row, only successors for a
should be checked (since a does not belong to the support of these
states).

The only non-trivial computation is to check whether {∗, a}Cgr(R){a}∪
(A′ \ {a′}). We proceed as follows:

{∗, a} Cgr(R) {a} ∪ A′

Cgr(R) {a, a′} ∪ (A′ \ {a′})
Cgr(R) {a} ∪ (A′ \ {a′}).

E. Proofs for Section 6

Theorem 3. Let T be a lifting of T having a γ : T⊗ ⇒ ⊗T
2

above Id: T ⇒ T . Let both F1 and F2 be liftings of F . If

λ1 : T F1 ⇒ F1 T and λ2 : T F2 ⇒ F2 T sit above the same
λ : TF ⇒ FT , then there exists λ : T (F1 ⊗ F2) ⇒ (F1 ⊗ F2)T
above λ.

Proof. Since F1 and F2 are liftings of F : B → B it follows that

〈F1, F2〉 : E → E ×B E is a lifting of F . Moreover 〈λ1, λ2〉 :

T
2
〈F1, F2〉 ⇒ 〈F1, F2〉T is a lifting of λ.
Using that ⊗ : E ×B E → E lifts the identity we get that

F1 ⊗ F2 = ⊗ ◦ 〈F1, F2〉 is also a lifting of F .

T ⊗ 〈F1, F2〉
γ〈F1,F2〉+3 ⊗T

2
〈F1, F2〉

⊗〈λ1,λ2〉+3 ⊗〈F1, F2〉T

TF
id +3 TF

λ +3 FT

(10)

The required λ is obtained as the composite⊗〈λ1, λ2〉 ◦γ〈F1, F2〉
sitting above λ as in (10).

E.1 Proofs for Similarity

Proposition 4. Let λ be a monotone abstract GSOS specification

and (X,α, 〈ξ, id〉) be a λ†-bialgebra. Then Ctx is (Rel(F)⊑ ×
Id)〈ξ,id〉-compatible.

Proof. Recall that Ctx is defined as
∐

α ◦ Rel(T) and that, for

the canonical lifting, it holds that Rel(T)⊗ ⊆ ⊗Rel(T)2. We

decompose the lifting Rel(F)⊑ × Id as

(⊑× Id)⊗ (Rel(F)× Id)⊗ (⊑× Id)

where Id is the constant functor mapping R ⊆ X2 to ∆X . By
Theorem 3 we reduce the proof of the fact that Rel(T) distributes

over Rel(F)⊑ × Id to the fact that Rel(T) distributes over ⊑× Id
and Rel(F)× Id separately.

For the latter, observe that Rel(F)× Id = Rel(F × Id). Since

Rel(−) is a 2-functor [17, Exercise 4.4.6], we take λ
†
1 : Rel(T)Rel(F×

Id)⇒ Rel(F × Id)Rel(T) as Rel(λ).
For the former we need to use Lemma 1 and exhibit a λ : Rel(T)(⊑×

Id)⇒ ⊑Rel(T) sitting above λ. This amounts to show that, for all

relationsR ⊆ X2, the restriction of λX×λX to Rel(T)(⊑× Id)R
corestricts to⊑Rel(T)R. Note that since⊑ and Id are constant, this
is exactly the condition for monotone abstract GSOS. This guar-

antees the existence of λ
†
2 : Rel(T)(⊑ × Id) ⇒ (⊑ × Id)Rel(T)

sitting above λ†.

14 2014/5/15

The existence of λ
†
1 and λ

†
2 ensures, via Theorems 3 and 2, that

Ctx is (Rel(F)⊑ × Id)〈ξ,id〉-compatible.

E.2 Proofs for Weak Bisimilarity

Lemma 8. (F × F, F) is a fibration map.

Proof. Let f : X → Y be a function and R ⊆ X2 be a relation.
Then

F × F ((f × f−1(R))

= {(S, U, V,W) |

∀(a, x) ∈ S. ∃(a, y) ∈ W. f(x)Rf(y),
∀(a, y) ∈ V. ∃(a, x) ∈ U. f(x)Rf(y)}

= {(S, U, V,W) |

∀(a, x′) ∈ Ff [S]. ∃(a, y′) ∈ Ff [W]. x′Ry′,
∀(a, y′) ∈ Ff [V]. ∃(a, x′) ∈ Ff [U]. x′Ry′}

= (Ff × Ff × Ff × Ff)−1(F × F (R))

Proposition 5. Let λ : T (F × Id) ⇒ FT be a positive GSOS

specification and (X,α, 〈ξ1, id〉) and (X,α, 〈ξ2, id〉) be two λ†-

bialgebras then Ctx is (F × F × Id)〈ξ1,ξ2,id〉-compatible.

Proof. From λ : T (F×Id)⇒ FT, we define λ̃ : T (F×F×Id)⇒
(F × F)T as 〈λ ◦ T (τ1 × τ3), λ ◦ T (τ2 × τ3)〉 where τi are

the projections from F × F × Id to F and Id. Such λ̃ induces
a distributive law

λ̃
† : T(F × F × Id)⇒ (F × F × Id)T.

From the λ†-bialgebras (X,α, 〈ξ1, id〉) and (X,α, 〈ξ2, id〉), we

construct (X,α, 〈ξ1, ξ2, id〉) which is a λ̃†-bialgebra.
Recall that Ctx is defined as

∐
α ◦ Rel(T) and that, for the

canonical lifting, it holds that Rel(T)⊗ ⊆ ⊗Rel(T)2. We decom-

pose the lifting F × F × Id as

(ρ× Id)⊗ (Rel(F × F)[⊇⊆] × Id)

where Id is the constant functor mapping R ⊆ X2 to ∆X . By
Theorem 3 we reduce the proof of the fact that Rel(T) distributes

over F × F × Id to the fact that Rel(T) distributes over ρ× Id and

Rel(F × F)[⊇⊆] × Id separately.
For the former, by Lemma 1, we have to prove that for all

relations R ⊆ X2, the restriction of λ̃X × λ̃X to Rel(T)(ρ× Id)R
corestricts to ρRel(T)R. This can be easily checked by using the

fact that both ρ and Id are constant and exploiting the definition

of λ̃. As a consequence there exists a λ̃1

†

: Rel(T)(ρ × Id) ⇒
(ρ× Id)Rel(T) sitting above λ̃†.

For Rel(F × F)[⊇⊆] × Id we can reuse Proposition 4, but first

we have to prove that the GSOS specification λ̃ is monotone w.r.t.
[⊇⊆]. Via simple computations, one can check that this is indeed
the case when the original GSOS specification λ is positive. As a

consequence there exists a λ̃2

†

: Rel(T)(Rel(F ×F)[⊇⊆]× Id)⇒
(Rel(F × F)[⊇⊆] × Id)Rel(T) sitting above λ̃†.

The existence of λ̃1

†

and λ̃2

†

entails, via Theorems 3 and 2
compatibility of Ctx for (F × F × Id)〈ξ1,ξ2,id〉.

Additional references for the appendix

[32] D. Petrişan. Investigations into Algebra and Topology over Nominal

Sets. PhD thesis, University of Leicester, 2012.

[33] R. Street. Fibrations and Yoneda’s lemma in a 2-category. In
GregoryM. Kelly, editor, Category Seminar, volume 420 of Lecture

Notes in Mathematics, pages 104–133. Springer Berlin Heidelberg,
1974.

15 2014/5/15

Full abstraction for fair testing in CCS (expanded

version)

Tom Hirschowitz

To cite this version:

Tom Hirschowitz. Full abstraction for fair testing in CCS (expanded version). 80 pages, to
appear in LMCS. 2014. <hal-00869469v3>

HAL Id: hal-00869469

https://hal.archives-ouvertes.fr/hal-00869469v3

Submitted on 29 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00869469v3

FULL ABSTRACTION FOR FAIR TESTING IN CCS

(EXPANDED VERSION)

TOM HIRSCHOWITZ

CNRS, Université de Savoie

Abstract. In previous work with Pous, we defined a semantics for CCS which may both
be viewed as an innocent form of presheaf semantics and as a concurrent form of game
semantics. We define in this setting an analogue of fair testing equivalence, which we prove
fully abstract w.r.t. standard fair testing equivalence.

The proof relies on a new algebraic notion called playground, which represents the
‘rule of the game’. From any playground, we derive two languages equipped with labelled
transition systems, as well as a strong, functional bisimulation between them.

Key words and phrases: Programming languages; categorical semantics; presheaf semantics; game seman-
tics; concurrency; process algebra.

An extended abstract of this paper has appeared in CALCO ’13.
Partially funded by the French ANR projets blancs PiCoq ANR-10-BLAN-0305 and Récré ANR-11-BS02-

0010.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

© T. Hirschowitz
Creative Commons

1

2 T. HIRSCHOWITZ

Contents

1. Introduction 3
1.1. Overview of the approach 3
1.2. Main result: which behavioural equivalence? 5
1.3. Plan and overview 5
1.4. Related work 8
2. Prerequisites and preliminaries 9
2.1. Sets, categories, presheaves 9
2.2. Transition systems 11
2.3. CCS 14
3. Summary of previous work 15
3.1. Diagrams 16
3.2. From diagrams to moves 18
3.3. From moves to plays 20
3.4. Behaviours and strategies 21
3.5. Semantic fair testing 23
4. Playgrounds: from behaviours to strategies 24
4.1. Motivation: a pseudo double category 24
4.2. Behaviours 25
4.3. More axioms 26
4.4. Views 29
4.5. From behaviours to strategies 33
5. Playgrounds: transition systems 36
5.1. A syntax for strategies 36
5.2. The labelled transition system for strategies 39
5.3. Process terms 42
5.4. The labelled transition system for process terms 43
5.5. Translation and a first correctness result 45
6. Graphs and fair morphisms 46
6.1. Graphs with complementarity 46
6.2. Modular graphs and fair testing equivalence 49
6.3. Adequacy 52
6.4. Trees 56
6.5. Main result 58
7. CCS as a playground 62
7.1. A pseudo double category 62
7.2. Correctness 63
7.3. CCS as a pre-playground 66
7.4. Towards CCS as a playground 71
7.5. CCS as a playground 73
8. Conclusion and perspectives 76
8.1. Conclusion 76
8.2. Perspectives 76
References 77

FULL ABSTRACTION FOR FAIR TESTING IN CCS 3

1. Introduction

Games Concurrency
position configuration
player agent
move action
play trace

This paper is about game semantics for CCS [43]. Game se-
mantics is originally a very successful approach to sequential
denotational semantics [45, 26, 2]. Its basic idea is to interpret
programs as strategies for a player in a game, and the computa-
tional environment as an opponent. Composition of programs
is handled by letting the corresponding strategies interact. We
mostly use game semantical terminology in this paper, but the above dictionary may help
the intuition of concurrency theorists.

Denotational models of CCS are extremely diverse, and treat various behavioural equiv-
alences, as surveyed by Winskel and Nielsen [54]. The closest game semantical work seems
to be Laird’s model [33], which achieves full abstraction w.r.t. trace (a.k.a. may testing)
equivalence for a fragment of π. The goal of the present paper is to design the first game
semantics for a finer equivalence than trace equivalence, in the simpler setting of CCS (we
plan to address the full π-calculus in future work). The reason Laird is limited to trace
equivalence is that the standard notion of strategy is a set of plays (with well-formedness
conditions). Hence, e.g., the famous coffee machines, a.b + a.c and a.(b + c), are identified.
Following two recent, yet independent lines of work [49, 24], we generalise strategies by al-
lowing them to accept plays in several ways, thus reconciling game semantics with presheaf
models [30]. Winskel et al.’s approach is only starting to be applied to concrete languages,
see for example the work in progress on an affine, concurrent variant of Idealised Algol [8].
The approach of [24, 25] (HP) was used to give a game semantics for CCS, and define a
semantic analogue of fair testing equivalence, but no adequacy result was proved. We here
prove full abstraction of semantic fair testing equivalence w.r.t. standard fair testing equiv-
alence. Our model is compositional, since (1) all syntactic constructs of CCS have natural
interpretations, and (2) global dynamics may be inferred from local dynamics, as in any
game semantics (see the paragraph on innocence below and Sections 3.4.2 and 3.4.3).

1.1. Overview of the approach.

Truly concurrent plays. First of all, as in [49], our notion of play is truly concurrent. In-
deed, it does not keep track of the order in which (atomic) moves occur. Instead, it only
retains causal dependencies between them (see Section 3.3). Furthermore, our plays form a
proper category, which enables in particular a smooth treatment of bound variables. Briefly,
plays that differ only up to a permutation of channels are isomorphic, and by construction
strategies handle them correctly.

Branching behaviour. Second, we deal with branching behaviour. Standardly, and ignoring
momentarily the previous paragraph, a strategy is essentially a prefix-closed set of ‘accepted’
plays. This is equivalent to functors Eop → 2, where E is the poset of plays ordered by prefix
inclusion, and 2 is the poset 0 ≤ 1 (E stands for ‘extension’). A play u is ‘accepted’ by such a
functor F when F (u) = 1, and if u′ ≤ u, then functoriality imposes that F (u) ≤ F (u′), hence
F (u′) = 1: this is prefix-closedness. In order to allow plays to be accepted in several ways,
we follow presheaf models [30] and move to functors Eop → set, where set is the category

4 T. HIRSCHOWITZ

of finite ordinals and all functions between them1. Thus, to each play u ∈ E, a strategy
associates a set of ways to accept it, empty if u is rejected. E.g., in the simplistic setting
where E denotes the poset of words over actions, ordered by prefix inclusion, the coffee
machine a.b+a.c is encoded as the presheaf S defined on the left and pictured on the right:

● S(ε) = {⋆},
● S(a) = {x,x′},
● S(ab) = {y},
● S(ac) = {y′},

● S empty otherwise,
● S(ε↪ a) = {x↦ ⋆, x′ ↦ ⋆},
● S(a↪ ab) = {y ↦ x},
● S(a↪ ac) = {y′ ↦ x′},

⋆
x x′

y y′.

a a

b c

This illustrates what is meant by ‘accepting a play in several ways’: the play a is here
accepted in two ways, x and x′. The other coffee machine is of course obtained by identifying
x and x′. In our setting, plays are considered relative to their initial position X, hence
strategies are presheaves Eop

X → set on the category of plays over X.

Innocence. Finally, defining strategies as presheaves on plays is too naive, which leads us
to reincorporate the game semantical idea of innocence. Example 3.14 below exhibits such
a presheaf in which two players synchronise on a public channel a, without letting others
interfere. In CCS, this would amount to a process like a.P ∣a.Q ∣a.R in which, say, the first
two processes could arrange for ruling out the third. Considering such presheaves as valid
strategies would break our main result.

In the Hyland-Ong approach, innocent strategies may be defined as prefix-closed sets of
views, where views are special plays representing the information that a player may ‘access’
during a global play. The global strategy S associated to an innocent strategy S is then
recovered by decreeing that S accepts all plays whose views are accepted by S. This leads
us to consider a subcategory EV of the category E of plays, whose objects are called views.
We thus have for each position X two categories of strategies: the naive one, the category
[Eop

X , set] of behaviours on X, consists of presheaves on plays; the more relevant one, the

category [(EV
X)op , set] of strategies on X, consists of presheaves on views.

How, then, do we recover the global behaviour associated to a strategy, which is crucial
for defining our semantic fair testing equivalence? The right answer is given by a standard
categorical construction called right Kan extension (see Section 3.4.2). Roughly, for the
behaviour BS associated to a strategy S, a way to accept some play u ∈ EX is a compatible
family of ways for S to accept all views of u. In the boolean, setting (considering functors
Eop
X → 2), this reduces to BS accepting u iff all its views are accepted by S. Our definition

thus generalises Hyland and Ong’s.
Finally, game semantical parallel composition (different from CCS parallel composition,

though inspired from it) intuitively lets strategies interact together. We account for it as
follows. If we partition the players of a play X into two teams, we obtain two subpositions

(EV
X1

)op (EV
X)op (EV

X2
)op

set
S1 S2

[S1,S2]

X1 ↪ X ↩ X2, each player of X belonging to X1 or
X2 according to its team. We have that the category
EV
X of views on X is isomorphic to the coproduct cat-

egory EV
X1
+EV

X2
. The parallel composition of any two

strategies S1 and S2 on X1 resp. X2 is simply obtained by universal property of coproduct,
as above right.

1The author learnt this point of view from a talk by Sam Staton.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 5

1.2. Main result: which behavioural equivalence? With our game in place, we easily
define a translation of CCS processes into strategies. It then remains to demonstrate the
adequacy of this translation. Our strategies are actually rather intensional, so we cannot
hope for adequacy w.r.t. equality of strategies. Instead, we exploit the rich structure of our
model to define both an lts and an analogue of fair testing equivalence on the semantic
side, i.e., for strategies. We then provide two results. The most important, in the author’s
view, is full abstraction w.r.t. standard fair testing semantics (Corollary 6.51). But the
second result might be considered more convincing by many: it establishes that our se-
mantics is fully abstract w.r.t. weak bisimilarity (Corollary 6.50). A reason why the latter
result is here considered less important originates in the tension between lts semantics and
reduction semantics [47]. Briefly, reduction semantics is simple and intuitive, but it oper-
ates on equivalence classes of terms (under so-called structural congruence). On the other
hand, designing ltss is a subtle task, rewarded by easier, more structural reasoning over
reductions. We perceive lts semantics as less intrinsic than reduction semantics. E.g., for
more sophisticated calculi than CCS, several ltss exist, which yield significantly different
notions of bisimilarity.

● ● ● ●

● ● ●

τ

τ

τ

a

τ

b

Beyond lts-based equivalences, we see essentially two options:
barbed congruence [52] or some testing equivalence [9]. Barbed con-
gruence equates processes P and Q, roughly, when for all contexts
C, C[P] and C[Q] are weakly bisimilar w.r.t. reduction (i.e., only τ -actions are allowed),
and furthermore they have the same interaction capabilities at all stages. Barbed congru-
ence is sometimes perceived as too discriminating w.r.t. guarded choice. Consider, e.g.,
the CCS process P1 pictured above, and let P2 be the same with a and b swapped. Both
processes may disable both actions a and b, the only difference being that P1 disables a
before disabling b. Barbed congruence distinguishes P1 from P2 (take C = ◻ ∣a), which some
view as a deficiency.

Another possibility would be must testing equivalence [9]. Recall that P must pass a
test process R iff all maximal executions of P ∣ R perform, at some point, a fixed ‘tick’
action [19], here denoted by ♡. Then, P and Q are must testing equivalent iff they must
pass the same tests. Must testing equivalence is sometimes perceived as too discriminating
w.r.t. divergence. E.g., consider Q1 = !τ ∣ a and Q2 = a. Perhaps surprisingly, Q1 and Q2

are not must testing equivalent. Indeed, Q2 must pass the test a.♡, but Q1 does not, due
to an infinite, silent reduction sequence.

We eventually go for fair testing equivalence, which was originally introduced (for CCS-
like calculi) to rectify both the deficiency of barbed congruence w.r.t. choice and that of
must testing equivalence w.r.t. divergence. The idea is that two processes are equivalent
when they should pass the same tests. A process P should pass the test T iff their parallel
composition P ∣ T never loses the ability of performing the special ‘tick’ action, after any
tick-free reduction sequence. Fair testing equivalence thus equates P1 and P2 above, as well
as Q1 and Q2. Cacciagrano et al. [7] provide an excellent survey.

1.3. Plan and overview. We now give a bit more detail on the contents. In Section 2, we
introduce our notations and some preliminaries. Section 3 summarises from HP the game
for CCS, the notions of strategy and behaviour, the translation L−M of CCS processes into
strategies, and semantic fair testing equivalence. The rest is devoted to proving that L−M,
here decomposed as ⟦−⟧ ○ θ (see below), is such that P ∼f,s Q iff LP M ∼f LQM, where ∼f,s is
standard fair testing equivalence (Corollary 6.51).

6 T. HIRSCHOWITZ

1.3.1. Playgrounds. Our proof of this result takes a long detour to introduce a new algebraic
gadget called playground, which we now motivate. Our first attempts at proving the full
abstraction result were obscured by a tight interleaving of

● results stating common properties of moves in the game, or of plays, and
● results and constructions on strategies derived from those (e.g., the lts for strate-

gies).

On the other hand, the reasons why our constructions work are intuitively simple.
Namely, innocent strategies essentially amount to describing syntax trees by selecting their
branches amongst a set of all possible branches. This enlarges the universe of terms slightly,
but in game semantics, one studies properties of terms which also make sense for such gen-
eralised terms. Compositionality and the definition of our semantic fair testing equivalence
are examples where using strategies instead of terms tends to simplify the constructions.
E.g., associated behaviours are recovered from innocent strategies through Kan extension,
thanks to an expressive notion of morphism between plays. Our results essentially follow
from this correspondence between terms and strategies.

Example 1.1. To illustrate what we mean by generalised terms, consider standard, un-
labelled binary trees as a stripped down example of a term language. Such trees admit a
description as prefix-closed sets of words over {0,1} (their sets of occurrences). In order to
get exactly trees, such sets should be constrained a bit. E.g., the empty set of words, or
the set {(), (0)} do not describe any tree.

Playgrounds are a first attempt at a general framework describing this correspondence
between terms and strategies. We develop their theory in Sections 4 and 5, whose main
result is a strong bisimulation between both presentations (i.e., terms vs. strategies). This
is then expoited in the next sections to derive the main results.

The basis for playgrounds are pseudo double categories [20, 21, 35, 17], a weakening
of Ehresmann’s double categories [11, 12]. Playgrounds are thus pseudo double categories
with additional structure. The objects of a playground represent positions in the game.
There are two kinds of morphisms: vertical morphisms represent plays, while horizontal
ones represent embeddings of positions. E.g., there are special objects representing ‘typical’
players; and a player of a position X is a horizontal morphism d → X from such a typical
player, in a Yoneda-like way. There are then axioms to model atomicity (plays may be
decomposed into atomic moves) and locality (plays over a large position may be restricted
to any subposition; each player only sees part of the play). There are finally a few more
technical axioms.

In Section 4, we give the definition and derive a few basic results and constructions.
In particular, we define a naive notion of strategy, behaviours, and a less naive notion,
strategies. Finally, we relate the two by exhibiting a functor from strategies to behaviours.
In Section 5, we prove that strategies are in bijective correspondence with infinite terms in a
certain language. We then derive from this an lts SD for strategies. Furthermore, we define
a second language, which is closer to usual process calculi. And indeed, instantiating this
general language to our game for CCS yields essentially CCS, the only difference being that
channel creation is treated on an equal footing with input and output. We further equip
this language of process terms with an lts TD. Finally, we define a translation from process
terms to strategies ⟦−⟧∶TD → SD, which is proved to be a strong bisimulation (Theorem 5.35).

At this point, it remains

FULL ABSTRACTION FOR FAIR TESTING IN CCS 7

(1) to show that the pseudo double category DCCS formed by our game does satisfy the
axioms for playgrounds, and

(2) to use the strong bisimulation ⟦−⟧ to derive our main results.

1.3.2. Graphs with complementarity. We start with (2), because we feel doing otherwise
would disrupt the flow of the paper. Indeed, it should not be surprising at all that DCCS

forms a playground; and furthermore the methods employed to show this are in sharp
contrast with the rest of the paper. The plan for (2), carried out in Section 6, is as follows.

First, we reduce semantic fair testing equivalence to fair testing equivalence in the lts
SDCCS , thus bridging the gap between the game semantical world and ltss. But this is
not as simple as it looks. Indeed, Hennessy and De Nicola’s original setting for testing
equivalences [9] is not quite expressive enough for our purposes, which leads us to define a
slightly more general one, called modular graph with complementarity. First, our setting is
‘typed’, in the sense that not all tests may be applied to a process P , only tests of a type
‘compatible’ with P . Furthermore, in modular graphs with complementarity, fair testing
equivalence relies on a notion of complementarity saying when two transitions may be glued
together to form a closed-world transition. Thus, fair testing equivalence is ‘intrinsic’, i.e.,
does not depend on any alphabet. So we have a mere lts SDCCS over an ad hoc alphabet
Q derived from DCCS , and we need promote it into a modular graph with complementarity.
This goes by refining the original alphabet Q with ‘interfaces’, yielding a new alphabet
IQ. We then define a morphism χ∶ IQ → Q, and pull SDCCS back along χ, thus obtaining

our modular graph with complementarity SIQDCCS (which is thus also an lts over IQ). In

passing, we do the same for TDCCS , which yields TIQ
DCCS : this will be useful later. We

finally prove that fair testing equivalence in SIQDCCS coincides with semantic fair testing

equivalence (Lemma 6.26). Similarly, we construct a modular graph with complementarity
CCS for CCS, and show that fair testing equivalence therein coincides with standard fair
testing equivalence (Proposition 6.21). We are thus reduced to proving that some composite

CCS
θÐ→ TIQ

DCCS

⟦−⟧ÐÐ→ SIQDCCS is fair, i.e., preserves and reflects fair testing equivalence.
Our second step is to establish a sufficient condition for a relation R∶G H to be fair

and to apply this to the graph of our translation CCS → SIQDCCS . The idea is to define what
an adequate alphabet A should be in our setting, and to prove that, essentially, if we can
find an adequate alphabet A for G and H, such that R is a relation over A, then R is fair
as soon as

● R is included in weak bisimilarity over A, and
● both graphs have enough A-trees, in a sense inspired by the notion of failure [48].

In order to apply this, we transform SIQDCCS and TIQ
DCCS into modular graphs with comple-

mentarity over the same alphabet A (i.e., set of labels) as CCS . We proceed by ‘relabeling’

along some morphism of graphs IQ
ξÐ→ A. We still have our translation TIQ

DCCS

⟦−⟧ÐÐ→ SIQDCCS ,

which is a strong, functional bisimulation over A. It thus remains to check that (a) the map

CCS
θÐ→ TIQ

DCCS is included in weak bisimilarity, and (b) both CCS and SIQDCCS have enough
A-trees. Roughly, G has enough A-trees when, for any t in a certain class of tree-like ltss
over A called A-trees, there exists xt ∈ G weakly bisimilar to t. For (b), all three ltss under
consideration clearly have enough A-trees. For (a), our proof is brute force.

8 T. HIRSCHOWITZ

1.3.3. CCS as a playground. We finally deal in Section 7 with the last missing bit of our
proof: we show that DCCS forms a playground. This rests upon the following two main
ingredients.

First, we design a correctess criterion for plays, in a sense close to correctness criteria in
linear logic. Namely, plays from some position X to position Y are represented as particular

cospans Y
sÐ→ U

t←Ð X in some category. Specifically, they are obtained by closing a given
set of cospans named moves under identities and composition. We design a combinatorial
criterion for deciding when an arbitrary cospan is indeed a play.

The second main ingredient is a construction of the restriction of a play U from some
position X to a subposition X ′ ↪X. Briefly, this means computing the part of U which is
relevant to players in X ′. This construction is almost easy: most of U may be ‘projected’
back onto the initial position X, and then a mere pullback

U∣X′ U

X ′ X

of sets gives the needed restriction. The glitch is that in general some parts of U may not
canonically be projected back onto X. The principle for this projection is as simple as:
project, e.g., input moves to the inputting player. The problem arises for synchronisations.
Projecting them to the channel over which the synchronisation occurs does not yield the
desired result, and similarly projecting to either of the involved players fails. Our solution
is to ignore synchronisations at first, and later reintroduce them automatically using a
technique from algebraic topology: factorisation systems [28].

With both of these ingredients in place, the proof is relatively straightforward.
Section 8 concludes and provides some perspectives for future work.

1.4. Related work. Our bisimulation result relating terms to strategies for any playground
draws inspiration from Kleene coalgebra [6, 5]. There, the main idea is that both the syntax
and the semantics of various kinds of automata should be derived from more basic data
describing, roughly, the ‘rule of the game’. Formally, starting from a well-behaved (polyno-
mial) endofunctor on sets, one constructs both (1) an equational theory and (2) a sound and
complete coalgebraic semantics. This framework has been applied in standard automata
theory, as well as in quantitative settings. Nevertheless, its applicability to programming
language theory is yet to be established. E.g., the derived languages do not feature paral-
lel composition. Our playgrounds may be seen as a first attempt to convey such ideas to
the area of programming language theory. Technically, our framework is rather different
though, in that we replace the equational theory by a transition system, and the coalgebraic
semantics by a game semantics. To summarise, our approach is close in spirit to Kleene
coalgebra, albeit without quantitative aspects. Conversely, Kleene coalgebra resembles our
approach without innocence.

Building upon previous work [1, 40, 42] on asynchronous games, a series of papers
by Winskel and collaborators (see, e.g., Rideau and Winskel [49], Winskel [53]) attempt
to define a notion of concurrent strategy encompassing both innocent game semantics and
presheaf models. Ongoing work evoked above [8] shows that the model does contain innocent
game semantics, but presheaf models are yet to be investigated. (Their notion of innocence,
borrowed from Faggian and Piccolo [13], is not intended to be related to that of Hyland

FULL ABSTRACTION FOR FAIR TESTING IN CCS 9

and Ong.) In their framework, a game is an event structure, whose events are thought of as
moves, equipped with a notion of polarity. In one of the most recent papers in the series [53],
Winskel establishes a strong relationship between his concurrent strategies and presheaves.
For a given event structure with polarity A, he considers the so-called Scott order on the
set C(A) configurations of A. For two configurations c and d, we have c ⊑A d iff d may be
obtained from c by removing some negative moves and then adding some positive ones, in
a valid way. Strategies are then shown to coincide with presheaves on (C(A),⊑A). This is
close in spirit to our use of presheaves, but let us mention a few differences. First, our games
do not directly deal with polarity. Furthermore, in our setting, for any morphism p → q
of plays, q is intuitively bigger than p in some way, unlike what happens with the Scott
ordering. Finally, an important point in our use of (pre)sheaves is that, unlike configuration
posets, our plays form proper categories, i.e., homsets may contain more than one element
(intuitively, the same view may have several occurrences in a given play). Thus, potential
links between both approaches remain to be further investigated.

To conclude this paragraph, let us mention a few, more remotely related lines of work.
Melliès [41], although in a deterministic and linear setting, incorporates some ‘concurrency’
into plays by presenting them as string diagrams. Our notion of innocent strategy shares
with Harmer et al.’s [23] presentation of innocence based on a distributive law the goal of
better understanding the original notion of innocence. Finally, others have studied game
semantics in non-deterministic [22] or concurrent [18, 33] settings, using coarser, trace-based
behavioural equivalences.

2. Prerequisites and preliminaries

In this section, we recall some needed material and introduce our notations. We attempt to
provide intuitive, yet concise explanations, but these may not suffice to get the non-specialist
reader up to speed, so we also provide references when possible.

For the reader’s convenience, we finally provide in Figure 6 (end of paper) a summary
of notations, beyond those introduced here.

2.1. Sets, categories, presheaves. We make intensive use of category theory, of which we
assume prior knowledge of categories, functors, natural transformations, limits and colimits,
adjoint functors, presheaves, bicategories, Kan extensions, and pseudo double categories.
All of this except pseudo double categories is entirely covered in Mac Lane’s standard
textbook [38] and the beginning of Mac Lane and Moerdijk [39]. For a more leisurely
introduction, one may consult Lawvere and Schanuel [34], or Leinster [36]. The needed
material on Kan extensions roughly amounts to their expression as ends, which is recalled
when used (Section 3.4.2). The last bit, namely the notion of pseudo double category is
briefly recalled below, after fixing some notation. Finally, there are very local uses of
locally presentable categories [3] in the present section, and of adhesive category theory [32]
in the proof of Lemma 7.35.

Throughout the paper, any finite ordinal n is seen as {1, . . . , n} (rather than {0, . . . , n−
1}). In any category, for any object C and set X, let X ⋅C denote the ∣X ∣-fold coproduct
of C with itself, i.e., C +⋯ +C, ∣X ∣ times.

Set is the category of sets; set is a skeleton of the category of finite sets, e.g., the
category of finite ordinals and arbitrary maps between them; ford is the category of finite
ordinals and monotone maps between them. For any category C, Ĉ = [Cop ,Set] denotes the

10 T. HIRSCHOWITZ

category of presheaves on C, while C = [Cop , set] and ÌC = [Cop , ford] respectively denote the
categories of presheaves of finite sets and of finite ordinals. One should distinguish, e.g.,
‘presheaf of finite sets’ Cop → set from ‘finite presheaf of sets’ F ∶Cop → Set. The category
Ĉf of finite presheaves is the full subcategory of Ĉ spanning presheaves F which are finitely
presentable [3]. In presheaf categories, finitely presentable objects are the same as finite
colimits of representables. In the only case we will use (C below), because representables
have finite categories of elements, the latter in turn coincide with presheaves F such that
the disjoint union ∑c∈ob(C) F (c) is finite. For all presheaves F of any such kind, x ∈ F (d),
and f ∶ c→ d, let x ⋅ f denote F (f)(x).
Remark 2.1. This conflicts with the notation X ⋅C above, but context should disambiguate,
as in X ⋅C a set X acts on an object C, whereas in x ⋅f , a morphism f acts on an object x.

We denote the Yoneda embedding by y∶C→ Ĉ, and often abbreviate y(c) to just c.
For any functor F ∶C→ D and object D ∈ D, let FD denote the comma category on the

left below, and F (D) denote the pullback category on the right:

FD 1

C D
F

⌜D⌝

F (D) 1

C D.
F

⌜D⌝ (2.1)

When F is clear from context, we simply write CD, resp. C(D). Also, as usual, when F is
the identity, we use the standard slice notation D/D.

Finally, we briefly recall pseudo double categories. They are a weakening of Ehresmann’s
double categories [11, 12], notably studied by Grandis and Paré [20, 21], Leinster [35], and
Garner [17]. The weakening lies in the fact that one dimension is strict and the other weak
(i.e., bicategory-like). We need to consider proper pseudo double categories, notably we use
cospans in examples, but we often handle pseudoness a bit sloppily. Indeed, the proofs of
Section 4 quickly become unreadable when accounting for pseudoness.

A pseudo double category D consists of a set ob(D) of objects, shared by a ‘horizontal’
category Dh and a ‘vertical’ bicategory Dv. Following Paré [46], Dh, being a mere cate-
gory, has standard notation (normal arrows, ○ for composition, id for identities), while the
bicategory Dv earns fancier notation (arrows, ● for composition, id● for identities). D
is furthermore equipped with a set of double cells α, which have vertical, resp. horizontal,
domain and codomain, denoted by domv(α), codv(α), domh(α), and codh(α).

X X ′ X ′′

Y Y ′ Y ′′

Z Z ′ Z ′′

h

u

h′
u′

k

k′
u′′

v

h′′
v′

k′′
v′′

α α′

β β′

We picture this as, e.g., α on the right, where u = domh(α),
u′ = codh(α), h = domv(α), and h′ = codv(α). Finally, there are
operations for composing double cells: horizontal composition
○ composes them along a common vertical morphism, vertical
composition ● composes along horizontal morphisms. Both ver-
tical compositions (of morphisms and of double cells) may be
associative only up to coherent isomorphism. The full axiomatisation is given by Gar-
ner [17], and we here only mention the interchange law, which says that the two ways of
parsing the above diagram coincide: (β′ ○ β) ● (α′ ○ α) = (β′ ● α′) ○ (β ● α).

For any (pseudo) double category D, we denote by DH the category with vertical mor-
phisms as objects and double cells as morphisms, and by DV the bicategory with horizontal
morphisms as objects and double cells as morphisms. Domain and codomain maps arrange
into functors domv, codv ∶DH → Dh and domh, codh∶DV → Dv. We will refer to domv and
codv simply as dom and cod, reserving subscripts for domh and codh .

FULL ABSTRACTION FOR FAIR TESTING IN CCS 11

We introduce a bit more notation.

Definition 2.2. A double cell is special when its vertical domain and codomain are (hori-
zontal) identities.

For any object X ∈ ob(D), DH(X) denotes the category with

● objects all vertical morphisms to X, and

● morphisms u→ v all double cells
Y Y ′

X X

h

u v

k

α with codv(α) = k = idX .

This complies with noting C(D) for the pullback category (2.1), taking codv for F and X
for D.

2.2. Transition systems. Beyond category theory, this paper also makes heavy use of
the theory of ltss and associated techniques, especially bisimulation and other behavioural
equivalences. The notion of lts that we’ll use here is a little more general than usual.
Indeed, usually, the transitions of an lts are labelled with letters in a given set called the
alphabet, or the set of actions. Here, we consider the case where the vertices of an lts may
be typed, and actions may change the type. Extending the usual theory to this setting is
straightforward, so we only provide a brief overview. For more on the usual theory, modern
references are Sangiorgi [50] and Sangiorgi and Rutten [51]. Our setting is essentially a
baby version of Fiore’s [14] (see the references therein for precursors).

Let Gph be the category of reflexive graphs, which has as objects diagrams s, t∶E ⇉ V
in Set, equipped with a further arrow e∶V → E such that s ○ e = t ○ e = idV . We will
as usual denote e(v) by idv. Morphisms are those morphisms between underlying graphs
which preserve identity arrows. Gph is thus the category of presheaves over the category

⋆ [1]e

s

t

with e ○ s = id⋆ and e ○ t = id⋆.

Definition 2.3. For any A ∈ Gph, let the category of ltss over A be just the slice category
Gph/A.

2.2.1. Basic notation. A is called the alphabet, which goes slightly beyond the usual notion
of an alphabet. The latter would here come in the form of the graph with one vertex, an
identity edge, plus an edge for each letter. By convention, and mainly to ease graphical
intuitions in Sections 4 and 5, for any lts p∶G → A, we understand an edge e∶x′ → x in
G as a transition from x to x′. Of course, to recover a more standard notation, one may
replace all graphs with their opposites. When e does not matter, but p(e) does, we denote

such a transition by x A
p(e)←ÐÐ x′, omitting the subscript A when clear from context.

For any reflexive graph A, we denote by A⋆ the graph with the same vertices and
arbitrary paths as edges. A⋆ is reflexive, with identity edges given by empty paths. Similarly,
f⋆∶A⋆ → B⋆ is the morphism induced by f ∶A→ B. This defines a functor Gph→ Cat, which
is not left adjoint to the forgetful functor U ∶Cat → Gph. There is a left adjoint, though,
which we denote by fc. It is given by a quotient of A⋆, essentially equating (id) and (), i.e.,
the singleton, identity path and the empty one.

12 T. HIRSCHOWITZ

Definition 2.4. Let fc(A) denote the graph with the same vertices as A, whose edges
x→ x′ are paths x→⋆ x′ in A, considered equivalent modulo removal of identity edges.

Any path ρ has a normal form, obtained by removing all identity edges and denoted

by ρ̃. We will deem such normal forms identity-free. We denote by x A
a⇐Ô x′ any path

ρ∶x′ →⋆ x in G, such that p̃⋆(ρ) = (̃a). Concretely, if a is an identity, then p⋆(ρ) only
consists of identity edges; otherwise, p⋆(ρ) consists of a, possibly surrounded by identity
edges. In the former case, we further abbreviate the notation to x ⇐Ô x′ (observe that ρ

may well be empty). Similarly, for any path r in A⋆, x A
r⇐Ô x′ denotes any path ρ∶x′ →⋆ x

in G such that p̃⋆(ρ) = r̃.

2.2.2. Bisimulation and change of base. In this section, we revisit the usual notion of (strong
and weak) bisimulation in our graph-based setting, and provide a few stability results under
base change and cobase change. Let us start with strong bisimulations.

Definition 2.5. For any G,G′ ∈ Gph, a morphism f ∶G → G′ is a graph fibration iff for all
x ∈ G, y ∈ G′, and e′ ∈ G′(y, f(x)), there exist x′ ∈ G and e ∈ G(x′, x) such that f(e) = e′.

Consider morphisms p∶G → A and p′∶G′ → A. A relation over A is a subgraph of the
pullback

G ×A G′ G′

G A.p

p′

In particular, if two edges (e, e′) are related by some R ⊆ G×AG′, then so are their sources,
resp. targets. We denote such relations by R∶G G′.

We will most often deal with full relations, i.e., such that R(e, e′) iff both sources and
targets are related. Of course, such relations need only to be defined on vertices.

Definition 2.6. A simulation G G′ is a relation R over A such that for all e ∈ G(x′, x),
if R(x, y) then there exist y′ and e′ ∈ G′(y′, y) such that R(e, e′). A bisimulation is a
simulation whose converse also is a simulation.

When R is full, R is a simulation iff for all e ∈ G(x′, x), if R(x, y) then there exists y′

and e′ ∈ G′(y′, y) such that R(x′, y′) and e and e′ are mapped to the same edge in A.

Proposition 2.7. R is a simulation iff its first projection R ↪ G ×A G′ → G is a graph
fibration. Accordingly, R is a bisimulation iff both projections are graph fibrations.

Proof. Straightforward.

Remark 2.8. The characterisation of simulations in terms of graph fibrations may be
attributed to Joyal et al. [30], who first observed that a morphism f ∶G→ G′ in Gph/A is a
functional bisimulation iff for any commuting square as the exterior of

y(⋆) G

y[1] G′,

y(t) f

FULL ABSTRACTION FOR FAIR TESTING IN CCS 13

there exists a dashed arrow making both triangles commute. Here, y(t)∶ y(⋆) → y[1] maps
the reflexive graph with a single vertex (and its identity edge) to the one with two vertices
and just one non-identity edge e between them, by picking out the target of e. This precisely
says that f is a graph fibration.

A peculiar aspect of this characterisation is that it may seem independent from A.
Actually, R is a relation over G ×A G′, and f is a morphism over A.

As usual, fixing G and G′ over A, we have:

Proposition 2.9. Bisimulations are closed under union, and the union of all bisimulations,
called bisimilarity, is again a bisimulation, the maximum one.

Considering endorelations G G, we talk about bisimilarity in G.

Notation 2.10. Bisimilarity in G over A is denoted by ∼A. It may, upon a slight abuse of
notation, be understood as an equivalence relation over all vertices of any two graphs over
A. Namely, if G and G′ are graphs over A, we may write x ∼A y when x ∈ G and y ∈ G′ to
mean bisimilarity in G +G′.

Before treating weak bisimulations, we consider a first stability result, which is all we
need about strong bisimulations.

Any morphism f ∶A → B induces by pullback a change-of-base functor ∆f ∶Gph/B →
Gph/A, which has a left adjoint Σf given by composition with f .

Proposition 2.11. For any morphism of graphs f ∶A → B, both functors ∆f ∶Gph/B →
Gph/A and Σf ∶Gph/A → Gph/B, i.e., pullback along and post-composition with f , preserve
functional bisimulations.

Proof. The case of Σf is actually trivial. For ∆f , we use Remark 2.8. By the pullback
lemma, the square on the right below is a pullback. We check that ∆f(G) → ∆f(G′) is
again a bisimulation. Indeed, consider any square as on the left below:

y(⋆) ∆f(G) G

y[1] ∆f(G′) G′.

y(t)

Because G → G′ is a bisimulation, we obtain the dashed arrow making both triangles
commute. But then by universal property of pullback, we obtain the dotted arrow, making
the corresponding bottom triangle commute. Finally, the top triangle commutes upon
postcomposition with ∆f(G) → G, and after composition with ∆f(G) → ∆f(G′), hence
commutes by uniqueness in the universal property of pullback.

Remark 2.12. This is an instance of the fact that right maps are stable under pullback in
any weak factorisation system [28], here with the factorisation system cofibrantly generated
by the sole map y(t).

Let us now treat weak bisimulations. We start with the functional case.

Definition 2.13. A morphism f ∶G → G′ in Gph/A is a functional, weak bisimulation iff
fc(f)∶ fc(G)→ fc(G′) is a graph fibration.

Proposition 2.14. This equivalent to the fact that, for any edge e∶ y′ → f(x) in G′, there

exists x′ in G and a path r∶x′ →⋆ x such that f̃⋆(r) = (̃e).

14 T. HIRSCHOWITZ

Proof. If e is an identity, then taking the empty path for r will do, so the condition really
says something about non-identity edges e.

Remark 2.15. Remark 2.8 adapts to weak, functional bisimulations, using fc(f) instead
of f .

Let us now handle the relational case. In the strong case, a relation between graphs
G and G′ over A was defined to be a subobject of the pullback G ×A G′, and simulation
properties were related to the projections being graph fibrations. In order to follow this
pattern here, we need to consider fc(A) instead of A. However, in general, fc(G)×fc(A)fc(G′)
differs from fc(G ×A G′). We consider the former:

Definition 2.16. A weak simulation G G′ is a relation R ⊆ fc(G) ×fc(A) fc(G′) whose

first projection R ↪ fc(G) ×fc(A) fc(G′)→ fc(G) is a graph fibration.
R is a weak bisimulation iff both projections are graph fibrations.

Explicitly, consider p∶G → A and p′∶G′ → A, and R as above a weak simulation. For
any edge r∶x← x′ in fc(G), i.e., identity-free path r∶x←Ð⋆ x′, and y ∈ G′ such that R(x, y),
there should be an identity-free path r′∶ y ←Ð⋆ y′ in G′ such that (r, r′) ∈ R. If R is full, this
is equivalent to the existence, for each edge e∶x ← x′ in G and y ∈ G′ such that R(x, y),
of an identity-free path r′∶ y ←Ð⋆ y′ such that R(x′, y′) and (̃p(e)) = ̃(p′)⋆(r′). We will only
consider full relations in this paper, hence only the last characterisation will matter to us.

As in the strong case, we have for any fixed G and G′ over A:

Proposition 2.17. Weak bisimulations are closed under union, and the union of all weak
bisimulations, called weak bisimilarity, is again a weak bisimulation, the maximum one.

Notation 2.18. Weak bisimilarity over A is denoted by ≈A. As for strong bisimilarity, we
will abuse notation and consider ≈A as a relation between the vertices of any two graphs
over A.

2.3. CCS. The main subject of this paper is CCS [44], and fair testing equivalence over
it. We work with a standard version, except in two respects. First, we work with infinite
terms, which spares us the need for replication, recursion, or other possible mechanisms
for describing infinite processes in a finite way. Second, we work with a de Bruijn-like
presentation: terms carry their (finite) sets of known channels, in the form of a finite
number. I.e., the number n indicates that the considered process knows channels 1, . . . , n
(which complies with our notation for finite ordinals, introduced in Section 2.1).

Remark 2.19. While the de Bruijn-like presentation clearly is a matter of convenience,
working with infinite terms does have an impact on our results. Restricting ourselves to
recursive processes (e.g., by introducing some recursion construct), we would still have that
LP M ∼f LQM implies P ∼f,s Q. The converse is less obvious and may be stated in very simple
terms: suppose you have two recursive CCS processes P and Q and a test process T , possibly
non-recursive, distinguishing P from Q; is there any recursive T ′ also distinguishing P from
Q? We leave this question open.

Our (infinite) CCS terms are coinductively generated by the typed grammar

Γ ⊢ P Γ ⊢ Q
Γ ⊢ P ∣Q

Γ, a ⊢ P
Γ ⊢ νa.P

. . . Γ ⊢ Pi . . .

Γ ⊢∑
i∈n
αi.Pi

(n ∈ N) .

FULL ABSTRACTION FOR FAIR TESTING IN CCS 15

(Γ ⊢ P) id←Ð (Γ ⊢ P) (Γ ⊢∑
i∈n
αi.Pi)

αi←Ð (Γ ⊢ Pi)

(Γ ⊢ P1)
α←Ð (Γ ⊢ P ′

1)
(Γ ⊢ P1 ∣ P2)

α←Ð (Γ ⊢ P ′
1 ∣ P2)

(Γ ⊢ P2)
α←Ð (Γ ⊢ P ′

2)
(Γ ⊢ P1 ∣ P2)

α←Ð (Γ ⊢ P1 ∣ P ′
2)

(Γ, a ⊢ P) α←Ð (Γ, a ⊢ P ′)
(Γ ⊢ νa.P) α←Ð (Γ ⊢ νa.P ′)

(α ∉ {a, a})
(Γ ⊢ P1)

α←Ð (Γ ⊢ P ′
1) (Γ ⊢ P2)

α←Ð (Γ ⊢ P ′
2)

(Γ ⊢ P1 ∣ P2)
id←Ð (Γ ⊢ P1 ∣ P ′

2)

Figure 1: CCS transitions

Here, as announced, Γ ranges over N, i.e., the free names of a process always are 1 . . . n
for some n. Accordingly, Γ, a denotes just n + 1 (and then a = n + 1). Furthermore, αi is
either a, a, or ♡ (for a ∈ Γ). The latter is a ‘tick’ move used in the definition of fair testing
equivalence.

Definition 2.20. Let A be the reflexive graph with vertices given by finite ordinals, edges
Γ → Γ′ given by ∅ if Γ ≠ Γ′, and by Γ + Γ + {id ,♡} otherwise, id ∶Γ → Γ being the identity
edge on Γ. Elements of the first summand are denoted by a ∈ Γ, while elements of the
second summand are denoted by a.

We view terms as a graph CCS over A with the usual transition rules, as recalled in
Figure 1 (which is an inductive definition). There, we let α denote a when α = a, or a when
α = a.

Remark 2.21. The graph A only has ‘endo’-edges, hence only relates terms with the same
set of free channels. Some ltss below do use more general graphs.

Let us finally recall the definition of fair testing equivalence. Let � denote the set of

processes P such that for all paths P A⇐Ô P ′, there exists a path P ′
A

♡⇐Ô P ′′.

Definition 2.22. A test for Γ ⊢ P is any process Γ ⊢ Q. A test Q is passed by P when
(Γ ⊢ P ∣ Q) ∈ �. Two processes Γ ⊢ P and Γ′ ⊢ P ′ are fair testing equivalent, notation
(Γ ⊢ P) ∼f,s (Γ′ ⊢ P ′), iff Γ = Γ′ and P and P ′ pass exactly the same tests.

3. Summary of previous work

In this section, we recall some material from HP. Apart from the admittedly numerous
prerequisites mentioned in the previous section, the paper should be self-contained, although
the material in this section would usefully be complemented by reading HP.

As sketched in the introduction, we construct a multi-player game, consisting of po-
sitions and plays between them. Positions are certain graph-like objects, where vertices
represent players and channels. But what might be surprising is that moves are not just a
binary relation between positions, because we not only want to say when there is a move
from one position to another, but also how one moves from one to the other. This will

be implemented by viewing moves from X to Y as cospans Y
sÐ→ M

t←Ð X in a certain
category Ĉf of higher-dimensional graph-like objects, or ‘string diagrams’, where X and

16 T. HIRSCHOWITZ

v

[n] [n′]

⋆
si si

t s

(∀n ∈ N, i ∈ n, v ∈ ∪a∈n{πln,
πrn,♡n, ιn,a, on,a, νn})

πn

πln πrn

[n]t t

l r

(∀ n)

[m] om,c

⋆ τn,a,m,c

[n] ιn,a

sc

sa

t

t

ε

ρ

(∀ n ∈ N, a ∈ n, and c ∈m)

Figure 2: Equations for C

Y respectively are the initial and final positions, and M describes how one goes from X
to Y . By composing such moves (by pushout), we get a bicategory DCCS

v of positions and
plays. This is described in Sections 3.1–3.3. In Section 4, we will equip this bicategory
with more structure, namely that of a pseudo double category, where one direction models
dynamics, and the other models space, e.g., the inclusion of a position into another. Sec-
tion 3.4 further recalls our two notions of strategies derived from the game (behaviours and
innocent strategies, respectively), and Section 3.5 recalls our semantic variant of fair testing
equivalence.

3.1. Diagrams. In preparation for the definition of our base category C, recall that (di-
rected, multi) graphs may be seen as presheaves over the category freely generated by the
graph with two objects ⋆ and [1], and two edges s, t∶ ⋆→ [1]. Any presheaf G represents the
graph with vertices in G(⋆) and edges in G[1], the source and target of any e ∈ G[1] being
respectively e ⋅s and e ⋅t. A way to visualise how such presheaves represent graphs is to com-
pute their categories of elements [39]. Recall that the category of elements ∫ G for a presheaf
G over C has as objects pairs (c, x) with c ∈ C and x ∈ G(c), and as morphisms (c, x)→ (d, y)
all morphisms f ∶ c→ d in C such that y ⋅ f = x. This category admits a canonical projection

functor πG to C, and G is the colimit of the composite ∫ G
πGÐ→ C

yÐ→ Ĉ with the Yoneda

embedding. E.g., the category of elements for y[1] is the poset (⋆, s) sÐ→ ([1], id [1])
t←Ð (⋆, t),

which could be pictured as , where dots represent vertices, the triangle represents

the edge, and links materialise the graph of G(s) and G(t), the convention being that t
goes from the apex of the triangle. We thus recover some graphical intuition.

Our string diagrams will also be defined as (finite) presheaves over some base category
C. Let us give the formal definition of C for reference. We advise to skip it on first reading,
as we then attempt to provide some graphical intuition.

Definition 3.1. Let GC be the graph with, for all n,m ∈ N, a ∈ n, and c ∈m:

● vertices ⋆, [n], πln, πrn, πn, νn, ♡n, ιn,a, on,a, and τn,a,m,c;
● edges s1, ..., sn ∶ ⋆→ [n];
● for all v ∈ {πln, πrn,♡n, ιn,a, on,a}, edges s, t ∶ [n]→ v;

● edges [n] tÐ→ νn
s←Ð [n + 1];

● edges πln
lÐ→ πn

r←Ð πrn;

● edges ιn,a
ρÐ→ τn,a,m,c

ε←Ð om,c.

Let C be the free category on GC, modulo the equations in Figure 2, where, in the
left-hand one, n′ is n + 1 when v = νn, and n otherwise.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 17

εs ρs

εts1 ε idτn,a,m,c ρ ρts2

εts3 εts2

εt ρt

α

x′

x

y′

y

Figure 3: Category of elements for τ2,1,3,2 and graphical representation

Our category of string diagrams will be the category Ĉf of finite presheaves on C.

(⋆, s1) (⋆, s2) (⋆, s3)

([3], id [3])

To explain this seemingly arbitrary definition, let us com-
pute a few categories of elements. Let us start with an easy
one, that of [3] ∈ C (we implicitly identify any c ∈ C with yc).
An easy computation shows that it is the poset pictured in
the top part on the right. We will think of it as a position
with one player ([3], id [3]) connected to three channels, and
draw it as in the bottom part on the right, where the bul-
let represents the player, and circles represent channels. The
positions of our game are finite presheaves empty except perhaps on ⋆ and [n]’s. Other
objects will represent moves. The graphical representation is slightly ambiguous, because
the ordering of channels known to players is implicit. We will disambiguate in the text when
necessary. A morphism of positions is an injective morphism of presheaves. The intuition
for a morphism X → Y between positions is thus that X embeds into Y .

Definition 3.2. Positions and morphisms between them form a category DCCS

h .

A more difficult category of elements is that of π2. It is the poset generated by the
graph on the left (omitting base objects for conciseness):

ls rs

lss1 l idπ2 r lss2

lt = rt

.

We think of it as a binary player (lt) forking into two players (ls and rs), and draw it as
on the right. The graphical convention is that a black triangle stands for the presence of
idπ2 , l, and r. Below, we represent just l as a white triangle with only a left-hand branch,
and symmetrically for r. Furthermore, in all our pictures, time flows ‘upwards’.

Another category of elements, characteristic of CCS, is the one for synchronisation
τn,a,m,c. The case (n, a,m, c) = (2,1,3,2) is the poset generated by the graph on the left of
Figure 3, which we will draw as on the right. The left-hand ternary player x outputs on its
2nd channel, here α. The right-hand unary player y receives on its 1st channel, again α.
Both players have two occurrences, one before and one after the move, respectively marked
as x/x′ and y/y′. Both x and x′ have arity 3 here, and both y and y′ have arity 1. There

18 T. HIRSCHOWITZ

♡

[n]

πln

[n]

[n]

πrn

[n]

[m]

om,c

[m]

[n]

ιn,a

[n]

[n]

♡n

[n]

[n + 1]

νn

[n]

Figure 4: String diagrams and corresponding cospans for πln, πrn, om,c, ιn,a, ♡n, and νn

are actually three moves, in the sense that there are three higher-dimensional objects in the
corresponding category of elements. The first is the output move from x to x′, graphically
represented as the left-hand (intended to evoke the ‘ping’ sent by x entering channel
α). The second move is the input move from y to y′, graphically represented as the right-
hand (intended to evoke a ‘ping’ exiting channel α). The third and final move is the
synchronisation itself, which ‘glues’ the other two together, as represented by the squiggly
line.

We leave the computation of other categories of elements as an exercise to the reader.
The remaining diagrams are depicted in the top row of Figure 4, for (n, a,m, c) = (2,1,3,2).
The first two are views, in the game semantical sense, of the fork move π2 explained above.
The next two, om,c (for ‘output’) and ιn,a (for ‘input’), respectively represent what the
sender and receiver can see of the above synchronisation move. The last two diagrams are
a ‘tick’ move, used for defining fair testing equivalence, and a channel creation move.

3.2. From diagrams to moves. In the previous section, we have defined our category
of diagrams as Ĉf , and provided some graphical intuition on its objects. The next goal
is to construct a bicategory whose objects are positions (recall: presheaves empty except
perhaps on ⋆ and [n]’s), and whose morphisms represent plays in our game. We start in

this section by defining moves as cospans in Ĉf , and continue in the next one by explaining
how to compose moves to form plays. Moves are defined in two stages: seeds, first, give the
local form for moves, which are then defined by embedding seeds into bigger positions.

To start with, until now, our diagrams contain no information about the ‘flow of time’
(although it was mentioned informally for pedagogical purposes). To add this information,
for each diagram M representing a move, we define its initial and final positions, say X and

Y , and view the whole move as a cospan Y
sÐ→M

t←ÐX. We have taken care, in drawing our
diagrams before, of placing initial positions at the bottom, and final positions at the top.
We leave it to the reader to define, based on the above pictures, the cospans

[n] ∣ [n]

πn

[n]

[m] c ∣a [n]

τn,a,m,c

[m] c ∣a [n]

FULL ABSTRACTION FOR FAIR TESTING IN CCS 19

for forking and synchronisation, plus the ones specified in the bottom row of Figure 4. In
these cospans, initial positions are on the bottom row, and we denote by [m]c1,...,cp ∣a1,...,ap[n]
the position consisting of an m-ary player x and an n-ary player y, quotiented by the
equations x ⋅ sck = y ⋅ sak for all k ∈ p. When both lists are empty, by convention, m = n and
the players share all channels in order.

Definition 3.3. These cospans are called seeds.

Remark 3.4. Such cospans will be used below as the morphisms of a bicategory DCCS
v ,

using their lower object as their target. Thus, we often denote the corresponding leg by t
and the other by s. The reason for this convention is that it emphasises below that the
fibration axiom (P1) is very close to a universal property of pullback [27].

Remark 3.5. Both legs of each seed are monic, as will be below both legs of each move,
and then of each play (because monics are stable under pushout in presheaf categories).

As announced, the moves of our game are obtained by embedding seeds into bigger
positions. This means, e.g., allowing a fork move to occur in a position with more than one
player. We proceed as follows.

Definition 3.6. Let the interface of a seed Y
sÐ→M

t←ÐX be IX =X(⋆) ⋅ ⋆, i.e., the position
consisting only of the channels of the initial position of the seed. More generally, an interface
is a position consisting only of channels.

IX

Y M X

Since channels present in the initial position remain in the final
one, we have for each seed a commuting diagram as on the right. By
gluing any position Z to the seed along its interface, we obtain a new
cospan, say Y ′ → M ′ ← X ′. I.e., for any injective morphism IX → Z, we push IX → X,
IX →M , and IX → Y along IX → Z and use the universal property of pushout, as in:

Y Y ′

M M ′

IX Z

X X ′.

(3.1)

Definition 3.7. Let moves be all cospans obtained in this way.

Recall that colimits in presheaf categories are pointwise. So, e.g., taking pushouts along
injective maps graphically corresponds to gluing diagrams together.

Example 3.8. The cospan [2] ∣ [2] [ls,rs]ÐÐÐ→ π2
lt←Ð [2] has as canonical interface the presheaf

I[2] = 2 ⋅ ⋆, consisting of two channels, say a and b. Consider the position [2] + ⋆ consisting

of a player y with two channels b′ and c, plus an additional channel a′. Further consider
the map h∶ I[2] → [2] + ⋆ defined by a↦ a′ and b↦ b′. The pushout

I[2] [2] + ⋆

π2 M ′
is .

x1 x2

x

y ca=a′ b=b′

20 T. HIRSCHOWITZ

We conclude with a useful classification of moves.

Definition 3.9. A move is full iff it is neither a left nor a right fork. A seed is basic iff it
is neither a full fork nor a synchronisation. We call F the identity-on-objects subgraph of
Cospan(Ĉf) spanning full moves.

Intuitively, a move is full when its final position contains all possible avatars of involved
players.

U

X Y

V

3.3. From moves to plays. Having defined moves, we now de-
fine their composition to construct our bicategory DCCS

v of positions

and plays. DCCS
v will be a sub-bicategory of Cospan(Ĉf), the bicat-

egory which has as objects all finite presheaves on C, as morphisms
X → Y all cospans X → U ← Y , and as 2-cells U → V all com-
muting diagrams as on the right. Composition is given by pushout, and hence not strictly
associative.

Definition 3.10. Let DCCS
v denote the locally full subbicategory of Cospan(Ĉf) with po-

sitions as objects, whose morphisms, plays, are either equivalences or isomorphic to some
composite of moves.

We denote morphisms in Cospan(Ĉf) with special arrows X Y ; composition and
identities are denoted with ● and id● (recalling the notation for vertical morphisms in a
pseudo double category in Section 2.1).

Again, composition by pushout glues diagrams on top of each other.

Example 3.11. Composition features some concurrency. Composing the move of Exam-
ple 3.8 with a forking move by y yields

.

x1 x2 y1 y2

x y

ca=a′ b=b′

Example 3.12. Composition retains causal dependencies between moves. To see this,
consider the following diagram. In the initial position, there are channels a and b, plus
three players x(b), y(a, b), and z(a) (we indicate the channels known to each player in
parentheses). In a first move, x outputs on b, while y inputs. In a second move, z outputs
on a, while (the avatar y′ of) y inputs. The fact that y first inputs on b then on a is encoded
in the corresponding diagram, which looks like the following:

.
b a

x y z

y′

FULL ABSTRACTION FOR FAIR TESTING IN CCS 21

3.4. Behaviours and strategies.

3.4.1. Behaviours. Recall from HP the category E
● whose objects are maps U ←X in Ĉf , such that there exists a

play Y → U ← X, i.e., objects are plays, where we forget the
final position;

● and whose morphisms (U ← X) → (U ′ ← X ′) are commuting
diagrams as on the right with all arrows monic.

U U ′

X X ′

Morphisms (U ← X) → (U ′ ← X ′) in E represent extensions of U , both spatially (i.e.,
embedding into a larger position) and dynamically (i.e., adding more moves).

We may relativise this category E to a particular position X, yielding a category E(X)
of plays on X as follows. Consider the functor cod∶E → DCCS

h mapping any play U ← X to
its initial position X, and consider the pullback category E(X) as defined in Section 2.1.
The objects of E(X) are just plays (U ←X) on X, and morphisms are morphisms of plays
whose lower border is idX . This yields the definition of a category of ‘naive’ strategies,
called behaviours.

Definition 3.13. The category BX of behaviours on X is the category E(X) of presheaves
of finite sets on E(X).

Behaviours suffer from the deficiency of allowing unwanted cooperation between players.

Example 3.14. Consider a position X with three players x, y, z sharing a channel a, and
the following plays on it: in ux,y, x outputs on a, and y inputs; in ux,z, x outputs on a,
and z inputs; in iz, z inputs on a. One may define a behaviour S mapping ux,y and iz to a
singleton, and ux,z to ∅. Because ux,y is accepted, x accepts to output on a; and because iz
is accepted, z accepts to input on a. The problem is that S rejecting ux,z roughly amounts
to x refusing to synchronise with z, or conversely.

3.4.2. Strategies. To rectify this, we consider the following notion of view:

Definition 3.15. Let EV denote the full subcategory of E consisting of views, i.e., compos-
ites of basic seeds.

We relativise views to a position X by considering the comma category EV
X as defined

in Section 2.1. Its objects are pairs of a view V ← [n] on a single n-ary player, and an
embedding [n]↪X, i.e., a player of X.

Definition 3.16. The category SX of strategies on X is the category ÍEV
X of presheaves of

finite ordinals on EV
X .

Remark 3.17. We could here replace finite ordinals with a wider category and still get
a valid semantics. But then to show the correspondence with the syntax below we would
work with the subcategory of presheaves of finite ordinals.

This definition of strategies rules out undesired behaviours. We now sketch how to map
strategies to behaviours (this is done in more detail for arbitrary playgrounds below): let
first EX be the category obtained by taking a comma category instead of a pullback in the

definition of E(X). Then, embedding ÍEV
X into EV

X via ford ↪ set, followed by right Kan

22 T. HIRSCHOWITZ

extension to Eop
X followed by restriction to E(X)op yields a functor (−)∶SX → BX . The

image of a strategy S may be computed as in

(EV
X)op Eop

X E(X)op

ford set,

S S′

S

where S′ is here obtained by right Kan extension (the embedding (EV
X)op ↪ Eop

X being full
and faithful, we may choose the diagram to strictly commute). By the standard formula
for right Kan extensions as ends [38] we have, for any S∶ (EV

X)op → ford:

S(U) = ∫
v∈EV

X

S(v)EX(v,U).

If S is boolean, i.e., takes values in {∅,1}, then the involved end may be viewed as a
conjunction, saying that U is accepted by S whenever all its views are accepted by S.

Equivalently, S(U) is a limit of (EV
X/U)op domÐÐ→ (EV

X)op SÐ→ ford↪ set.

3.4.3. Decomposition: a syntax for strategies. Our definition of strategies is rather semantic
in flavour. Indeed, presheaves are akin to domain theory. However, they also lend themselves
well to a syntactic description (unlike behaviours). Again, this is treated at length in the
abstract setting below, so we here only sketch the construction.

First, it is shown in HP that strategies on an arbitrary position X are in 1-1 correspon-
dence with families of strategies indexed by the players of X. Recall that [n] is the position
consisting of one n-ary player. A player of X is the same as a morphism [n]→X (for some
n) in DCCS

h . Thus, we define the set Pl(X) = ∑n∈NDCCS

h ([n],X) of players of X.

Proposition 3.18. We have SX ≅∏(n,x)∈Pl(X) S[n]. For any S ∈ SX , we denote by S ⋅x the
component corresponding to x ∈ Pl(X) under this isomorphism.

So, strategies on arbitrary positions may be entirely described by strategies on ‘typical’
players [n]. As an important particular case, we may let two strategies interact along an
interface (recall from Definition 3.6 that this means a position consisting only of channels),
which will be the basis of our semantic definition of fair testing equivalence. We proceed as
follows. Consider any pushout Z of X ← I → Y where I is an interface. We have

Corollary 3.19. SZ ≅ SX × SY .

Proof. We have EV
Z ≅ EV

X +EV
Y , and conclude by universal property of coproduct.

We denote by [S,T] the image of (S,T) ∈ SX × SY under this isomorphism.
Having shown how strategies may be decomposed into strategies on ‘typical’ players

[n], we now explain that strategies on such players may be further decomposed. First, we
observe that EV

[n] is isomorphic to the full subcategory EV([n]) of E([n]) spanning views.

For any strategy S on [n] and seed b∶ [n′] [n], let the residual S ⋅ b of S after b be
the strategy playing like S after b, i.e., for all v ∈ EV

[n′], (S ⋅ b)(v) = S(b ● v). S is almost

determined by its residuals. The only information missing from the S ⋅ b’s to reconstruct S
is the set of initial states and how they relate to the initial states of each (S ⋅ b). This may
be taken into account as follows.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 23

Definition 3.20. For any S ∈ S[n] and initial state σ ∈ S(id●), let S∣σ, the restriction of S
to σ, be determined by

S∣σ(v) = {σ′ ∈ S(v) ∣ S(!v)(σ′) = σ},
where !v denotes the unique morphism !∶ id● → v.

S is determined by its set S(id●) of initial states, plus the map (σ, b)↦ (S∣σ ⋅b) sending
any σ ∈ S(id●) and isomorphism class b of seeds to S∣σ ⋅ b. In other words, we have for all n:

Theorem 3.21. S[n] ≅ (∏n′∈N,b∶[n′] [n] S[n′])⋆.

Given an element (D1, . . . ,Dm) of the right-hand side, the corresponding strategy maps
the identity view id● to m, and any non-identity view b●v on [n] to the sum ∑i∈mDi(b)(v).

A closely related result is that strategies on a player [n] are in bijection with infinite
terms in the following typed grammar, with judgements n ⊢D D and n ⊢ S, where D is called
a definite strategy and S is a strategy :

. . . nb ⊢ Sb . . . (∀b∶ [nb] [n] ∈ [B]n)
n ⊢D ⟨(Sb)b∈[B]n⟩

. . . n ⊢D Di . . . (∀i ∈m)
n ⊢ ⊕i∈mDi

(m ∈ N).

Here, [B]n denotes the set of all isomorphism classes of seeds from [n]. This achieves the
promised syntactic description of strategies. We may readily define the translation of CCS
processes, coinductively, as follows. For processes with channels in Γ, we define

L∑i∈n αi.PiM = ⟨b↦ ⊕{i∈n∣b=LαiM}LPiM⟩
Lνa.P M = ⟨νΓ ↦ LP M, ↦ ∅⟩
LP ∣QM = ⟨πlΓ ↦ LP M, πrΓ ↦ LQM, ↦ ∅⟩

LaM = ιΓ,a
LaM = oΓ,a

L♡M = ♡Γ.

(3.2)

For example, a.P + a.Q + b̄.R is mapped to

⟨ιΓ,a ↦ (LP M⊕ LQM), oΓ,b ↦ LRM, ↦ ∅⟩.

3.5. Semantic fair testing. The tools developed in the previous section yield the following
semantic analogue of fair testing equivalence.

Definition 3.22. Closed-world moves are those generated by some seed among νn,♡n,πn,
and τn,i,m,j . A play is closed-world when it is a composite of closed-world moves. Let a
closed-world play be successful when it contains a ♡ move, and unsuccessful otherwise. A
state σ ∈ B(U) of a behaviour B ∈ BZ over a closed-world play U ← Z is successful when
the play U is, and unsuccessful otherwise.

Let then ⊥⊥Z denote the set of behaviours B ∈ BZ such that any unsuccessful, closed-
world state admits a successful extension. Formally:

Definition 3.23. Let B ∈ ⊥⊥Z iff, for any unsuccessful, closed-world play U ← Z and
σ ∈ B(U), there exists a successful, closed-world U ′, a morphism f ∶U → U ′ in E(Z), and a
state σ′ ∈ B(U ′) such that σ′ ⋅ f = σ.

Finally, let us say that a triple (I, h, S), for any h∶ I →X (where I is an interface) and
S ∈ SX , passes the test consisting of a morphism k∶ I → Y of positions and a strategy T ∈ SY
iff [S,T] ∈ ⊥⊥Z , where Z is the pushout of h and k. Let (I, h, S)⊥⊥ denote the set of all such
(k, T).

24 T. HIRSCHOWITZ

Definition 3.24. For any h∶ I →X, h′∶ I ′ →X ′, S ∈ SX , and S′ ∈ SX′ , (I, h, S) ∼f (I ′, h′, S′)
iff I = I ′ and (I, h, S)⊥⊥ = (I, h′, S′)⊥⊥.

Obviously, ∼f is an equivalence relation, analogous to standard fair testing equivalence,
which we hence also call (semantic) fair testing equivalence.

This raises the question of whether the translation L−M preserves or reflects fair testing
equivalence. The rest of the paper is devoted to proving that it does both. As announced
in the introduction, this is done by organising the game into a playground, as defined in the
next section.

4. Playgrounds: from behaviours to strategies

Y ′ Y

U ′ U

X ′ X

h

k

l

s′ s

t′ t

4.1. Motivation: a pseudo double category. We start by or-
ganising the game described above into a (pseudo) double category.
We have seen that positions are the objects of the category DCCS

h ,
whose morphisms are embeddings of positions. We have also seen
that positions are the objects of the bicategory DCCS

v , whose mor-
phisms are plays. It should seem natural to define a pseudo double
category structure with

● DCCS

h as horizontal category,
● DCCS

v as vertical bicategory,
● commuting diagrams as on the right as double cells.

Here, X is the initial position and Y is the final one; all arrows are mono. This forms a
pseudo double category DCCS , and we have:

Proposition 4.1. The functor codv ∶DCCS
H → DCCS

h is a Grothendieck fibration [27].

Intuitively, codv being a fibration demands some canonical way of restricting a given
play on some position X to some ‘subposition’ X ′ → X. More technically, it amounts to

the existence, for all plays Y
u
X and horizontal morphisms X ′ lÐ→ X, of a universal (≈

maximal) way of restricting u to X ′, as on the left below:

Y ′ Y

X ′ X

h

u′ u

l

α

E′′

E′ E

p(E′′)

p(E′) p(E).

r

p(r)

t

p(t)

s

k

Formally, consider any functor p∶E → B. A morphism r∶E′ → E in E is cartesian when,
as on the right above, for all t∶E′′ → E and k∶p(E′′) → p(E′), if p(r) ○ k = p(t) then there
exists a unique s∶E′′ → E′ such that p(s) = k and r ○ s = t.
Definition 4.2. A functor p∶E → B is a fibration iff for all E ∈ E, any h∶B′ → p(E) has a
cartesian lifting, i.e., a cartesian antecedent by p.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 25

Proposition 4.1 is proved among other facts in Section 7. This was the starting point
of the notion of playground: which axioms should we demand of a pseudo double category
in order to enable the constructions of HP? We follow the constructions in this section,
considering an arbitrary pseudo double category D, on which we impose axioms along the
way. Objects and vertical morphisms will respectively be called positions and plays. The
pseudo double category DCCS does satisfy the axioms, albeit in a non-trivial way. This is
stated and proved in Section 7, but we use the result in advance in examples to illustrate
our constructions.

Let us record the axioms imposed on D in the next sections to obtain our bisimulation
result (Theorem 5.35):

● (P1), page 25,
● (P2)—(P5), page 27,
● (P6), page 27,
● (P7), page 28,

● (P8), page 28,
● (P9), page 35,
● (P10), page 42.

4.2. Behaviours. The easiest construction of HP to carry over to the abstract setting of
playgrounds is that of behaviours. First, let us stress that, in the case of DCCS , DCCS

H is very
different from the category of plays called E recalled in Section 3.4.1. Indeed, any morphism
α∶u→ u′ in DCCS

H in particular induces an embedding of the final position dom(u) of u into
that of u′. In E, instead, a morphism U → U ′ may involve extending U with more moves.

Example 4.3. The move of Example 3.8 embeds into the play of Example 3.11 in the sense
of E, but not in the sense of DCCS

H . Indeed, the passive player y of Example 3.8 does belong
to the final position, but its image in Example 3.11 does not.

Z Y ′

Y

X X ′

h

w

u

u′

k

α (4.1)

So our first step is to construct an analogue of E from any
playground D. Intuitively, it should have as objects all plays,
and as morphisms u → u′ all pairs (w,α) as on the right.
However, this definition is slightly wrong on morphisms, in
that α carries some information about how w embeds into u′,
while we are only interested in how u does. Thus, we instead
define morphisms u→ u′ to be pairs (w,α) as in (4.1), quotiented by the equivalence relation
generated by pairs ((w,α), (w′, β)) such that there exists morphisms i and γ satisfying
α = β ○ (u ● γ), as in

Y ′

Z

Z ′

Y

Y

X ′.

X

u
u

u′

i

id

γ α

β

(4.2)

In order to define composition in this category, we state the following axiom (cf. Propo-
sition 4.1).

Axiom. (P1) (Fibration) The vertical codomain functor cod ∶ DH → Dh is a fibration.

26 T. HIRSCHOWITZ

Composition may now be defined by pullback (i.e., cartesian lifting in the fibration
cod∶DH → Dh) and pasting:

Z ′′ Z ′ V

Z Y ′

Y

X X ′ U.

w

u

u′

w′

u′′

w′′

α

β

(We use ‘double pullback’ marks to denote cartesian double cells.) Quotienting makes
composition functional and associative, and furthermore it is compatible with the above
equivalence. Identities are obvious.

Proposition 4.4. This forms a category E.

Example 4.5. Consider the move M ′ from Example 3.8, and let us name its initial and final
positions as in M ′∶Y ′ X ′. Let us further call U ∶Y ′′ X ′ the play from Example 3.11,
obtained by composing M ′ with a forking move by y ∈ Y ′[2]. In order to obtain a double
cell M ′ → U , we need to provide an extension of M ′ with some move by y, and there are
actually three ways of doing this. One is with a left forking move, another is with a right
forking move, and the last is with a full forking move. In this example, the last possibility
actually yields an identity double cell U → U , and may be obtained using (P1) in the

Z Z ′

Y Y ′

X X ′

w

u

w′

u′
α

β

following general way. Consider any double cell α∶u → u′ in DH , and
play w′ such that u′ ●w′ is well-defined. Then, letting β∶w → w′ be the
cartesian lifting of w′ along dom(α), we obtain a morphism u → u′ ● w′

in E, as in on the right. The universal property of β here amounts to
the fact that left and right forking moves both embed uniquely into full
forking, which makes our three candidate morphisms u → u′ ● w′ equal
in E.

Recalling notation from Section 2.1, consider now the pullback category E(X), where
X is any position. Following Definition 3.13, we state:

Definition 4.6. The category BX of behaviours on X is E(X), i.e., the category of
presheaves of finite sets on E(X).

This construction has a bit of structure. Indeed, the map X ↦ E(X) extends to a
pseudo functor E(−)∶Dv → Cat by vertical post-composition. Post-composing the opposite

of this pseudo functor by (−)∶Catop → Cat, we obtain a pseudo functor B−∶Dop
v → Cat,

satisfying Bu(B)(u′) = B(u ● u′).

4.3. More axioms. We now turn to generalising further constructions of HP to the general
setting of playgrounds. We mentioned in Section 3 that strategies on a position X should
be defined as presheaves on the category of views on X. We will further want to generalise
the decomposition theorems for strategies of HP, which crucially rely on a property of views
stated (in Section 4.4 below) as Proposition 4.27.

In order for this to work, we need to state more axioms for D. In particular, the axioms
equip D with a notion of player for a position X. Each position has a set of players, each

FULL ABSTRACTION FOR FAIR TESTING IN CCS 27

player having a certain ‘type’. Furthermore, in Section 4.4, D is equipped with a notion of
view; and views have a type, too. Proposition 4.27, e.g., states that views on a position X
form a coproduct, over all players x in X, of views over the type of x.

We first state a series of simple axioms, and then, building on these, two more compli-
cated axioms.

Axiom. D is equipped with

● a full subcategory I↪ Dh of objects called individuals,
● a replete class M of vertical morphisms called moves, with replete subclasses B and
F, respectively called basic and full moves,

● a map ∣ − ∣∶ob(DH)→ N called the length,

satisfying the following conditions:

(P2) I is discrete. Basic moves have no non-trivial automorphisms in DH . Vertical
identities on individuals have no non-trivial endomorphisms.

(P3) (Individuality) Basic moves have individuals as both domain and codomain.
(P4) X X

X Y

u

ū

αu

(Atomicity) For any cell α∶ v → u, if ∣u∣ = 0 then also ∣v∣ = 0. Up
to a special isomorphism in DH , all plays u of length n > 0 admit
decompositions into n moves. For any u∶X Y of length 0,
there is an isomorphism id●X → u as on the right in DH .

(P5) (Fibration, continued) Restrictions of moves (resp. full moves) to individuals either
are moves (resp. full moves), or have length 0.

Replete means stable under isomorphism (here in DH). In (P5), restriction is w.r.t. the
fibration cod∶DH → Dh, as explained below Proposition 4.1.

Definition 4.7. A player in a position (i.e., object) X, is a pair (d, x), where d ∈ I and
x ∶ d→X. Let Pl(X) = ∑d∈IDh(d,X) be the set of players of X.

Example 4.8. In DCCS , individuals are representable positions [n], which consist for some
n of a single n-ary player, connected to n distinct channels. Importantly, for each isomor-
phism class of such positions we pick one representative: this makes I discrete by Yoneda.
Furthermore, basic moves are basic seeds.

Here is a further, crucial axiom.

Definition 4.9. Let B0 be the full subcategory of DH having as objects basic moves and
morphisms of length 0 between individuals.

Axiom. (P6) (Views) For any move M ∶Y X in Dv, the domain functor dom∶B0/M →
I/Y is an equivalence of categories.

In elementary terms, for any y∶d→ Y in Dh with d ∈ I, there exists a cell

d Y

dy,M X,

y

vy,M M

yM

αy,M

with vy,M ∈ B0, which is unique up to canonical isomorphism of such. An isomorphism
between two such tuples, say (d′, v′, y′, α′) and (d′′, v′′, y′′, α′′) is a diagram

28 T. HIRSCHOWITZ

d Y

d′ X

d′′

y

v′ M
α′ α′′

β y′

h y′′

v′′

such that α′′ ○ β = α′ (where necessarily d′ = d′′, h = id, and y′ = y′′).
Example 4.10. This axiom is obviously satisfied by DCCS .

We then have two decomposition axioms.

Axiom. (P7) (Left decomposition) Any double cell

A X

Y

B Z

h

u

w1

w2

k

α
decomposes as

A X

C Y

B Z

h

u1

u

u2

l

w1

w2

k

α1

α2

α3

with α3 an isomorphism, in an essentially unique way.

Here is our second decomposition axiom.

Axiom. (P8) (Right decomposition) Any double cell as in the center below, where b is
a basic move and M is a move, decomposes in exactly one of the forms on the left
and right:

A X

B Y

C Z

α1

α2

¢

A X

B Y

C Z

h

w

b

u

M

k

α

¨

A X

B Y

C Z.

α1

α2

Remark 4.11. This axiom takes pseudoness rather sloppily. Indeed, the domain of the
right-hand composite is not really b ● w, but rather id●C ● (b ● w). So we actually mean
α = (α2 ● α1) ○ λ−1

b●w, where λ cancels identities on the left.

Example 4.12.
X X

X X

X X

iy

Sox

α

That this axiom is satisfied by DCCS is not obvious and is proved in
Section 7. However, let us disprove the more general version where b is
not required to be basic. Let X consist of two players x and y sharing a
channel a. Let iy ∶X X be the play where y inputs on a, ox∶X X
be the play where x outputs on a, and let S∶X X be the play where
both players synchronise on a. We obtain a double cell as on the right,
which does not decompose as in (P8). The problem here is that, on the left-hand side, the
upper input by y has to be mapped to S, which prevents any suitable decomposition.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 29

We now define and study views.

4.4. Views.

Definition 4.13. A view in D is a play which is specially isomorphic in DH to a possibly

empty (vertical) composite of basic moves. I.e., if dn
bn
dn−1 . . . d1

b1
d0 are all basic moves,

then the composite is a view. Let V be the full subcategory of DH consisting of views.

The definition includes the ‘identity’ view id●d. In DCCS , this of course coincides with
views as defined in HP.

Here is an important consequence of our axioms. It is a bit complicated to state, but
very useful in the (more intelligible) developments on views below.

Lemma 4.14. For all plays w∶Y dn and u∶Xp X0, views v∶dn d0, and double
cells α∶ v ● w → u, for all special isomorphisms γ∶ (b1 ● (. . . (bn−1 ● bn) . . .)) → v and γ′∶u →
(M1 ● (. . . (Mp−1 ●Mp) . . .)) decomposing v and u into moves, there exists a unique, strictly
monotone map f ∶n∪{0}→ p∪{0} with f(0) = 0 and double cells β∶w → (Mf(n)+1●(. . .●Mp))
and αk∶ b̄k →Mk for 1 ≤ k ≤ f(n), where

b̄k = {
bi (if k ∈ Im(f), with f(i) = k)
id●cod(bmin{i∈n∣f(i)>k}) (otherwise),

such that α1 ● (. . . ● (αf(n) ● β)) = γ′ ○ α ○ (γ ●w), as in

Y Xp

dn Xp−1

dn−1

⋮

d1 X1

d0 X0

w

bn

v

Mp

u

b1 M1

⋮γ

α γ′ =

Y Xp

dn Xf(n)

dn−1 Xf(n)−1

Xf(2)−1

d1 Xf(1)

d = d0 Xf(1)−1

X0.

w

bn

b1

M
>f(n)

Mf(n)

M
]f(1),f(2)[

Mf(1)

M
<f(1)

αf(1)

αf(n)

β

In the case p = 0, also n = ∣w∣ = 0, and the decomposition of u should be understood as
M1 ● . . . ●Mf(n) being an identity, with Mf(n)+1 ● . . . ●Mp being u.

Remark 4.15. Only f is claimed to be unique here. Furthermore, as in (P8), we are a bit
sloppy regarding pseudoness. Also, in the following, we consider only the underlying map
f ∶n→ p, implicitly extended with f(0) = 0. Finally, for all α∶ v ●w → u, there exist γ and γ′

as in the lemma. This is obvious when n and p ≠ 0; we just explained it for the case p = 0;
and when n = 0 it follows from Lemma 4.17 below.

30 T. HIRSCHOWITZ

Proof. We proceed by lexicographic induction on the pair (n, p).
If n = 0 then our map f ∶n → p is the unique map 0 → p, f(n) = 0, and we take

β = γ′ ○ α ○ γ. Otherwise, we apply (P8) with b = b1, w = (b2 ● . . . ● bn−1 ●w), M =M1 and
u = (M2 ● . . . ●Mp−1).

● If we are in the left-hand case, α decomposes as α1 ● α2, with α1∶ b1 → M1 and
α2∶ (b2 ● . . . ● bn ●w) → (M2 ● . . . ●Mp). By induction hypothesis, we obtain a map
f ′∶n−1→ p−1 and a corresponding decomposition of α2. We then let f ∶n→ p map
1 to 1, and k + 1 to f ′(k) + 1 for any k ∈ (n − 1).

● If we are in the right-hand case, we obtain a map f ′∶n→ p − 1, and return the map
k ↦ f ′(k) + 1.

This shows existence of the desired decomposition. For uniqueness, consider any map g∶n→
p and corresponding decomposition. Axiom (P7) entails that at each stage, f−1{1, . . . , k}
and g−1{1, . . . , k} have the same cardinality. Indeed, otherwise, we would find isomorphic
decompositions of b1 ● . . . ● (bn ●w) with incompatible lengths. Thus, f = g.

We continue with a few easy results. Recall the family of isomorphisms αu from
Axiom (P4), indexed by vertical morphisms of length 0. Furthermore, let us denote by
ρu∶u ● id●X → u and λu∶ id●Y ● u → u the coherence isomorphisms from Dv for cancelling
vertical identities.

Lemma 4.16. For any u∶X Y of length 0, there is an isomorphism

X Y

Y Y

ū

u
αu

in DH , such that αu ● αu = λ−1
u ○ ρu and αu ○ αu = id●ū.

Proof. Pose αu = id●ū ○ (αu)−1.

Lemma 4.17. If b∶d d′ has length 0, then d = d′, b̄ = idd, and αb and αb are horizontal
inverses.

Proof. By (P2).

Lemma 4.18. B0 (Definition 4.9) is a groupoid.

Proof. This means that any α∶ b→ b′ in B0 is an isomorphism. Let b∶d1 d2 and b′∶d′1 d′2.
Existence of α entails d1 = d′1 and d2 = d′2, by (P2).

If b′ ∈ B, then α and id b′ are both mapped by dom∶B0/b′ → I/d′1 to dom(α) = idd′1 .

By (P6), there is thus a unique isomorphism γ∶ b → b′ in DH such that id b′ ○ γ = α, i.e.,
γ = α. This shows that α is an iso.

If b′ has length 0, then by (P4) we furthermore have ∣b∣ = 0 and d1 = d2 = d′1 = d′2.
Moreover, the composite αb′ ○ α ○ αb (with αb′ and αb as in Lemma 4.16 and (P4)) is
an endomorphism of id●d1 , hence id id●d1

by (P2). It is thus an isomorphism, hence so is

αb
′ ○ αb′ ○ α ○ αb ○ αb, which is equal to α by two applications of Lemma 4.17.

Lemma 4.19. In any category C, for any object c isomorphic to an object d such that d
has no non-trivial endomorphisms, c does not have any non-trivial endomorphisms either.

Proof. By the Yoneda lemma, we have C(c, c) ≅ C(c, d) ≅ C(d, d) ≅ 1.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 31

Lemma 4.20. Any groupoid C whose objects have no non-trivial endomorphisms is an
equivalence relation.

Proof. For any objects c and d, we have that if C(c, d) is non-empty then c and d are
isomorphic, so by Yoneda C(c, d) ≅ C(c, c) ≅ 1.

Corollary 4.21. B0 is an equivalence relation.

This adds to Lemma 4.18 that there is at most one morphism between any two objects.

Proof. By Lemma 4.19 and (P4), its objects have no non-trivial automorphisms, which in
a groupoid is the same as having no non-trivial endomorphisms. By the last result, B0 is
an equivalence relation.

This leads to a better understanding of V.

Lemma 4.22. Consider any morphism of views α∶ v → v′, with isomorphisms γ∶ (b1 ● . . . ●
bn)→ v and γ′∶ v′ → (b′1 ● . . .●b′n′), for basic moves bi∶di di−1 and b′j ∶d′j d′j−1 for all i ∈ n
and j ∈ n′. We have n = n′, di−1 = d′i−1 for all i ∈ n+1, and there exist unique isomorphisms
αi∶ bi → b′i such that γ′ ○ α ○ γ = (αn ● . . . ● α1), as in

dn d′n

dn−1 d′n−1

⋮ ⋮

d1 d′1

d0 d′0

bn

v

b′n

v′

b1 b′1

αγ γ′ =

dn d′n

dn−1 d′n−1

⋮ ⋮

d1 d′1

d0 d′0.

bn b′n

b1 b′1

αn

α1

Proof. Applying Lemma 4.14 with w = id●dn yields f ∶n → n′ which by Corollary 4.21
and (P4) has to be a bijection. This yields the desired αi’s, which are unique by Corol-
lary 4.21 again.

This entails:

Corollary 4.23. V is an equivalence relation, compatible with length.

Here is an analogue of (P6) for general plays and views instead of just moves and basic
moves.

Proposition 4.24. For any y∶d → Y in Dh with d ∈ I, and any u∶Y X in Dv, there
exists a cell

d Y

dy,u X,

y

vy,u u

yu

αy,u

with vy,u a view, which is unique up to canonical isomorphism of such.

Proof. We find vy,u by repeated application of (P6). For essential uniqueness, by repeated
application of (P6), we find an isomorphism between any two such views, which by Corol-
lary 4.23 is unique.

32 T. HIRSCHOWITZ

We continue with an analogue of (P8):

Proposition 4.25. Any double cell

A X

B Y

C Z,

h

w

v

u

u′

k

α

where v is a view, decomposes in exactly one of the following forms:

A X

A′

B Y

Y ′

C Z

w2

u′1

α1

α2

α3

α4

α5

A X

B Y

C Z

α1

α2

A X

X ′

B Y

B′

C Z

v1

u2

α1

α2

α3

α4

α5

with ∣w2∣ > 0, ∣v1∣ > 0, and α4 and α5 iso in DH .

A possible reading of this is that in the left and middle cases, the whole of v embeds into
u′. In the left case, a non-trivial part of w embeds into u′. In the right case, a non-trivial
part of v embeds into u.

Proof. Choose decompositions of u′ and u as M1●. . .●Mp and Mp+1●. . .●Mp+q, respectively,
and of v as b1 ● . . . ● bn. Apply Lemma 4.14 to obtain f ∶n→ p+ q. If f(n) > p, we are in the
right-hand case. If f(n) = p, we are in the middle case. If f(n) = r < p, let u′2 =M1 ● . . .Mr

and u′1 =Mr+1●. . .●Mp. Lemma 4.14 provides β∶w → u′1●u and γ∶ v → u′2 such that γ●β = α.
Applying (P7) to β gives a decomposition of α as on the left below

A X

A′

B Y

T

C Z

w2

u′1

u′2

β1

β2

γ

α4

α5

A

A′

B A′

B

w2

w2

α4

with α4 and α5 isos. If ∣w2∣ ≠ 0, then we are in the left-hand case of the proposition, and the
middle case is impossible by essential uniqueness in (P7). Otherwise, we may decompose
α4 as on the right by atomicity (empty cells are given by coherence or (P4)), so we are in
the middle case of the proposition.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 33

Lastly, we need a few more definitions before Proposition 4.27.

Definition 4.26. Let EV be the full subcategory of E consisting of views.

Consider, for any X, the comma category EX induced by the vertical codomain functor
cod∶E → Dh mapping (4.1) to k (following notation from Section 2.1). Similarly, consider
EV
X . Concretely, an object of EV

X is a pair of a view v∶d′ d, and a player x∶d→X of X. A

morphism (v1, x1)→ (v2, x2) is a morphism (w,α)∶ v1 → v2 in EV, such that x2○cod(α) = x1.
Recall now from above Definition 4.6 the pullback category E(X). It is isomorphic to

the full subcategory of EX consisting of pairs (u,x) where x = idX . Similarly, we have
EV(X), which is empty unless X is an individual.

Proposition 4.27. We have

(i) The inclusion EV(d)↪ EV
d mapping v to (v, idd) is an isomorphism of categories.

(ii) The inclusion ∑(d,x)∈Pl(X)EV(d) ↪ EV
X mapping ((d, x), v) to (v, x) is an isomor-

phism of categories.
(iii) EV(d) is a preorder.

Proof. First, because I is discrete, Dh(d, d) = {idd}, hence (i). For (ii), the functor EV
X →

∑(d,x)∈Pl(X)EV(d) mapping any (v, x) to ((d, x), v), with v∶d′ d a view and x∶d → X
a player, is inverse to the given functor. Finally, consider any two morphisms v1 → v2 in
EV(d), say

X1 d2

d1

d d

h1

w1

v1

v2
α1 and

X2 d2

d1

d d.

h2

w2

v1

v2
α2

Fixing decompositions of v1 and v2 into basic moves, we obtain by Lemmas 4.14 and 4.22
that α1 and α2 respectively decompose as

X1 d2

d1 d′

d d

h1

w1

v1

v12

v22

α1
1

α2
1

and

X2 d2

d1 d′

d d.

h2

w2

v1

v12

v22

α1
2

α2
2

By Corollary 4.23, α2
1 = α2

2. Furthermore, we conclude by (P1) and the quotienting (4.2) in
the definition of E that both morphisms are equal in EV(d) to α2

1 ● idv12
.

4.5. From behaviours to strategies.

Definition 4.28. The category SX of strategies on X is the category ÍEV
X of presheaves of

finite ordinals on EV
X .

34 T. HIRSCHOWITZ

Example 4.29. On DCCS , EV
X as defined here yields a category equivalent to the definition

in HP, so the categories of strategies are also equivalent (even isomorphic because ford
contains no non-trivial automorphism).

The rest of this section develops some structure on strategies, which is needed for
constructing the lts in Section 5.2. We start by extending the assignment X ↦ SX to a
pseudo double functor Dop → QCat, where QCat is Ehresmann’s double category of quintets
on the 2-category Cat:

Definition 4.30. QCat has small categories as objects, functors as both horizontal and
vertical morphisms, and natural transformations as double cells.

Actually, our first step is to extend the assignment X ↦ EV
X to pseudo double functor

D → QCat. Define the action of a horizontal map h∶X → X ′ to map any object (v, x)
of EV

X to (v, h ○ x), and any morphism to itself viewed as a morphism in EV
X′ . (This

functor is induced by universal property of EV
X as a comma category.) This defines a

functor EV
− ∶Dh → Cat. The pseudo functor Dv → Cat is a bit harder to construct. For

any u∶Y X in Dv and y∶d → Y , the cell αy,u from Proposition 4.24 induces a functor
Σvy,u ∶EV(d) → EV(dy,u) mapping any v∶d′ d to vy,u ● v. Composing with the coproduct
injection inj dy,u,yu ∶EV(dy,u) ↪ ∑(d′′,x)∈Pl(X)EV(d′′), because EV

X ≅ ∑(d′′,x)∈Pl(X)EV(d′′), we
obtain functors

EV(d) Σvy,uÐÐÐ→ EV(dy,u)
injdy,u,yu EV

X ,

whose copairing defines a functor EV
u ∶EV

Y → EV
X .

Now, for any cell as on the left below, we obtain by Proposition 4.24 a canonical natural
isomorphism as on the right

Y Y ′

X X ′

k

u u′

h

α

EV
Y EV

Y ′

EV
X EV

X′ .

EV
k

EV
u EV

u′

EV
h

≅

By canonicity of the above double cell, we have

Proposition 4.31. This assignment defines a pseudo double functor EV
− ∶D→ QCat.

Definition 4.32. Let the opposite Dop of a pseudo double category D be obtained by
reversing both vertical and horizontal arrows, and hence double cells.

We obtain:

Definition 4.33. Let S∶Dop → QCat be the composite Dop (EV
−
)op

ÐÐÐÐ→ QCatop
Ì−Ð→ QCat.

As a shorthand, we denote S(f)(S) by S ⋅f for f horizontal or vertical. Concretely, for
any horizontal h∶Z →X, S ⋅ h satisfies

(S ⋅ h)(v, z) = S(v, h ○ z),
whereas for any vertical u∶Y X, S ⋅ u satisfies

(S ⋅ u)(v, y) = S(vy,u ● v, yu).
We conclude this section by constructing the extension functor from strategies to be-

haviours, in arbitrary playgrounds.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 35

Recall that strategies on a position X are presheaves of finite ordinals on EV
X , and that

behaviours are presheaves of finite sets on E(X). To go from the former to the latter, we
use EX as a bridge. Recall from Section 2.1 that objects of EV

X are diagrams of the shape

d′
v
d

xÐ→ X, with v a view, and that objects of E(X) are just plays Y
u
X. The idea

here is that on the one hand EV
X is richer than E(X), in that its objects may be plays

on subpositions of X, whereas objects of E(X) are plays on the whole of X. But on the
other hand, E(X) is richer than EV

X because its objects may be arbitrary plays, whereas

objects of EV
X have to be views. EX contains both EV

X and E(X), its objects being diagrams

Y
u
Z

hÐ→X, for arbitrary plays u.

First, let kX ∶ ÍEV
X → EV

X denote postcomposition with ford ↪ set. Because views form a

full subcategory of DH , all embeddings iX ∶EV
X ↪ EX are also full. This entails:

Lemma 4.34. For all X, right Kan extension (iopX)⋆∶EV
X ↪ EX along iopX is well-defined,

full, and faithful.

Proof. One easily shows that, when defined, right extension along a full and faithful functor
is full and faithful.

It remains to show that the considered right extensions exist. It is well-known [38]

that the right Kan extension of any S ∈ EV
X maps any (u,h) to the limit of the functor

(EV
X/(u,h))op → (EV

X)op SÐ→ set, if the latter exists. Since finite limits exist in set (though
not in ford, which explains why we use set instead of ford for extending strategies), it is
enough to prove that each EV

X/(u,h) is essentially finite, i.e., equivalent to a finite category.
This is proved in the next lemma.

Lemma 4.35. For any play u∶Z Y and horizontal h∶Y → X, the category EV
X/(u,h) is

essentially finite.

For this lemma to hold, we need more axioms.

Axiom. (P9) (Finiteness) For any position X, there are only finitely many players, i.e.,
the category I/X is finite.

Proof of Lemma 4.35. Let us fix a pair (u,h). By Proposition 4.27, EV
X/(u,h) is a preorder,

so we just need to prove that its object set is essentially finite. Now, letting n = ∣u∣, we

fix a decomposition of u into moves, say Z = Yn
Mn

Yn−1 . . . Y1
M1

Y0. For any morphism
α∶ (v, x) → (u,h) in EX , by Lemma 4.14, m = ∣v∣ may not exceed n. Furthermore, by
Lemma 4.14, Proposition 4.24, and our quotienting (4.2), any such α is determined up to
isomorphism by m, a strictly monotone map f ∶m → n, and a player y of Yf(m). Because

such triples (m,f, y) are in finite number, EV
X/(u,h) is essentially finite.

This concludes the proof of Lemma 4.34: right Kan extension along iopX ∶ (EV
X)op ↪ Eop

X

yields a full and faithful functor. We now design the second half of our bridge from EV
X

to E(X) via EX . Consider the embedding jX ∶E(X) ↪ EX mapping any u to (u, idX).
Restriction along (jX)op defines a functor ∆(jX)op ∶EX → E(X).

Recall from Definition 4.6 the notion of behaviour.

Definition 4.36. For any X, let the extension functor extX ∶SX → BX be the composite

ÍEV
X

kXÐ→ EV
X

(iopX)⋆ÐÐÐ→ EX
∆

(jX)
op

ÐÐÐÐ→ E(X).

36 T. HIRSCHOWITZ

We call a behaviour on X innocent when it is in the essential image of extX .

Notation: when X is clear from context, we abbreviate extX(S) as S.

Remark 4.37. The calculations of Section 3.4.2 carry over unchanged to the new setting.

Finally, the definitions of Section 3.5 apply more or less verbatim to the playground
DCCS , yielding a semantic fair testing equivalence which coincides with that of HP.

5. Playgrounds: transition systems

In the previous section, we have defined behaviours and strategies, and constructed the
extension functor from the former to the latter. In this section, we first build on this to
state decomposition theorems, which lead to a syntax and an lts for strategies. Then, we
define our second lts, and relate the two by a strong, functional bisimulation.

5.1. A syntax for strategies. Let us begin by proving in the abstract setting of play-
grounds analogues of the decomposition results of HP, in particular that strategies form a
terminal coalgebra for a certain polynomial functor. This is equivalent to saying that they
are essentially infinite terms in a typed grammar. We use this in the next section to define
our lts SD, and study transitions therein.

First, we have spatial decomposition:

Proposition 5.1. The functor SX →∏(d,x)∈Pl(X) Sd given at (d, x) by S(x)∶SX → Sd is an
isomorphism of categories.

Proof. We have:

SX = Cat((EV
X)op , ford)

≅ Cat(∑(d,x)∈Pl(X)EV(d)op , ford) (by Proposition 4.27)

≅ ∏(d,x)∈Pl(X) Cat(EV(d)op , ford)
= ∏(d,x)∈Pl(X) Sd.

For any S ∈ SX , let S ⋅ x denote the strategy on d corresponding to (d, x) accross the
isomorphism.

The second decomposition result is less straightforward, but goes through essentially as
in the concrete case. Let us be a bit more formal here than in Section 3.4.3, by showing that
strategies form a terminal coalgebra for some endofunctor on SetI. We start by defining the
relevant endofunctor.

Definition 5.2. Let [B]d denotes the set of all isomorphism classes of basic moves from d
(i.e., with vertical codomain d).

Definition 5.3. Let G∶SetI → SetI be the functor mapping any family U to

(G(U))d =
⎛
⎝ ∏
b∈[B]d

Udom(b)
⎞
⎠

⋆

,

where (−)⋆ denotes finite sequences.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 37

Remark 5.4. This functor is polynomial in the sense of Kock [31], as

(G(U))d = ∑
n∈N

⎛
⎝ ∏
i∈n,b∈[B]d

Udom(b)
⎞
⎠
.

We now show that strategies, viewed as the I-indexed family (ob(Sd))d∈I, form a ter-
minal G-coalgebra. We drop the ob(−) for readability.

Definition 5.5. For any S ∈ Sd and σ ∈ S(id●d), let the restriction S∣σ ∈ Sd of S to σ be

defined by the fact that S∣σ(v) = {σ′ ∈ S(v) ∣ S(!v)(σ′) = σ}.

(Here, we freely use the isomorphism EV
d ≅ EV(d) from Proposition 4.27, and let !v

denote the unique morphism id●d → v in EV(d).)
In view of Remark 5.4, (G(S))d = ∑n∈N (∏b∈[B]d Sdom(b))

n
. We thus may define the

G-coalgebra structure ∂∶S→ G(S) in SetI of strategies as follows.

Definition 5.6. Let, for all d ∈ I, ∂d∶Sd → ∑n(∏b∈[B]d Sdom(b))n send any S ∈ Sd to n =
S(id●d) and the map

S(id●d) → ∏b∈[B]d Sdom(b)
σ ↦ b↦ (S∣σ) ⋅ b.

Here, we view the ordinal S(id●d) as a natural number, and the given map S(id●d) →
∏b∈[B]d Sdom(b) as a list of elements of ∏b∈[B]d Sdom(b). We further use the action of b on S,
as below Definition 4.33. We have:

Theorem 5.7. The map ∂∶S→ G(S) makes S into a terminal G-coalgebra.

This intuitively means that strategies, on individuals, are infinite terms for the following
typed grammar with judgements d ⊢D D and d ⊢ S, where D is a definite strategy and S is
a strategy

. . . d′ ⊢ Sb . . . (∀b∶d′ d ∈ [B]d)
d ⊢D ⟨(Sb)b∈[B]d⟩

. . . d ⊢D Di . . . (∀i ∈ n)
d ⊢⊕

i∈n
Di

(n ∈ N).

Semantically, definite strategies correspond to strategies S such that S(id●d) = 1, which will
play a crucial role in the lts below.

The rest of this section is a proof of Theorem 5.7.
First of all, we construct an inverse to ∂.

Definition 5.8. Consider B = (B1, . . . ,Bn) ∈ (G(S))d. For any view v∶d′ d, define
∂′(B) ∈ Sd by

∂′(B)(v) = { n if v = id●d
∑i∈nBi(b)(v′) if v = b ● v′,

and on morphisms

∂′(B)(v (w,α)ÐÐÐ→ v′)(σ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i if v′ = id●d and σ = i ∈ n
or if v = id●d and σ = (i, x)

(i,Bi(b)(w,α1)(x)) if v = b ● v1 and σ = (i, x),

where in the last clause necessarily v′ ≅ b′ ● v′1 and Lemma 4.14 yields αb∶ b
≅Ð→ b′ and

α1∶ v1 ●w → v′1 such that αb ● α1 = α.

Lemma 5.9. We have ∂′ = ∂−1.

38 T. HIRSCHOWITZ

Proof. Starting from a strategy S ∈ Sd, let n = S(id●d), and Bi(b) = (S∣i)⋅b, for any d′
b
d. We

have ∂S = (B1, . . . ,Bn), and thus ∂′(∂S)(v) = n if v = id●d, and ∂′(∂S)(v) = ∑i∈n(S∣i)(b●v′) =
S(v) if v = b ● v′, as desired.

Conversely, starting from B = (B1, . . . ,Bn) ∈ (G(S))d, let S = ∂′B. We have that
∂S has length n, and its ith component maps any b∶d′ d to the strategy mapping any
v′∶d′′ d′ to the strategy (S∣i) ⋅ b. Thus, (∂S)i(b)(v′) = ((S∣i) ⋅ b)(v′) = (S∣i)(b ● v′). But

by definition, this is equal to Bi(b)(v′), as desired.

Consider any G-coalgebra a∶U → GU .
We define by induction on N a sequence of maps fN ∶U → S, such that for any d and

u ∈ Ud the fn+N(u)’s agree on views of length ≤ n. I.e., for any d ∈ I, u ∈ Ud, view v of
length less than n, and any N , fn+N(u)(v) = fn(u)(v), and similarly the action of fn+N(u)
on morphisms between such views is the same as that of fn(u).

To start the induction, take f0(u) to be the strategy mapping id●d to ∣a(u)∣, i.e., the
length of a(u) ∈ (∏bUdom(b))⋆, and all other views to 0.

Furthermore, given fN , define fN+1 to be

U
aÐ→ GU

G(fN)ÐÐÐ→ G(S) ∂−1ÐÐ→ S.

In other words, fN is

U
aÐ→ GU

G(a)ÐÐ→ . . .GN−1U
GN−1aÐÐÐÐ→ GNU

GNf0ÐÐÐ→ GNS
GN−1(∂−1)ÐÐÐÐÐÐ→ GN−1(S) . . .G(S) ∂−1ÐÐ→ S.

Unfolding the definitions yields:

Lemma 5.10. Consider any u ∈ Ud, and let a(u) = (z1, . . . , zk). For any f ∶U → S, we have

● ∂−1(G(f)(a(u)))(id●d) = k, and
● ∂−1(G(f)(a(u)))(b●v) = ∑i∈k f(zi(b))(v) for any composable basic move b and view
v.

Corollary 5.11. We have, for any N ∈ N, fN(u)(id●d) = k. Furthermore, for any basic
move b∶d′ d, and view v∶d′′ d′, we have for any N ∈ N:

fN+1(u)(b ● v) =∑
i∈k
fN(zi(b))(v).

As announced, we have:

Lemma 5.12. For any view v∶d′ d and n ∈ N, f∣v∣+n(u)(v) = f∣v∣(u)(v).

Proof. We proceed by well-founded induction on (∣v∣, n), for the lexical ordering. Let again
a(u) = (z1, . . . , zk). First, we have f∣id●∣(u)(id●) = k, and for any n, f∣id●∣+n+1(u)(id●) = k by

Corollary 5.11. Now, if v = b ● v′, then by Corollary 5.11 again:

f∣v∣+n+1(u)(b ● v′) = ∑i∈k f∣v∣+n(zi(b))(v′)
= ∑i∈k f∣v′∣+n+1(zi(b))(v′) (by ∣v∣ = ∣v′∣ + 1)
= ∑i∈k f∣v′∣(zi(b))(v′) (by induction hypothesis)
= f∣v∣(u)(b ● v′) (by Corollary 5.11 again).

FULL ABSTRACTION FOR FAIR TESTING IN CCS 39

The sequence (fn(u)) thus has a colimit in Sd = ÍEV
d : the presheaf mapping any view v

to f∣v∣(u)(v). This allows us to define:

Definition 5.13. Let f ∶U → S map any u ∈ Ud to the colimit of the fN(u)’s.
Lemma 5.14. The following diagram commutes:

U GU

S G(S).

a

f G(f)
∂−1

Proof. Consider any u ∈ Ud and view v, and let a(u) = (z1, . . . , zk). Let also n = f(u)(v) =
f∣v∣(u)(v) and n′ = ∂−1(G(f)(a(u)))(v).

● If ∣v∣ = 0, then by Lemma 5.10 n = n′ = k.
● If v = b●v′, then by Lemma 5.10 again we have n′ = ∑i∈k f(zi(b))(v′). But by defini-

tion of f , we obtain n′ = ∑i∈k f∣v′∣(zi(b))(v′), which is in turn equal to f∣v∣(u)(v) = n
by Corollary 5.11.

Corollary 5.15. The map f is a map U → S of G-coalgebras.

Lemma 5.16. The map f is the unique map U → S of G-coalgebras.

Proof. Consider any such map g of coalgebras, and let a(u) = (z1, . . . , zk). The map g must
be such that

g(u)(id●d) = ∂−1(G(g)(a(u)))(id●d) = k,
by Lemma 5.10. Furthermore, by the same lemma, it must satisfy:

g(u)(b ● v) = ∂−1(G(g)(a(u)))(b ● v) =∑
i∈k
g(zi(b))(v),

which imposes by induction that f = g.

The last two results directly entail Theorem 5.7.

5.2. The labelled transition system for strategies. In this section, we go beyond HP,
and define an lts for strategies, for an arbitrary playground D.

First, the alphabet for our lts will constist of quasi-moves, in the following sense.

Notation 5.17. We use the following notation for cartesian lifting (by (P1)) of a play u
along a horizontal morphism k (fixing a global choice of liftings):

Dk,u X ′

Y X.

hk,u

u
∣k u

k

αk,u

Definition 5.18. A quasi-move is a vertical morphism which locally either is a move or
has length 0. More precisely, a play u∶Y X is a quasi-move iff for all players x∶d → X,
u∣x either is a move or has length 0.

A quasi-move is full when it locally either is a full move or has length 0. Let Q denote
the subgraph of Dv consisting of full quasi-moves.

40 T. HIRSCHOWITZ

Observe that a quasi-move on an individual either is a move or has length 0.
States in our lts will be the following special kind of strategies:

Definition 5.19. A strategy S ∈ SX is definite when S(id●X) = 1, or equivalently when for
all players (d, x) ∈ Pl(X), we have S(id●d, x) = 1.

Intuitively, for any quasi-move X ′ M
X, we would like transitions (X ′, S′) MÐ→ (X,S)

in our lts to occur when S′ is a definite restriction of S ⋅M to some state of S(M). I.e.,
a transition roughly corresponds to a way for S to accept M . However, S ⋅M is not quite
S(M) so the right notion of restriction may not be obvious. But we have defined a notion
of restriction in Definition 5.5, for strategies on individuals. We now define restriction for
general strategies, and use this to define our lts. Finally, we elucidate the connection with
S(M).

Consider, for any S ∈ SX and σ ∈ ∏(d,x)∈Pl(X) S(id●d, x), and recall from below Defini-
tion 4.33 that S ⋅ h is shorthand for the image of S ∈ SX under the action of a horizontal
morphism h∶Y →X for the horizontal part of our pseudo double functor S.

Definition 5.20. Let the restriction S∣σ ∈ SX of S to σ be defined by the fact that for any
player x∶d→X,

(S∣σ) ⋅ x = (S ⋅ x)∣σ(d,x).

Concretely, we have, for any v, S∣σ(v, x) = {σ′ ∈ S(v, x) ∣ S(!v)(σ′) = σ(d, x)}, where !v
is the unique morphism (id●d, x)→ (v, x) in EV

X .
We now define our lts for strategies over Q.

Definition 5.21. The underlying graph SD for our lts is the graph with as vertices all
pairs (X,S) where X is a position and S ∈ SX is a definite strategy, and whose edges
(X ′, S′) → (X,S) are all full quasi-moves M ∶X ′ X such that there exists a state σ ∈
∏(d′,x′)∈Pl(X′)(S ⋅M)(id●d′ , x

′) with S′ = (S ⋅M)∣σ.
The assignment (X,S) ↦ X defines a morphism pS∶SD → Q of reflexive graphs, which

is our lts.

An alternative characterisation of transitions (X,S) M←Ð (X ′, S′) is the existence of σ
such that

S′ ⋅ x′ = (S ⋅M ⋅ x′)∣σ(d′,x′) = (S ⋅ (x′)M ⋅ vx′,M)∣σ(d′,x′)
for all (d′, x′) ∈ Pl(X ′).

Let us now return to the connection between ∏(d′,x′)∈Pl(X′)(S ⋅M)(id●d′ , x
′) and S(M).

First, we have by definition (S ⋅M)(id●d′ , x
′) = S(vx′,M , (x′)M), for any player x′∶d′ → X ′.

Now, as recalled above, S(M) may be characterised as a limit of

(EV
X/M)op domÐÐ→ (EV

X)op SÐ→ ford↪ set.

Since αx
′,M ∶ vx′,M →M is an object in (EV

X/M)op , we obtain by projection a map S(M)→
S(vx′,M , (x′)M).

Definition 5.22. For any S ∈ SX , let ψM ∶S(M) → ∏(d′,x′)∈Pl(X′) S(vx
′,M , (x′)M) denote

the corresponding tupling map.

Proposition 5.23. For any definite S ∈ SX , the map ψM is a bijection.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 41

We prove this through the following lemma. For any full quasi-move M ∶X ′ X,
observe that for any player x′∶d′ → X ′, vx

′,M has length at most 1 (consider M∣(x′)M), and
let

PlM(X ′) = {(d′, x′) ∈ Pl(X ′) ∣ ∣vx′,M ∣ ≠ 0}.
Lemma 5.24. For any definite S ∈ SX , and full quasi-move M ∶X ′ X, the map

S(M) ψMÐÐ→ ∏
(d′,x′)∈Pl(X′)

S(vx′,M , (x′)M)→ ∏
(d′,x′)∈PlM (X′)

S(vx′,M , (x′)M),

where the second map is by projection, is bijective.

Proof. Recall that S(M) is a limit of

(EV
X/M)op domÐÐ→ (EV

X)op SÐ→ ford↪ set,

and consider the poset P with underlying set Pl(X)+PlM(X ′) and ordering given by (d, x) <
(d′, x′) iff x = (x′)M . Consider the functor p∶P → EV

X/M mapping any (d, x) ∈ Pl(X) to

the unique morphism id●d → M with lower border x, and any (d′, x′) ∈ PlM(X ′) to αx
′,M .

Since P is a poset, p is faithful. It is furthermore full by Proposition 4.27. Finally, for any
(w,α)∶ v →M in EV

X/M ,

● either ∣v∣ = 0 and there is a unique player x∶d → X such that (w,α) is the (unique)
morphism id●d →M with lower border x,

● or ∣v∣ = 1 and there exists a unique player (d′, x′) ∈X ′ such that (w,α) = (id , αx
′,M)

(let x = cod(α); ∣M∣x∣ = 1, so by Proposition 4.25 ∣w∣ = 0).

This entails that p is essentially surjective on objects, hence an equivalence. Thus, S(M)
is also a limit of

P op ≃ (EV
X/M)op domÐÐ→ (EV

X)op SÐ→ ford↪ set.

But now, because S is definite, this functor maps any (d, x) ∈ Pl(X) to a singleton,
hence S(M) is also a limit of

PlM(X ′)↪ P op ≃ (EV
X/M)op domÐÐ→ (EV

X)op SÐ→ ford↪ set,

i.e., isomorphic to ∏(d′,x′)∈PlM (X′) S(vx
′,M , (x′)M), as desired.

Proof of Proposition 5.23. If ∣vx′,M ∣ = 0, then S(vx′,M , (x′)M) is a singleton. Thus, the
second map of Lemma 5.24 is bijective, hence so is ψM .

The moral of Proposition 5.23 is that transitions (X,S) M←Ð (X ′, S′) in SD are precisely
given by full quasi-moves M ∶X ′ X such that there exists a state σ ∈ S(M) with

S′ = (S ⋅M)∣ψM (σ),

for all (d′, x′) ∈ Pl(X ′).
We now give more syntactic characterisations of transitions, starting with transitions

from states of the shape (d,S). Recall the syntax for strategies below Theorem 5.7.

Proposition 5.25. If S = ⟨(Sb)b∈[B]d⟩ is a definite strategy on d ∈ I, and if for all b ∈ [B]d,
Sb =⊕i∈nbD

b
i for definite Db

i , then for any M ∶X ′ d we have (d,S) M←Ð (X ′, S′) iff

● for all (d′, x′) ∈ PlM(X ′), there exists ix′ ∈ nvx′,M such that S′ ⋅ x′ =Dvx
′,M

ix′
,

42 T. HIRSCHOWITZ

● and for all (d′, x′) ∈ Pl(X ′) ∖PlM(X ′), S′ ⋅ x′ = S.

Let us now characterise transitions from arbitrary positions in terms of their restrictions
to individuals. Recalling Notation 5.17, we have:

Proposition 5.26. We have (X,S) M←Ð (X ′, S′) iff for all (d, x) ∈ Pl(X),

(d,S ⋅ x)
M

∣x←ÐÐ (Dx,M , S
′ ⋅ hx,M).

Putting both previous results together, we obtain:

Corollary 5.27. Let, for all (d, x) ∈ Pl(X), S ⋅ x = ⟨(Sxb)b∈[B]d⟩ and for all b ∈ [B]d,
Sxb =⊕i∈nx

b
Dx,b
i for definite Dx,b

i .

Then, for any M ∶X ′ X, we have (X,S) M←Ð (X ′, S′) iff

● for all (d′, x′) ∈ PlM(X ′), there exists ix′ ∈ n(x′)M
vx′,M

such that S′ ⋅ x′ =D(x′)M ,vx′,M
ix′

,

● and for all (d′, x′) ∈ Pl(X ′) ∖PlM(X ′), S′ ⋅ x′ = S ⋅ (x′)M .

5.3. Process terms. In the previous section, starting from a playground D, we have con-
structed an lts SD of strategies. We now begin the construction of the lts TD of process
terms announced in Section 1.3, starting with process terms themselves.

Definition 5.28. For any X, let [F]X be the set of isomorphism classes of full moves with
codomain X, in DH(X), and let χ denote the map

[F]d → Pf([B]d)
M ↦ {[b] ∈ [B]d ∣ ∃α ∈ DH(b,M)}.

Let [F1]d denote the subset of [F]d consisting of (isomorphism classes of) full moves
M ∶X ′ d such that PlM(X ′) is a singleton (and hence so is χ(M)). Let [F+]d denote the
complement subset.

The map χ is easily checked to be well-defined.
We state one more axiom to demand that basic sub-moves of a full move [M] ∈ [F]d

may not be sub-moves of other full moves.

Axiom. (P10) (Basic vs. full) For any d ∈ I and M,M ′ ∈ [F]d, if M ≠ M ′, then χ(M) ∩
χ(M ′) = ∅.

Let process terms be infinite terms in the typed grammar:

. . . di ⊢ Ti . . . (∀i ∈ n)
d ⊢∑

i∈n
Mi.Ti

(n ∈ N;∀i ∈ n,Mi ∈ [F1]d and χ[Mi] = {bi∶di d})

. . . d′ ⊢ Tb . . . (∀(b∶d′ d) ∈ χ[M])
d ⊢M⟨(Tb)b∈χ[M]⟩

(M ∈ [F+]d).

The first rule is a guarded sum, in a sense analogous to guarded sum in CCS. It should
be noted that guards have to be full moves with only one non-trivial view. There is good
reason for that, since allowing general moves as guards would break bisimilarity between
process terms and strategies. To understand this, consider a hypothetical guarded sum

FULL ABSTRACTION FOR FAIR TESTING IN CCS 43

R = (P ∣Q) + (P ′∣Q′). Since this has no interaction before the choice is made, R behaves,
in CCS, just like an internal choice (P ∣Q)⊕ (P ′∣Q′). However, our translation to strategies
does not translate guarded sum as an internal choice, with right, since other guarded sums,
e.g., a.P + b.Q should certainly not be translated this way. Instead, R would be translated
as something equivalent to (P ∣Q)⊕(P ′∣Q)⊕(P ∣Q′)⊕(P ′∣Q′), which is clearly not bisimilar
to R in general.

We could easily include internal choice in the grammar, since strategies do model it,
directly. We refrain from doing so for simplicity.

Definition 5.29. Let TD be the set of process terms.

Example 5.30. For DCCS , the obtained syntax is equivalent to

. . . Γ ⋅ αi ⊢ Pi . . .
Γ ⊢∑

i

αi.Pi

Γ ⊢ P Γ ⊢ Q
Γ ⊢ P ∣Q

⋅

where

● Γ ranges over natural numbers;
● α ∶∶= a ∣ a ∣ ♡ ∣ ν (for a ∈ Γ);
● Γ ⋅ α denotes (Γ + 1) if α = ν and just Γ otherwise.

This grammar obviously contains CCS, and we let θ∶ob(CCS)↪ TDCCS be the injection.

5.4. The labelled transition system for process terms. We now define the lts TD.
States, i.e., vertices of the graph underlying this lts, are pairs (X,T) of a position X and
a family T of process terms, indexed by the players of X, i.e., T ∈∏(d,x)∈Pl(X)(TD)d, where
(TD)d is the set of process terms of type d.

To define edges, we need a lemma. For any play u∶X ′ X and x∶d → X, recalling
Notation 5.17, consider the map

ru ∶ ∑(d,x)∈Pl(X) Pl(Dx,u) → Pl(X ′)
((d, x), (d′, x′)) ↦ hx,u ○ x′

sending any (d, x) ∈ Pl(X) and x′∶d′ →Dx,u to d′
x′Ð→Dx,u

hx,uÐÐ→X ′.
Consider also the map iu in the other direction sending any y∶d′ → X ′ to the pair

((dy,u, yu), (d′, y∣yu)), where y∣yu is the (domain in DV of the) unique α′ making the diagram

d′

Dyu,u X ′

dy,u

dy,u X

u

y

vy,u

y
∣yu

αy,u

yu

yu

u∣yu

hyu,u

αyu,u

α′

commute (by (P1)). This map iu is well-defined by uniqueness of yu and cartesianness of
αyu,u.

44 T. HIRSCHOWITZ

Lemma 5.31. The maps iu are ru are mutually inverse.

Proof. Straightforward.

Let us return to the definition of our lts. We first say that for any full quasi-move
M ∶D d, a process term d ⊢ T has an M -transition to (D,T ′), for T ′ ∈∏(d′,x′)∈Pl(D)(TD)d′ ,
when one of the following holds:

(i) ∃M ′ ∈ [F+], T =M ′⟨T ′′⟩, and, for all (d′, x′) ∈ Pl(D),
● if vx

′,M is a basic move, then vx
′,M ∈ χ(M ′) and T ′d′,x′ = T ′′vx′,M ;

● otherwise ∣vx′,M ∣ = 0 (hence d′ = d), and T ′d′,x′ = T ;

(ii) [M] ∈ [F1], T = ∑i∈nMi.Ti, Mi0 = [M] for some i0 ∈ n, and for all players x′∶d′ →D

● if vx
′,M ∈ χ(M), then T ′d′,x′ = Ti0 ,

● and otherwise (∣vx′,M ∣ = 0), T ′d′,x′ = T ;

(iii) ∣M ∣ = 0 and for all (d′, x′) ∈ Pl(D), T ′d′,x′ = T (which, again, makes sense by

Lemma 4.17).

We denote such a transition by T
M←Ð (D,T ′).

Remark 5.32. The first case (i) allows χ(M) = ∅, but if χ(M) ≠ ∅, then [M] = M ′

by (P10). Also, let us mention that χ(M) ≠ ∅ does not imply ∣M ∣ = 0 in general, although
it does in DCCS .

Definition 5.33. Let TD be the graph with pairs (X,T) as vertices, and as edges (X ′, T ′)→
(X,T) full quasi-moves M ∶X ′ X such that for all (d, x) ∈ Pl(X), Td,x

M
∣x←ÐÐ (Dx,M , (T ′ ○

Σhx,M)). Here, we let Σhx,M denote composition with hx,M ∶Dx,M → X ′, viewed as a map

Pl(Dx,M)→ Pl(X ′).
TD is viewed as an lts over Q, by mapping (X,T) M←Ð (X ′, T ′) to X

M
X ′.

Example 5.34. For DCCS , the obtained lts differs subtly, but significantly from the usual
lts for CCS. In order to explain this clearly, let us introduce some notation. First, let
evaluation contexts be generated by the grammar

Γ;x∶n ⊢ x(a1, . . . , an)
Γ; ∆1 ⊢ e1 Γ; ∆2 ⊢ e2

Γ; ∆1,∆2 ⊢ e1∣e2
,

where, in the first rule, ∀i ∈ n, ai ∈ Γ, and in the second dom(∆1) ∩ dom(∆2) = ∅. Here,
x ranges over a fixed set of variables, and ∆, . . . range over finite maps from variables to
natural numbers. Evaluation contexts are considered equivalent up to associativity and
commutativity of ∣. Positions are essentially a combinatorial, direct representation of such
contexts.

Leaving the details aside, states in TDCCS may be viewed as pairs (X,T) of an evaluation
context X, plus, for each n-ary variable x(a1, . . . , an) in X, a process term over n in the
grammar of Example 5.30. Instead of separately writing the evaluation context and the map
from its variables to process terms, we inline process terms between brackets in the context,
thus avoiding variables. Moves are either put in context similarly, or located implicitly.
E.g., for a state (X,T) where X contains two players respectively mapped by T to process
terms P and Q, we would write [P]∣[Q]. There is some ambiguity in this notation, e.g., in
case some channels are absent from P : are they absent from the arity of P , or only unused?
Since we use this notation mostly for clarifying examples, we will avoid such ambiguities.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 45

Finally, we sometimes use brackets to denote the fact that some holes are filled with the
given state. E.g., X[[P]∣[Q]] denotes a state X, where a hole has been replaced by a
parallel composition of two holes, respectively filled with P and Q.

Returning to our comparison of TDCCS and CCS , of course, a first difference is the fact
that labels may contain several moves, as quasi-moves only locally have length 1.

A second difference is the presence of heating rules for parallel composition and channel
creation, in a sense close to the chemical abstract machine [4]. For example, we have

transitions X[P ∣Q] π←ÐX[[P]∣[Q]].
There is a third important difference, related to channel creation. For instance, we have

transitions
[νa.a.P] ν←Ð [a.P] ιa←Ð [P].

The second transition cannot occur in a closed-world setting, since the environment cannot
know a. And it does not occur in CCS either.

A final difference is that labels contain too much information to be relevant for be-
havioural equivalences. E.g., they contain the whole evaluation context in which the tran-
sition takes place, as well as which players are involved.

The second difference, i.e., the presence of heating rules, is not really problematic, and
merely forces us to use weak bisimulations rather than strong ones. All other defects will
be corrected below.

5.5. Translation and a first correctness result. We conclude this section on the general
theory of playgrounds by establishing a strong, functional bisimulation from process terms
to strategies.

Mimicking (3.2) (page 23), our translation from process terms to definite strategies (qua
families over I) is defined coinductively by

⟦∑i∈nMi.Ti⟧ = ⟨b↦⊕{i∈n∣b∈χ(Mi)}⟦Ti⟧⟩

⟦M⟨(Tb)b∈χ(M)⟩⟧ = ⟨b↦ { ⟦Tb⟧ if b ∈ χ(M)
∅ otherwise

⟩ . (5.1)

Let us extend the map ⟦−⟧∶TD → SD to a map ⟦−⟧∶ob(TD) → ob(SD), defined by
⟦X,T ⟧ = (X, (⟦Td,x⟧)(d,x)∈Pl(X)), using Proposition 5.1.

Theorem 5.35. The map ⟦−⟧∶ob(TD)→ ob(SD) is a functional, strong bisimulation.

Proof. The theorem follows from Proposition 5.26 and the next lemma.

Lemma 5.36. For any full quasi-move M ∶X ′ d, for any T ∈ (TD)d and S′ ∈ (SD)X′, we
have

(d, ⟦T ⟧) M←Ð (X ′, S′) iff ∃T ′, (T M←Ð (X ′, T ′)) ∧ ((X ′, S′) = ⟦X ′, T ′⟧).

Note the implicit typing: T ′ ∈ ∏(d′,x′)∈Pl(X′)(TD)d′ . Also the second condition on the

right is equivalent to ∀x′∶d′ →X ′, S′ ⋅ x′ = ⟦T ′d′,x′⟧.

Proof. If ∣M ∣ = 0, then both sides are equivalent to the fact that for all x′∶d′ →X ′, S′ ⋅ x′ =
⟦T ⟧.

Otherwise, we proceed by case analysis on T .
If T =M ′⟨(T ′′b)b∈χ(M ′)⟩, then by (P10) both sides are equivalent to χ(M) ⊆ χ(M ′), plus

● for all (d′, x′) ∈ PlM(X ′), S′ ⋅ x′ = ⟦T ′′
vx′,M

⟧, and

46 T. HIRSCHOWITZ

● for all (d′, x′) ∈ Pl(X ′) ∖PlM(X ′), S′ ⋅ x′ = ⟦T ⟧.
Indeed, for any b ∈ χ(M), ⟦T ⟧ ⋅ b = ⟦T ′′b ⟧ is definite. We thus put T ′d′,x′ = T ′′vx′,M in the first

case and T ′d′,x′ = T in the second case.
If T = ∑i∈nMi.Ti, then both sides are equivalent to the existence of i0 ∈ n such that

Mi0 = [M] and

● for the unique (d′, x′) ∈ PlM(X ′), S′ ⋅ x′ = ⟦Ti0⟧, and
● for all (d′, x′) ∈ Pl(X ′) ∖PlM(X ′), S′ ⋅ x′ = ⟦T ⟧.

This uses (P10), since the left-hand side unfolds to the existence of x′∶d′ → X ′ such that

vx
′,M ∈ χ[M] and ⟦T ⟧ ⋅ vx′,M ≠ ∅, i.e., vx

′,M ∈ χ(Mi0) for some i0 ∈ n, by definition of ⟦T ⟧.
This entails in particular [M] =Mi0 by (P10).

6. Graphs and fair morphisms

In this section, we derive our main result. For this, we develop a notion of graph with
complementarity, which aims at being a theory of ltss over which fair testing makes sense.
Although the theory would apply with any predicate � compatible with ≈Σ equivalence
classes (see below), the question of whether such a generalisation would have useful appli-
cations is deferred for now.

For any graph with complementarity A and relation R∶G H over A, we exhibit
sufficient conditions for R to be fair, i.e., to preserve and reflect fair testing equivalence.
We then relate this theory to our semantics, and show that it entails our main result. For
now, this section lies outside the scope of playground theory. Some aspects of it could be
formalised there, but we leave the complete formalisation for further work. Because the
only playground involved is DCCS , we often omit sub or superscripts, e.g., in D, SD (even
just S), etc.

Before we start, let us define WCCS to be the set of closed-world quasi-moves, i.e.,
vertical morphisms in D which either are closed-world moves (Definition 3.22) or have
length 0. Please note: quasi-moves must locally restrict to plays of length ≤ 1, whereas
closed-world quasi-moves have length ≤ 1 globally. Let DW be the subbicategory of Dv
generated by WCCS , and let Σ be the free reflexive graph on an endo-edge ♡. Finally, let
¯̀D∶DW → fc(Σ) be the pseudo functor determined by the mapping `D∶WCCS → Σ sending
all closed-world quasi-moves to id except ♡ moves, which are sent to ♡.

6.1. Graphs with complementarity. A relation A B between two reflexive graphs
A and B is a subgraph R ↪ A ×B. Such a relation R is total when, for all vertices, resp.
edges, x ∈ A, there exists a vertex, resp. an edge y ∈ B, such that (x, y) ∈ R. It is partially
functional if there is at most one such y. It is functional when it is total and partially
functional. The domain of R is the subgraph of A consisting of vertices and edges related
to something in B.

Definition 6.1. A graph with complementarity is a reflexive graph A, equipped with a
subgraph AW, a relation ▷A∶A2 AW, and a map `A∶AW → Σ, such that the composite
A2 AW → Σ is partially functional and symmetric.

We let A¨ = dom(▷A) and write a ¨ a′ for (a, a′) ∈ A¨. We further denote the map
A¨ ↪ A2 AW → Σ by (a, b)↦ (a ⇓ b), and deem edges in AW closed-world.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 47

Remark 6.2. A¨ has to be symmetric as the domain of a symmetric relation.

Definition 6.3. A morphism of graphs with complementarity is a morphism f ∶A → B of
reflexive graphs such that

f(AW) ⊆ BW `B ○ fW = `A ((a1, a2)▷A a3)⇒ ((f(a1), f(a2))▷A f(a3)),
where fW∶AW → BW is the restriction of f .

Proposition 6.4. Graphs with complementarity and morphisms between them form a cat-
egory GCompl.

We now introduce the graph IQ, which as announced in the introduction will serve as
a base for making SDCCS and TDCCS into graphs with complementarity. It is an interfaced
variant of Q, hence its name.

Example 6.5. Let IQ be the graph with as vertices all horizontal morphisms h∶ I → X
from some interface to some position, and whose edges k → h are given by diagrams

I Y

I X

k

h

Mα (6.1)

in DH , where M is either a full move or an identity, such that if M is an input or an
output, then the corresponding channel is in the image of I. IQ forms a reflexive graph
with identities given by the case where M = id●, which forms a graph with complementarity
as follows.

Let (IQ)W consist of all closed-world quasi-moves in IQ. For any h∶ I → X, k∶J → Y ,
and c∶K → Z, let (h, k)▷IQ c iff I = J = K, Z = h +I k, and c is the corresponding map
I → Z. On edges, for any Mh∶h′ → h, Mk∶k′ → k, and Mc∶ c′ → c, let (Mh,Mk)▷IQ Mc iff
there exists a diagram

I Y ′

X ′ Z ′

I Y

X Z,
h

Mk

Mh Mc

h′

(6.2)

where Mc is a closed-world quasi-move and double cells with a ‘double pullback’ mark are
cartesian, as below Axiom (P1) (page 25). (One easily shows that the upper square is also
a pushout.) Then (IQ)¨, consists of all pairs (Mh,Mk) for which there exists a diagram of
the shape (6.2).

Let `IQ be the composite (IQ)W ↪WCCS
`DÐ→ Σ. It thus maps tick moves to ♡ and all

other closed-world moves to id . The composite (IQ)2 ▷IQ
(IQ)W → Σ is indeed partially

functional and symmetric.
There is an obvious morphism χ∶ IQ→ Q of reflexive graphs.

48 T. HIRSCHOWITZ

Example 6.6. Recall the alphabet A for CCS. It also forms a graph with complementarity,
as follows. Let AW consist of all vertices and of all ♡ and id edges. Let A¨ consist, on
vertices, of the diagonal, i.e., all pairs (n,n). On edges, let e ¨ e′ when dom(e) ¨ dom(e′)
and:

● one of e and e′ is in AW, the other being an identity,
● or one of e and e′ is an input on some i ∈ dom(e), the other being an output on i.

Define now our relation ▷A to be the graph of the map sending all coherent pairs e ¨ e′ to
id , except when one is a ♡, in which case the pair is sent to ♡∶n→ n. The axioms are easily
satisfied.

Let ξ∶ IQ→ A map any vertex h∶ I →X to n = I(⋆), and any edge (6.1) to

● idn if M is an identity, a synchronisation, a fork, or a channel creation,
● ♡n if M is a tick move,
● i if M is an input on h⋆(i),
● i if M is an output on h⋆(i).

This map ξ is a morphism of graphs with complementarity.

We have the following general way of constructing graphs with complementarity. For
any graph with complementarity A and morphism of reflexive graphs p∶G → A, consider
the following candidate complementarity structure on G.

Let GW = G ×A AW denote the pullback

GW AW

G A.

pW

p

(6.3)

Further, let `G be the compositeGW pWÐ→ AW `AÐ→ Σ, and let (x, y)▷Gz iff (p(x), p(y))▷Ap(z)
(for both vertices and edges). In other words, ▷G is the relational composite

G2 p2Ð→ A2 ▷A
AW pW←Ð GW,

where the backwards pW arrow denotes the converse of the graph of pW.

Proposition 6.7. For any subrelation R ⊆▷G, if R is a symmetric relation, then (G,GW,R, `G)
forms a graph with complementarity, and p is a morphism of graphs with complementarity
to A.

Proof. By standard relational algebra, the composite relation

G2 ▷G
GW pWÐ→ AW,

which is equal to

G2 p2Ð→ A2 ▷A
AW pW←Ð GW pWÐ→ AW,

is included in

G2 p2Ð→ A2 ▷A
AW.

Composing with `A, we obtain that (`G○▷G) ⊆ (`A○▷A○p2), which is straightforwardly
symmetric and partially functional. A subrelation of a partially functional relation is auto-
matically partially functional, so `G ○R is partially functional. It is symmetric because R
is, hence the result.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 49

Example 6.8. CCS forms a graph with complementarity over A by the last proposition,
taking R to relate

● all pairs (n ⊢ P,n ⊢ Q) to n ⊢ P ∣Q on vertices,

● any transitions (Γ ⊢ P1)
α←Ð (Γ ⊢ P ′

1) and (Γ ⊢ P2)
id←Ð (Γ ⊢ P2) with (Γ ⊢ P1 ∣P2)

α←Ð
(Γ ⊢ P ′

1 ∣ P2), and symmetrically,

● and any two transitions (Γ ⊢ P1)
α←Ð (Γ ⊢ P ′

1) and (Γ ⊢ P2)
α←Ð (Γ ⊢ P ′

2) with

(Γ ⊢ P1 ∣ P2)
id←Ð (Γ ⊢ P ′

1 ∣ P ′
2).

Proposition 6.9. Suppose given a choice, for all x, y ∈ G and a ∈ A such that (p(x), p(y))▷A

a, of a vertex [x, y]a ∈ G such that p([x, y]a) = a, satisfying the following condition: for all
edges ex∶x′ → x and ey ∶ y′ → y in G, and ea∶a′ → a in A, if (p(ex), p(ey))▷A ea, then there
exists a [ex, ey]ea ∶ [x′, y′]a′ → [x, y]a such that p([ex, ey]ea) = ea.

Then, (G,GW,▷G, `G) forms a graph with complementarity, and p is a morphism of
graphs with complementarity.

Proof. Recalling the beginning of the proof of Proposition 6.7, the hypothesis implies that
the inclusion

(G2 ▷G
GW pWÐ→ AW) ⊆ (G2 p2Ð→ A2 ▷A

AW)
is actually an equality.

Composing with `A, we obtain that `G ○ ▷G = `A ○ ▷A ○ p2, which is straightforwardly
symmetric and partially functional. The morphism p is a morphism of graphs with comple-
mentarity by construction.

Definition 6.10. Let SIQ = ∆χ(S) and TIQ = ∆χ(T) be the pullbacks of S→ Q and T → Q
along χ∶ IQ→ Q.

Example 6.11. SIQ and TIQ form graphs with complementarity over IQ by Proposition 6.9.
The canonical relation ▷CCS does not satisfy the condition of Proposition 6.9, however.

Indeed, e.g., any non-silent transition (Γ ⊢ P1)
α←Ð (Γ ⊢ P ′

1) and silent but non-identity

transition (Γ ⊢ P2)
id←Ð (Γ ⊢ P ′

2) are not coherent in CCS , although their images under
the projection to A are so. (Amalgamating two such transitions in CCS requires a path of
length 2, as will be used below.) What saves SIQ and TIQ from this issue is that projecting
to IQ does not hide away, e.g., synchronisations.

6.2. Modular graphs and fair testing equivalence. We now introduce the notion of
modular graph, which is appropriate for defining fair testing. We could actually introduce
fair testing for arbitrary graphs with complementarity, but the extra generality would make
little sense.

For any graph with complementarity G, G¨ forms an lts over Σ, through G¨ ⇓Ð→ Σ.

Definition 6.12. G is modular iff for all (x, y)▷G z we have both:

(1) for all e∶ z′ → z, there exists ex∶x′ → x and ey ∶ y′ → y such that (ex, ey)▷G e; and
(2) for all ex∶x′ → x and ey ∶ y′ → y such that ex ¨ ey there exists e∶ z′ → z such that

(ex, ey)▷G e.

50 T. HIRSCHOWITZ

Remark 6.13. The second condition is almost redundant: in any graph with complemen-
tarity G, there exists e′ such that (ex, ey)▷G e′, but the target of e′ may be any u such

that (x, y)▷G u; it does not have to be z.

Proposition 6.14. G is modular iff ▷G is a strong bisimulation over Σ.

We here implicitly view ▷G as a relation G¨ GW.

Proof. Since ▷G is a relation over Σ, it is enough to prove that both projections are graph
fibrations, which is directly equivalent to modularity.

Example 6.15. SIQ and TIQ, as well as CCS , are modular.

We now define fair testing in any modular graph, and compare with both semantic fair
testing equivalence (∼f) for strategies and standard fair testing equivalence (∼f,s) for CCS
processes. Recall that ∼Σ denotes strong bisimilarity over Σ.

Lemma 6.16. For any modular graph with complementarity G and x, y, z, t ∈ G, if (x, y)▷G

z and (x, y)▷G t, then z ∼Σ t.

Proof. We have z ∼Σ (x, y) ∼Σ t.

Any modular graph may be equipped with a choice of z such that (x, y)▷G z, for all
x ¨ y. We denote such a choice by [x, y]. By the lemma, the choice of z does not matter
as long as we only consider properties invariant under ∼Σ. Here, we only need the standard
predicate for fair testing.

Definition 6.17. For any reflexive graph G over Σ, let �G denote the set of all x ∈ G such

that for all x⇐ x′ there exists x′
♡⇐Ô x′′.

When G is a graph with complementarity, we often denote �GW
by �G. There is no

confusion because G is not even a graph over Σ in general.
In any modular graph with complementarity G, let, for any x ∈ G, x¨ = {y ∣ x ¨ y},

and let x & y iff x¨ = y¨.

Definition 6.18. For any x, y ∈ G, let x ∼Gf y iff x & y and for all z ∈ x¨, [x, z] ∈ �G iff

[y, z] ∈ �G.

We may at last define fair relations:

Definition 6.19. For all modular graphs with complementarity G and H, and full relations
R∶G H, let R preserve fair testing equivalence when, for all x R x′ and y R y′, (x ∼Gf y)
implies (x′ ∼Hf y′). R reflects fair testing equivalence when the converse implication holds.
R is fair when it preserves and reflects fair testing equivalence.

Modularity enables a first, easy characterisation of fair testing.

Proposition 6.20. If G is modular, then for any x ¨ y, [x, y] ∈ �G iff (x, y) ∈ �G¨
.

Proof. A direct consequence of Proposition 6.14.

We now prove that the general definition of fair testing equivalence instantiates correctly
for SIQ and CCS . First, we easily have

Proposition 6.21. For any two CCS processes P and Q over n, P ∼f,s Q iff P ∼CCS
f Q.

Proof. Straightforward.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 51

We now wish to compare �SIQ , as defined in this section, and the semantic ⊥⊥. As an
intermediate step, we consider the following, bare ‹, which lives over Q, but is defined in
terms of ltss (as opposed to successful states of strategies). Let SW be the restriction of
S to closed-world transitions, i.e., the pullback of S → Q along the inclusion WCCS ↪ Q;

this is an lts over Σ via `D. Let ‹= �SW denote the set of pairs (X,S) ∈ S such that for all

(X,S)⇐ (X ′, S′) there exists (X ′, S′) ♡⇐Ô (X ′′, S′′).

Lemma 6.22. For all (X,S) ∈ S, S ∈ ⊥⊥X iff (X,S) ∈‹.

This essentially amounts to checking that the notions of closed-world, successful, and
unsuccessful play (Definition 3.22), correspond with closed-world, successful, and unsuc-
cessful transition sequences. The former are defined in terms of plays and moves therein,
while the latter rest upon the map `D∶WCCS → Σ.

We first observe:

Lemma 6.23. For any two closed-world plays W,W ′ over X, and α∶W →W ′ in DH(X),
α is an isomorphism, and it is unique.

Proof of Lemma 6.22. Let S ∈ SX and assume S ∈ ⊥⊥X . Let S ⇐ S′ (over Σ). This means
that there exists a path p

X =X0
M1←ÐÐX1

M2←ÐÐ . . .Xn =X ′,

such that, omitting positions,

S = S0
M1←ÐÐ S1

M2←ÐÐ . . . Sn = S′,
and p is mapped by `⋆D to the path of length n consisting only of id edges. This implies

by induction the existence of σ ∈ S(W), where W = M1 ● . . . ●Mn is closed-world and
unsuccessful, such that S′ = (S ⋅W)∣ψ(σ). Because S ∈ ⊥⊥X , there exists a successful, closed-

world play W ′, a morphism f ∶W → W ′ in E(X), and σ′ ∈ S(W ′) such that σ′ ⋅ f = σ.
By Lemma 6.23, W ′ is isomorphic to an extension of W with closed-world moves, say
W ′ ≅W ●Mn+1 ● . . . ●Mn+m. By induction on m, we obtain a path

S′ = Sn
Mn+1←ÐÐÐ Sn+1

Mn+2←ÐÐÐ . . . Sn+m,

where Sn+m = (S⋅W ′)∣ψ(σ′). BecauseW ′ is successful, there exists i ∈m such that `D(Mn+i) =
♡, hence S′

♡⇐Ô Sn+i. Thus, (X,S) ∈‹.
Conversely, assume (X,S) ∈‹. Let W be an unsuccessful, closed-world play over X

and σ ∈ S(W). Picking a decomposition W =M1 ● . . . ●Mn of W , we obtain a path p

S = S0
M1←ÐÐ S1 . . .

Mn←ÐÐ Sn = S′

in S such that S′ = (S ⋅W)∣ψ(σ), which yields S ⇐ S′. Because (X,S) ∈‹, there exists

S′ ⇐ S′′
♡←Ð S′′′, with underlying path

S′ = Sn
Mn+1←ÐÐÐ Sn+1 . . .

Mn+m←ÐÐÐ Sn+m = S′′ Mn+m+1←ÐÐÐÐ S′′′

in SW, such that `D(Mn+i) = id for all i ∈ m and `D(Mn+m+1) = ♡. But by definition this
means that S′′′ = (S′ ⋅W ′)∣ψ(σ′) for some

σ′ ∈ S′(W ′) = (S ⋅W)∣ψ(σ)(W ′) = {σ′′ ∈ S(W ●W ′) ∣ σ′′ ⋅ f = σ},

52 T. HIRSCHOWITZ

where W ′ = Mn+1 ● . . . ●Mn+m+1 and f ∶W → (W ●W ′) is the extension. By construction,
σ′ ⋅ f = σ. Hence, S ∈ ⊥⊥X .

We furthermore have:

Lemma 6.24. For any vertex h∶ I →X of IQ and S ∈ SX , (I, h, S) ∈ �SIQ iff (X,S) ∈‹.

Proof. The map χW∶ IQW → QW is a strong, functional bisimulation, because for any h∶ I →
X and closed-world move M ∶Y X, there exists a diagram (6.1). Thus, the projection
(SIQ)W → SW is a strong, functional bisimulation by Proposition 2.11.

Remark 6.25. Interfaces are pretty irrelevant here, and indeed we could have decreed that
closed-world moves only relate vertices with empty interfaces in IQ. This is unnecessary
here, though, so we stick to the simpler definition, but it will be crucial for the π-calculus.

This entails:

Corollary 6.26. For any h∶ I →X, h′∶ I →X ′, S ∈ SX , and S′ ∈ SX′, (I, h, S) ∼f (I, h′, S′)
iff (I, h, S) ∼SIQf (I, h′, S′).

Proof. We have

(I, h, S) ∼f (I, h′, S′)
⇕(by definition)

∀Y, k∶ I → Y,T ∈ SY , ([S,T] ∈ ⊥⊥X+IY ⇔ [S′, T] ∈ ⊥⊥X′+IY)
⇕(by Lemma 6.22)

∀Y, k∶ I → Y,T ∈ SY , ((X +I Y, [S,T]) ∈‹⇔ (X ′ +I Y, [S′, T]) ∈‹)
⇕(by Lemma 6.24)

∀Y, k∶ I → Y,T ∈ SY , ((I →X +I Y, [S,T]) ∈ �SIQ ⇔ (I →X ′ +I Y, [S′, T]) ∈ �SIQ)
⇕(by definition)

(I, h, S) ∼SIQf (I, h′, S′),
which concludes the proof.

6.3. Adequacy. Until now, our study of graphs with complementarity and fair testing
therein is intrinsic, i.e., fair testing equivalence in a modular graph with complementarity G
does not depend on any alphabet. We now address the question of what an alphabet should
be, forG. The main idea is that such an alphabetA should be a graph with complementarity,
and that viewing it as an alphabet for G is the same as providing a morphism p∶G → A
in GCompl, satisfying a certain condition called adequacy. To understand the role of this
condition, one should realise that edges in G may be much too fine a tool for checking fair
testing equivalence. E.g., in SIQ, they include information about which players played which
move. Thus, although it is true that weak bisimilarity implies fair testing equivalence, this
property is essentially useless for fair testing, because too few strategies are weakly bisimilar.
Any morphism p∶SIQ → A induces an a priori coarser version of fair testing for SIQ, where
one only looks at labels in A. Adequacy is a sufficient condition for this latter version to
coincide with the original. This will in particular entail that weak bisimilarity over A is
finer than fair testing equivalence.

Adequacy relies on the following:

Definition 6.27. Consider, for any p∶G→ A and q∶H → A the pullback

FULL ABSTRACTION FOR FAIR TESTING IN CCS 53

G ◇AH A¨

G ×H A2.p×q

We call G ◇A H the blind composition of G and H over A, viewed as an lts over Σ via
G ◇AH → A¨ → Σ.

Recall from Section 2.2 that ≈A denotes weak bisimilarity for reflexive graphs over A.

Definition 6.28. Let p∶G → A be a morphism of graphs with complementarity. We say
that p is adequate iff

● the graph of obG¨ ↪ ob(G ◇A G) is included in ≈Σ, and
● for all x, y ∈ ob(G), x ¨ y iff p(x) ¨ p(y).

Concretely, any transition (e1, e2) ∈ G¨ is matched, without any hypothesis on G, by

(e1, e2) itself. Conversely, having a transition (x1, x2)
e1,e2←ÐÐ (x′1, x′2) in G ◇A G means that

p(e1) ⇓ p(e2) = σ. Adequacy demands that there exists a path (r1, r2)∶ (x1, x2) ←⋆ (x′′1 , x′′2)
in G¨, such that ̃r1 ⇓⋆ r2 = (̃σ), and (x′′1 , x′′2) ≈Σ (x′1, x′2), where the left-hand side is in G¨
and the right-hand side is in G ◇A G.

Recall the map ξ∶ IQ→ A from Example 6.6. Via this map, SIQ and TIQ form ltss and
even graphs with complementarity over A.

Proposition 6.29. The maps from CCS, SIQ, and TIQ to A are adequate.

Proof. For all three graphs p∶G → A over A, both G¨ and G ◇A G form graphs over AW,
because ▷A∶A2 AW is actually partially functional. In each case, the graph of obG¨ ↪
ob(G◇AG) is a weak bisimulation over AW, because for all e and e′ in G, if p(e) ¨ p(e′), then
either e ¨ e′, or both interleavings are coherent, i.e., (e, id) ¨ (id , e′) and (id , e) ¨ (e′, id),
pointwise. (Here, e.g., (e, id) denotes the path ⋅ e←Ð ⋅ id←Ð ⋅.)

The only subtle point is that this only holds thanks to the restrictions put on edges
of IQ. E.g., consider the graph the graph IQ− with the same vertices as IQ, and edges

(I kÐ→ Y) → (I hÐ→ X) given just as for IQ, except that we do not require existence of
a diagram (6.1). Pullback yields a graph S− over IQ−. Extending ξ to ξ′∶ IQ− → A in
the obvious way, we obtain a graph over A. Consider now the moves o2,1, ι2,1∶ [2] [2],
let I = 2 ⋅ ⋆, and let f be one of the two embeddings I → [2], say the one which is an
inclusion at ⋆, f ′ being the other. Recalling labels in A from Definition 2.20, we have edges

(I, f, [2]) 1←Ð (I, f, [2]) and (I, f, [2]) 1←Ð (I, f ′, [2]), and (I, f, [2]) ¨ (I, f, [2]). However,
the two edges are not coherent, because any attempt to construct a diagram (6.2) (with
here h = h′ = k = f , and k′ = f ′) fails (even if we forget about the vertical identity). This is
the very reason we use IQ instead of IQ−.

We have the following two easy properties of blind composition.

Proposition 6.30. For any modular G, adequate p∶G → A, and x ¨ y in G, we have
[x, y] ∈ �G iff (x, y) ∈ �G◇AG.

Proof. We have [x, y] ≈Σ ((x, y) ∈ G¨) ≈Σ ((x, y) ∈ G ◇A G).

54 T. HIRSCHOWITZ

Proposition 6.31. For any H over A, modular G, adequate p∶G → A, x1, x2 ∈ G, and y
in H, if x2 ≈A y, then

[x1, x2] ∈ �G iff (x1, y) ∈ �G◇AH .
Proof. By Proposition 6.30, it is enough to prove that the right-hand side is equivalent to
(x1, x2) ∈ �G◇AG, which is straightforward by hypothesis.

We conclude this section by stating the main property of blind composition, Proposi-
tion 6.37 below, which will be used extensively in the next section.

To start with, recall the following notation from Section 2.2.1. There, considering

a morphism p∶G → A of reflexive graphs, we defined x A
r⇐Ô x′, for x,x′ ∈ ob(G) and

r∶p(x)← p(x′) in A⋆. Namely, this denotes any path r′∶x←⋆ x′ in G, such that p̃⋆(r′) = r̃.
In order to state Proposition 6.37, we now need to equip fc(A) with complementarity

structure, but we cannot do it over the graph Σ, because closed-world paths may contain
more than one ♡ edge, hence cannot all be mapped to Σ. We thus define categories with
complementarity.

The notions of relation, partial functionality, functionality, totality, and domain on
reflexive graphs carry over to categories, e.g., a relation A B is a subcategory R ⊆ A×B.
The only subtlety is that the definitions imply certain functoriality properties. E.g., for
any composites g ○ f in A and g′ ○ f ′ in B, if (f, f ′) ∈ R and (g, g′) ∈ R, because R, as a
subcategory, is stable under composition, we have for free that (g ○ f, g′ ○ f ′) ∈ R. Similarly,
if (x, y) ∈ R for objects x ∈ A and y ∈ B, then (idx, idy) ∈ R. We thus rename partial
functionality and functionality into partial functoriality and functoriality in this setting.

Definition 6.32. A category with complementarity is a category A, equipped with a subcat-
egory AW, a relation ▷A∶A2 AW, and a functor `A∶AW → fc(Σ), such that the composite
A2 AW → fc(Σ) is partially functorial and symmetric.

Again, we let A¨ = dom(▷A) and write a ¨ a′ for (a, a′) ∈ A¨. We further denote the
map A¨ ↪ A2 AW → fc(Σ) by (a, b)↦ (a ⇓ b), and deem morphisms in AW closed-world.

Defining functors with complementarity in the obvious way, we obtain:

Proposition 6.33. Categories with complementarity form a (locally small) category CCompl.

Consider the functor UCompl∶CCompl → GCompl mapping any category with comple-
mentarity C to its underlying graph, say G, which we equip with complementarity structure
as follows. First, define GW and `G by the pullback

GW CW

Σ fc(Σ).

i

`G

η

`C

Furthermore, let ▷C consist of all triples (x, y, z) of vertices (resp. edges) such that z ∈ GW

and (x, y)▷C z (which is a pullback of (▷C) ↪ C2 ×CW along C2 ×GW ↪ C2 ×CW). This
clearly equips G with complementarity structure and extends to the announced functor
UCompl.

This functor does not appear to have a left adjoint, because complementarity in G
may behave badly w.r.t. composition in fc(G). However, we may define the following
candidate structure on fc(G). Consider any graph with complementarity G, and let us

FULL ABSTRACTION FOR FAIR TESTING IN CCS 55

start by defining a complementarity structure on G⋆. Let (G⋆)W denote the subcategory

of closed-world paths in G, i.e., (G⋆)W = (GW)⋆. Accordingly, let `G
⋆

be the composite

(GW)⋆ (`G)⋆ÐÐÐ→ Σ⋆ −̃Ð→ fc(Σ).
Finally, consider the functor

(G2)⋆ ⟨π⋆,(π′)⋆⟩ÐÐÐÐÐ→ (G⋆)2.

It yields a relation (G2)⋆ (G⋆)2, whose converse we use to define ▷G⋆

as the composite
relation

(G⋆)2 ⟨π⋆,(π′)⋆⟩†
(G2)⋆

(▷G)⋆
G⋆.

Concretely, ▷G⋆

is ▷G on objects, and on paths, we have (r1, r2)▷G⋆

r iff all three paths
r1, r2, and r have the same length n and (ri1, ri2)▷G ri for all i ∈ n. This clearly makes G⋆

into a category with complementarity.
Let us now define our candidate complementarity structure on fc(G), for any G ∈

GCompl. Let first fc(G)W be the image of (G⋆)W ↪ G⋆ −̃Ð→ fc(G), i.e., all id -free, closed-

world paths. This in particular induces a functor (G⋆)W → (fc(G))W, with which `(G
⋆) is

obviously compatible, hence we define `fc(G) to be the induced functor. Finally, let ▷fc(G)

be the following relational composite, where the backwards arrow denotes a converse:

(fc(G))2 (−̃)2←ÐÐ (G⋆)2 ▷G⋆ (G⋆)W → fc(G)W.
Concretely, (ρ1, ρ2)▷fc(G) ρ3 iff there exist (r1, r2)▷G⋆

r3 such that r̃i = ρi for i = 1,2,3.
Intuitively, ρ1 and ρ2 are coherent if upon insertion of identities at appropriate places they
become pointwise coherent.

The relational composite fc(G)2 ▷fc(G)

fc(G)W `fc(G)

ÐÐÐ→ Σ is obviously symmetric and
furthermore partially functional on objects, so in order to equip fc(G) with complementarity
structure, it only misses partial functoriality on morphisms.

Definition 6.34. Let GCompl+ denote the full subcategory of GCompl spanning objects G
such that the above composite is partially functorial on morphisms, which we call functorial
graphs with complementarity.

Example 6.35. A sufficient condition for a graph with complementarity G to be functorial
is to satisfy

(i) for any two edges e and e′, and object x, if e ¨ e′, e ≠ id, and e ¨ idx, then e′ is an
identity;

(ii) for all edges e and e′, ̃(e ⇓ id); (id ⇓ e′) and ̃(id ⇓ e′); (e ⇓ id) are defined at the same
time and then equal.

The three graphs with complementarity CCS , SIQ, and TIQ satisfy these conditions, hence
are functorial.

The forgetful functor UCompl of course lands into GCompl+ and we view it as a functor
CCompl→ GCompl+ from now on.

Proposition 6.36. The above construction of fc(G)W, `fc(G), and ▷fc(G) extends to a left
adjoint to UCompl, which coincides with fc on underlying graphs.

We henceforth denote the left adjoint by fc.

56 T. HIRSCHOWITZ

Proof. Proving that this is left adjoint to UCompl reduces to showing that the composite

GCompl+(G,UCompl(C))↪ Gph(G,U(C)) ≅Ð→ Cat(fc(G),C)
factors through CCompl(fc(G),C)↪ Cat(fc(G),C), and conversely the composite

CCompl(fc(G),C)↪ Cat(fc(G),C) ≅Ð→ Gph(G,U(C))
factors through GCompl+(G,UCompl(C))↪ Gph(G,U(C)), which is routine.

We may now state the main property of blind composition:

Proposition 6.37. For any graphs with complementarity G and H over A, and transi-

tion sequences x A
ρx⇐Ô x′ and y A

ρy⇐Ô y′ respectively in G and H, if (ρx, ρy)▷fc(A) ρ, then

(x, y) A
ρ⇐Ô (x′, y′) in G ◇AH.

Proof. Let p∶G → A and q∶H → A be the given projections. Let also (ri1, ri2)▷A ri3 for all

i ∈ n witness the fact that (ρx, ρy)▷fc(A) ρ. It is enough to prove (x, y) A⋆
r3←Ð (x′, y′), which

is in fact a trivial induction on the length of r3 using the definition of G ◇AH.

6.4. Trees. Returning to our main question, we know by Theorem 5.35 that the graph
morphism T → S is a functional, strong bisimulation over Q. Hence, by Proposition 2.11,
we have:

Proposition 6.38. The graph morphism TIQ → SIQ is a functional, strong bisimulation
over IQ, and thus also over A.

In this section, we introduce a criterion for a relation R∶G H between modular
graphs with complementarity over some adequate alphabet A, which essentially ensures
that if R ⊆≈A, then R is fair. This will reduce our main question to proving that the full
relation induced by the map CCS ↪ TIQ is included in weak bisimilarity over A, which we
do in Section 6.5.

Our criterion will rest upon the notion of A-tree, for any graph with complementarity
A, which is directly inspired by the work of Brinksma et al. on failures [48].

Let the set HA of A-trees consist of possibly infinite terms in the grammar

. . . vi ⊢ ti . . . (∀i ∈ n)
v ⊢∑

i∈n
ai.ti

(n ∈ N)

where for all i ∈ n, ai∶ vi → v in A is not silent, i.e., ai ∈ AW implies `A(ai) ≠ id . A-trees
form a reflexive graph over A with edges determined by

(v ⊢∑
i∈n
ai.ti)

ai←Ð (vi ⊢ ti).

Definition 6.39. A modular graph p∶G → A over A has enough A-trees iff for all x ∈ G,
v ∈ A such that p(x) ¨ v, for all A-trees v ⊢ t, there exists xt ∈ G such that x ¨ xt and xt
is weakly bisimilar to t (over A).

Remark 6.40. In the case where x ¨ x′ iff p(x) ¨ p(x′), this is equivalent to requiring
that for all a ∈ A and A-tree t over a, there exists xt ∈ G such that p(xt) = a and xt ≈A t.

Example 6.41. CCS , SIQ, and TIQ have enough A-trees, and Remark 6.40 applies.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 57

A-trees yield a new testing equivalence, called A-tree equivalence, as follows.

Definition 6.42. For any modular p∶G → A, let ∼G∣A
f be the relation defined by x ∼G∣A

f y

iff x & y and for all v ∈ A such that p(x) ¨ v and A-trees t ∈HA
v ,

(x, t) ∈ �G◇AHA
iff (y, t) ∈ �G◇AHA

.

A graph with complementarity A has enough ticks iff for all a ∈ A, there exists an edge
♡a∶a′ → a such that `A(♡a) = ♡. Furthermore, A is inertly silent iff for all e∶ b → a in AW

such that `A(e) = id , we have a = b and e = ida.

Definition 6.43. A graph with complementarity A is a nice alphabet iff it has enough ticks,
and is finitely branching and inertly silent.

Example 6.44. A is a nice alphabet, but IQ is not, because it is not inertly silent.

The main property of A-trees is:

Proposition 6.45. Consider any modular G and adequate p∶G → A, where G has enough

A-trees and A is a nice alphabet. Then, ∼Gf = ∼G∣A
f .

We start with some preparation. Let a path in A be loud iff it contains no silent
(=identity if A is inertly silent) edge, and ♡-free iff no edge is in (`A)−1(♡). Let the set Fa
of failures over a ∈ A consist of all pairs (p,L), where p∶a′ →⋆ a is any loud, ♡-free path in
A and L ⊆ A⋆ is a set of loud paths such that for all q ∈ L, cod(q) = a′.

We define a map fl∶Fa →HA
a to A-trees over a, for all a, by induction on p, followed by

coinduction on L:
(e ○ p,L) ↦ e.(fl(p,L)) + ♡a.0

(ε,L) ↦ fl(L)
L ↦ ∑{e∈A(−,a)∣L⋅e≠∅} e.fl(L ⋅ e)

where L ⋅ e is the set of paths p such that (e ○ p) ∈ L. Note in particular that if L = ∅ or
{ε}, then fl(L) = 0. The sum is finite at each stage because A is finitely branching, and we
use the fact that A has enough ticks.

Proof of Proposition 6.45. It is straightforward to show that ∼Gf ⊆ ∼G∣A
f , by Proposition 6.30.

For the converse, assume x & y and x ≁Gf y. This means that there exists z such that x ¨ z

and y ¨ z, and, w.l.o.g., (y, z) ∈ �G◇AG and (x, z) ∉ �G◇AG.
By the latter, we obtain a transition sequence (x, z)⇐ (x′, z′), such that for no (x′′, z′′)

we have (x′, z′) ♡⇐Ô (x′′, z′′). Let r be the given path witnessing (x, z)⇐ (x′, z′). Its second
projection (π′)⋆(r) is mapped by p⋆ to a path in A, from which we remove all identity

edges (which are also all silent edges by A being inertly silent) to obtain ρ = ̃(p ○ π′)⋆(r), a

loud, ♡-free path in A. Further let L ⊆ A⋆ be the set of all p̃⋆(r′) for paths r′∶ z′ ←⋆ z′′. Let

t = fl(ρ,L). We show (x, t) ∉ �G◇AHA
and (y, t) ∈ �G◇AHA

.

For the first point, t
ρ⇐Ô t′, with t′ = fl(ε,L), hence (x, t)⇐ (x′, t′), by Proposition 6.37.

Now, assume (x′, t′) ♡⇐Ô b′′. By definition of G◇AHA, we split this into x′
ρ1⇐Ô x′′ and t′

ρ2⇐Ô t′′,

with b′′ = (x′′, t′′). But then z′
ρ2⇐Ô z′′ by construction of t, and hence (x′, z′) ♡⇐Ô (x′′, z′′)

(by Proposition 6.37), contradicting (x, z) ∉ �G◇AG.

58 T. HIRSCHOWITZ

Let us now show (y, t) ∈ �G◇AHA
. For any (y, t)⇐ (y′, t′), we have accordingly t

ρ′⇐Ô t′.
By construction, ρ′ is in the prefix closure of ρ ○L ,i.e.,

ρ′ ∈ {r ∈ A⋆ ∣ ∃r′ ∈ A⋆, l ∈ L, r ○ r′ = ρ ○ l}.

● If ρ′ is a strict prefix of ρ, then by construction t′
♡⇐Ô 0 and we are done by Propo-

sition 6.37, since (id ,♡)▷A ♡.
● Otherwise, ρ is a prefix of ρ′. Let ρ′′ be the unique path such that ρ′ = ρ ○ ρ′′. We

have ρ′′ ∈ L, hence by construction of L there exists z′′ such that z
ρ⇐Ô z′

ρ′′⇐Ô z′′,
and thus (y, z) ⇐ (y′, z′′), by Proposition 6.37. By (y, z) ∈ �G◇AG, there exists

(y′, z′′) ♡⇐Ô (y′′, z′′′), which projects to y′
ρy⇐Ô y′′ and z′′

ρz⇐Ô z′′′. But then t′
ρz⇐Ô t′′,

hence (y′, t′) ♡⇐Ô (y′′, t′′), by Proposition 6.37 again, which concludes the proof.

Corollary 6.46. For any nice alphabet A, modular G and H, adequate p∶G → A and
q∶H → A, and relation R∶G H over A such that R ⊆ ≈A, if G and H have enough A-trees
and R preserves and reflects &, then for any xRx′ and yRy′, we have x ∼Gf y iff x′ ∼Hf y′.

Proof. We have
x ∼Gf y
⇕(by Proposition 6.45)

x & y and ∀v ∈ p(x)¨.∀t ∈HA
v .(x, t) ∈ �G◇AH

A ⇔ (y, t) ∈ �G◇AHA

⇕(by weak bisimilarity over A)

x′ & y′ and ∀v ∈ p(x)¨.∀t ∈HA
v .(x′, t) ∈ �H◇AH

A ⇔ (y′, t) ∈ �H◇AHA

⇕(by Proposition 6.45 again)

x′ ∼Hf y′.

6.5. Main result. We now provide the missing piece to our main result, and then conclude.

Lemma 6.47. The graph of θ∶ob CCS → obTIQ is included in weak bisimilarity over A.

Proof. We would like, for any h∶ I → X and family P ∈ ∏n∈N∏x∈X[n] CCSn, to define a
process term h[P] with interface I(⋆), which would amount to

(∣n ∣x∈X[n] Px[l ↦ x ⋅ sl]),
but restricting all channels in X(⋆) ∖ h(I(⋆)). When h is not an inclusion, this is a bit
tricky, because in our De Bruijn-like syntax Γ ⊢ ν.P may be understood as Γ ⊢ ν(Γ + 1).P .
That is, ν-bound channels are always strictly greater than names in Γ.

The correct way of doing this is to use subtraction, i.e., restrict channels in X(⋆)−I(⋆),
and accordingly rename channels in the body. Formally, let γh be the unique non-decreasing
isomorphism (X(⋆) ∖ h(I(⋆))) → (X(⋆) − I(⋆)) (which exists thanks to h being monic),
and let h[P] be

I(⋆) ⊢ νX(⋆)−I(⋆).(∣n ∣x∈X[n] Px [
l ↦ εa.(h⋆(a) = x ⋅ sl) if x ⋅ sl ∈ h⋆(I(⋆))
l ↦ γh(x ⋅ sl) otherwise

]) ,

where ε is Hilbert’s definite description operator, i.e., εa.A(a) denotes the unique a such
that A(a) holds, and νn.P denotes ν. . . . ν.P , n times.

Definition 6.48. Let I∶ob CCS obTIQ consist, for any P ∈ ∏n∈N∏x∈X[n] CCSn, of all
pairs (h[P], (I, h, θ(P)).

FULL ABSTRACTION FOR FAIR TESTING IN CCS 59

Let R be the composite relation

ob CCS
≡

ob CCS
I

obTIQ.

We show that R is an expansion [51, Chapter 6], which implies that it is a weak
bisimulation. Hence, since the graph of θ is included in R, this entails the desired result.

Let x
α̂←Ð x′ iff

● either α is an identity and x
x⇐Ô
′

in zero or one step,

● or α is not an identity and x
α⇐Ô x′.

Recall:

Definition 6.49. R is an expansion iff for all P R T ,

● if P
α←Ð P ′, then there exists T ′ such that P ′ R T ′ and T

α⇐Ô T ′; and

● if T
α←Ð T ′, then there exists P ′ such that P

α̂←Ð P ′ R T ′.

First, one easily shows that transitions in CCS are dealt with by ‘heating’ the right-hand
side until it may match the given transition.

Conversely, we show below in (1) that for any transition (I, h, θ(P)) M←Ð (I, k, T ′), for
M ∶k → h in IQ, where M is either a fork or a channel creation, then T ′ = θ(P ′), for some
P ′ ∈∏n∈N∏y∈Y [n] CCSn, and h[P] ≡ k[P ′].

Thus, any such transition, which is silent, is matched by the empty transition sequence,
as in

Q ≡ h[P] I (I, h, θ(P))

= ≡

Q ≡ k[P ′] I (I, k, T ′).
M

Similarly, for any transition (I, h, θ(P)) M←Ð (I, k, T ′) not falling in the previous cases,

we prove below in (2) that there exists P ′ ∈∏n∈N∏y∈Y [n] CCSn and Q′ such that h[P] ξ(M)←ÐÐÐ
Q′ ≡ k[P ′]. Thus, any such transition is matched as in

Q ≡ h[P] I (I, h, θ(P))

Q′′ ≡ Q′ ≡ k[P ′] I (I, k, T ′),
Mξ(M)

ξ(M)

where Q′′ is obtained by ≡ being a bisimulation.

(1) As announced, let us now consider the case of a transition (I, h, θ(P)) M←Ð (I, k, T ′),
for M ∶k → h in IQ, where M is either a fork or a channel creation. Consider first the case
where M is a fork. Let x1, . . . , xn be the players of X, let m1, . . . ,mn be their respective
arities, and let i0 ∈ n be the forking player. Let, for any i ∈ n + 1,

µ(i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i if i < i0
i0 if i = i0 or i = i0 + 1
i − 1 if i > i0 + 1

60 T. HIRSCHOWITZ

and

P ′
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pi if i < i0
P 1
i0

if i = i0
P 2
i0

if i = i0 + 1
Pi−1 if i > i0 + 1,

where Pi0 = P 1
i0
∣P 2
i0

. For all j ∈ n+1, we have that yj is an avatar of xµ(j) (i.e., xµ(j) = (yj)M),

and P ′
j = Pµ(j) if µ(j) ≠ i0, while Pi0 = P ′

i0
∣ P ′

i0+1.
Thanks to the restriction of edges

I

X M Y

h
u

k

t s

in IQ, for any j ∈ n + 1, if µ(j) = i, l ∈mi and a, b ∈ I(⋆), we have that if h⋆(a) = xi ⋅ sl and
k⋆(b) = yj ⋅ sl, then, since s ○ yj ○ sl = t ○ xi ○ sl, both squares

⋆ I

[mi] M

a,b

sl

s○yj ,t○xi

u

commute, hence a = b by monicity of u.
So, for all j ∈ n+1 and l ∈mi, for i = µ(j), we have xi ⋅sl ∈ h⋆(I(⋆)) iff yj ⋅sl ∈ k⋆(I(⋆)),

in which case
εa.(h⋆(a) = xi ⋅ sl) = εb.(k⋆(b) = yj ⋅ sl).

Furthermore, we have a commuting diagram

X(⋆) ∖ h(I(⋆)) M(⋆) ∖ u(I(⋆)) Y (⋆) ∖ k(I(⋆))

X(⋆) − I(⋆) Y (⋆) − I(⋆),

≅

γh

δM

≅

γk

δ′M

of bijections, where δM and δ′M are obtained by composition and the arrows marked ≅ are
the respective restrictions of t and s. This diagram is such that for all j ∈ n+1 and i = µ(j),
l ∈mi, if xi ⋅ sl ∉ h(I(⋆)), then δM(xi ⋅ sl) = yj ⋅ sl. We have

h[P] = νX(⋆)−I(⋆).(∣i∈nPi [
l ↦ εa.(h⋆(a) = xi ⋅ sl) if xi ⋅ sl ∈ h⋆(I(⋆))
l ↦ γh(xi ⋅ sl) otherwise

])

and

k[P ′] = νY (⋆)−I(⋆).(∣j∈n+1P
′
j [

l ↦ εb.(k⋆(b) = yj ⋅ sl) if yj ⋅ sl ∈ k⋆(I(⋆))
l ↦ γk(yj ⋅ sl) otherwise

]) .

FULL ABSTRACTION FOR FAIR TESTING IN CCS 61

Via the renaming δ′M , we have

h[P] ≡ νY (⋆)−I(⋆).(∣j∈n+1,j≠i0+1Pµ(j) [
l ↦ εb.(k⋆(b) = yj ⋅ sl) if yj ⋅ sl ∈ k⋆(I(⋆))
l ↦ γk(δM(xi ⋅ sl)) otherwise

])

≡ νY (⋆)−I(⋆).(∣j∈n+1,j≠i0+1Pµ(j) [
l ↦ εb.(k⋆(b) = yj ⋅ sl) if yj ⋅ sl ∈ k⋆(I(⋆))
l ↦ γk(yj ⋅ sl)) otherwise

])

id←Ð νY (⋆)−I(⋆).(∣j∈n+1P
′
j [

l ↦ εb.(k⋆(b) = yj ⋅ sl) if yj ⋅ sl ∈ k⋆(I(⋆))
l ↦ γk(yj ⋅ sl)) otherwise

])

≡ k[P ′].
The case of a channel creation move is similar.

(2) Consider now any transition (I, h, θ(P)) M←Ð (I, k, T ′), where M is an input or an
output on some channel c ∈ h⋆(I(⋆)), or a synchronisation, or a tick. Then, proceeding as
for the forking move above, we may take µ = id , and still obtain δM and δ′M . In all cases,
we have T ′i = θ(P ′

i), for some family P ′ of CCS processes. E.g., if M is an input on c by

xi0 , then P ′
i = Pi for all i ≠ i0, and Pi0 ≡ c.P ′

i0
+ P ′′. We have h[P] ξ(M)←ÐÐÐ Q, where

Q = νX(⋆)−I(⋆).(∣i∈nP ′
i [

l ↦ εa.(h⋆(a) = xi ⋅ sl) if xi ⋅ sl ∈ h⋆(I(⋆))
l ↦ γh(xi ⋅ sl) otherwise

]) ,

which via the renaming δ′M , is structurally congruent to

νY (⋆)−I(⋆).(∣i∈nP ′
i [

l ↦ εb.(k⋆(b) = yi ⋅ sl) if yi ⋅ sl ∈ k⋆(I(⋆))
l ↦ γk(δM(xi ⋅ sl)) otherwise

])

≡ νY (⋆)−I(⋆).(∣i∈nP ′
i [

l ↦ εb.(k⋆(b) = yi ⋅ sl) if yi ⋅ sl ∈ k⋆(I(⋆))
l ↦ γk(yi ⋅ sl) otherwise

])

≡ k[P ′],
which concludes the proof.

This leads to our first full abstraction result:

Corollary 6.50. The composite ob(CCS)↪ ob(TIQ)→ ob(SIQ) is included in weak bisim-
ilarity.

Proof. By the previous lemma, Proposition 6.38, and the fact that weak bisimulations are
closed under composition.

Corollary 6.51. The composite ob CCS
θÐ→ obTIQ ⟦−⟧ÐÐ→ obSIQ is fair, and we have for all

CCS processes P and Q over any common n:

P ∼f,s Q iff ⟦θ(P)⟧ ∼f ⟦θ(Q)⟧.
Proof. We have:

P ∼f,s Q
⇕(by Proposition 6.21)

P ∼CCS
f Q

⇕(by Corollaries 6.46 and 6.50, and Example 6.41)

⟦θ(P)⟧ ∼SIQf ⟦θ(Q)⟧
⇕(by Corollary 6.26)

⟦θ(P)⟧ ∼f ⟦θ(Q)⟧,

62 T. HIRSCHOWITZ

as desired.

7. CCS as a playground

At last, we prove that DCCS forms a playground. We rewind to the beginning of Section 4.1,
to state things a bit more formally.

7.1. A pseudo double category. Recall from HP the notion of dimension in C: ⋆ is the
sole object of dimension 0, all [n]’s have dimension 1, all on,i, ιn,i, π

l
n, πrn, ♡n, and νn have

dimension 2, all πn have dimension 3, and all τn,i,m,j have dimension 4. By extension, a
presheaf F has dimension i if F is empty over objects of dimension strictly greater than i.
We call interfaces the presheaves of dimension 0 (i.e., empty beyond dimension 0), positions
the finite presheaves of dimension 1.

We start by viewing the base pseudo double category of our playground, DCCS , as a
sub-pseudo double category of the following pseudo double category DCCS ,0.

Definition 7.1. Let DCCS ,0 have:

● as objects all positions,

● horizontal category DCCS ,0
h the subcategory of Ĉf consisting of positions and monic

arrows between them;

● vertical (bi)category DCCS ,0
v the sub-bicategory of Cospan(Ĉf) consisting of positions

and cospans of monic arrows between them;
● and all commuting diagrams

X X ′

U V

Y Y ′

h

k

l

s s′

t t′

as double cells
X X ′

Y Y ′,

h

U V

l

(h,k,l) (7.1)

with all ↪ arrows monic.

Horizontal composition of double cells is induced by composition in Ĉf . Vertical com-
position of double cells is induced by pushout in Ĉf . It is of course the vertical direction
here which is pseudo.

Proposition 7.2. DCCS is the pseudo double category obtained by restricting DCCS ,0 to
vertical morphisms which are either equivalences or finite composites of moves.

Since DCCS is again the only involved (candidate) playground in this section, we often
omit the superscript. E.g., D0 denotes DCCS ,0.

The rest of Section 7 is devoted to proving:

Theorem 7.3. D, equipped with

● as individuals, all positions of the shape C(−, [n]), i.e., all strictly representable
presheaves,

● moves as moves, seeds as basic moves, and full moves as full moves.

forms a playground.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 63

We start with a combinatorial correctness criterion for characterising plays U ∶X Y
among general cospans X ↪ U ↩ Y , which we then put to use in proving the theorem. Our
convention for plays X ↪ U ↩ Y is that the (candidate) final position is always on the left.

7.2. Correctness. We prove a few properties of plays, which we then find are sufficient for
a cospan to be a play.

Given a play X ↪ U ↩ Y , we start by forgetting the cospan structure and exhibiting
some properties of U alone.

Definition 7.4. A core of a presheaf U ∈ Ĉf is an element of dimension > 1 which is not
the image (under the action of some morphism of C) of any element of higher dimension.

Here is a first easy property of plays. Observing that for all seeds Y ↪M ↩X, M is a
representable presheaf, we put:

Definition 7.5. A presheaf U is locally 1-injective iff for any seed Y ↪ M ↩ X with
interface I and core µ ∈ U(M), if two elements of M are identified by the Yoneda morphism
µ∶M → U , then they are in (the image of) I(⋆).

The name ‘locally 1-injective’ is designed to evoke the fact that M → U is injective
above dimension 0.

Proposition 7.6. Any play U is locally 1-injective.

Proof. Choose a decomposition of U into moves; µ corresponds to precisely one such move,
say M ′, obtained, by definition, from some seed M as a pushout (3.1). By construction
of pushouts in presheaf categories, M ′ is obtained from M by identifying some channels
according to I → Z.

We now extract from any presheaf a graph, which represents its candidate causal struc-
ture. Observe that, in C, for any object µ of dimension > 1 (i.e., a move), all morphisms
from a player, i.e., an object of the shape [n], to µ have exactly one of the shapes f ○ s ○ f ′
and f ○ t ○ f ′. In the former case, the given player belongs in the final position of µ and we
say that it is a source of µ; in the latter, it belongs in the initial position and we call it a
target. We extend these notions to arbitrary presheaves.

Definition 7.7. In any U , the sources of a core µ are the players x with a morphism, in

∫ U (the category of elements of U , recalled in Section 3.1), of the shape x
f○s○f ′ÐÐÐ→ µ to µ;

its targets are the players y with a morphism of the shape y
f○t○f ′ÐÐÐ→ µ.

Example 7.8. In the representable πn, there is one target, l ○ t (or equivalently r ○ t), and
two sources, s1 = l ○ s and s2 = r ○ s, respectively the left and right players obtained by
forking. Another example is τn,i,m,j , which has two targets, the sender ε○ t and the receiver
ρ ○ t, and two sources ε ○ s and ρ ○ s.

Definition 7.9. A channel a ∈M(⋆) is created by a seed Y s M t X iff a ∈ Y (⋆)∖X(⋆).
Recall that in C, the channels known to a player [n] are represented by morphisms

s1, . . . , sn∶ ⋆ → [n], so that in a presheaf U ∈ Ĉf , the channels known to x ∈ U[n] are x ⋅ s1,
. . . , and x ⋅ sn.

Given a presheaf U , we construct its causal (simple) graph GU as follows:

64 T. HIRSCHOWITZ

● its vertices are all channels, players, and cores in U ;
● there is an edge to each core from its sources and one from each core to its targets,

as in

source1 source2;

core

target1 target2;

● there is an edge x→ x ⋅ si for all x ∈ U[n] and i ∈ n;
● there is an edge a→ µ for each channel a created by µ.

This graph is actually a binary relation, since there is at most one edge between any two
vertices. It is also a coloured graph, in the sense that it comes equipped with a morphism
to the graph L:

∞ 1 0,

mapping cores to ∞, players to 1, and channels to 0. (Observe in particular that there
are no edges from channels to players nor from cores to channels.) For any simple graph
G, equipped with a morphism l∶G → L, we call vertices of G channels, players, or cores,
according to their label.

Definition 7.10. Seen as an object of Gph/L, G is source-linear iff for any cores µ,µ′, and
other vertex (necessarily a player or a channel) x, µ ← x → µ′ in G, then µ = µ′. G is
target-linear iff for any cores µ,µ′ and player x, if µ→ x← µ′ in G, then µ = µ′. G is linear
iff it is both source-linear and target-linear.

Proposition 7.11. For any play Y s U t X, GU is linear.

Proof. By induction on any decomposition of U into moves.

Proposition 7.12. For any play as above, GU is acyclic (in the directed sense).

Proof. Again by induction on any decomposition of U .

Definition 7.13. A player x in U is final iff it is not the target of any move, i.e., for no
move µ ∈ U , x = µ ⋅ t.
Lemma 7.14. A player is final in U iff it has no edge from any core in GU .

Definition 7.15. A player is initial in U when it is not the source of any move, i.e., for no
move µ ∈ U , x = µ ⋅ s. A channel is initial when it is not created by any move.

Lemma 7.16. A player is initial in U iff it has no edge to any core in GU .

Now, here is the expected characterisation:

Theorem 7.17. A cospan Y s U t X is a play iff

(i) U is locally 1-injective,
(ii) X contains precisely the initial players and channels in U ,

FULL ABSTRACTION FOR FAIR TESTING IN CCS 65

(iii) Y contains all channels, plus precisely the final players in U ,
(iv) and GU is linear and acyclic.

Of course, we have almost proved the ‘only if’ direction, and the rest is easy, so only
the ‘if’ direction remains to prove. The rest of this section is devoted to this. First, let
us familiarise ourselves with removing elements from a presheaf. For two morphisms of

presheaves U
fÐ→ V

g←Ð W , we denote by U ∖W the topos-theoretic difference U ∩ ¬W of
(the images of) f and g in the lattice Sub(V) of subobjects of V . This differs in general
from what we denote U −W , which is the set of elements in V which are in the image of U
but not that of W , i.e., ∑c∈CU(c)∖W (c). More generally, for any morphism of presheaves
f ∶U → V and set W , let U −W = ∑c∈C Im(U(c)) ∖W . U −W is generally just a set, not
a presheaf; i.e., its elements are not necessarily stable under the action of morphisms in C.
Proposition 7.19 below exhibits a case where they are, which is useful to us.

Definition 7.18. For any seed Y ↪ M ↩ X, let the past past(M) = M − Y of M be the
set of its elements not in the image of Y . For any such M , presheaf U , and core µ ∈ U(M),
let past(µ) = Im(past(M)) consist of all images of past(M).

To explain the statement a bit more, by Yoneda, we see µ as a map M → U , so we have
a set-function

past(M)↪ ∫M → ∫ U.
Observe that past(µ) is always a set of players and moves only, since channels present in
X always are in Y too.

Given a core µ ∈ U , an important operation for us will be

U) µ =⋃{V ↪ U ∣ ∫ V ∩ past(µ) = ∅}.
U)µ is thus the largest subpresheaf of U not containing any element of the past of µ. The
good property of this operation is:

Proposition 7.19. If µ is a maximal core in GU (i.e., there is no path to any further core)
and GU is target-linear, then U) µ = U − past(µ), i.e., (U) µ)(c) = U(c) ∖ past(µ) for all
c.

Proof. The direction (U) µ)(c) ⊆ U(c) ∖ past(µ) is by definition of). Conversely, it is
enough to show that c↦ U(c)∖past(µ) forms a subpresheaf of U , i.e., that for any f ∶ c→ c′

in C, and x ∈ U(c′)∖past(µ), x⋅f ∉ past(µ). Assume on the contrary that x′ = x⋅f ∈ past(µ).
Then, of course f cannot be the identity. Furthermore, x′ is either a player or a move; so,
up to pre-composition of f with a further morphism, we may assume that x′ is a player.
But then, since f is non-identity, x must be a move, with x′ being one of its sources or
targets. Now, up to post-composition of f with a further morphism, we may assume that
x is a core. So, there is either an edge x → x′ or an edge x′ → x in GU . However, x ≠ µ, so
x → x′ is impossible by target-linearity of GU , and x′ → x is impossible by maximality of
µ.

Proof of Theorem 7.17. We proceed by induction on the number of moves in U . If it is zero,
then U is a position; by (ii), t is an iso, and by (iii) so is s, hence the cospan is a play. For
the induction step, we first decompose U into

Y
s2 U ′ t2 Z

s1 M ′ t1 X,

and then show that M ′ is a move and U ′ satisfies the conditions of the theorem.
So, first, pick a maximal core µ in GU , i.e., one with no path to any other core. Let

66 T. HIRSCHOWITZ

I0

Y0 M0 X0

be the seed with interface corresponding to µ, so we have the Yoneda morphism µ∶M0 → U .
Let U ′ = (U) µ), and X1 =X −Pl(X0). X1 is a subpresheaf of X, since it contains all

names. The square

I0 X1

X0 X

is a pushout, since it just adds the missing players to X1. Define now Z, M ′, s1, and t1 by
the pushouts

Y0 Z

M0 M ′ U

I0 X1

X0 X

C
t1

s1

and the induced arrows. We further obtain arrows to U by universal property of pushout,
which are monic because X ↪ U is, using (i). We observe that U =M ′ ∪U ′, i.e., the square

Z U ′

M ′ U

is a pushout, so U is indeed a composite as claimed, with Z ↪ M ′ ↩ X a move by con-
struction. So, it remains to prove that Y ↪ U ′ ↩ Z satisfies the conditions. First, as a
subpresheaf of U , U ′ is locally 1-injective and has a linear and acyclic causal graph, so
satisfies (i) and (iv). U ′ furthermore satisfies (ii) by construction of Z and source-linearity
of GU , and (iii) because removing past(µ) cannot make any non-final player final.

7.3. CCS as a pre-playground. We now start proving:

Theorem 7.20. D forms a playground.

Axioms (P2)–(P4) are easy, as well as (P6), (P9) and (P10). Furthermore, once (P1)
is clear, (P5) is also easy. This leaves (P1) and the decomposition axioms.

For (P1), i.e., the fact that cod∶DH → Dh is a fibration, we introduce the notion of

‘history’ for plays. For a presheaf U ∈ Ĉf , let ⌞U⌟ be its restriction to dimension 3, i.e.,
⌞U⌟(τn,i,m,j) = ∅ for all n, i,m, j, and ⌞U⌟(c) = U(c) on other objects. Further let El(U) =
∑c∈ob(C)⌞U⌟(c) be the set of elements of ⌞U⌟. We have a category El(Ĉf), whose objects are

those of Ĉf , and whose morphisms U → U ′ are set-functions El(U) → El(U ′). We denote

such morphisms with special arrows U U ′. There is a forgetful functor El∶ Ĉf → El(Ĉf),
which we implicitly use in casting arrows U → U ′ to arrows U U ′.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 67

Definition 7.21. Consider any seed X ↪M ↩ Y which is not a synchronisation, where Y
is the initial position and X is the final position. Then Y is a representable position, say
[n], and we let the history of M be the map pM ∶El(M)→ El(Y) sending

● all channels in El(M) ∩El(Y) to themselves,
● all other elements to id [n].

The history pM ′ of a move M ′ is the map obtained by pushout of the history of its generating
seed M , as in

M M ′

I Z

Y Y ′.

C

This defines the history of moves. We have:

Proposition 7.22. For any move X s M t Y , we have pM ○ t = id.

We graphically represent histories by arrows between the presheaves, as p in

X U Y.s
t

p

(7.2)

We now define the history of sequences of moves, which we here call sequential plays.

We denote such a sequence Xn
MnÐÐ→Xn−1 . . .X1

M1ÐÐ→X0 by (Mn, . . . ,M1).
Definition 7.23. Define now the history of a sequential play X → (Mn, . . . ,M1) ← Y ,
letting U = M1 ● . . . ●Mn be the corresponding play, to be the map U Y defined by
induction on n as follows:

● if ∣U ∣ = 0, then t is an isomorphism, and the history is the inverse of the corresponding
bijection on elements;

● if ∣U ∣ = 1, then U is a move M and its history is that of M ;
● if ∣U ∣ > 1, then U = (U ′,M) for some move M and sequential play U ′; letting pU ′ be

the history of U ′ obtained by induction hypothesis, we let pU = pM ○ q, where q is
defined by universal property of pushout in

X U ′ Y M Z

Y U

M.

sU ′

tU ′

pU ′

sM
tM

pM

pU ′

s
t

qsM

Proposition 7.24. For any sequential plays U1, U2∶X Y with isomorphic compositions,
we have pU1 = pU2.

Proof. For any presheaf U such that GU is source-linear and acyclic, consider the function
hU ∶El(U)→ El(U) mapping

● initial players and channels to themselves,

68 T. HIRSCHOWITZ

● non-initial players and channels to the (unique by source-linearity of GU) core that
created them,

● elements of dimension 2 to their image under t,
● elements of higher dimensions to the image of one of their images in dimension 2

(which all map to the same element by a simple case analysis).

Observe that this map is ultimately idempotent because it is strictly increasing w.r.t. GU ,
and let HU be the corresponding idempotent function.

It is easy to see that if X ↪ U ↩ Y is a move, then Im(HU) = Y and pU =HU .

Furthermore, for all composable plays X
U ′

Y
U
Z, we have HU●U ′ =HU ○HU

U ′ , where

HU
U ′ ∶El(U ● U ′) → El(U) is the extension of HU ′ to El(U ● U ′) which is the identity on

El(U) ∖El(U ′). Because Im(HU ′) = Y , this indeed goes to El(U).
When U is a move, this is actually equivalent to the diagrammatic definition of pM●U ′ ,

which entails by induction that for any play U , pU = HU , which does not depend on the
decomposition of U into moves.

Just as for moves, the target map is a section of the history:

Proposition 7.25. For any play X ↪ U t Y , we have pU ○ t = idY .

Proposition 7.26. Any double cell (h, k, l) as on the left below

X X ′

U V

Y Y ′

h

k

l

s s′

t t′

U V

Y Y ′

k

p

l

p′

is compatible with histories p∶U Y and p′∶U ′ Y ′, in the sense that the square on the
right commutes.

The important point for us is:

Proposition 7.27. The vertical codomain functor cod∶DH → Dh is a fibration.

Proof. We first consider the restriction of cod to the full subcategory of DH consisting of

moves and isomorphisms. Given a move X s M t Y and a morphism l∶Y ′ → Y in Dh,
consider the pullback (in sets) and the induced arrow t′:

Y ′ Y

U0 M

Y ′ Y.

l

t

k0

p′

l

t′

p

Now, consider U0 as a presheaf over C3 by giving each element the type of its image under
k0, and checking that U0, viewed as an ob(C3)-indexed family of subsets of M , is stable

FULL ABSTRACTION FOR FAIR TESTING IN CCS 69

under the action of morphisms in C3. This, in passing, equips k0 and t′ with the structure
of maps in Ĉf .

Furthermore, let the (n, i,m, j)-horn (see, e.g., Joyal and Tierney [29] for the origin
of our terminology) τ−n,i,m,j be the representable presheaf on τn,i,m,j , minus the element
idτn,i,m,j , and consider the family A of commuting squares

τ−n,i,m,j U0

τn,i,m,j M,

w

i k0

w′

where i is the inclusion. Define then U and k by pushout as in

∑a∈A τ−na,ia,ma,ja U0

∑a∈A τna,ia,ma,ja U

M.

[wa]a∈A

∑a∈A ia

[w′a]a∈A

k0

k

Informally, U is U0, where we add all the τn,i,m,j ’s that exist in M and whose horn is in U0.
We have by construction El(U) = El(U0), so p′ is indeed a left inverse to t′∶El(Y ′)→ El(U).

Finally, define X ′, h, and s′ by the pullback

X ′ X

U M.

h

s′

k

s

This altogether yields a vertical morphism

X ′ U Y ′,
s′

t′

p′

in D0
v. A tedious case analysis (made less tedious by l∶Y ′ ↪ Y being monic) shows that,

because M is a move, U is either a move or isomorphic to Y ′. So it is in Dv. U is our

candidate cartesian lifting of M along l. More generally, for any play X s U t Y , choose

a decomposition into moves. We obtain a candidate cartesian lifting X ′ s′ U ′ t′ Y ′ for U ,
with morphism (h, k, l) to U , along any l∶Y ′ ↪ Y by taking the successive candidates for
each move in the obvious way, and composing them.

To show that this indeed yields a cartesian lifting, consider any vertical morphism

X ′′ s′′ U ′′ t′′ Y ′′ and diagram

70 T. HIRSCHOWITZ

X ′′ X

U ′′ U

Y ′′ Y,

h′′

k′′

l′′

s′′ s

t′′ t

together with a map l′∶Y ′′ → Y ′ such that l ○ l′ = l′′. By Proposition 7.26, letting p′′ be the
history of U ′′, the diagram

U ′′ U

Y ′′ Y

k′′

p′′

l′′

p

commutes, so by universal property of pullback, we obtain a map k′0∶El(U ′′)→ El(U ′), such
that k0 ○ k′0 = k′′0 , where k′′0 is the restriction of k′′ to dimensions < 4. Furthermore, the
expected map k′∶U ′′ → U ′, is given by universal property of pushout in

∑a∈A τ−na,ia,ma,ja U ′
0

∑b∈B τ−nb,ib,mb,jb ⌞U ′′⌟

∑a∈A τna,ia,ma,ja U ′

∑b∈B τnb,ib,mb,jb U ′′ k′

where B is the family of all commuting squares

τ−n,i,m,j ⌞U ′′⌟

τn,i,m,j U ′′.

w

i k0

w′

Finally, the desired map h′∶X ′′ →X ′ follows from universal property ofX ′ as a pullback,
and the square

U ′′ U ′

Y ′′ Y ′
t′′

l′

k′

t′

commutes by uniqueness in the universal property of U ′ as a pullback.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 71

7.4. Towards CCS as a playground. In this section, we prove an intermediate result
for proving the decomposition axioms.

Consider a double cell α of the shape

A X

B

C Y,

h

w

u

v

k

α

where v is a view. Let now Dα denote the category with

● objects all tuples T = (Z, l, u1, u2, α1, α2, α3) such that

A X

B Z

C Y,

h

w u2

u1

u

v

k

l

α2

α1

α3

equals α and α3 is an isomorphism;
● with morphisms T → T ′ given by tuples (U, f, β, γ, δ) (where f is vertical) such that

A X

B Z ′

Z

C Y,

h

w

u

v

k

f

α′1

δ

α2

α′2

α1

γ α′3

α3

β

u2

commutes, i.e., γ ○ (α1 ● δ) = α′1, β ○α2 = δ ●α′2, and α′3 ○ (γ ●u′2) ○ (u1 ●β) = α3, and
β and γ are isomorphisms;

● composition and identities are obvious.

So, objects of Dα are decompositions of u permitting corresponding decompositions of α.
The rest of this section is a proof of:

Lemma 7.28. Dα has a weak initial object, i.e., an object T such that for any object T ′

there is a morphism T → T ′.

We start by extending the assignment U ↦ GU to a functor, at least for source-linear U .
Let SLin denote the full subcategory of Ĉ spanning source linear presheaves. The assignment
U ↦ GU actually extends to a functor G−∶SLin→ Gph/L, as follows. Let, first, for any move
x ∈ U , the core associated to x, core(x), be the unique core reachable from x in ∫ U , i.e., the
unique core µ for which there exists f in C such that µ ⋅ f = x. Now, for any α∶U → U ′ in
Ĉ, let Gα∶GU → GU ′ map any core x in GU to core(α(x)) ∈ GU ′ , and any non-core vertex

72 T. HIRSCHOWITZ

x ∈ GU to α(x) ∈ GU ′ . By naturality, this indeed defines a unique morphism of simple
graphs over L.

Proposition 7.29. G−∶SLin→ Gph/L is a functor.

We continue with some properties of D.

Definition 7.30. A filiform play is any play U such that the restriction of GU to cores and
players is a filiform graph, i.e., a graph of the shape ⋅→ ⋅→ ⋯

E.g., all views are filiform.

Lemma 7.31. Any epimorphic (in DH , hence isomorphic) double cell

A X

B

C Y,

h

w

u

v

k

α

(7.3)

where v is filiform decomposes as

A X

B Z

C Y,

h

w u2

u

u1v

k

α2

α1

α3

with α3 an isomorphism, α1 and α2 epimorphic, uniquely up to isomorphism. In this case,
u1 is filiform.

Proof. B has just one player, say b. Let b′ = α(b). Because α is epi, α induces a morphism
Gα∶Gv●w → Gu of graphs, which is also epi. So, Gu may be decomposed as a pushout

b′ G1

G2 Gu

with G1 = ImGα(Gv) and G2 = ImGα(Gw). From this one deduces a decomposition of u and
α.

Lemma 7.32. For any vertically composable α and β, if α ●β is epi, then so are α and β.

Proof. Easy.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 73

Proof of Lemma 7.28. The double cell α induces morphisms of graphs Gv → Gu ← Gw, by
Proposition 7.29. Let

u1 =⋂{u′ ⊆ u ∣ (Y ⊆ u′) ∧ (Imα(Gv) ⊆ Gu′)}.
Thus, v → u factors as v → u1 → u. Let Z be the position containing all channels of u1, and
all final players of u1. Further let ↑Z denote the full subgraph of Gu containing all vertices
x with a path to some vertex of Z. Let then

u2 =⋂{u′′ ⊆ u ∣ Gu′′ ⊇ ↑Z}.
The union u1 ∪ u2 is u, i.e., the square

Z u1

u2 u

is a pushout, i.e., u2●u1 ≅ u in Cospan(Ĉf). So it only remains to prove that Z → u1 ←X and
Y → u2 ← Z are plays, for which we use Theorem 7.17. First, u1 and u2, as subpresheaves
of u, both are locally 1-injective. Furthermore, Gu1 and Gu2 , as subgraphs of a linear and
acyclic graph, are also linear and acyclic. Now, by definition of Z, Z → u1 contains all
channels and the final players of u1. Further, since X ⊆ u1, being initial in u implies being
initial in u1, so Z → u1 ← X indeed is a play. Symmetrically, no player of u1 not in Z is
final, so Y ⊆ u2, and hence Y → u2 indeed contains all channels and final players. Finally,
the players and channels of Z are precisely the initial players and channels of u2.

It remains to show that the induced decomposition of α is weakly initial. But any
decomposition, inducing a decomposition u′1●u′2 of u, should satisfy Y ⊆ u′1, Imα(Gv) ⊆ Gu′1 ,

and Gu′2 ⊆ ↑Z, so, ignoring isomorphisms for readability, u1 ⊆ u′1 and u′2 ⊆ u2, as desired.

7.5. CCS as a playground. We are now ready to prove the decomposition axioms, which
entail Theorem 7.3. They are proved in Lemmas 7.35 and 7.34 below.

Let us start with the following easy lemma.

Lemma 7.33. If u = u2 ● u1, then, in Gu
● no player of u1 is reachable from any core of u2;
● no core of u1 is reachable from any element of u2.

Proof. For the first point, cores of u2 only reach initial channels of u1.
For the second point, we further observe that channel and players of u2 only reach

initial players and channels of u1, hence no core.

The easiest decomposition axiom is (P8).

Lemma 7.34. D satisfies (P8).

Proof. Although the statement is complicated, this is rather easy: α restricts to a map of
presheaves f ∶ b→ (M ● u), on which we proceed by case analysis.

If Im(f) ⊆ M , then by Lemma 7.28 and correctness we are in the left-hand case.
Otherwise, assume that a move µ′ ∈M is in the image of α, say of a move µ ∈ w. We have
a path µ→ b in b ●w, hence a path core(µ′)→ α(b) in M ● u, contradicting Lemma 7.33.

74 T. HIRSCHOWITZ

Let us now attack the last axiom.

Lemma 7.35. D satisfies (P7).

We need a few lemmas.

Lemma 7.36. For any plays A
u1

B
u2

C, for any player or channel x ∈ u2 and core
µ ∈ u1, there is no edge x→ µ in u2 ● u1.

Proof. The existence of e∶x → µ implies x ∈ B, hence x initial in u1, which contradicts the
very existence of e.

Lemma 7.37. Morphisms of plays preserve finality.

Proof. If a player is final in the domain, then it is in the final position, hence has an image
in the final position of the codomain, hence is final there.

Lemma 7.38. For any map α∶u → w in DH , for any player x in u and edge e′∶µ′ → α(x)
from a core in w, there exists a core µ ∈ u and an edge e∶µ→ x in u such that Gα(e) = e′.
Proof. Let first X → u← Y and X ′ → w ← Y ′ be the considered morphisms.

Then, observe that x is not final in u, for otherwise it would be in X, hence α(x) would
be in X ′ and final, contradicting the existence of e′.

So there exists e∶µ → x in u. But now, by target-linearity, Gα(µ) = µ′, which entails
the result.

Lemma 7.39. In any double cell (7.1), both squares are pullbacks.

Proof. X must consist precisely of all final players and channels of GU , which must also
be final in GV , so finality in GU implies finality in GV . Conversely, any player or channel
mapped to a final one in GV has to be final. So X is a pullback of U and X ′. The lower
square being a pullback follows from similar reasoning.

Proof of Lemma 7.35. Consider any α, and construct C,u1, u2, and the morphisms in Fig-
ure 5, as follows. First, let u1 be the pullback u ×w w1, and then C = u1 ×w1 Y . Let then
u2 = u ×w w2, and the arrow C → u2 be induced by universal property of pullback. By the
pullback lemma, C = u2 ×w2 Y . Because presheaf categories are adhesive [32], Ĉf is, and,
Y → w1 being monic, we have a Van Kampen square. Thus, by the main axiom for adhesive
categories, u is a pushout u1 +C u2, i.e., u ≅ u2 ● u1 in Cospan(Ĉf). Letting αi be the arrow
ui → wi, for i = 1,2, this yields the desired decomposition of α.

We still need to show that A→ u1 ← C and C → u2 ← B are plays, and that the obtained
decomposition is unique. Uniqueness follows from adhesivity of Ĉ and Lemma 7.39. Indeed,
any decomposition looks like Figure 5, except that u1, u2, and C are not a priori obtained
by pullback. But by Lemma 7.39, both back faces have to be pullbacks, hence so are the
front faces by adhesivity.

Let us finally show that u1 and u2 are plays. It is easy to see that non-linearity or
non-acyclicity of Gu1 (resp. Gu2) would entail non-linearity or non-acyclicity of u or w1

(resp. or w2). Local 1-injectivity is also easy.

Let us now prove the missing conditions for A→ u1 ← C.
a) Any player x of u1 in the image of A is final, for otherwise its image in w1 would be

in the image of X and non-final.

FULL ABSTRACTION FOR FAIR TESTING IN CCS 75

A X

u1 w1

C Y

u w

u2 w2

B Z,

f

f1

f2

fs

ft

Figure 5: Proof of Lemma 7.35

b) Conversely, if a player x ∈ u1 is final but not in A, then its image in u must be
non-final by Theorem 7.17, because u1 → u is monic. But then there is a core µ of u2 with
a path µ → x in Gu, whose images in w yield a path from a core of w2 to a player of w1,
contradicting Lemma 7.33. So A contains precisely the final players of u1.

c) Now, if a channel x ∈ u1 is not in A, then its image in u must be in A, hence u1 → u
cannot be mono, so neither can w1 → w, so neither can Y → w2, contradiction.

d) Finally, by construction, C contains precisely the initial players and channels of u1.

Now, for C → u2 ← B.
a) By universal property of pullback, C contains all channels of u2.
b) For players, clearly, for any player x in C, x is final in u2. Indeed, otherwise, there

would be a path µ→ x from a core µ in u2, yielding a path f2(µ)→ f2(x) in w2. But since
x is in C, f2(x) ∈ Y , which hence contains a non-final player, contradiction.

c) Conversely, if x is final in u2, then x′ = f2(x) is final in w2. Indeed, otherwise, there
would be an edge µ′ → x′ from a core in w2, so, by Lemma 7.38, an edge µ → x in u with
f(µ) = µ′. But then, µ ∈ u2, so x cannot be final. This shows that x′ is final in w2. But
then x′ ∈ Y , so, because C = u2 ×w Y , x ∈ C.

d) Consider now any player or channel x initial in u2. First, x is also initial in u:
otherwise, there would be an edge x → µ to a core in u, with µ ∈ u1, hence an edge
f(x)→ f(µ) in w from a channel of w2 to a core of w1, which is impossible by Lemma 7.36.
So x is initial in u, hence x ∈ B.

e) Now, for any player or channel x ∈ B, x is initial in u, hence x is a fortiori initial in
u2.

76 T. HIRSCHOWITZ

8. Conclusion and perspectives

8.1. Conclusion. We have described a denotational semantics of CCS based on presheaves,
with a strong game-semantical flavour. Some aspects of the approach look promising to us.

First, our result is encouraging for potential applications of Kleene coalgebra to pro-
gramming language theory, i.e., ascribing a semantics to the ‘rule of the game’ rather than
attempting to organise operational semantics into some categorical structure.

Second, our use of techniques from categorical combinatorics (e.g., defining positions
and plays as finite presheaves) provide a high-level, yet rigorous toolbox for dealing with
string diagrams. (Compare, e.g., with available definitions of linear logic proof nets or
interaction nets.)

Third, our notion of play encompassing both views and closed-world plays, and its rich
notion of morphism yields a convincing interplay between strategies (presheaves on views)
and behaviours (presheaves on plays). In particular,

● passing from one to the other is handled by standard categorical constructions,
● the general syntax and lts for strategies provides a link to syntactic approaches.

Other aspects of our model are not as satisfactory.
First of all, the notion of playground is very complicated. In work in progress on

a similar approach for π-calculus, we bypass the intermediate lts TD of process terms,
because it does not help so much — strategies are already really close to π-calculus terms.
This seems to hint that the main result of playground theory is actually the characterisation
of strategies by the syntax of Section 5.1. The good point is: this result does not at all need
all axioms for playgrounds.

A second negative point is that some proofs may probably be improved. E.g., our
proof that θ∶CCS → TDCCS is included in weak bisimilarity is a bit of a nightmare, with no
apparent good reason. Similarly, we know already that our constructions for showing the
fibration axiom (P1) may be improved. Indeed, the trick we use to restore synchronisations
after restriction rests upon a factorisation system [16, 28]. In our current work on π, we
use factorisation systems to prove the fibration axiom in a much more direct way (which
was prompted by the fact that the method used here does not apply).

8.2. Perspectives. Beyond these rather technical concerns, we plan to adapt our semantics
to more complicated calculi like π, the Join and Ambients calculi, calculi with passivation,
functional calculi, possibly with extra features (e.g., references, data abstraction, encryp-
tion), with a view to eventually generalising it, perhaps to some SOS format. In particular,
adapting the approach to functional calculi should clarify the relationship with Hyland-Ong
innocence. In work in progress mentioned above, we construct a playground for π, whose
proof of full abstraction remains to be completed. More speculative directions include

● designing a general way of constructing playgrounds automatically from more ele-
mentary data; work in progress reveals that this is a very subtle task;

● defining a notion of morphisms for playgrounds, which should induce translation
functions between strategies, and find sufficient conditions for such morphisms to
preserve, resp. reflect testing equivalences;

● generalising playgrounds to apply them beyond programming language semantics;
in particular, preliminary work shows that playgrounds easily account for cellular

FULL ABSTRACTION FOR FAIR TESTING IN CCS 77

automata; this raises the question of how morphisms of playgrounds would compare
with various notions of simulations between cellular automata [10];

● incorporate quantitative aspects from Kleene coalgebra into playground theory; this
may start by refining fair testing equivalence to keep track of the probability of
passing each test successfully.

References

[1] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness.
In LICS 1999 [37], pages 431–442. doi: 10.1109/LICS.1999.782638.

[2] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for
PCF. Information and Computation, 163(2):409–470, 2000. doi: 10.1006/inco.2000.
2930.

[3] J. Adámek, J.; Rosicky. Locally Presentable and Accessible Categories. Cambridge
University Press, 1994. doi: 10.1017/CBO9780511600579.

[4] Gérard Berry and Gérard Boudol. The chemical abstract machine. In POPL, pages
81–94, 1990. doi: 10.1145/96709.96717.

[5] Filippo Bonchi, Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva.
Deriving syntax and axioms for quantitative regular behaviours. In CONCUR, volume
5710 of LNCS, pages 146–162. Springer Verlag, 2009. doi: 10.1007/978-3-642-04081-8
11.

[6] Marcello M. Bonsangue, Jan J. M. M. Rutten, and Alexandra Silva. A Kleene theorem
for polynomial coalgebras. In FoSSaCS, volume 5504 of LNCS, pages 122–136. Springer
Verlag, 2009. doi: 10.1007/978-3-642-00596-1 10.

[7] Diletta Cacciagrano, Flavio Corradini, and Catuscia Palamidessi. Explicit fairness in
testing semantics. Logical Methods in Computer Science, 5(2), 2009. doi: 10.2168/
LMCS-5(2:15)2009.

[8] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Concurrent Hyland-Ong
games. GaLoP, 2014.

[9] Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984. doi: 10.1016/0304-3975(84)90113-0.

[10] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier. Bulk-
ing I: An abstract theory of bulking. Theoretical Computer Science, 412(30):3866–3880,
2011. doi: 10.1016/j.tcs.2011.02.023.

[11] Charles Ehresmann. Catégories structurées. Annales scientifiques de l’Ecole Normale
Supérieure, 80(4):349–426, 1963.

[12] Charles Ehresmann. Catégories et structures. Dunod, 1965.
[13] Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear strate-

gies. In TLCA, volume 5608 of LNCS, pages 95–111. Springer Verlag, 2009. doi:
10.1007/978-3-642-02273-9 9.

[14] Marcelo P. Fiore. Fibred models of processes: Discrete, continuous, and hybrid systems.
In IFIP TCS, volume 1872 of LNCS, pages 457–473. Springer Verlag, 2000. doi: 10.
1007/3-540-44929-9 32.

[15] FoSSaCS 2004. FoSSaCS, volume 2987 of LNCS, 2004. Springer Verlag.
[16] Peter Freyd and G. M. Kelly. Categories of continuous functors, I. Journal of Pure

and Applied Algebra, 2:169–191, 1972. doi: 10.1016/0022-4049(72)90001-1.
[17] Richard H. G. Garner. Polycategories. PhD thesis, University of Cambridge, 2006.

78 T. HIRSCHOWITZ

[18] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.
In FoSSaCS 2004 [15], pages 211–225. doi: 10.1007/978-3-540-24727-2 16.

[19] Daniele Gorla. Towards a unified approach to encodability and separation results for
process calculi. Information and Computation, 208(9):1031–1053, 2010. doi: 10.1016/
j.ic.2010.05.002.

[20] Marco Grandis and Robert Paré. Limits in double categories. Cahiers de Topologie et
Géométrie Différentielle Catégoriques, 40(3):162–220, 1999.

[21] Marco Grandis and Robert Paré. Adjoints for double categories. Cahiers de Topologie
et Géométrie Différentielle Catégoriques, 45(3):193–240, 2004.

[22] Russell Harmer and Guy McCusker. A fully abstract game semantics for finite nonde-
terminism. In LICS 1999 [37], pages 422–430. doi: 10.1109/LICS.1999.782637.

[23] Russell Harmer, Martin Hyland, and Paul-André Melliès. Categorical combinatorics
for innocent strategies. In LICS, pages 379–388. IEEE Computer Society, 2007. doi:
10.1109/LICS.2007.14.

[24] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and interactive
equivalences for CCS. In ICE, pages 2–24, 2011. doi: 10.4204/EPTCS.59.2.

[25] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and interactive
equivalences for CCS. Scientific Annals of Computer Science, 22(1):147–199, 2012. doi:
10.7561/SACS.2012.1.147. Selected papers from ICE ’11.

[26] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf.
Comput., 163(2):285–408, 2000. doi: 10.1006/inco.2000.2917.

[27] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and
the Foundations of Mathematics. North Holland, Amsterdam, 1999.

[28] André Joyal. Factorisation systems. http://ncatlab.org/joyalscatlab.
[29] André Joyal and Myles Tierney. Notes on simplicial homotopy theory. Course at the

CRM, February 2008.
[30] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and open maps. In

LICS, pages 418–427. IEEE Computer Society, 1993. doi: 10.1109/LICS.1993.287566.
[31] Joachim Kock. Polynomial functors and trees. International Mathematics Research

Notices, 2011(3):609–673, 2011. doi: 10.1093/imrn/rnq068.
[32] Stephen Lack and Pawel Sobocinski. Adhesive categories. In FoSSaCS 2004 [15], pages

273–288. doi: 10.1007/978-3-540-24727-2 20.
[33] James Laird. Game semantics for higher-order concurrency. In FSTTCS, volume 4337

of LNCS, pages 417–428. Springer Verlag, 2006. doi: 10.1007/11944836 38.
[34] F. William Lawvere and Stephen H. Schanuel. Conceptual mathematics - a first intro-

duction to categories. Cambridge University Press, 1997.
[35] Tom Leinster. Higher Operads, Higher Categories, volume 298 of London Mathematical

Society Lecture Notes. Cambridge University Press, Cambridge, 2004.
[36] Tom Leinster. Basic Category Theory, volume 143 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, 2014.
[37] LICS 1999. 14th Symposium on Logic in Computer Science, 1999. IEEE Computer

Society.
[38] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate

Texts in Mathematics. Springer Verlag, 2nd edition, 1998.
[39] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Intro-

duction to Topos Theory. Universitext. Springer, 1992.

http://ncatlab.org/joyalscatlab

FULL ABSTRACTION FOR FAIR TESTING IN CCS 79

[40] Paul-André Melliès. Asynchronous games 2: the true concurrency of innocence. In
Proc. CONCUR ’04, volume 3170 of LNCS, pages 448–465. Springer Verlag, 2004. doi:
10.1007/978-3-540-28644-8 29.

[41] Paul-André Melliès. Game semantics in string diagrams. In LICS, pages 481–490.
IEEE, 2012. doi: .1109/LICS.2012.58.

[42] Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without
alternation. In CONCUR, volume 4703 of LNCS, pages 395–411. Springer Verlag,
2007. doi: 10.1007/978-3-540-74407-8 27.

[43] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer,
1980. doi: 10.1007/3-540-10235-3.

[44] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
[45] Hanno Nickau. Hereditarily sequential functionals. In LFCS, volume 813 of LNCS,

pages 253–264. Springer Verlag, 1994. doi: 10.1007/3-540-58140-5 25.
[46] Robert Paré. Yoneda theory for double categories. Theory and Applications of Cate-

gories, 25(17):436–489, 2011.
[47] Julian Rathke and Pawel Sobocinski. Deconstructing behavioural theories of mobility.

In IFIP TCS, volume 273 of IFIP, pages 507–520. Springer Verlag, 2008. doi: 10.1007/
978-0-387-09680-3 34.

[48] Arend Rensink and Walter Vogler. Fair testing. Information and Computation, 205
(2):125–198, 2007. doi: 10.1016/j.ic.2006.06.002.

[49] Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS, pages 409–418.
IEEE Computer Society, 2011. doi: 10.1109/LICS.2011.13.

[50] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, 2012.

[51] Davide Sangiorgi and Jan Rutten, editors. Advanced Topics in Bisimulation and Coin-
duction. Number 52 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2011.

[52] Davide Sangiorgi and David Walker. The π-calculus - a theory of mobile processes.
Cambridge University Press, 2001.

[53] Glynn Winskel. Strategies as profunctors. In FoSSaCS, volume 7794 of LNCS, pages
418–433. Springer Verlag, 2013. doi: 10.1007/978-3-642-37075-5 27.

[54] Glynn Winskel and Mogens Nielsen. Handbook of Logic in Computer Science, volume 4
of Oxford science publications, chapter Models for concurrency. Clarendon, 1995.

80 T. HIRSCHOWITZ

C base category, over which positions
and plays are presheaves

⋆, [n],
πln, π

r
n, πn,

νn, ♡n, ιn,i,
om,j , τn,i,m,j ,

objects of C

[m]a1,...∣c1,...[n] two players sharing some channels
Cospan(−) bicategory of cospans of −
Dh category of positions and embed-

dings
Dv bicategory of positions and plays
D playground
DCCS playground for CCS
E category of plays and extensions
BX category of behaviours on X
EV category of views and extensions
SX category of strategies on X
Pl(X) players of position X
vx,u view of x∶d→X in u∶X Y
xu∶dx,u∶Y initial player of x in u
u∣k∶Dk,u Y restriction of u∶X ′ X along

k∶Y →X
PlM(X) players of position X whose view in

M ∶X Y is non-trivial
Sx projection of S ∈ SX to x ∈ Pl(X)
[S,T] copairing of S and T
S ⋅ v residual of S after v
S∣σ restriction of S to antecedents of σ
Q graph of full quasi-moves
[B]d set of isomorphism classes of basic

moves over d
[F]X set of isomorphism classes of full

moves over X
χ[M] set of basic b’s s.t. ∃ b→M
[F1]X ⊆ [F]X subset of full moves M such that

χ[M] is a singleton
[F+]X ⊆ [F]X subset of full moves M such that

χ[M] is not a singleton
ru, iu bijection, for all plays u∶X ′ X,

∑(d,x)∈Pl(X) Pl(Dx,u)→ Pl(X ′)
d ⊢ S strategy term
d ⊢D D definite strategy term
d ⊢ T process term
(I, h, S)� set of tests passed by (I, h, S)
∼Gf fair testing eq. in graph w.c. G

∼f,s standard fair testing eq. in CCS
∼f semantic fair testing eq.

�G pole for fair testing eq. in G
⊥⊥ pole for semantic fair test. eq.
� pole for CCS (Def. 2.22)
‹ intermediate pole (Lem. 6.22)
CCS lts for CCS
S lts for strategies
T set of process terms
T lts for T: ob(T)=T
L−M translation CCS → S

θ translation CCS → T

⟦−⟧ translation T → S

WCCS set of closed-world quasi-moves
DW ⊆ Dv subbicat. of closed-world plays
`D labelling of closed-world plays

in {id ,♡}: DW → fc(Σ)
AW ‘closed-world’ subgraph of a

graph with complementarity A
▷A compatibility relation for A:

A2 AW

e ⇓ e′ notation for the composite
A¨ ↪ A2 AW → Σ

[x, y] choice of ‘amalgamation’ in G
χ∶ IQ→ Q subgraph of edges with double

cell id●I →M
ξ∶ IQ→ A mapping to CCS labels
G modular ▷G strong bisim over Σ
x¨ {y ∣ x ¨ y}
x & y x¨ = y¨
G ◇AH blind composition of G and H

over A

adequacy
of G→A

(essentially) �G¨ = �G◇AG

HA A-trees
Fa failures over a ∈ A
fl failures to A-trees: F →HA

nice alphabet enough ticks, finitely branch-
ing, inertly silent (Def. 6.43)

core move element of some presheaf,
of maximal dimension

U locally 1-inj. cores map inj. to U , except per-
haps for channels in the inter-
face

GU causal graph of U
El(−) elements ∖ synchronisations

map between El(−)’s
horn τ−n,i,m,j synchro. minus idτn,i,m,j
∆f change of base along f

Figure 6: Cheat sheet

Decidability of Identity-free Relational Kleene Lattices

Paul Brunet, Damien Pous

To cite this version:

Paul Brunet, Damien Pous. Decidability of Identity-free Relational Kleene Lattices. David
Baelde; Jade Alglave. Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA
2015), Jan 2015, Le Val d’Ajol, France. Actes des Vingt-sixièmes Journées Francophones des
Langages Applicatifs (JFLA 2015), <http://jfla.inria.fr/2015>. <hal-01099137>

HAL Id: hal-01099137

https://hal.inria.fr/hal-01099137

Submitted on 31 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01099137

Decidability of
Identity-free Relational Kleene Lattices

Paul Brunet & Damien Pous

Plume team – LIP, CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon, UMR 5668

Abstract

Families of binary relations are important interpretations of regular expressions, and the
equivalence of two regular expressions with respect to their relational interpretations is decidable:
the problem reduces to the equality of the denoted regular languages.

Putting together a few results from the literature, we first make explicit a generalisation of this
reduction, for regular expressions extended with converse and intersection: instead of considering
sets of words (i.e., formal languages), one has to consider sets of directed and labelled graphs.

We then focus on identity-free regular expressions with intersection—a setting where the above
graphs are acyclic—and we show that the corresponding equational theory is decidable. We
achieve this by defining an automaton model, based on Petri Nets, to recognise these sets of
acyclic graphs, and by providing an algorithm to compare such automata.

Introduction

Binary relations appear everywhere in mathematics and computer science, together with the operations
of union (∪), intersection (∩), composition (○), converse (.∨), reflexive-transitive closure (.⋆), and the
constants identity (Id) and empty relation (∅). As such, an algorithm for deciding the equivalence of
expressions built with these operators with respect to their relational interpretations is a very desirable
goal. However such an algorithm has yet to be found.

Regular expressions [6], where only the operators ∪, ○, .⋆, Id, and ∅ are allowed, are the most
famous example of a decidable fragment [9]. In this setting, it is now well-known that the equivalence
of two expressions in all relational interpretations is equivalent to the equality of the regular languages
denoted by these expressions in the usual sense (the letter x is interpreted as {x}). Several equational
or semi-equational theories are known to be complete for this fragment [10–12].

The converse operation can also be added to regular expressions, and the resulting theory remains
decidable (see [3, 7] or [4]). In this case, decidability is obtained by 1) reducing the problem of
equivalence of two expressions to the equality of some regular sets of words over an extended alphabet,
and 2) defining automata constructions to recognise these sets.

Freyd and Scedrov sketched an algorithm for representable allegories [8, page 208], that is,
expressions with composition, intersection, converse, and identity, but without union or reflexive-
transitive closure. Similar constructions were given independently by Andréka and Bredikhin [2], in
a more comprehensive way. The key idea is the following: if we restrict ourselves to the above syntax
(variables, composition, intersection, converse, identity), we get what is called ground terms. Such a
term u can be represented as labelled directed graphs G(u) with two distinguished vertices called the
input and the output. A variable a corresponds to a graph with one edge labelled by a linking the
input to the output. The identity is represented by the graph with a single vertex and no edges, The
composition of two graphs with disjoints sets of vertices can be performed by identifying the output
of the first graph and the input of the second one. The operation corresponding to the intersection

1

Brunet & Pous

G(a): a

G(b ∧ c∨):
b

c

G ((a ⋅ (b ∧ c)) ∧ d):

a

d

b

c

G ((a ⋅ b) ∧ (a ⋅ c)):

a

a

b

c

Figure 1: Graphs associated to some ground terms

0

1

2

a

d

b

c

A

B

C

D

a

a

b

c

Figure 2: A graph homomorphism.

consists in merging the inputs of the two graphs, as well as their outputs. And finally, converse is
obtained by swapping the inputs and the outputs. Some examples are given in Figure 1.

These graphs can be endowed with a preorder relation G ◂ F , defined by the existence of a graph
homomorphism from F to G (preserving inputs and outputs). For instance the graph corresponding
to (a ⋅ (b ∧ c)) ∧ d is smaller than the graph of (a ⋅ b) ∧ (a ⋅ c), thanks to the homomorphism depicted
in Figure 2 using dotted arrows. Notice that this preorder has nothing to do with the respective
sizes of the graphs: a graph may very well be smaller (in the sense of ◂) than another while having
more vertices (and vice versa). The key result from Freyd and Scedrov [8, page 208], or Andréka
and Bredikhin [2, Theorem 1], is that for any two ground terms u, v, u is contained in v under any
relational interpretation if and only if G(u) ◂G(v).

This is for ground terms; to handle the whole syntax, we need to add union and reflexive-transitive
closure. It suffices for that to consider sets of graphs: to each expression e, one can associate a set of
graphs G(e). Writing X◂ for the downward closure of a set of graphs X by the relation ◂, we obtain
the following generalisation of the above result: for any two expressions e and f , e is contained in f
under any relational interpretation if and only if G(e) ⊆ G(f)◂. (Theorem 6 in the sequel—this result
is almost there in the work by Andréka et al. [1], but this explicit formulation is new, to the best of
our knowledge.)

This result encompasses the case of plain regular expressions, whose graphs are just words and for
which the preorder ◂ reduces to isomorphism, but also the case of regular expressions with converse,
whose graphs are words over a duplicated alphabet and for which the preorder ◂ can be reformulated
in terms of the rewriting system proposed by Ésik et al. [3, 7].

Our main contribution is then to exploit this characterisation to obtain decidability for identity-
free regular expressions with intersection, whose equational theory has been studied by Andréka et
al. [1]. The reason why we need to exclude identity and converse is that in presence of intersection,
they yield cyclic graphs, and we do not know how to handle such graphs. We hope to get rid of this
assumption in future work.

The key concept which we introduce is a new kind of finite automaton, allowing us to recognise
sets of graphs that are downward-closed w.r.t. the graph embedding relation ◂. To give some intuition
about this automaton model, let us look at the example from Figure 2, and try to build sequentially
a morphism h from F = G((a ⋅ b) ∧ (a ⋅ c)) to G = G((a ⋅ (b ∧ c)) ∧ d).

• We start by placing a token α○ on A. We know that for h to be a morphism, it has to preserve
the input of the graph, so we map A to position 0 in G.

2

Decidability of RKL−

A

B

C

D1

D2

a

a

b

c

Figure 3: The automaton corresponding to the term (a ⋅ b) ∧ (a ⋅ c).

• There are two outgoing edges from A, both labelled by a. We split token α○ into β○ and γ○,
and move β○ to position B and γ○ to position C. We then map the positions of both tokens to
position 1 in G, which is consistent with h being a morphism, thanks to the arc (0, a,1).

• Now we try to move β○. B has one outgoing edge, labelled by b. We may move β○ to D, and
using the arc (1, b,2) in G we map D to position 2.

• Then we can look at γ○. We have to move it to position D, and thanks to the arc (1, c,2) we
can confirm the map of D to 2, and merge back β○ and γ○.

At the end, we have only one token, placed on the output of F , and during the procedure we have
mapped all positions in F to positions in G, while preserving all labelled edges.

This kind of procedure is reminiscent of Petri nets [13–15]: at each step we relate tokens to positions
in G, and fire transitions according to the edges of G. This is the basic idea behind the notion of Petri
automata which we introduce in Section 2. For instance the Petri automaton we will construct for the
term (a ⋅ b) ∧ (a ⋅ c) is depicted in Figure 3, and the procedure sketched above can then be formally
described as a reading of the graph G in this automaton.

Given an expression e, we show in Section 3 how to build a Petri automaton that recognises exactly
the graphs in G(e)◂. We then show in Section 4 how to compare Petri automata. Several difficulties
arise, that do not appear with classical word automata. Our solution nevertheless uses a standard
coinductive approach, where we define an appropriate notion of simulation.

1. Expressions and languages

In this section we consider the full signature ⟨∧,∨, ⋅, ⋅⋆, ⋅∨,0,1⟩ of Kleene lattices with conversion. We
fix a set X of variables, and we denote by Reg∨∧X the set of expressions build from variables in X with
these connectives. These expressions are meant to be interpreted in relational models: ⋅ corresponds to
the composition of relations; ∨ to the union; ∧ to the intersection; R∗ to the reflexive transitive closure
of a relation R; and R∨ to the converse of R. The constants 0 and 1 are respectively interpreted as
the empty relation and the identity relation. For any set S, we write P (S) ∶= {P ∣ P ⊆ S } for the
set of subsets of S. Let A → B be the functions from A to B and A ⇢ B the partial maps from A
to B. dom (f) denotes the domain of a partial map f . If σ ∶ X → P (S × S) is an interpretation of
the alphabet X into some space of relations, we write σ̂ for the unique homomorphism extending σ
from Reg∨∧X to P (S × S). We say that two expressions e and f are relationally equivalent, written
Rel ⊧ e = f , if for any relational interpretation σ we have σ̂(e) = σ̂(f). Similarly, we write Rel ⊧ e ⩽ f
if σ̂(e) ⊆ σ̂(f) holds for any σ.

The ground terms are defined by the following sub-syntax:

u, v,w ∈WX ∶∶= x ∈X ∣ w ⋅w ∣ w ∧w ∣ w∨ ∣ 1 .

We let G range over 2-pointed labelled directed graphs, which we simply call graphs in the sequel.
Those are tuples ⟨V,E, ι, o⟩ with V a finite set of vertices, E ⊆ V ×X × V a set of edges labelled with
X, and ι, o ∈ V the two distinguished vertices, respectively called input and output.

3

Brunet & Pous

G(1) ∶=

G(a) ∶= a

G(w∨) ∶= G(w)

G(u ⋅ v) ∶= G(u) G(v)

G(u ∧ v) ∶=
G(u)

G(v)

Figure 4: Graphs corresponding to ground terms.

To each ground term w, we associate such a graph G(w). The graph for 1 has only one vertex,
both input and output. The graph of a has one edge labelled by a linking its input to its output. The
composition of two graphs with disjoint sets of vertices can be performed by identifying the output
of the first graph and the input of the second one. The intersection on graphs consists in merging
their inputs and merging their outputs. The converse consists simply in exchanging the input and the
output of a graph. See Figure 4 for a graphical description of this construction. Those graphs were
introduced independently by Freyd and Scedrov [8, page 208], and Andréka and Bredikhin [2].

Another useful notion is the notion of morphism between graphs:

Definition 1 (Graph morphism, preorder on ground terms)
A graph morphism from ⟨V1,E1, ι1, o1⟩ to ⟨V2,E2, ι2, o2⟩ is a map h ∶ V1 → V2 such that h(ι1) = ι2,
h(o1) = o2, and (p, x, q) ∈ E1 entails (h(p), x, h(q)) ∈ E2. We denote by ◂ the relation on graphs
defined by G◂G′ if there exists a graph morphism from G′ to G. This relation gives rise to a preorder
on ground terms, written ⊲ and defined by u ⊲ v if G(u) ◂G(v). ∗

Given a set S of graphs, we write S◂ for its downward closure w.r.t. ◂: S◂ ∶= {G ∣ G ◂G′,G′ ∈ S }.
Similarly, we write S⊲ for the downward closure of a set of ground terms w.r.t. ⊲.

As explained in the introduction, the above preorder on ground terms precisely characterises
inclusion under arbitrary relational interpretations:

Theorem 2 ([2, Theorem 1], or [8, page 208]). For all ground terms u, v ∈WX , we have

Rel ⊧ u ⩽ v⇔ u ⊲ v .

To extend this result to the expressions we consider in this paper, we introduce the following
generalisation of the language of a regular expression. Sets of words become sets of ground terms.

Definition 3 (Term language of an expression)
The term language denoted by an expression e ∈ Reg∨∧X , written JeK, is the set of ground terms defined
inductively as follows:

JxK ∶= {x} Je ⋅ fK ∶= {w ⋅w′ ∣ w ∈ JeK and w′ ∈ JfK}
Je ∨ fK ∶= JeK ∪ JfK Je ∧ fK ∶= {w ∧w′ ∣ w ∈ JeK and w′ ∈ JfK}

Je⋆K ∶= ⋃n∈N {w1 ⋅ ⋯ ⋅wn ∣ ∀i,wi ∈ JeK} Je∨K ∶= {w∨ ∣ w ∈ JeK}
J1K ∶= {1} J0K ∶= ∅ . ∗

We need a slight refinement of a lemma established by Andréka, Mikulás, and Németi [1]:

Lemma 4. For all expression e ∈ Reg∨∧X X, and all relational interpretations σ ∶ X → P (S × S), we
have

σ̂(e) = ⋃
w∈JeK

σ̂(w) = ⋃
w∈JeK⊲

σ̂(w) .

4

Decidability of RKL−

Proof. The first equality is exactly [1, Lemma 2.1]; for the second one, we use the fact that σ̂(w) ⊆ σ̂(u)
whenever w ⊲ u, thanks to Theorem 2 (i.e., [2, Theorem 1]).

The above definitions make it possible to characterise inclusion under all relational interpretation
in terms of downward-closed term languages. To obtain decidability, we need to go one step further,
by considering graph languages.

Definition 5 (Graph language of an expression)
The graph language of an expression e, denoted by G(e) is the set of graphs associated to the ground
terms in JeK: G(e) ∶= {G(w) ∣ w ∈ JeK}. ∗

We finally obtain the following characterisation, which allows us to reduce validity in Rel to an
equality of graph languages.

Theorem 6. The following properties are equivalent, for all expressions e, f ∈ Reg∨∧X :

(i) Rel ⊧ e = f ,

(ii) JeK⊲ = JfK⊲,

(iii) G(e)◂ = G(f)◂.

Proof. The implication (ii)⇒ (i) follows easily from Lemma 4, and (iii)⇒ (ii) is a matter of unfolding
definitions. For (i)⇒ (iii), we mainly use [2, Lemma 3].

The above statement can also be reformulated in terms of inclusions, to match the result announced
in the introduction: Rel ⊧ e ⩽ v if and only if JeK ⊆ JfK⊲ if and only if G(e) ⊆ G(f)◂.

Also notice that while by definition G(e) only contains graphs emanating from ground terms, this
is not the case for its closure G(e)◂. For instance, G((a ⋅ b) ∧ (c ⋅ d))◂ contains the following graph,
which is not the graph of any ground term.

a

c

b

d

e

The above result holds for the whole syntax of regular expressions with converse and intersection.
However, in the remainder of the paper, we have to focus on expressions without converse and identity.
This is because in combination with intersection, these two operations introduce cycles in the graphs
associated to ground terms. Consider for instance the graphs for a ∧ 1 and a ∧ b∨:

G(a ∧ 1) =

a

; G(a ∧ b∨) =
a

b

.

Since reflexive-transitive closure (⋅⋆) implicitly contains an occurrence of the identity, we also have to
replace this operator with transitive closure (⋅+). We thus work we expressions from Reg∧−X , defined
with the following syntax: e, f ∈ Reg∧−X ∶∶= x ∈X ∣ e∧ f ∣ e∨ f ∣ e ⋅ f ∣ e+ ∣ 0. Accordingly, ground
terms are restricted to the following syntax: u, v,w ∈W −

X ∶∶= x ∈X ∣ w ⋅w ∣ w ∧w.

5

Brunet & Pous

2. Petri Automata

Before getting to our definition of automata, we recall the standard notion of Petri net.

Definition 7 (Petri Net)
A Petri Net is a structure N = ⟨P,T,F,W,M0⟩ where:

• P and T are finite disjoints sets, respectively of places and transitions;

• F ⊆ (P × T) ∪ (T × P) is a set of arcs, called the flow relation;

• W ∶ (P × T) ∪ (T × P)→N is a weight function, such that W (f) = 0 if f /∈ F ;

• M0 ∶ P →N is the initial marking.

Given a marking M in a net N , a transition τ ∈ T is enabled if for any place p such that (p, τ) is in
the flow relation F , we have W (p, τ) ⩽M(p). In that case, τ can fire, and it results in a new marking
M ′ such that M ′(p) =M(p) −W (p, τ) +W (τ, p). A marking is called accessible if it can be obtained
by successively firing transitions starting from M0. ∗

To present examples in a simple way, we use the standard graphical representation of Petri nets:
they are represented as graphs, with round nodes for places and rectangular nodes for transitions.
The flow relation is simply represented by arrows; the places appearing in the initial marking have an
additional incoming arrow.

A Petri net is said to be one-bounded if in any accessible marking M , no place is marked with
more than one token. Such markings can be seen as finite sets of places; we call them configurations
in the sequel, and we let ξ,Ξ range over them. Bounded nets form an interesting class of nets, because
many problems which are undecidable in the general case become decidable in this setting: whereas
general Petri nets have an infinite set of accessible markings, they are finitely many in a bounded net.

Our notion of Petri Automata is defined below. The main difference with regular Petri nets is the
labelling with letters from the alphabet X of all arcs coming out of transitions. Note that this slightly
differs from the usual notion of labelled Petri net, where the labels are put on transitions.

Definition 8 (Petri Automaton)
A Petri automaton is a structure ⟨N,L,F ⟩ where:

• N = ⟨P,T,F,W,M0⟩ is a one-bounded Petri net such that:

– the weight W (f) of all arcs f that appear in F is equal to 1;

– all transitions τ ∈ T , have at least one incoming arc and one outgoing arc, meaning that
there are places p, q ∈ P such that (p, τ) ∈ F and (τ, q) ∈ F ;

– there is an initial place ι such that M0 contains only one token, placed in ι.

• L ∶ (T × P) ∩ F →X is a labelling function;

• F ⊆ P (P) is a set of final configurations. ∗

A transition τ in a Petri automaton can be alternatively described by a pair [τ] = (s, t) where:

• s = {p ∣ (p, τ) ∈ F } is the input of τ , often denoted by ●τ , and

• t = {(x, q) ∣ (τ, q) ∈ F and x = L(τ, q)} is the output of τ . Notice that this differs from the usual
notion of output of a transition in a Petri net: in the usual setting τ ● is just the set of places
reachable from the τ . Here we add to each place the label of the arc reaching it.

6

Decidability of RKL−

A

B

C D

E

F

G

H I

b

a

c

b

a

c
b

d

a b

Figure 5: A Petri automaton. The initial state is A, and the final configurations are {I} and {F,G}.

For commodity reasons, we will thus define Petri automata using quadruples A = ⟨P,T , ι,F ⟩ with ι
the initial place and T = {(s, t) ∣ ∃τ ∈ T ∶ [τ] = (s, t)}.

Graphical representations of such automata are given in Figures 3 and 5. In these drawings a final
configuration is represented by a dotted rectangle around the places contained in this configuration.
Now we explain how to use Petri automata to define languages of graphs. We first describe what is a
run of an automaton, and then how to use runs to read graphs.

Let A = ⟨P,T , ι,F ⟩ be a Petri automaton. We write ξ
τÐ→A ξ′ when the configuration ξ′ can

be obtained by firing some transition τ in the configuration ξ. A set of transitions T ⊆ T is called
compatible if their inputs are pairwise disjoint. If furthermore all transitions in T are enabled in a
configuration ξ, one can observe that the configuration ξ′ reached after firing them successively does
not depend on the order in which they are fired. In that case we write ξ

TÐ→A ξ′.

Definition 9 (Run, accepting run, parallel run)
A run is a sequence ξ = ⟨(ξk)0⩽k⩽n , (τk)0⩽k<n⟩ of configurations and transitions, such that ξk ⊆ P ,
τk ∈ T and ∀k < n, ξk

τkÐ→ ξk+1. When ξ0 = {ι} and ξn ∈ F , we call ξ an accepting run.
A parallel run is defined similarly, as a sequence Ξ = ⟨(Ξk)0⩽k⩽n , (Tk)0⩽k<n⟩, where the Tk ⊆ T are

compatible sets of transitions such that Ξk
TkÐ→ Ξk+1. ∗

(Note that a run ξ is uniquely determined by ξ0 and the sequence (τk): all subsequent configurations
can be computed deterministically.)

Example 10 (An accepting run in the automaton from Figure 5)
Consider the run ξ = ⟨(ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) , (τ0, τ1, τ2, τ3, τ4, τ5)⟩, with

ξ0={A} ,
ξ1={B,G} ,

ξ2 = ξ4={C,E,G} ,
ξ3 = ξ5={D,E,G} ,

ξ6={F,G} .

τ0=({A} ,{(b,B), (a,G)}) ,
τ1=({B} ,{(c,C), (b,E)}) ,

τ2 = τ4=({C} ,{(a,D)}) ,
τ3=({D,E} ,{(c,C), (b,E)}) ,
τ5=({D,E} ,{(d,F)}) .

We can easily check, using the firing rules of a Petri net that:

{A} τ0 // {B,G} τ1 // {C,E,G} τ2 // {D,E,G} τ3 // {C,E,G} τ4 // {D,E,G} τ5 // {F,G} .

As {A} is the initial configuration and {F,G} ∈ F , this run is accepting. It can be represented
graphically as in Figure 6. ∎

As in finite-state automata, we now need to specify how to read a graph in an automaton. This
is done by linking the intermediate configurations of a run to vertices in the graph, and by imposing
conditions to match transitions with labelled edges of the graph.

7

Brunet & Pous

A

B

G

C

E

G

D

E

G

C

E

G

D

E

G

F

G

0

1

2

3

4

5

6

b

a

c

b

a
c

b

a

d

Figure 6: An accepting run in the automaton from Figure 5.

0

1

2

3

4

5

6

b

a

c

b

a c

b

a

d

Figure 7: Trace of the run depicted in Figure 6.

Definition 11 (Reading along a run, parallel reading, language of a run)
A reading of G = ⟨V,E, ι, o⟩ along a run ξ = ⟨(ξk)0⩽k⩽n , (sk, tk)0⩽k<n⟩ is a sequence (ρk)0⩽k⩽n such that
for all k, ρk is a map from ξk to Vw, ρ0(ξ0) = {ι}, ρn(ξn) = {o}, and ∀k < n, the following holds:

• all tokens in the input of the transition are mapped to the same vertex in the graph: ∀p, q ∈
sk, ρk(p) = ρk(q);

• the images of tokens in ξk that are not in the input of the transition are unchanged: ∀p ∈
ξk ∖ sk, ρk(p) = ρk+1(p),

• each pair in the output of the transition can be mapped to an edge of the graph with the same
label: ∀p ∈ sk,∀(x, q) ∈ tk, (ρk(p), x, ρk+1(q)) ∈ E.

Similarly, we define a parallel reading ρ along some parallel run Ξ = ⟨(Ξk)0⩽k⩽n , (Tk)0⩽k<n⟩ by
requiring that: ρ0(Ξ0) = {ι}, ρn(Ξn) = {o}, and ∀k < n the following holds:

• ∀p ∈ Ξk ∖⋃(s,t)∈Tk
s, ρk+1(p) = ρk(p);

• ∀(s, t) ∈ Tk,∀p, q ∈ s, ρk(p) = ρk(q);

• ∀(s, t) ∈ Tk,∀p ∈ s,∀(x, q) ∈ t, (ρk(p), x, ρk+1(q)) ∈ E.

The language of a run ξ, denoted by L (ξ) is the set of graphs that can be read along ξ. ∗

The language of a Petri automaton is finally obtained by considering all accepting runs.

Definition 12 (Language recognised by a Petri automaton)
The language recognised by A , written L (A), is the following set of graphs:

L (A) ∶= ⋃
ξ accepting in A

L (ξ) . ∗

The language of a run ξ can be characterised using a single graph which we call the trace of ξ:
graphs are accepted by ξ exactly when they are smaller than the trace of ξ, according to ◂ (Lemma 14
below). For instance the trace of the run presented in Figure 6 is shown in Figure 7.

This trace is constructed by creating a vertex k for each transition τk = (sk, tk) of the run, plus a
final vertex n. We add an edge (k, x, l) whenever there is some place q such that (x, q) ∈ tk, and τl is
the first transition after τk in the run with q among its inputs, or l = n if there is no such transition
in the run. Formally:

8

Decidability of RKL−

Definition 13 (Trace of a run)
Let ξ = ⟨(ξk)0⩽k⩽n , (sk, tk)0⩽k<n⟩ be run. For an index k ⩽ n and a place q, let ν(k, q) be either the
smallest index l such that k ⩽ l and q ∈ sl, or n if there is no such index. The trace of ξ is the graph
Tr (ξ) ∶= ⟨{0, . . . , n} ,Eξ,0, n⟩ with Eξ ∶= {(k, x, ν(k + 1, q)) ∣ (x, q) ∈ tk }. We write Tr (A) for the set
of traces associated to the accepting runs of A . ∗

Lemma 14. For any accepting run ξ, we have G ∈ L (ξ) if and only if G ◂Tr (ξ).

Proof. Suppose there exists a graph morphism h from Tr (ξ) to G. Then we can build a reading by
defining ρk(p) = h(ν(k, p)) for 0 ⩽ k ⩽ n and p ∈ ξk. On the other hand, if we have a reading (ρk)0⩽k⩽n
of G, we can build a morphism h by letting h(k) = ρk(p) for any p ∈ sk. As (ρk)k is a reading, h is
well defined.

As a corollary, we obtain the following characterisation of the language of a Petri automaton.

Corollary 15. L (A) = Tr (A)◂.

The left-hand side language is defined through readings along accepting runs, which is a local and
incremental notion and which allows us to define simulations in Section 4. By contrast, the right-hand
side language is defined globally, which eases the following construction of an automaton recognising
the language of an expression.

3. From expressions to automata

We now show how to associate to any expression e ∈ Reg∧−X an automaton A (e) that recognises the
language G(e)◂. In fact the produced automaton has an even stronger connection with e: the graphs
in G(e) are exactly the traces of accepting runs in A (e).

Definition 16
To each expression e ∈ Reg∧−X , we associate a Petri automaton A (e) defined inductively as follows:

• A (x) ∶= ⟨{0,1} ,{({0} ,{(x,1)})} ,0,{{1}}⟩

• A (0) ∶= ⟨{0} ,∅,0,∅⟩

• A (e1 ∨ e2) ∶= ⟨P1 ∪ P2,T , ι1,F1 ∪F2⟩ with T ∶= T1 ∪T2 ∪ {({ι1} , t) ∣ ({ι2} , t) ∈ T2 }.

• A (e1 ⋅ e2) ∶= ⟨P1 ∪ P2,T , ι1,F2⟩ with T ∶= T1 ∪T2 ∪ {(f, t) ∣ f ∈ F1 and ({ι2} , t) ∈ T2 }.

• A (e+1) ∶= ⟨P1,T , ι1,F1⟩ with T ∶= T1 ∪ {(f, t) ∣ f ∈ F1 and ({ι1} , t) ∈ T1 }.

• A (e1 ∧ e2) ∶= ⟨P1 ∪ P2,T , ι1,F ⟩ with F ∶= {f1 ∪ f2 ∣ f1 ∈ F1, f2 ∈ F2 } and

T ∶={(s, t) ∣ i ∈ {1,2} , (s, t) ∈ Ti, ιi ∉ s} ∪ {({ι1} , t1 ∪ t2) ∣ ({ι1} , t1) ∈ T1, ({ι2} , t2) ∈ T2 }

(In the inductive cases, we assume that A (ei) = ⟨Pi,Ti, ιi,Fi⟩ for i ∈ {1,2}, with P1 ∩ P2 = ∅.) ∗

We prove by induction on e that A (e) is indeed a Petri automaton; for the one-boundedness
assumption, we add to the induction hypothesis the fact that for any configuration ξ accessible in
A (e), if there is a final configuration f ∈ F such that f ⊆ ξ, then f = ξ. Another invariant is that the
initial place never appears in a final configuration, nor in the outputs of any transition. Note that the
place ι2 becomes unreachable by construction in the cases for union, composition and intersection, so
that it could safely be removed, together with the associated transitions. One can also check that the
number of places in the produced automaton is linear in the size of the input expression.

9

Brunet & Pous

Theorem 17 (Correctness). For all expression e ∈ Reg∧−X , L (A (e)) = G (e)◂.

Proof. As explained above, we prove a stronger result, namely Tr (A (e)) = G(e) (up to graph
isomorphisms). This allows us to conclude thanks to Corollary 15.

Remark 18. If e is an expression without intersection, it can be shown that the transitions in
A (e) are all of the form ({p} ,{(x, q)}), with only one input and one output. In consequence, the
accessible configurations are singletons, and the resulting Petri automaton has the structure of a Non-
deterministic Finite-state Automaton (NFA). Actually, in that case, the construction we described
above is just a variation on Thompson’s construction [16], with inlined epsilon transition elimination.

Combined with Theorem 6 from Section 1, the above theorem allows us to reduce the problem
of deciding whether Rel ⊧ e = f to the problem of checking whether L (A (e1)) = L (A (e2)). By
symmetry, it then suffices to decide inclusion of Petri automata languages.

4. Comparing automata

We want to compare automata by testing if any graph accepted by A1 is also accepted by A2. Let us
go back to standard non-deterministic finite-state automata (NFA), to find intuitions. In that setting
an automaton over some alphabet Σ is defined by A = ⟨Q, ι,F,∆⟩ where Q is a finite set of states, ι is
an initial state, F is a set of finite states F and ∆ is a set of transitions of the form (p, a, q) where p and
q are states and a is a letter. Consider two automata A1 = ⟨Q1, ι1, F1,∆1⟩ and A2 = ⟨Q2, ι2, F2,∆2⟩.
L(A1) ⊆ L(A2) means that for any word w = a1⋯an accepted by A1, w is also accepted by A2. Thus
if there is an execution in A1 recognising w then there is an execution in A2 recognising w. One can
then put them together side by side like so:

ι1
a1Ð→A1 p1

a2Ð→A1 ⋯ anÐ→A1 pn ∈ F1

ι2
a1Ð→A2 q1

a2Ð→A2 ⋯ anÐ→A2 qn ∈ F2

Thus trying to prove that L(A1) ⊆ L(A2) amounts to finding a method to build from any run in
A1 a corresponding run in A2. This can be done by computing a simulation between the automaton
A1 and the determinised automaton of A2. A simulation between these automata is then a relation
≼ ⊆ Q1 ×P (Q2) such that

• ι1 ≼ {ι2}, and if p ≼ P and p ∈ F1, then P ∩ F2 ≠ ∅;

• if p ≼ P and (p, a, p′) ∈ ∆1 then p′ ≼ P ′, where P ′ ∶= {p′ ∣ (p, a, p′) ∈ ∆2, p ∈ P }.

p
a // p′

P

≼
a // P ′

≼

If such a relation can be found, then for any accepting execution in A1, we can use the relation
to extract a corresponding execution in A2. It is also possible to prove that if the language of A1

is indeed included in the language of A2, then such a relation exists. This gives us an algorithm to
decide the inclusion of languages, because the set of states of both automata being finite, there is only
a finite number of candidates for ≼. More realistically, one can define a coinductive algorithm that
computes a simulation relation on-the-fly.

We follow a similar approach for Petri automata, but we need to make several important
adjustments. Consider two automata A1 = ⟨P1,T1, ι1,F1⟩ and A2 = ⟨P2,T2, ι2,F2⟩, we try to show
that for any graph G accepted by A1, G is recognised by A2. By Lemma 14, this amounts to proving
that for any accepting run ξ in A1, Tr (ξ) is recognised by some accepting run ξ′ in A2. Leaving non-
determinism apart, the first idea that comes to mind is to find a relation between the configurations in
A1 and the configurations in A2, that satisfy some conditions on the initial and final configurations,
and such that if ξk ≼ ξ′k and ξk

τÐ→A1 ξk+1, then there is a configuration ξ′k+1 in A2 such that ξk+1 ≼ ξ′k+1,

10

Decidability of RKL−

ξ′k
τ ′Ð→A2 ξ

′
k+1, and these transition steps are compatible in some sense. However, such a definition will

not give us the result we are looking for. Consider the two runs on the left-hand side:

A

B B

C D

1

2

a

b
c

W

Y Y

X Z

1′

2′

b

a
c

{A}
1

// {B,C}
2
// {B,D}

{W}
≼ 1’

// {X,Y }
≼ 2’

// {Y,Z}
≼

The trace of the first run corresponds to the ground term a ∧ (b ⋅ c), and the trace of the second
one corresponds to (a ⋅ c) ∧ b. These two terms are incomparable, but the relation ≼ depicted on the
right-hand side satisfies the previously stated conditions.

The problem here is that in Petri automata, runs are token firing games. To adequately compare
two runs, we need to closely track the tokens. For this reason, we will relate a configuration ξk in A1

not only to a configuration ξ′k in A2, but to a map ηk from ξ′k to ξk. This will enable us to associate
with each token situated on some place in P2 another token placed on A1.

We want to find a reading of Tr (ξ) in A2, i.e. a run in A2 together with a sequence of maps
associating places in A2 to positions in Tr (ξ). Consider the picture below. Since we already have a
reading of Tr (ξ) along ξ (by defining ρk(p) = ν(k, p), as in the proof of Lemma 14), it suffices to find
maps from the places in A2 to the places in A1 (the maps ηk): the reading of Tr (ξ) in A2 will be
obtained by composing ηk with ρk.

Tr (ξ)

ξ0 τ0
// ξ1 τ1

// ⋯ τn−1
// ξn τn

// ξn+1

ξ′0

η0

OO

τ ′0

// ξ′1
τ ′1

//

η1

OO

⋯
τ ′n−1

// ξ′n

ηn

OO

τ ′n

// ξ′n+1

ηn+1

OO

ρ0

77

ρ1

<<

ρn

[[

ρn+1

ee

We need to impose some constraints on the maps (ηk) to ensure that (ρk ○ ηk)0⩽k⩽n is indeed
a correct reading in A2. First, we need to ascertain that a transition τ ′k in A2 may be fired from
the reading state ρk ○ ηk to reach the reading state ρk+1 ○ ηk+1. Furthermore, as for NFA, we want
transitions τk and τ ′k to be related: specifically, we require τ ′k to be included (via the morphisms ηk
and ηk+1) in the transition τk. This is meaningful because transition τk contains a lot of information
about the vertex k of Tr (ξ) and about ρ: the labels of the outgoing edges from k are the labels on
the output of τk, and the only places that will ever be mapped to k in the reading ρ are exactly the
places in the input of τk.

A

B

C

0

a

b

X

Y

Z

0′

a

a

This already shows an important difference between the simulations
for NFA and Petri automata. For NFA, we relate a transition p

aÐ→ p′

to a transition q
aÐ→ q′ with the same label a. Here the transitions

ξk
τkÐ→A1 ξk+1 may have different labels. Consider the step represented

on the right, corresponding to a square in the above diagram. The
output of 0 has a label b that does not appear in 0’ , and 0’ has
two outputs labelled by a. Nevertheless this satisfies the conditions
informally stated above, indeed, a ∧ b ⩽ a ∧ a holds.

11

Brunet & Pous

However this definition is not yet satisfactory. Consider the two runs below:

A B

C

D

0 1
a

b

c

X

Y

Z Z

T T

U

0′

1′

2′a

a
b

c

Their traces correspond respectively to the ground terms a ⋅ (b∧ c) and (a ⋅ b)∧ (a ⋅ c). The problem is
that a ⋅ (b ∧ c) ⩽ (a ⋅ b) ∧ (a ⋅ c), but with the previous definition, we cannot relate these runs: they do
not have the same length. The solution here consists in grouping the transitions 1’ and 2’ together,
and consider these two steps as a single step in a parallel run. This last modification gives us a notion
of simulation we can really work with.

Definition 19 (Simulation)
A relation ≼ ⊆ P (P1) ×P (P2 ⇢ P1) between the configurations of A1 and the partial maps from the
places of A2 to the places of A1 is called a simulation between A1 and A2 if:

• {ι1} ≼ {[ι2 ↦ ι1]};

• if ξ ≼ E and ξ
(s,t)ÐÐ→A1 ξ

′, then ξ′ ≼ E′ where E′ is the set of all η′ such that there is some η ∈ E
and a compatible set of transitions T ⊆ T2 such that:

– dom (η) TÐ→A2 dom (η′);
– ∀(s′, t′) ∈ T, η(s′) ⊆ s and ∀(x, q) ∈ t′, (x, η′(q)) ∈ t;
– ∀p ∈ dom (η) , (∀(s′, t′) ∈ T, p ∉ s′)⇒ η(p) = η′(p).

• if ξ ≼ E and ξ ∈ F1, then there must be some η ∈ E such that dom (η) ∈ F2. ∗

We will now prove that the language of A1 is contained in the language of A2 if and only if there
exists such a simulation. We first introduce the following notion of embedding.

Definition 20 (Embedding)
Let ξ = ⟨(ξk)0⩽k⩽n, (τk)0⩽i<n⟩ be a run in A1, and Ξ = ⟨(Ξk)0⩽k⩽n , (Ti)0⩽i<n⟩ a parallel run in A2. An
embedding of Ξ into ξ is a sequence (ηi)0⩽i⩽n of maps such that for any i < n, we have:

• ηi is a map from Ξi to ξi;

• the image of Ti by ηi is included in τi, meaning that for any
(s, t) ∈ Ti, for any p ∈ s and (x, q) ∈ t, ηi(p) is contained in the
input of τi and (x, ηi+1(q)) is in the output of τi;

• the image of the tokens in Ξi that do not appear in the input of
Ti are preserved (ηi(p) = ηi+1(p)) and their image is not in the
input of τi.

ξi
τi // ξi+1

Ξi

ηi

OO

Ti

// Ξi+1

ηi+1

OO

∗

Figure 8 illustrates the embedding of some parallel run, with trace ((b ⋅ c ⋅a ⋅ b)∧ (b ⋅ b ⋅ c ⋅a)) ⋅d, into
the run presented in Figure 6. Notice that is it necessary to have a parallel run instead of a simple
one: to find something that matches transition 1 , we need to fire two transitions in parallel.

There is a close relationship between simulations and embeddings:

12

Decidability of RKL−

A

B

G

C

E

G

D

E

G

C

E

G

D

E

G

F

G

0

1

2

3

4

5b

a

c

b

a
c

b

a

d

α

β

γ

δ

ε

ζ

ε

η

θ

η

ι

κ

b

b

c

b

a b

c a

d

Figure 8: Embedding of a parallel run into the run from Figure 6.

Lemma 21. Let A1 and A2 be two Petri automata, the following are equivalent:

1. there exists a simulation ≼ between A1 and A2;

2. for any accepting run ξ in A1, there is an accepting parallel run Ξ in A2 that can be embedded
into ξ.

Proof. If we have a simulation ≼, let ξ = ⟨(ξk)0⩽k⩽n , (τk)0⩽k<n⟩ be an accepting run in A1. By the
definition of simulation, we can find a sequence of sets of maps (Ek)0⩽k⩽n such that E0 = {[ι2 ↦ ι1]}
and ∀k, ξk ≼ Ek. Furthermore, we can extract from this a sequence of maps (ηk)0⩽k⩽n and a sequence of
parallel transitions (Tk)0⩽k<n such that (ηk) is an embedding of ⟨(dom (ηk))0⩽k⩽n , (Tk)0⩽k<n⟩ (which
is accepting) into ξ. This follows directly from the definitions of embedding and simulation.

On the other hand, if we have property 2., then we can define a relation ≼ by saying that ξ ≼ E
if there is an accepting run ξ′ = ⟨(ξ′k)0⩽k⩽n , (τk)0⩽k<n⟩ in A1 such that there is an index k0: ξ = ξ′k0 ;
and the following holds: η ∈ E if there is an accepting parallel run Ξ = ⟨(Ξk)0⩽k⩽n , (Tk)0⩽k<n⟩ and
(η′k)0⩽k⩽n an embedding of Ξ into ξ such that η = η′k0 . It is then immediate to check that ≼ is indeed
a simulation.

If η is an embedding of Ξ into ξ, we can easily check that (ρi ○ ηi)0⩽i⩽n is a parallel reading of
Tr (ξ) along Ξ in A2, as illustrated by this diagram:

Tr (ξ)

ξ0 τ0
// ξ1 τ1

// ⋯ τn−1
// ξn τn

// ξn+1

Ξ0

η0

OO

T0

// Ξ1
T1

//

η1

OO

⋯
Tn−1

// Ξn

ηn

OO

Tn

// Ξn+1

ηn+1

OO

ρ0

77

ρ1

<<

ρn

[[

ρn+1

ff

Thus, it is clear that once we have such a run Ξ with the sequence of maps η, we have that Tr (ξ)
is indeed in the language of A2. The more difficult question is the completeness of this approach:
if Tr (ξ) is recognised by A2, is it always the case that we can find a run Ξ that may be embedded
into ξ? The answer is affirmative, thanks to Lemma 23 below. If (ρj)0⩽j⩽n is a reading of G along
ξ = ⟨(ξk)0⩽k⩽n , (sk, tk)0⩽k<n⟩, we write active(j) for the only position in ρj(sj)1.

1Recall that if (ρj)0⩽j⩽n is a reading along ξ then ∀p, q ∈ sj , ρj(p) = ρj(q).

13

Brunet & Pous

Definition 22 (Consistent ordering)
⩿ is a consistent ordering on G = ⟨V,E, ι, o⟩ if ⟨V,⩿⟩ is a linear order and (p, x, q) ∈ E entails p ⩿ q. ∗

Lemma 23. Let G ∈ L (A2) and ⩿ be any consistent ordering on G. Then there exists a run ξ and
a reading (ρj)0⩽j⩽n of G along ξ such that ∀k, active(k) ⩿ active(k + 1).

Proof. The proof of this result is achieved by taking any run ξ accepting G, and then exchanging
transitions in ξ according to ⩿, while preserving the existence of a reading. The details of this proof
being a bit technical, we omit them here.

Notice that if G contains cycles, this lemma cannot apply because of the lack of consistent ordering.
This enables us to build an embedding from any reading of Tr (ξ) in A2.

Lemma 24. Let ξ a accepting run of A1. Then Tr (ξ) is in L (A2) if and only if there is an accepting
parallel run in A2 that can be embedded into ξ.

Proof. We do not include the details of this proof here for length reasons.
For the if direction, we build a parallel reading from the embedding, as explained above. For

the other direction, we consider a reading of Tr (ξ) in A2 along some run ξ′. Notice that the
natural ordering on N is consistent for Tr (ξ); we may thus change the order of the transitions in
ξ′ (using Lemma 23) and group them adequately to obtain a parallel reading Ξ that embeds in ξ.

So we know that the existence of embeddings is equivalent to the inclusion of languages, and we
previously established that it is also equivalent to the existence of a simulation relation. Hence, the
following characterisation holds:

Theorem 25. Let A1 and A2 be two Petri automata. L (A1) ⊆ L (A2) if and only if there exists a
simulation relation ≼ between A1 and A2.

Proof. By Lemmas 14, 21 and 24.

As Petri automata are finite, there are finitely many relations in P (P (P1) ×P (P2 ⇢ P1)). The
existence of a simulation thus is decidable, allowing us to prove the main result:

Theorem 26. Given two expressions e, f ∈ Reg∧−X , testing whether Rel ⊧ e = f is decidable.

Proof. By Theorems 6, 17 and 25, and reasoning by double inclusion.

In practice, we may build the simulation on-the-fly, starting from the pair ({ι1} ,{[ι2 ↦ ι1]})
and progressing from there. We have implemented this algorithm in OCaml: even though its
theoretical worst case time complexity is huge2, we get a result almost instantaneously on simple
one-line examples.

Conclusions and directions for future work

By introducing Petri automata, we proved the decidability of the equivalence of identity-free regular
expressions with intersection, with respect to their relational interpretations. Actually, this also holds
for their language interpretations, because Andréka et al. showed in [1] that the classes of identity-
free relational Kleene lattices and identity-free language Kleene lattices coincide. They differ however
when we include the identity constant, or the converse operation.

2A quick analysis gives a O (2n+n
m
) complexity bound, where n and m are the numbers of places of the automata.

14

Decidability of RKL−

The construction and algorithm presented here were implemented in OCaml as an exercise. The
resulting program is available online as an interactive applet [5].

By adding ε-transitions to Petri automata, we could partly cope with the identity, in the sense
that we can build automata to recognise the graph languages of expressions over the signature
⟨∨,∧, ⋅, ⋅⋆,1,0⟩. However, we did not find a way of comparing ε-Petri automata: the notion of
simulation we described here is not equivalent to the inclusion of languages for these automata.

Similarly, we could define a variant of Petri automata for recognising the graph languages associated
to expressions with converse: it suffice to consider a duplicated alphabet. However, we did not find a
proper way of extending our notion of simulation to capture language inclusion of such automata.

References

[1] H. Andréka, S. Mikulás, and I. Németi. The equational theory of Kleene lattices. Theoretical
Computer Science, 412(52):7099–7108, 2011.

[2] H. Andréka and D. Bredikhin. The equational theory of union-free algebras of relations. Algebra
Universalis, 33(4):516–532, 1995.

[3] S. L. Bloom, Z. Ésik, and G. Stefanescu. Notes on equational theories of relations. Algebra
Universalis, 33(1):98–126, 1995.

[4] P. Brunet and D. Pous. Kleene algebra with converse. In Proc. RAMiCS, volume 8428 of Lecture
Notes in Computer Science, pages 101–118. Springer Verlag, 2014.

[5] P. Brunet and D. Pous. Web appendix to this abstract, 2014. http://perso.ens-lyon.fr/
paul.brunet/rklm.html.

[6] J. H. Conway. Regular algebra and finite machines. Chapman and Hall Mathematics Series, 1971.

[7] Z. Ésik and L. Bernátsky. Equational properties of Kleene algebras of relations with conversion.
Theoretical Computer Science, 137(2):237–251, 1995.

[8] P. J. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.

[9] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Memorandum. Rand
Corporation, 1951.

[10] D. Kozen. On Kleene Algebras and closed semirings. In Proc. MFCS, volume 452 of Lecture
Notes in Computer Science, pages 26–47. Springer Verlag, 1990.

[11] D. Kozen. A completeness theorem for Kleene Algebras and the algebra of regular events. In
Proc. LICS, pages 214–225. IEEE Computer Society, 1991.

[12] D. Krob. A Complete System of B-Rational Identities. In Proc. ICALP, volume 443 of Lecture
Notes in Computer Science, pages 60–73. Springer Verlag, 1990.

[13] T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4):541–580,
Apr 1989.

[14] C. A. Petri. Fundamentals of a theory of asynchronous information flow. In IFIP Congress, pages
386–390, 1962.

[15] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt Univ. of Tech., 1962.

[16] K. Thompson. Regular expression search algorithm. C. of the ACM, 11:419–422, 1968.

15

http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.1007/978-3-319-06251-8_7
http://perso.ens-lyon.fr/paul.brunet/rklm.html
http://perso.ens-lyon.fr/paul.brunet/rklm.html
http://store.doverpublications.com/0486485838.html
http://dx.doi.org/10.1016/0304-3975(94)00041-G
http://store.elsevier.com/Categories-Allegories/P_J_-Freyd/isbn-9780444703682/
http://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
http://dx.doi.org/10.1007/BFb0029594
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1007/BFb0032022
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1145/363347.363387

Kleene Algebra with Converse

Paul Brunet, Damien Pous

To cite this version:

Paul Brunet, Damien Pous. Kleene Algebra with Converse. RAMiCS, Apr 2014, Marienstatt
im Westerwald, Germany. Springer, 8428, pp.101-118, LNCS. <hal-00938235>

HAL Id: hal-00938235

https://hal.archives-ouvertes.fr/hal-00938235

Submitted on 29 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00938235

Kleene Algebra with Converse

Paul Brunet and Damien Pous ?

LIP, CNRS, ENS Lyon, INRIA, Université de Lyon, UMR 5668

Abstract The equational theory generated by all algebras of binary
relations with operations of union, composition, converse and reflexive
transitive closure was studied by Bernátsky, Bloom, Ésik, and Stefanescu
in 1995. We reformulate some of their proofs in syntactic and elemen-
tary terms, and we provide a new algorithm to decide the corresponding
theory. This algorithm is both simpler and more efficient; it relies on
an alternative automata construction, that allows us to prove that the
considered equational theory lies in the complexity class PSpace.
Specific regular languages appear at various places in the proofs. Those
proofs were made tractable by considering appropriate automata recog-
nising those languages, and exploiting symmetries in those automata.

Introduction

In many contexts in computer science and mathematics operations of union, se-
quence or product and iteration appear naturally. Kleene Algebra, introduced by
John H. Conway under the name regular algebra [Con71], provides an algebraic
framework allowing to express properties of these operators, by studying the
equivalence of expressions built with these connectives. It is well known that the
corresponding equational theory is decidable [Kle51], and that it is complete for
language and relation models.

As expressive as it may be, one may wish to integrate other usual opera-
tions in such a setting. Theories obtained this way, by addition of a finite set
of equations to the axioms of Kleene Algebra, are called Extensions of Kleene
Algebra. We shall focus here on one of these extensions, where an operation of
converse is added to Kleene Algebra. The converse of a word is its mirror image
(the word obtained by reversing the order of the letters), and the converse R∨
of a relation R is its reciprocal (xR∨y , yRx). This natural operation can be
expressed simply as a set of equations that we add to Kleene Algebra’s axioms.

The question that arises once this theory is built is its decidability: given
two formal expressions built with the connectives product, sum, iteration and
converse, can one decide automatically if they are equivalent, meaning that
their equality can be proven using the axioms of the theory? Bloom, Ésik,

? Work partially funded by the french projects PiCoq (ANR-09-BLAN-0169-01) and
PACE (ANR-12IS02001).

2 Paul Brunet and Damien Pous

Stefanescu and Bernátsky gave an affirmative answer to that question in two
articles, [BÉS95] and [ÉB95], in 1995.

However, although the algorithm they define proves the decidability result,
it is too complicated to be used in actual applications. In this paper, beside
some simplifications of the proofs given in [BÉS95], we give a new and more
efficient algorithm to decide this problem, which we place in the complexity
class PSpace.

The equational theory of Kleene algebra cannot be finitely axiomatised [Red64].
Krob presented the first purely axiomatic (but infinite) presentation [Kro90].
Several finite quasi-equational characterisations have been proposed [Sal66,Bof90,
Kro90,Koz91,Bof95]; here we follow the one from Kozen [Koz91].

A Kleene Algebra is an algebraic structure 〈K,+, ·,? ,0,1〉 such that 〈K,+, ·,0,1〉
is an idempotent semi-ring, and the operation ? satisfies the following properties

1 + aa? 6 a? (1a)
1 + a?a 6 a? (1b)

b+ ax 6 x⇒ a?b 6 x (1c)
b+ xa 6 x⇒ ba? 6 x (1d)

(Here a 6 b is a shorthand for a+ b = b.)
The quasi-variety KA consists in the axioms of an idempotent semi-ring to-

gether with axioms and inference rules (1a) to (1d). Kleene Algebras are thus
models of KA. We shall call regular expressions over X, written RegX , the ex-
pressions built from letters of X, the binary connectives + and ·, the unary
connective ? and the two constants 0 and 1.

Two families of such algebras are of particular interest: languages (sets of
finite words over a finite alphabet, with union as sum and concatenation as
product) and relations (binary relations over an arbitrary set with union and
composition). KA is complete for both these models [Kro90, Koz91], meaning
that for any e, f ∈ RegX , KA ` e = f if and only if e and f coincide under
any language (resp. relational) interpretation. This last property will be written
e ≡Lang f (resp. e ≡Rel f).

More remarkably, if we denote by JeK the language denoted by an expression
e, we have that for any e, f ∈ RegX , KA ` e = f if and only if JeK = JfK.
By Kleene’s theorem (see [Kle51]) the equality of two regular languages can be
reduced to the equivalence of two finite automata, which is easy to compute.
Hence, the theory KA is decidable.

Now let us add a unary operation of converse to regular expressions. We
shall denote by Reg∨X the set of regular expressions with converse over a finite
alphabet X. While doing so, several questions arise:

1. Can the converse on languages and on relations be encoded in the same
theory?

2. What axioms do we need to add to KA to model these operations?

Kleene Algebra with Converse 3

3. Are the resulting theories complete for languages and relations?
4. Are these theories decidable?

There is a simple answer to the first question: no. Indeed the equation a 6
a·a∨·a is valid for any relation a (because if (x, y) ∈ a, then (x, y) ∈ a, (y, x) ∈ a∨,
and (x, y) ∈ a, so that (x, y) ∈ a ◦ a∨ ◦ a). But this equation is not satisfied for
all languages a (for instance, with the language a = {x}, a · a∨ · a = {xxx} and
x /∈ {xxx}). This means that there are two distinct theories corresponding to
these two families of models. Let us begin by considering the case of languages.

Theorem 1 (Completeness of KAC− [BÉS95]). A complete axiomatisation of
the variety Lang∨ of languages generated by concatenation, union, star, and
converse consists of the axioms of KA together with axioms (2a) to (2d).

(a+ b)
∨
= a∨ + b∨ (2a)

(a · b)∨ = b∨ · a∨ (2b)

(a?)
∨
= (a∨)? (2c)

a∨
∨
= a. (2d)

We call this theory KAC−; it is decidable.

As for relations, we write e ≡Lang∨ f if e and f have the same language
interpretations (for a formal definition, see the “Notation” subsection below). To
prove this result, one first associates to any expression e ∈ Reg∨X an expression
e ∈ RegX, where X is an alphabet obtained by adding to X a disjoint copy of
itself. Then, one proves that the following implications hold.

e ≡Lang∨ f ⇒ JeK = JfK (3)

JeK = JfK ⇒ KAC− ` e = f (4)

(That KAC− ` e = f entails e ≡Lang∨ f is obvious; decidability comes from
that of regular languages equivalence.) We reformulate Bloom et al.’s proofs of
these implications in elementary terms in Section 1.1.

As stated before, the equation a 6 a · a∨ · a provides a difference between
languages with converse and relations with converse. It turns out that it is the
only difference, in the sense that the following theorem holds:

Theorem 2 (Completeness of KAC [BÉS95, ÉB95]). A complete axiomatisa-
tion of the variety Rel∨ of relations generated by composition, union, star, and
converse consists of the axioms of KAC− together with the axiom (5).

a 6 a · a∨ · a. (5)

We call this theory KAC; it is decidable.

4 Paul Brunet and Damien Pous

The proof of this result also relies on a translation into regular languages.
Ésik et al. define a notion of closure, written cl (), for languages over X, and they
prove the following implications:

e ≡Rel∨ f ⇒ cl (JeK) = cl (JfK) (6)
cl (JeK) = cl (JfK) ⇒ KAC ` e = f (7)

(Again, that KAC ` e = f entails e ≡Rel∨ f is obvious.) The first implication (6)
was proven in [BÉS95]; we give a new formulation of this proof in Section 1.2.
The second one (7) was proven in [ÉB95].

The last consideration is the decidability of KAC. To this end, Bloom et al.
propose a construction to obtain an automaton recognising cl (L), when given an
automaton recognising L. Decidability follows: to decide whether KAC ` e = f
one can build two automata recognising cl (JeK) and cl (JfK) and check if they are
equivalent. Unfortunately, their construction tends to produce huge automata,
which makes it useless for practical application. We propose a new and simpler
one in Section 2; by analysing this construction, we show in Section 3 how it
leads to a proof that the problem of equivalence in KAC is PSpace.

Notation

For any word w, |w| is the size of w, meaning its number of letters; for any
1 6 i 6 |w|, we’ll write w(i) for the ith letter of w and w|i , w(1)w(2) · · ·w(i)
for its prefix of size i. Also, suffixes(w) , {v | ∃u : uv = w} is the set of all
suffixes of w. A deterministic automaton is a tuple 〈Q,Σ, q0, T, δ〉; with Q a set
of states, Σ an alphabet, q0 ∈ Q an initial state, T ⊆ Q a set of final states and
δ : Q×Σ → Q a transition function. A non-deterministic automaton is a tuple
〈Q,Σ, I, T,∆〉; with Q, Σ and T same as before, I ⊆ Q a set of initial states and
∆ ⊆ Q×Σ ×Q a set of transitions. We write L (A) for the language recognised
by the automaton A . For any a ∈ Σ, we write ∆(a) for {(p, q) | (p, a, q) ∈ ∆}.
We also use the compact notation p

w−−→A q to denote that there is in the
automaton A a path labelled by w from the state p to the state q. For a set
E ⊆ Q and a relation R over Q, we write E ·R for the set {y | ∃x ∈ E : xRy }.

Given a map σ from a set X to the languages on an alphabet Σ (resp. the
relations on a set S), there is a unique extension of σ into a homomorphism from
RegX to LangΣ (resp. RelS), which we denote by σ̂. The same thing can be done
with regular expressions with converse, and we will use the same notation for it.
We finally denote by ≡V the equality in a variety V (Lang, Rel, Lang∨ or Rel∨):
e ≡V f , ∀K,∀σ : X → VK , σ̂(e) = σ̂(f).

1 Preliminary material

1.1 Languages with converse: theory KAC−

We consider regular expressions with converse over a finite alphabet X. The
alphabet X is defined as X ∪ X ′, where X ′ , {x′ | x ∈ X } is a disjoint copy

Kleene Algebra with Converse 5

of X. As a shorthand, we use ′ as an internal operation on X going from X to
X ′ and from X ′ to X such that if x ∈ X, x′ , x′ ∈ X ′ and (x′)′ , x ∈ X. An
important operation in the following is the translation of an expression e ∈ Reg∨X
to an expression e ∈ RegX. We proceed to its definition in two steps.

Let τ(e) denote the normal form of an expression e ∈ Reg∨X in the following
convergent term rewriting system:

(a+ b)
∨ → a∨ + b∨ 0∨ → 0 (a?)

∨ → (a∨)?

(a · b)∨ → b∨ · a∨ 1∨ → 1 a∨
∨ → a

The corresponding equations being derivable in KAC−, one easily obtain that

∀e ∈ Reg∨X , KAC− ` τ(e) = e (8)

We finally denote by e the expression obtained by further applying the sub-
stitution ν , [x∨ 7→ x′, (∀x ∈ X)], i.e., e , ν(τ(e)). (Note that e ∈ RegX: it
is regular, all occurrences of the converse operation have been eliminated.) As
explained in the introduction, Bloom et al.’s proof [BÉS95] amounts to proving
the implications (3) and (4). We include a syntactic and elementary presentation
of this proof, for the sake of completeness.

Lemma 3. For all e, f ∈ Reg∨X , e ≡Lang∨ f entails JeK = JfK.

Proof. For any e ∈ Reg∨X , we have τ(e) ≡Lang∨ e (†) as an immediate conse-
quence of (8). Let us write X• , X] {•} and consider the following interpreta-
tions (which appear in [BÉS95, proof of Proposition 4.3]):

µ : X −→ P (X?
•) η : X −→ P (X?

•)

x 7−→ {x · •} x ∈ X 7−→ {x · •}
x′ ∈ X ′ 7−→ {• · x}

One can check (see Appendix A.1)that η̂ is injective modulo equality of denoted
languages, in the sense that for any expression e ∈ RegX, we have

η̂(e) = η̂(f) implies that JeK = JfK . (9)

By a simple induction on e, we get µ̂(τ(e)) = η̂(ν(τ(e))) = η̂(e). Combined
with (†), we deduce that µ̂(e) = η̂(e). All in all, we obtain: e ≡Lang∨ f ⇒ µ̂(e) =
µ̂(f)⇒ η̂(e) = η̂(f)⇒ JeK = JfK.

The second implication is even more immediate, using KA completeness.

Lemma 4. For all e, f ∈ Reg∨X , if JeK = JfK then KAC− ` e = f .

Proof. By completeness of KA [Kro90,Koz91], if JeK = JfK, then we know that
there is a proof π1 : KA ` e = f . As KA is contained in KAC−, the same proof
can be seen as π1 : KAC− ` e = f . By substituting x′ by (x∨) everywhere in
this proof, we get a new proof π2 : KAC− ` τ(e) = τ(f). By (8) and transitivity
we thus get KAC− ` e = f .

6 Paul Brunet and Damien Pous

We finally deduce that e ≡Lang∨ f ⇔ JeK = JfK⇔ KAC− ` e = f . Since the
regular expressions e and f can be easily computed from e and f , the problem
of equivalence in KAC− thus reduces to an equality of regular languages, which
makes it decidable.

1.2 Relations with converse: theory KAC

We now move to the equational theory generated by relational models. It turns
out that this theory will be characterised using “closed” languages on the ex-
tended alphabet X. To define this closure operation, we first define a mirror
operation w on words over X, such that ε , ε and for any x,w ∈ X × X?,
wx = x′w. Accordingly with the axiom (5) of KAC we define a reduction rela-
tion on words over X, using the following word rewriting rule.

www w .

We call www a pattern of root w. The last two thirds of the pattern are ww.
Following [BÉS95, ÉB95], we extend this relation into a closure operation on
languages.

Definition 5. The closure of a language L ⊆ X? is the smallest language
containing L that is downward-closed with respect to :

cl (L) , {v | ∃u ∈ L : u ? v } .

Example 6. If X = {a, b, c, d}, then X = {a, b, c, d, a′, b′, c′, d′}, and ab′ = ba′.
We have the reduction cab′ba′ab′d′ cab′d′, by triggering a pattern of root ab′.
For L = {aa′a, b, cab′ba′ab′d′}, we have cl (L) = L ∪ {a, cab′d′}.

Now we define a family of languages which play a prominent role in the
sequel.

Definition 7. For any word w ∈ X?, we define a regular language Γ (w) by:

Γ (ε) , {ε}
∀x ∈ X,∀w ∈ X?, Γ (wx) , (x′Γ (w)x)

?
.

An equivalent operator called G is used in [BÉS95]: we actually have Γ (w) =
G(w), and our recursive definition directly corresponds to [BÉS95, Proposi-
tion 5.11.(2)]. By using such a simple recursive definition, we avoid the need
for the notion of admissible maps, which is extensively used in [BÉS95].

Instead, we just have the following property to establish, which illustrates
why these languages are of interest: words in Γ (w) reduce into the last two
thirds of a pattern compatible with w. Therefore, in the context of recognition
by an automaton, Γ (w) contains all the words that could potentially be skipped
after reading w, in a closure automaton.

Proposition 8. For all words u and v, u ∈ Γ (v)⇔ ∃t ∈ suffixes(v) : u ? tt.

Kleene Algebra with Converse 7

//
0

v(n)′
//

oo 1

v(n−1)′
//

v(n)
oo 2

v(n−2)′
//

v(n−1)
oo · · ·

v(1)′
//

v(n−2)
oo n

v(1)
oo

Fig. 1: Automaton G (v) recognising Γ (v), with |v| = n.

Proof. The proof of the implication from left to right is routine but a bit lengthy,so
that we put it in Appendix A.2.

For the converse implication, we first define the following language: Γ ′(v) ,{
tt | t ∈ suffixes(v)

}
. We thus have to show that the upward closure of Γ ′(v)

is contained in Γ (v). We first check that this language satisfies Γ ′(ε) = ε and
Γ ′(vx) = ε + x′Γ ′(v)x, which allows us to deduce that Γ ′(v) ⊆ Γ (v) by a
straightforward induction.

It thus suffices to show that Γ (v) is upward-closed with respect to . For
this, we introduce the family of automata G (v) depicted in Figure 1. One can
check that G (v) recognises Γ (v) by a simple induction on v. One can moreover

notice that in this automaton, if p x−−→G (v) q, then q
x′−−→G (v) p. More generally,

for any word u, if p u−−→G (v) q, then q
u−−→G (v) p. So if u1wu2 ∈ Γ (v), then by

definition of the automaton we have 0
u1−−−→G (v) q1

w−−→G (v) q2
u2−−−→G (v) 0 , and

thus, by the previous remark:

0
u1

G (v)
// q1

w

G (v)
// q2

w

G (v)
// q1

w

G (v)
// q2

u2

G (v)
// 0 ,

i.e., u1wwwu2 ∈ Γ (v). In other words, for any words v and w and any u ∈ Γ (v),
if w u then w is also in Γ (v), meaning exactly that Γ (v) is upward-closed
with respect to .

Since Γ ′(v) ⊆ Γ (v), we deduce that Γ (v) contains the upward closure of
Γ ′(v), as expected.

We now have enough material to embark in the proof of the implication (6)
from the introduction, stating that if two expressions e, f ∈ Reg∨X are equal for
all interpretations in all relational models, then cl (e) = cl (f).

Proof. Bloom et al. [BÉS95] consider specific relational interpretations: for any
word u ∈ X? and for any letter x ∈ X, they define

φu(x) , {(i− 1, i) | u(i) = x} ∪ {(i, i− 1) | u(i) = x′ } ⊆ {0, . . . , n}2 ,

where n , |u|. The key property of those interpretations is the following:

(0, n) ∈ φ̂u(v)⇔ v ? u . (10)

We give a new proof of this property, by using the automaton Φ(u) depicted in
Figure 2. By definition of Φ(u) and φu, we have that

(i, j) ∈ φu(x)⇔ i
x−−→Φ(u) j .

8 Paul Brunet and Damien Pous

// 0

u(1)
//
1

u(2)
//

u(1)′
oo 2

u(3)
//

u(2)′
oo · · ·

u(n)
//

u(3)′
oo n

u(n)′
oo

//

Fig. 2: Automaton Φ(u), with |u| = n.

// 0
x //

x))

1′
u(1)
//

x′
oo 2′

u(2)
//

u(1)′
oo · · ·

u(n)
//

u(2)′
oo n′

u(n)′
oo

1

u(1)
//
2

u(2)
//

u(1)′
oo · · ·

u(n)
//

u(2)′
oo n

u(n)′
oo

//

Fig. 3: Automaton Φ′(xu), with |u| = n, language equivalent to Φ(xu).

Therefore, proving (10) amounts to proving

v ∈ L(Φ(u))⇔ v ? u . (11)

First notice that i x−−→Φ(u) j ⇔ j
x′−−→Φ(u) i. We can extend this to paths (as in

the proof of Proposition 8) and then prove that if s t and i
t−−→Φ(u) j then

i
s−−→Φ(u) j. As u is clearly in L(Φ(u)), any v such that v ? u is also in L(Φ(u)).
We proceed by induction on u for the other implication. The case u = ε

being trivial, we consider v ∈ L(Φ(xu)). We introduce a second automaton
Φ′(xu) given in Figure 3, that recognises the same language as Φ(xu). The upper
part of this automaton is actually the automaton G (xu) (as given in Figure 1),
recognising the language Γ (xu). Moreover, the lower part starting from state 1 is
the automaton Φ(u). This allows us to obtain that L(Φ(xu)) = Γ (xu)xL(Φ(u)).
Hence, for any v ∈ L(Φ(xu)), there are v1 ∈ Γ (xu) and v2 ∈ L(Φ(u)) such that
v = v1xv2. By induction, we get v2 ? u, and by Proposition 8 we know that
v1 ? ww, with w ∈ suffixes(xu). That means that xu = tw, for some word t,
so xu = tw = w t. If we put everything back together:

v = v1xv2
? v1xu

? wwxu = www t w t = xu .

This concludes the proof of (11), and thus (10).
We follow Bloom et al.’s proof [BÉS95] to deduce that the implication (6)

from the introduction holds: we first prove that for all e ∈ RegX, we have

u ∈ cl (JeK)⇔ ∃v ∈ JeK, v ? u (by definition)

⇔ ∃v ∈ JeK, (0, n) ∈ φ̂u(v) (by (10))

⇔ (0, n) ∈ φ̂u(e) .

Kleene Algebra with Converse 9

(For the last line, we use the fact that for any relational interpretation φ, we
have φ̂(e) =

⋃
w∈JeK φ̂(w).)

Furthermore, as φu(x′) = φu(x)
∨, we can prove that φ̂u(e) = φ̂u(e) (see

Appendix A.3). Therefore, for all expressions e, f ∈ Reg∨X such that e ≡Rel∨ f ,
we have φ̂u(e) = φ̂u(e) = φ̂u(f) = φ̂u(f), and we deduce that cl (JeK) = cl (JfK)
thanks to the above characterisation.

2 Closure of an automaton

The problem here is the following: given two regular expressions e, f ∈ Reg∨X ,
how to decide cl (JeK) = cl (JfK)? We follow the approach proposed by Bloom
et al.: given an automaton recognising a language L, we show how to construct
an automaton recognising cl (L). To solve the initial problem, it then suffices to
build two automata recognising JeK and JfK, to apply a construction to obtain two
automata for cl (JeK) and cl (JfK), and to check those for language equivalence.

As a starting point, we first recall the construction proposed in [BÉS95].

2.1 The original construction

This construction uses the transition monoid of the input automaton:

Definition 9 (Transition monoid). Let A = 〈Q,Σ, q0, T, δ〉 be a deterministic
automaton. Each word u ∈ Σ? induces a function uA : Q→ Q which associates
to a state p the state q obtained by following the unique path from p labelled
by u. The transition monoid of A , written MA , is the set of functions Q → Q
induced by words of Σ?, equipped with the composition of functions and the
identity function.

This monoid is finite, and its subsets form a Kleene Algebra. Bloom et al.
then proceed to define the closure automaton in the following way:

Theorem 10 (Closure automaton of [BÉS95]). Let L ⊆ X? be a regular lan-
guage, recognised by the deterministic automaton A = 〈Q,X, q0, Qf , δ〉. Let
MA be the transition monoid of A . Then the following deterministic automaton
recognises cl (L):

B , 〈P (MA)× P (MA) ,X, ({εA } , {εA }) , T, δ1〉
with T , {(F,G) | ∃uA ∈ F : uA (q0) ∈ Qf } ,

and δ1((F,G), x) ,
(
F · {xA } ·

(
({x′A } ·G · {xA })

?)
, ({x′A } ·G · {xA })

?)
.

An important idea in this construction, that inspired our own, is the transi-
tion rule for the second component above. Let us write δ2(G, x) for the expression
({x′A } ·G · {xA })?, so that the definition of δ1 can be reformulated as

δ1((F,G), x) = (F · {xA } · δ2(G, x), δ2(G, x)).

10 Paul Brunet and Damien Pous

With that in mind, one can see the second component as some kind of history,
that runs on its own, and is used at each step to enrich the first component. At
this point, it might be interesting to notice that the formula for δ2(G, x) closely
resembles the one for Γ (wx) = (x′Γ (w)x)

?, which we defined in Section 1.2.

2.2 Intuitions

Let us forget the above construction, and try to build a closure automaton. One
way would be to simply add transitions to the initial automaton. This idea comes
naturally when one realises that if u ? v, then v is obtained by erasing some
subwords from u: at each reduction step u1wwwu2 u1wu2 we just erase ww.
To “erase” such subwords using an automaton, it suffices to allow one to jump
along certain paths.

Suppose for instance that we start from the following automaton:

// q0
a // q1

b // q2
b′ // q3

a′ // q4
a // q5

b // q6 //

We can detect the pattern ababab, and allow one to “jump” over it when reading
the last letter of the root of the pattern, in this case the b in second position.
Our automaton thus becomes:

// q0
a // q1

b //

b

@@
q2

b′ // q3
a′ // q4

a // q5
b // q6 //

However, this approach is too naive, and it quickly leads to errors. If for in-
stance we slightly modify the above example by adding a transition labelled by
b′ between q0 and q1, the same method leads to the following automaton, by
detecting the patterns b′bb′ between q0 and q3 and abb′a′ab between q0 and q6.

// q0
a //

b′
//

b′

��

q1
b //

b

@@
q2

b′ // q3
a′ // q4

a // q5
b // q6 //

The problem is that the word b′b is now wrongly recognised in the produced
automaton. What happens here is that we can use the jump from q1 to q6,
even though we didn’t read the prerequisite for doing so, in this case the a
constituting the beginning of the root ab of pattern ababab. (Note that the dual
idea, consisting in enabling a jump when reading the first letter of the root of
the pattern, would lead to similar problems.)

A way to prevent that, which was implicitly introduced in the original con-
struction, consists in using a notion of history. The states of the closure au-
tomaton will be pairs of a state in the initial automaton and a history. That will
allow us to distinguish between the state q1 after reading a and the state q1 after
reading b′, and to specify which jumps are possible considering what has been

Kleene Algebra with Converse 11

previously read. In the construction given in [BÉS95], the history is given by an
element of P (MA), in the second component of the states (the “G” part). We
will define a history as a set of words allowing for the same jumps, using Γ (w).

2.3 Our construction

We have shown in Section 1.2 that ∀u ∈ Γ (w),∃v ∈ suffixes(w) : u ? vv, so we
do have a characterisation of the words “allowing jumps” after having read some
word w. The problem is that we want a finite number of possible histories, and
there are infinitely many Γ (w) (for instance, all the Γ (an) are different). To get
that, we will project Γ (w) on the automaton. Let us consider a non-deterministic
automaton A = 〈Q,X, I, T,∆〉 recognising a language L.

Definition 11. For any word w ∈ X? we define the relation γ(w) between states
of A by γ(ε) , IdQ and γ(wx) = (∆(x′) ◦ γ(w) ◦∆(x))

?.

One can notice right away the strong relationship between γ and Γ :

Proposition 12. ∀w, q1, q2, (q1, q2) ∈ γ(w) ⇔ ∃u ∈ Γ (w) : q1
u−−→A q2.

This result is straightforward once one realises that γ(w) = σ̂ (Γ (w)) with
σ(x) = ∆(x). By composing Propositions 8 and 12 we eventually obtain that
((q1, q2) ∈ γ(w)) iff ∃u : q1

u−−→A q2 and u ? vv, with v a suffix of w.
The set Q being finite, γ has a finite index and one can define a finite set of

histories as follows:

Definition 13. Let ∼γ be the kernel of γ: u ∼γ v iff γ(u) = γ(v). We define
the set G as the quotient of X? by ∼γ . We denote by [w] the elements of G, in
such a way that [u] = [v]⇔ u ∼γ v ⇔ γ(u) = γ(v).

We now have all the tools required for our construction of the closure of A :

Theorem 14 (Closure Automaton). The closure of the language L is recognised
by the automaton A ′ , 〈Q×G,X, I × {[ε]} , T ×G,∆′〉 with:

∆′ = {((q1, [w]), x, (q2, [wx])) | (q1, q2) ∈ ∆(x) ◦ γ(wx)} .

We shall write L′ for the language recognised by A ′. One can read the set
of transitions as “from a state q1 with an history w, perform a step x in the
automaton A , and then a jump compatible with wx, which becomes the new
history”. One can see, from the definition of ∆′ and Proposition 12 that :

(q1, [u])
x−−→A ′ (q2, [ux]) ⇔ ∃(q3, v) ∈ Q× Γ (ux) : q1

x−−→A q3
v−−→A q2. (12)

Now we prove the correctness of this construction. First recall the notion of
simulation [Mil89]:

Definition 15 (Simulation). A relation R between the states of two automata
A and B is a simulation if for all (p, q) ∈ R we have (a) if p x−−→A p′, then there
exists q′ such that q x−−→B q′ and (p′, q′) ∈ R, and (b) if p ∈ TA then q ∈ TB.

We say that A is simulated by B if there is a simulation R such that for any
p0 ∈ IA , there is q0 ∈ IB such that p0 R q0.

12 Paul Brunet and Damien Pous

The following property of γ is proved by exhibiting such a simulation:

Proposition 16. For all words u, v ∈ X? such that u v, we have γ(u) ⊆ γ(v).

Proof. First, notice that Γ (u) ⊆ Γ (v) ⇒ γ(u) ⊆ γ(v), using Proposition 12.
It thus suffices to prove u v ⇒ Γ (u) ⊆ Γ (v), which can be rewritten as
Γ (u1wwwu2) ⊆ Γ (u1wu2). We can drop u2 (it is clear that Γ (w1) ⊆ Γ (w2) ⇒
∀x ∈ X, Γ (w1x) ⊆ Γ (w2x), from the definition of Γ): we now have to prove
that Γ (u1www) ⊆ Γ (u1w). The proof of this inclusion relies on the fact that the
automaton G (u1www) is simulated by the automaton G (u1w), see Appendix A.4
for a formal definition of this simulation.

We define an order relation 4 on the states of the produced automaton
(Q×G), by (p, [u]) 4 (q, [v]) , p = q ∧ γ(u) ⊆ γ(v).

Proposition 17. The relation 4 is a simulation for the automaton A ′.

Proof. Suppose that (p, [u]) 4 (q, [v]) and (p, [u])
x−−→A ′ (p

′, [ux]), i.e., (p, p′) ∈
∆x ◦ γ(ux). We have p = q and γ(u) ⊆ γ(v), hence γ(ux) ⊆ γ(vx), and thus
(p, p′) ∈ ∆x ◦ γ(vx) meaning that (p, [v])

x−−→A ′ (p
′, [vx]). It remains to check

that (p′, [ux]) 4 (p′, [vx]), i.e., γ(ux) ⊆ γ(vx), which we just proved.

We may now prove that L′ = cl (L).

Lemma 18. L′ ⊆ cl (L)

Proof. We prove by induction on u that for all q0, q such that (q0, [ε])
u−−→A ′

(q, [u]), there exists v such that v ? u and q0
v−−→A q. The case u = ε is trivial.

If (q0, [ε])
u−−→A ′ (q1, [u])

x−−→A ′ (q, [ux]), by induction one can find v1 such
that q0

v1−−→A q1 and v1 ? u. We also know (by (12) and Proposition 8) that
there are some q2, v2 and v3 ∈ suffixes(ux) such that q1

x−−→A q2, v2 ? v3v3
and q2

v2−−→A q. We thus get

q0
v1−−→A q1

x−−→A q2
v2−−→A q and v1xv2 ? uxv2

? uxv3v3 ux.

By choosing q ∈ T , we obtain the desired result.

Lemma 19. L ⊆ L′

Proof. This is actually very simple. First notice that for all u, γ(u) is a reflexive
relation, hence q1

x−−→A q2 entails ∀u, (q1, [u])
x−−→A ′ (q2, [ux]). This means that

the relation R defined by p R (q, [w]) ⇔ p = q is a simulation between A and
A ′, and thus L = L(A) ⊆ L(A ′) = L′.

Lemma 20. L′ is downward-closed for .

A technical lemma is required to establish this closure property:

Lemma 21. If (q1, [uw])
x−−→A ′ (q2, [uwx])

wx wx−−−−−−→A ′ (q3, [uwx wx wx]), then
(q1, [uw])

x−−→A ′ (q3, [uwx]).

Kleene Algebra with Converse 13

Proof sketch. The proof being quite verbose and dry, we shall only give a sketch
of it here, referring to Appendix A.5 for a detailed one. If |w| = n and |u| = m,
the premise can be equivalently stated:

(q1, [(uw)|m+n−1])
w(n)−−−−→A ′ (q2, [uw])

ww−−−→A ′ (q3, [uwww]).

(Recall that u|i denotes the prefix of length i of a word u.) Let us write Γi =
Γ ((uwww)|m+n+i) = Γ (uw(ww)|i) and xi = (uwww)(n+m+i) for 0 6 i 6 2n.
By Proposition 12 and the definition of A ′, we can show that there are vi ∈ Γi
such that the execution above can be lifted into an execution in A :

q1
x0v0x1v1···xivi···x2nv2n−−−−−−−−−−−−−−−−−→A q3.

Then one can prove by recurrence on i and using Proposition 8 that:

∀i,∃ti ∈ Γ (uw) : (ww)|ivi ? ti(ww)|i. (13)

We deduce that v0x1v1 · · ·xivi · · ·x2nv2n ? t0t1 · · · t2nww ∈ Γ (uw)2n+2 ⊆
Γ (uw). By Proposition 8, this means that v0x1v1 · · ·xivi · · ·x2nv2n is in Γ (uw),

so that (q1, q3) ∈ ∆(w(n)) ◦ γ(uw), and (q1, [uw|n−1])
w(n)−−−−→A ′ (q2, [uw]).

With this intermediate lemma, one can obtain a succinct proof of Lemma 20:

Proof. The statement of the lemma is equivalent to saying that if u v with
u ∈ L′ then v is also in L′. Consider u = u1w · w · wu2 and v = u1wu2 with
|w| = n > 1 (the case where w = ε doesn’t hold any interest since it implies that
u = v). By combining Lemma 21 and Proposition 17 we can build the following
diagram:

(q0, [ε])
u1w|n−1// (q1, [u1w|n−1])

w(n) //

w(n)

Lem. 21 ''

(q2, [u1w])
ww // (q3, [u1www])

u2 // (qf , [u])

(q3, [u1w])
u2

Prop. 17
//

4

Prop. 16

(qf , [v])

4

Lemmas 19 and 20 tell us that L′ is closed and contains L, so by definition
of the closure of a language, we get cl (L) ⊆ L′. Lemma 18 gives us the other
inclusion, thus proving Theorem 14.

3 Analysis and consequences

3.1 Relationship with [BÉS95]’s construction

As suggested by an anonymous referee, one can also formally relate our con-
struction to the one from [BÉS95]: we give below an explicit and rather natural

14 Paul Brunet and Damien Pous

bisimulation relation between the automata produced by both these methods.
This results in an alternative correctness proof of our construction, by reducing
it to the correctness of the one from [BÉS95].

We first make the two constructions comparable: the original construction,
because it considers the transition monoid, takes as input a deterministic au-
tomaton. It returns a deterministic automaton. Instead, our construction does
not require determinism in its input, but produces a non-deterministic automa-
ton. We thus have to ask of both methods to accept as their input a non-
deterministic automaton, and to return a deterministic automaton.

For our construction, the straightforward thing to do would be to determinise
the automaton afterwards. We can actually do better, by noticing that from a
state (p, [u]), reading some x, there may be a lot of accessible states, but all of
their histories (second components) will be equal to [ux]. So in order to get a
deterministic automaton, one only has to perform the power-set construction on
the first component of the automaton. This way, we get an automaton A1 with
states in P (Q)×G and a transition function

δ1((P, [u]), x) = (P · (∆(x) ◦ γ(ux)) , [ux]) .

The original construction can also be adjusted very easily: first build a de-
terministic automaton D with the usual powerset construction, then apply the
construction as described in Theorem 10 to get an automaton which we call A2.
An important thing here is to understand the shape of the resulting transition
monoid MD : its elements are functions over sets of states (because of the power-
set construction) induced by words; more precisely, they are sup-semilattice ho-
momorphisms, and they are in bijection with binary relations on states.

Define the following KA-homomorphism from P (MD) to P
(
Q2
)
:

i(F) = {(p, q) | ∃uD ∈ F : q ∈ uD({p})} .

(That i is a KA-homomorphism comes from the fact that the elements of MD
are themselves sup-semilattice homomorphisms on P (Q).) We can check that
for all x ∈ X, we have

i ({xD}) = {(p, q) | q ∈ xD({p})} = {(p, q) | q ∈ δ({p} , x)}

=
{
(p, q)

∣∣∣ p x−−→A q
}
= ∆(x) ,

It follows that the following relation is a bisimulation between A1 and A2.

{((Q, [u]), (F,G)) | Q = I · i(F) and γ(u) = i(G)}

In Appendix A.6 we give a detailed proof of this.

3.2 Complexity

Because we are speaking about algorithms rather than actual programs, it is a
bit difficult to give accurate complexity bounds, considering the many possible

Kleene Algebra with Converse 15

data structures appearing during the computation. However, one may think that
a relevant complexity measure of the final algorithm (for deciding equality in
KAC) could be the size of the produced automata. In the following the size of
an automaton is its number of states. In order to give a fair comparison, we will
consider the generic algorithms given in the previous subsection, taking as their
input a non-deterministic automaton, and returning a deterministic automaton.

Let us begin by evaluating the size of the automaton produced by the method
in [BÉS95], given a non-deterministic automaton of size n. As explained above,
the states of the constructed transition monoid (MD) are in bijection with the
binary relations on Q. There are thus at most 2n

2

elements in this monoid. We
deduce that the final automaton, whose states are pairs of subsets of MD has at
most 22

n2

× 22
n2

= 22
n2+1

states.
Now with the deterministic version of our construction, the states are in the

set P (Q) × G. Since G is the set of equivalence classes of ∼γ and γ has values
in the reflexive binary relations over Q, we know that ∼γ has less than 2n×(n−1)

elements. Hence we can see that |P (Q)×G| 6 2n × 2n×(n−1) = 2n
2

, which is
significantly smaller than the 22

n2+1

states we get with the other construction.

3.3 A polynomial-space algorithm

The above upper-bound on the number of states of the automata produced by
our construction allows us to show that the problem of equivalence in KAC is
in PSpace (the problem was already known to be PSpace-hard since KAC is
conservative over KA, which is PSpace-complete [MS73]).

Recall that the equivalence of two deterministic automata A and B is in
LogSpace. The algorithm to show that relies on the fact that A and B are
different if and only if there is a word w in the difference of L(A) and L(B)
such that |w| 6 |A | × |B|. With that in mind, we can give a non-deterministic
algorithm, by simulating a computation in both automata with a letter chosen
non-deterministically at each step, with a counter to stop us at size |A | × |B|.
The resulting algorithm will only have to store the counter of size log(|A |× |B|)
and the two current states.

For our problem, the first step is to compute e and f from the regular ex-
pressions with converse e and f . It is obvious that such a transformation can
be done in linear time and space, by a single sweep of both e and f . Then we
have to build automata for e and f . Once again this is a very light operation: if
one considers for instance the position automaton (also called Glushkov’s con-
struction [Glu61]), we obtain automata of respective sizes n = |e| + 1 = |e| + 1
and m = |f |+ 1 = |f |+ 1, where | · | denotes the number of variable leaves of a
regular expression (possibly with converse).

Our construction then produces closed automata of size at most 2n
2

and 2m
2

,
so that the non-deterministic algorithm to check their equivalence needs to scan
all words of size smaller than by 2n

2×2m2

= 2n
2+m2

. The counter used to bound
the recursion depth can thus be stored in polynomial space (n2+m2). It is worth

16 Paul Brunet and Damien Pous

input : Two regular expressions with converse e, f ∈ Reg∨X
output: A Boolean, saying whether or not KAC ` e = f .

1 A1 = 〈Q1,X, I1, T1,∆1〉 ← Glushkov’ automaton recognising JeK;
2 A2 = 〈Q2,X, I2, T2,∆2〉 ← Glushkov’ automaton recognising JfK;
3 N ← (2(|e|+1)2 × 2(|f |+1)2); /* N gets a value > |cl (A1)| · |cl (A2)| */
4 ((P1, R1), (P2, R2))← ((I1, IdQ1), (I2, IdQ1));
5 while N > 0 do
6 N ← N − 1; /* N bounds the recursion depth */
7 f1 ← is_empty(P1 ∩ T1);
8 f2 ← is_empty(P2 ∩ T2);
9 if f1 = f2 then

10 x←random(X); /* Non-deterministic choice */
11 (R1, R2)← ((∆1(x

′) ◦R1 ◦∆1(x))
?, (∆2(x

′) ◦R2 ◦∆2(x))
?);

12 (P1, P2)← (P1 · (∆1(x) ◦R1), P2 · (∆2(x) ◦R2));
13 else
14 return false; /* A difference appeared for some word, e 6= f */
15 end
16 end
17 return true; /* There was no difference, KAC ` e = f */

Algorithm 1: A PSpace algorithm for KAC

mentionning here that with the automata constructed in [BÉS95], the counter
would have size 2n

2+1 + 2m
2+1 which is not a polynomial.

Now the last two important things to worry about are the representation of
the states of the closure automata, in particular their “history” component, and
the way to compute their transition function. Let us focus on the automaton for
e and let Q be the set of states of the Glushkov automaton built out of it.

– For the state representation, one needs to represent an equivalence class
[u] ∈ G by its image under γ: while the smallest word w ∈ [u] may be quite
long, γ(u) is just a binary relation on Q. We shall thus represent the states
in the determinised closure automaton as pairs of a set of states in Q and a
binary relation (set of pairs) over Q. Such a pair can be stored in polynomial
space (recall that |Q| = n = |e|+ 1).

– For computing the transition function, the image of a pair ({q1, · · · , qk} , R)
(with R ⊆ Q2) by a letter x ∈ X is done in two steps: first the rela-
tion becomes R′ = (∆(x′) ◦R ◦∆(x))

?, then the set of states becomes
{q | ∃i, 1 6 i 6 k : (qi, q) ∈ ∆(x) ◦R′ }. Those computations take place in
PSpace. (The composition of two relations in Q2 can be performed in space
O
(
|Q|2

)
, and the same holds for the reflexive and transitive closure of a

relation R by building the powers (R+ IdQ)
2k and keeping a copy of the

previous iteration to stop when the fixed-point is reached.)

Summing up, we obtain Algorithm 1, which is PSpace.

Kleene Algebra with Converse 17

Conclusion

Starting from the works of Bernátsky, Bloom, Ésik and Stefanescu, we gave a
new and more efficient algorithm to decide the theory KAC. This algorithm
relies on a new construction for the closure of an automaton, which allowed us
to show that the problem was in fact in the complexity class PSpace.

To prove the correctness of our construction, we used the family of regular
languages Γ (w) (G(w∨) in [BÉS95]), and we establish its main properties using
a proper finite automata characterisation. Moreover, this function allowed us to
reformulate the proof of the completeness of the reduction from equality in Rel∨

to equivalence of closed automata (implication (6) from the introduction).
As an exercise, we have implemented and tested the various constructions

and algorithms in an OCaml program which is available online1.
To continue this work, we would like to implement our algorithm in the proof

assistant Coq, as a tactic to automatically prove the equalities in KAC—as it has
already been done for the theories KA and KAT. The simplifications we propose
in this paper give us hope that such a task is feasible. The main difficulty cer-
tainly lies in the formalisation of the completeness proof of KAC (implication (7)
from the introduction): the proof given in [ÉB95] uses yet another automaton
construction for the closure, which is much more complicated than the one used
in [BÉS95], and which seems quite difficult to formalise in Coq. We hope to find
an alternative completeness proof, by exploiting the simplicity of the presented
construction.

Acknowledgements. We are grateful to the anonymous referees who suggested
us the alternative proof of correctness which we provide in Section 3.1, and who
helped us to improve this paper.

References

[BÉS95] Bloom, S. L., Ésik, Z., Stefanescu, G.: Notes on equational theories of rela-
tions. Algebra Universalis 33, 98–126 (1995)

[Bof90] Boffa, M.: Une remarque sur les systèmes complets d’identités rationnelles.
Informatique Théorique et Applications 24, 419–428 (1990)

[Bof95] Boffa, M.: Une condition impliquant toutes les identités rationnelles. Infor-
matique Théorique et Applications 29, 515–518 (1995)

[Con71] Conway, J. H.: Regular algebra and finite machines. Chapman and Hall
Mathematics Series (1971)

[ÉB95] Ésik, Z., Bernátsky, L.: Equational properties of Kleene algebras of relations
with conversion. Theoretical Computer Science 137, 237–251 (1995)

[Glu61] Glushkov, V. M.: The abstract theory of automata. Russian Mathematical
Surveys 16, 1 (1961)

[Kle51] Kleene, S. C.: Representation of Events in Nerve Nets and Finite Automata.
Memorandum. Rand Corporation (1951)

1 http://perso.ens-lyon.fr/paul.brunet/cka.html

http://perso.ens-lyon.fr/paul.brunet/cka.html

18 Paul Brunet and Damien Pous

[Koz91] Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra
of Regular Events. In: LICS, pp. 214–225. IEEE Computer Society (1991)

[Kro90] Krob, D.: A Complete System of B-Rational Identities. In: ICALP, Lecture
Notes in Computer Science, vol. 443, pp. 60–73. Springer (1990)

[MS73] Meyer, A., Stockmeyer., L. J.: Word problems requiring exponential time.
In: Proc. ACM symposium on Theory of computing, pp. 1–9. ACM (1973)

[Mil89] Milner, R.: Communication and Concurrency. Prentice Hall (1989)
[Red64] Redko, V. N.: On defining relations for the algebra of regular events. Ukrain-

skii Matematicheskii Zhurnal pp. 120–126 (1964)
[Sal66] Salomaa, A.: Two Complete Axiom Systems for the Algebra of Regular

Events. J. ACM 13, 158–169 (1966)

Kleene Algebra with Converse 19

A Omitted proofs

A.1 Proof of Equation (9)

We will show here that η̂(e) = η̂(f) implies that JeK = JfK, for e and f regular
expressions over X.

It is well known that for any expression e ∈ RegX, for any σ : X −→ P (Σ?),

σ̂(e) =
⋃

w∈JeK

σ̂(w).

Consider the following partial function: i : X?
• −→ X?

ε 7−→ ε
x•w 7−→ x · i(w)
•xw 7−→ x′ · i(w).

We will write î the function [W 7→ {i(w) | w ∈W}]. We will show by induc-
tion on w ∈ X? that î ◦ η̂(w) = {w}:

– î ◦ η̂(ε) = î ({ε}) = {ε};
– if x ∈ X, then

î ◦ η̂(xw) = î(η(x) · η̂(w)) (η̂ is a morphism)

= î({x•} · η̂(w)) (definition of η)

= {x} · (̂i ◦ η̂(w)) (definition of i)
= {xw}; (induction hypothesis)

– and similarly if x′ ∈ X ′, then î ◦ η̂(x′w) = î({•x} · η̂(w)) = {x′} · (̂i ◦ η̂(w)) =
{x′w}.

Thus, we get that:

JeK =
⋃

w∈JeK

{w} =
⋃

w∈JeK

î ◦ η̂(w) = î

 ⋃
w∈JeK

η̂(w)

 = î(η̂(e)).

Thus we get JeK = î(η̂(e)) = î(η̂(f)) = JfK.

A.2 Proof of Proposition 8

Let us prove the first implication of Proposition 8:

∀w ∈ X?,∀u ∈ Γ (w),∃v ∈ suffixes(w) : u ? vv.

We will proceed by induction on w:

1. If w = ε, then u ∈ Γ (ε) = {ε}. So u = ε 0 εε and obviously ε ∈ suffixes(ε).

20 Paul Brunet and Damien Pous

2. Otherwise w = wx, and u ∈ Γ (wx) = (x′Γ (w)x)
?. Thus we know that for

some n ∈ N, u ∈ (x′Γ (w)x)
n. We now will prove by recurrence on n that

u ∈ (x′Γ (w)x)
n ⇒ ∃v ∈ suffixes(wx) : u ? vv:

(a) If n = 0 then u = ε 0 εε and ε ∈ suffixes(wx).
(b) If n = m + 1 then we can introduce u1 ∈ Γ (w) and u2 ∈ (x′Γ (w)x)m

such that u = x′u1xu2.
i. By induction hypothesis, ∃v1 ∈ suffixes(w) such that u1 ? v1v1.
ii. By reccurence hypothesis, ∃v2 ∈ suffixes(wx) such that u2 ? v2v2.
Thus we know that u = x′u1xu2 ? x′v1v1xv2v2. We will now do a case
analysis on the length of v2.
i. If |v2| = 0, then v2 = ε so u ? x′v1v1x = v1xv1x.
ii. If |v2| > 0, as v2 ∈ suffixes(wx), we can write v2 = v3x with v3 ∈

suffixes(w). We will now compare the sizes of v1 and v3, both being
suffixes of w.
A. If |v1| 6 |v3|, then v3 = v4v1. Thus we have:

u ? x′v1v1xv3xv3x = x′v1v1xx
′v1 v4v4v1x

= v1xv1xv1x v4v4v1x

 v1x v4v4v1x = v2v2

B. Otherwise we can write v1 = v5v3 and thus:

u ? x′v5v3v5v3xv3xv3x

 v3v5xv5v3x = v1xv1x

So we have shown that either u ? v1xv1x or u ? v2v2, and as we
know that both v1x and v2 are suffixes of wx, we have finished.

A.3 Proof of φ̂u(e) = φ̂u(e)

We first give an alternative definition of e: let χ and ξ be the following mutually
recursive functions:

χ(0),0 ξ(0),0
χ(1),1 ξ(1),1
χ(x),x ξ(x),x′

χ(e+ f),χ(e) + χ(f) ξ(e+ f),ξ(e) + ξ(f)

χ(e · f),χ(e) · χ(f) ξ(e · f),ξ(f) · ξ(e)
χ(e?),(χ(e))? ξ(e?),(ξ(e))?

χ(e∨),ξ(e) ξ(e∨),χ(e)

χ and ξ are both functions mapping an expression in Reg∨X to an expression in
RegX. It is quite immediate that e = ν(τ(e)) = χ(e).

Hence, what we want is to prove that φ̂u(e) = φ̂u(χ(e)). Because of the
mutually reccursive definition we gave, we will prove inductively on e ∈ Reg∨X
the following:

φ̂u(χ(e)) = φ̂u(e) ∧ φ̂u(ξ(e)) = φ̂u(e)
∨

Kleene Algebra with Converse 21

– χ(0) = 0 and φ̂u(ξ(0)) = φ̂u(0) = 0 = 0∨ = φ̂u(0)
∨
, so this case and the

case 1 don’t hold any difficulty.
– φ̂u(χ(x)) = φ̂u(x), so no problem there, but φ̂u(ξ(x)) = φ̂u(x

′) = φu(x
′). By

the definition of φu we get:

φu(x
′) = {(i− 1, i) | u(i) = x′} ∪ {(i, i− 1) | u(i) = x}
= {(i, i− 1) | u(i) = x′}∨ ∪ {(i− 1, i) | u(i) = x}∨

= ({(i, i− 1) | u(i) = x′} ∪ {(i− 1, i) | u(i) = x})∨

= φu(x)
∨

Every other case is then quite simple:
– e+ f : φ̂u(χ(e+ f)) = φ̂u(χ(e) + χ(f)) = φ̂u(χ(e)) ∪ φ̂u(χ(f))

= φ̂u(e) ∪ φ̂u(f) = φ̂u(e+ f)

φ̂u(ξ(e+ f)) = φ̂u(ξ(e) + ξ(f)) = φ̂u(ξ(e)) ∪ φ̂u(ξ(f))
= φ̂u(e)

∨
∪ φ̂u(f)

∨
=
(
φ̂u(e) ∪ φ̂u(f)

)∨
=
(
φ̂u(e+ f)

)∨
– e · f : φ̂u(χ(e · f)) = φ̂u(χ(e) · χ(f)) = φ̂u(χ(e)) ◦ φ̂u(χ(f))

= φ̂u(e) ◦ φ̂u(f) = φ̂u(e · f)
φ̂u(ξ(e · f)) = φ̂u(ξ(f) · ξ(e)) = φ̂u(ξ(f)) ◦ φ̂u(ξ(e))

= φ̂u(f)
∨
◦ φ̂u(e)

∨
=
(
φ̂u(e) ◦ φ̂u(f)

)∨
=
(
φ̂u(e · f)

)∨
– e?: φ̂u(χ(e?)) = φ̂u(χ(e)

?) =
(
φ̂u(χ(e))

)?
=
(
φ̂u(e)

)?
= φ̂u(e

?)

φ̂u(ξ(e
?)) = φ̂u(ξ(e)

?) =
(
φ̂u(ξ(e))

)?
=
(
φ̂u(e)

∨)?
=
(
φ̂u(e)

?
)∨

= φ̂u(e
?)
∨

– e∨: φ̂u(χ(e∨)) = φ̂u(ξ(e)) = φ̂u(e)
∨
= φ̂u(e

∨)

φ̂u(ξ(e
∨)) = φ̂u(χ(e)) = φ̂u(e) = φ̂u(e)

∨∨
= φ̂u(e

∨)
∨

A.4 Proof of Γ (uwww) ⊆ Γ (uw)

We will prove in this section that for any u,w ∈ X∗, Γ (uwww) ⊆ Γ (uw). First
recall that for any word w, the language Γ (w) is recognised by the automaton
given in Figure 1). With that in mind, we give in Figure 4 an abstract view
of the automata recognising Γ (uwww) and Γ (uw) defined as before. With the
notations of this figure, now define a relation 6 as follows (this relation is also
represented in dashed lines in Figure 4):

ai 6 bi for all i ≤ n+m ,

an+m+i 6 bn+m−i for all i ≤ n ,

a2n+m+i 6 bm+i for all i ≤ n ;

22 Paul Brunet and Damien Pous

��

a3n+m

OO

w

��

...

��

a2n+m

w

OO

w

��

...

...�� ��

an+m

w

OO

w

��

��

bn+m

OO

w

��

...
��

��

am

w

OO

u

��

...

bm

w

OO

u

��

OO

a0

u

OO

b0

u

OO

Fig. 4: Automata G (uwww) and G (uw), with |u| = m and |w| = n

One easily checks that this relation is a simulation, thus establishing in
particular that the language recognised by the left-hand side automaton (for
Γ (uwww)) is contained in that of the right-hand side (for Γ (uw)).

A.5 Proof of result (13)

Recall that n = |w| and m = |u|, and that for any 0 6 i 6 2n, we have:

– Γi = Γ ((uwww)|m+n+i) = Γ (uw(ww)|i)
– vi ∈ Γi.

We will give here a proof that

∀0 6 i 6 2n, ∃ti ∈ Γ (uw) : (ww)|ivi ? ti(ww)|i.

As vi is in Γ (uw(ww)|i), we know that there is some suffix t of uw(ww)|i
such that vi ? tt. We will do a case analysis on the size of t:

– if n + i 6 |t|, then there is a suffix s of u such that t = sw(ww)|i, so
(ww)|ivi ? (ww)|i(ww)|iw ssw(ww)|i.
• If i < n then there is a word p such that w = (ww)|ip so

(ww)|ivi ? (ww)|i(ww)|i(ww)|ipssw(ww)|i
 (ww)|ipssw(ww)|i = swsw(ww)|i.

Kleene Algebra with Converse 23

• Otherwise we can write (ww)|i = ww1 and w = w1w2, so

(ww)|ivi ? ww1ww1w ssw(ww)|i
= w2 w1w1w1ww ssw(ww)|i
 w2 w1ww ssw(ww)|i
= www ssw(ww)|i
 swsw(ww)|i.

As s ∈ suffixes(u) we know that sw ∈ suffixes(uw), hence swsw ∈ Γ (uw).
– If i 6 |t| < n+ i then w = w1w2 and t = w2(ww)|i so

(ww)|ivi ? (ww)|i(ww)|iw2w2(ww)|i

• If i < n then there is a word p such that w = (ww)|ip. As w = w2 w1,
we can also compare (ww)|i with w2:
∗ If (ww)|i = w2w3 then

(ww)|ivi ? w2w3w3w2w2w2(ww)|i
 w2w3w3w2(ww)|i
= (ww)|i(ww)|i(ww)|i

= (ww)|i (ww)|i(ww)|i

And as w = (ww)|ip, w = p(ww)|i so (ww)|i ∈ suffixes(w) ⊆
suffixes(uw), hence (ww)|i (ww)|i ∈ Γ (uw).

∗ If on the other hand w2 = (ww)|iw3, we have

(ww)|ivi ? (ww)|i(ww)|i(ww)|iw3w3(ww)|i(ww)|i
 (ww)|iw3w3(ww)|i(ww)|i
= w2w2(ww)|i

w2 ∈ suffixes(w) ⊆ suffixes(uw) so w2w2 ∈ Γ (uw).
• Otherwise we can write (ww)|i = ww3 and w = w3w4, so

(ww)|ivi ? ww3w3w3w4w2w2(ww)|i
 ww3w4w2w2(ww)|i
= www2w2(ww)|i
= ww1w2w2w2(ww)|i
 ww1w2(ww)|i
= ww(ww)|i

And obviously ww ∈ Γ (uw).
– If |t| < i then (ww)|i = st. In this case we have (ww)|ivi ? sttt st =
εε(ww)|i, and ε ∈ suffixes(uw) so εε ∈ Γ (uw).

In all cases, we have shown that (ww)ivi ? ti(ww)|i with ti ∈ Γ (uw).

24 Paul Brunet and Damien Pous

A.6 Proof of the bisimulation between the two closure constructions

Let us be more precise : starting from a non-deterministic automaton A =
〈Q,X, I, Qf , ∆〉, its determinised is D = 〈P (Q) ,X, I, T, δ〉 with

T = {P : P ∩Qf 6= ∅} and δ(P, x) = P ·∆(x).

We can build two automata recognising its closure. The first one, derived from
our construction, is

A1 = 〈P (Q)×G,X, (I, [ε]), T1, δ1〉

where G is the set of equivalence relations of ∼γ , T1 , {(P, [u]) | P ∩ Qf 6= ∅}
and

δ1((P, [u]), x) = (P · (∆(x) ◦ γ(ux)) , [ux]) .

The second one, given by the original construction, is

A2 = 〈P (MD)× P (MD) ,X, (ε, ε), T1, δ2〉

whereMD is the transition monoid of D, a set of endomorphisms of P (Q) induced
by words, w , {wD} is a singleton containing the interpretation of a word w in
MD , T2 , {(F,G) | ∃qf ∈ Qf ,∃f ∈ F : qf ∈ f(I)}, and the transition function
is

δ2((F,G), x) = (F � x� (x′ �G� x)?, (x′ �G� x)?).

(A � B , {g ◦ f | f ∈ A ∧ g ∈ B}.) The fact that the elements of MD are
semilattice-homomorphisms can be easily checked, as uD(P) is the only state of
D (i.e. a set of states of A) such that P u−−→D uD(P). Then is is straightforward
that :

uD(P1 ∪ P2) = {q ∈ Q | ∃p ∈ P1 ∪ P2 : p
u−−→A q}

= {q ∈ Q | ∃p ∈ P1 : p
u−−→A q} ∪ {q ∈ Q | ∃p ∈ P2 : p

u−−→A q}
= uD(P1) ∪ uD(P2).

Now, to give the bisimulation we need the following morphism i from P (MD)
to P

(
Q2
)
defined by

i(F) , {(p, q) | ∃f ∈ F : q ∈ f({p})}.

Note that i is a KA-homomorphism because the elements of the transition
monoid of the determinised automaton are semilattice-homomorphisms from

Kleene Algebra with Converse 25

P (Q) to P (Q). Let’s check that :

εD = IdP(Q), meaning that i(ε) = IdQ;
i(F1 ∪ F2) = {(p, q) | ∃f ∈ F1 ∪ F2 : q ∈ f({p})}

= {(p, q) | ∃f ∈ F1 : q ∈ f({p})} ∪ {(p, q) | ∃f ∈ F2 : q ∈ f({p})}
= i(F1) ∪ i(F2);

i(F1 � F2) = {(p, q) | ∃f ∈ F1 � F2 : q ∈ f({p})}
= {(p, q) | ∃f, g ∈ F1 × F2 : q ∈ g ◦ f({p})}
= {(p, q) | ∃f ∈ F1 : ∃p′ ∈ f({p}) : ∃g ∈ F2 : q ∈ g({p′})}

(g is a semilattice homomorphism)

= {(p, q) | ∃p′ : (p, p′) ∈ i(F1) ∧ (p′, q) ∈ i(F2)}
= i(F1) ◦ i(F2)

For the ? operation, recall that

∀F ∈ P (MD) ,∃n1(F) ∈ N : ∀m 6 n1(F), F ? = (F ∪ ε)m;

and that

∀R ∈ P (Q)
2
,∃n2(R) ∈ N : ∀m 6 n2(R), R? = (R ∪ IdQ)m.

Then, if we write m = max(n1(F), n2(uD(F))),

i(F ?) = i((F ∪ ε)m)

= (i(F) ∪ i(ε))m

= (i(F))?

We can also check that, for any x ∈ X :

i (x) = {(p, q) | q ∈ xD({p})}
= {(p, q) | q ∈ δ({p}, x)}

= {(p, q) | p x−−→A q}
= ∆(x).

The bisimulation ∼ can thus be expressed :

∼, {((Q, [u]), (F,G)) | Q = I · i(F) and γ(u) = i(G)}

where (Q, [u]) is a state of A1 and (F,G) is a state of A2. We will now show
prove that it is indeed a bisimulation.

1. We need the inital states to be related. This is obvious as εD = IdP(Q),
meaning that i(ε) = IdQ. Furthermore, γ(ε) = IdQ and I = I · IdQ. That
means (I, [ε]) ∼ (ε, ε).

26 Paul Brunet and Damien Pous

2. For the final states, it isn’t much more complicated :

(F,G) ∈ T2 ⇔ ∃qf ∈ Qf : ∃f ∈ F : qf ∈ f(I)
⇔ ∃qf ∈ Qf : qf ∈ I · i(F)
⇔ I · i(F) ∩Qf 6= ∅
⇔ (I · i(F), i(G)) ∈ T1.

3. What remains to be shown is that this relation is stable under transitions
from both sides. Suppose that (Q, [u]) ∼ (F,G), and consider x ∈ X. After
reading x we get in A2 (F � x � G′, G′), with G′ = (x′ � G � x)?, and in
A1 (Q · (∆(x) ◦ γ(ux)), [ux]). We will prove that they are still related in two
steps, first by looking at the second component, and then dealing with the
first one.
(a) We know that γ(u) = i(G), and that i(x) = ∆(x).

γ(ux) = (∆(x′) ◦ γ(u) ◦∆(x))?

= (i(x′) ◦ i(G) ◦ i(x))?

= i(G′) (i is a morphism)

(b) Now the first component comes quite easily :

Q · (∆(x) ◦ γ(ux)) = (I · i(F)) · (i(x) ◦ i(G′))
= I · (i(F) ◦ i(x) ◦ i(G′))
= I · i(F � x�G′).

Symbolic Algorithms for Language Equivalence and

Kleene Algebra with Tests

Damien Pous

To cite this version:

Damien Pous. Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests.
POPL 2015: 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Jan 2015, Mumbai, India. <hal-01021497v2>

HAL Id: hal-01021497

https://hal.archives-ouvertes.fr/hal-01021497v2

Submitted on 1 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01021497v2

Symbolic Algorithms for Language Equivalence
and Kleene Algebra with Tests

Damien Pous ∗

Plume team – CNRS, ENS de Lyon, Université de Lyon, INRIA, UMR 5668, France
Damien.Pous@ens-lyon.fr

Abstract
We propose algorithms for checking language equivalence of finite
automata over a large alphabet. We use symbolic automata, where
the transition function is compactly represented using (multi-
terminal) binary decision diagrams (BDD). The key idea consists
in computing a bisimulation by exploring reachable pairs symboli-
cally, so as to avoid redundancies. This idea can be combined with
already existing optimisations, and we show in particular a nice in-
tegration with the disjoint sets forest data-structure from Hopcroft
and Karp’s standard algorithm.

Then we consider Kleene algebra with tests (KAT), an alge-
braic theory that can be used for verification in various domains
ranging from compiler optimisation to network programming anal-
ysis. This theory is decidable by reduction to language equivalence
of automata on guarded strings, a particular kind of automata that
have exponentially large alphabets. We propose several methods
allowing to construct symbolic automata out of KAT expressions,
based either on Brzozowski’s derivatives or on standard automata
constructions.

All in all, this results in efficient algorithms for deciding equiv-
alence of KAT expressions.

Categories and Subject Descriptors F.4.3 [Mathematical Logic]:
Decision Problems; F.1.1 [Models of computation]: Automata;
D.2.4 [Program Verification]: Model Checking

Keywords Binary decision diagrams (BDD), symbolic automata,
Disjoint set forests, union-find, language equivalence, Kleene al-
gebra with tests (KAT), guarded string automata, Brzozowski’s
derivatives, Antimirov’ partial derivatives.

∗We acknowledge support from the following ANR projects:
2010-BLAN-0305 PiCoq and 12IS02001 PACE.

To appear in Proc. POPL 15, January 1517 2015, Mumbai, India.
http://dx.doi.org/10.1145/2676726.2677007

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
A wide range of algorithms in computer science build on the abil-
ity to check language equivalence or inclusion of finite automata. In
model-checking for instance, one can build an automaton for a for-
mula and an automaton for a model, and then check that the latter is
included in the former. More advanced constructions need to build
a sequence of automata by applying a transducer, and to stop when-
ever two subsequent automata recognise the same language [7].
Another field of application is that of various extensions of Kleene
algebra, whose equational theories are reducible to language equiv-
alence of various kinds of automata: regular expressions and fi-
nite automata for plain Kleene algebra [26], “closed” automata for
Kleene algebra with converse [5, 15], or guarded string automata
for Kleene algebra with tests (KAT) [28].

The theory of KAT has been developed by Kozen et al. [12,
27, 28], it has received much attention for its applications in var-
ious verification tasks ranging from compiler optimisation [29] to
program schematology [3], and very recently for network program-
ming analysis [2, 17]. Like for Kleene algebra, the equational the-
ory of KAT is PSPACE-complete, making it a challenging task to
provide algorithms that are computationally practical on as many
inputs as possible.

A difficulty with KAT is that the underlying automata work on
an input alphabet which is exponentially large in the number of
variables of the starting expressions. As such, it renders standard
algorithms for language equivalence intractable, even for reason-
ably small inputs. This difficulty is shared with other fields where
various people proposed to work with symbolic automata to cope
with large, potentially infinite, alphabets [10, 41]. By symbolic au-
tomata, we mean finite automata whose transition function is rep-
resented using a compact data-structure, typically binary decision
diagrams (BDDs) [9, 10], allowing one to explore the automata in
a symbolic way.

D’Antoni and Veanes recently proposed a minimisation algo-
rithm for symbolic automata [13], which is much more efficient
than the adaptations of the traditional algorithms [22, 31, 32]. How-
ever, to our knowledge, the simpler problem of language equiv-
alence for symbolic automata has not been covered yet. We say
‘simpler’ because language equivalence can be reduced trivially to
minimisation—it suffices to minimise the disjoint union of the au-
tomata and to check whether the corresponding initial states are
equated—but minimisation has complexity nlnn while Hopcroft
and Karp’s algorithm for language equivalence [23] is almost lin-
ear [40]. (This latter algorithm for checking language equivalence
of finite automata can be seen as an instance of Huet’s first-order
unification algorithm without occur-check [24, Section 5.8]: one
tries to unify the two automata recursively, keeping track of the
generated equivalence classes of states using an efficient union-find
data-structure.)

1 2014/11/1

http://dx.doi.org/10.1145/2676726.2677007

Our main contributions are the following:

• We propose a simple coinductive algorithm for checking lan-
guage equivalence of symbolic automata (Section 3). This al-
gorithm is generic enough to support various improvements that
have been proposed in the literature for plain automata [1, 6, 14,
42].

• We show how to combine binary decisions diagrams (BDD) and
disjoint set forests, the efficient data-structure used by Hopcroft
and Karp to define their almost linear algorithm [23, 40] for
deterministic automata. This results in a new version of their
algorithm, for symbolic automata (Section 3.3).

• We study several constructions for building efficiently a sym-
bolic automaton out of a KAT expression (Section 4): we
consider symbolic versions of the extensions of Brzozowski’s
derivatives [11] and Antimirov’ partial derivatives [4] to KAT,
as well as a generalisation of Ilie and Yu’s inductive construc-
tion [25]. The latter construction also requires us to generalise
the standard procedure consisting of eliminating epsilon transi-
tions.

Notation
We denote sets by capital letters X,Y, S, T . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is their
Cartesian product, X] Y is their disjoint union and XY is the
set of functions f : Y → X . The collection of subsets of X is
denoted by P(X). For a set of letters A, A? denotes the set of all
finite words overA; ε the empty word; and uv the concatenation of
words u, v ∈ A?. We use 2 for the set {0, 1}.

2. Preliminary material
We first recall some standard definitions about finite automata and
binary decision diagrams.

For finite automata, the only slight difference with the setting
described in [6] is that we work with Moore machines [31] rather
than automata: the accepting status of a state is not necessarily a
Boolean, but a value in a fixed yet arbitrary set. Since this general-
isation is harmless, we stick to the standard automata terminology.

2.1 Finite automata
A deterministic finite automaton (DFA) over the input alphabet A
and with outputs in B is a triple 〈S, t, o〉, where S is a finite set of
states, o : S → B is the output function, and t : S → SA is the
(total) transition function which returns, for each state x and for
each input letter a ∈ A, the next state ta(x). For a ∈ A, we write
x

a→ x′ for ta(x) = x′. For w ∈ A?, we denote by x w→ x′ the
least relation such that (1) x ε→ x and (2) x au→ x′ if x a→ x′′ and
x′′

u→ x′ for some x′′.
The language accepted by a state x ∈ S of a DFA is the function

JxK : A? → B defined as follows:

JxK(ε) = o(x) , JxK(aw) = Jta(x)K(w) .

(When the output set is 2, these functions are indeed characteristic
functions of formal languages). Two states x, y ∈ S are said to be
language equivalent (written x ∼ y) when they accept the same
language.

2.2 Coinduction
Checking whether two states of two distinct automata recognise the
same language reduces to checking whether two states of a single
automaton recognise the same language: one can always build the
disjoint union of the two automata. We thus fix a single DFA, and
we define bisimulations. We make explicit the underlying notion of
progression which we need in the sequel.

1 type (s,β) dfa = {t: s→ A→ s; o: s→ β}
2
3 let equiv (M: (s,β) dfa) (x y: s) =
4 let r = Set.empty () in
5 let todo = Queue.singleton (x,y) in
6 while ¬Queue.is_empty todo do
7 (* invariant: r � r ∪ todo *)
8 let (x,y) = Queue.pop todo in
9 if Set.mem r (x,y) then continue

10 if M.o x 6= M.o y then return false
11 iterA (fun a→ Queue.push todo (M.t x a, M.t y a))
12 Set.add r (x,y)
13 done
14 return true

Figure 1. Simple algorithm for checking language equivalence.

Definition 1 (Progression, Bisimulation). Given two relations
R,R′ ⊆ S × S on the states of an automaton, R progresses to
R′, denoted R� R′, if whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) R′ ta(y).

A bisimulation is a relation R such that R� R.

Bisimulations provide a sound and complete proof technique for
checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states of an automaton are
language equivalent iff there exists a bisimulation that relates them.

Accordingly, we obtain the simple algorithm described in Fig-
ure 1, for checking language equivalence of two states of the given
automaton.

This algorithm works as follows: the variable r contains a rela-
tion which is a bisimulation candidate and the variable todo con-
tains a queue of pairs that remain to be processed. To process a pair
(x, y), one first checks whether it already belongs to the bisimula-
tion candidate: in that case, the pair can be skipped since it was al-
ready processed. Otherwise, one checks that the outputs of the two
states are the same (o(x) = o(y)), and one pushes all derivatives
of the pair to the todo queue: all pairs (ta(x), ta(y)) for a ∈ A.
(This requires the type A of letters to be iterable, and thus finite,
an assumption which is no longer required with the symbolic algo-
rithm to be presented in Section 3.) The pair (x, y) is finally added
to the bisimulation candidate, and we proceed with the remainder
of the queue.

The main invariant of the loop (line 7: r� r ∪ todo) ensures
that when todo becomes empty, then r contains a bisimulation, and
the starting states were indeed bisimilar. Another invariant of the
loop is that for any pair (x′, y′) in todo, there exists a word w such
that x w→ x′ and y w→ y′. Therefore, if we reach a pair of states
whose outputs are distinct—line 10, then the word w associated
to that pair witnesses the fact that the two initial states are not
equivalent.

Remark 1. Note that such an algorithm can be modified to check
for language inclusion in a straightforward manner: assuming an
arbitrary preorder ≤ on the output set B, and letting language
inclusion mean x ≤ y if for all w ∈ A?, JxK(w) ≤ JyK(w), it
suffices to replace line 10 in Figure 1 by

if ¬(M.o x ≤ M.o y) then return false.

2.3 Up-to techniques
The previous algorithm can be enhanced by exploiting up-to tech-
niques [36, 39]: an up-to technique is a function f on binary rela-

2 2014/11/1

tions such that any relation R satisfying R � f(R) is contained
in a bisimulation. Intuitively, such relations, that are not necessar-
ily bisimulations, are constrained enough to contain only language
equivalent pairs.

We have recently shown with Bonchi [6] that the standard al-
gorithm by Hopcroft and Karp [23] actually exploits such an up-to
technique: on line 9, rather than checking whether the processed
pair is already in the candidate relation r, Hopcroft and Karp check
whether it belongs to the equivalence closure of r. Indeed the func-
tion e mapping a relation to its equivalence closure is a valid up-to
technique, and this optimisation allows the algorithm to stop earlier.
Hopcroft and Karp moreover use an efficient data-structure to per-
form this check in almost constant time [40]: disjoint sets forests.
We recall this data-structure in Section 3.3.

Other examples of valid up-to techniques include context-
closure, as used in antichain based algorithms [1, 14, 42], or con-
gruence closure [6], which combines both context-closure and
equivalence closure. These techniques require working with au-
tomata whose states carry a semi-lattice structure, as is typically
the case for a DFA obtained from a non-deterministic automaton
through the powerset construction.

2.4 Binary decision diagrams
Assume an ordered set (A,<) and an arbitrary set B. Binary
decision diagrams are directed acyclic graphs that can be used to
represent functions of type 2A → B. When B = 2 is the two
elements set, BDDs thus intuitively represent Boolean formulas
with variables in A.

Formally, a (multi-terminal, ordered) binary decision diagram
(BDD) is a pair (N, c) where N is a finite set of nodes and c is
a function of type N → B] (A×N×N) such that if c(n) =
(a, l, r) and either c(l) = (a′, ,) or c(r) = (a′, ,), then a < a′.

The condition on c ensures that the underlying graph is acyclic,
which makes it possible to associate a function dne : 2A → B to
each node n of a BDD:

dne(α) =

b if c(n) = b ∈ B
dle(α) if c(n) = (a, l, r) and α(a) = 0

dre(α) if c(n) = (a, l, r) and α(a) = 1

Let us now recall the standard graphical representation of
BDDs:

• A node n such that c(n) = b ∈ B is represented by a square
box labelled by b.

• A node n such that c(n) = (a, l, r) ∈ A×N ×N is a decision
node, which we picture by a circle labelled by a, with a dotted
arrow towards the left child (l) and a plain arrow towards the
right child (r).

For instance, the following drawing represents a BDD with four
nodes; its top-most node denotes the function given on the right-
hand side.

b2 b1

a2

a1

α 7→

{
b1 if α(a1) = 1 and α(a2) = 0

b2 otherwise

A BDD is reduced if c is injective, and c(n) = (a, l, r) entails
l 6= r. (The above example BDD is reduced.) Any BDD can be
transformed into a reduced one. WhenA is finite, reduced (ordered)

1 type β node = β descr hash_consed
2 and β descr = V of β | N of A × β node × β node
3
4 val hashcons: β descr→ β node
5 val c: β node→ β descr
6 val memo_rec: ((α’→β’→γ)→α’→β’→γ)→α’→β’→γ
7 (* with α’ = α hash_consed, β’ = β hash_consed *)
8
9 let constant v = hashcons (V v)

10 let node a l r = if l==r then l else hashcons (N(a,l,r))
11
12 let apply (f: α→ β→ γ): α node→ β node→ γ node =
13 memo_rec (fun app x y→
14 match c(x), c(y) with
15 | V v, V w→ constant (f v w)
16 | N(a,l,r), V _→ node a (app l y) (app r y)
17 | V _, N(a,l,r)→ node a (app x l) (app x r)
18 | N(a,l,r), N(a’,l’,r’)→
19 if a=a’ then node a (app l l’) (app r r’)
20 if a<a’ then node a (app l y) (app r y)
21 if a>a’ then node a’ (app x l’) (app x r’))

Figure 2. An implementation of BDDs.

BDD nodes are in one-to-one correspondence with functions from
2A to B [9, 10]. The main interest in this data-structure is that it is
often extremely compact.

In the sequel, we only work with reduced ordered BDDs, which
we simply call BDDs. We denote by BDDA[B] the set of nodes
of a BDD with values in B, which is large enough to represent
all considered functions. We let bfc denote the unique BDD node
representing a given function f : 2A → B. This notation is useful
to give abstract specifications to BDD operations: in the sequel, all
usages of this notation actually underpin efficient BDD operations.

Implementation. To better explain parts of the proposed algo-
rithms, we give a simple implementation of BDDs in Figure 2.

The type for BDD nodes is given first: we use Filliâtre’s hash-
consing library [16] to enforce unique representation of each node,
whence the two type declarations and the two conversion functions
hashcons and c between those types. The third utility function
memo_rec is just a convenient operator for defining recursive mem-
oised functions on pairs of hash-consed values.

The function constant creates a constant node, making sure
it was not already created. The function node creates a new de-
cision node, unless that node is useless and can be replaced by
one of its two children. The generic function apply is central to
BDDs [9, 10]: many operations are just instances of this function.
Its specification is the following:

apply f x y = bα 7→ f(dxe(α))(dye(α))c

This function is obtained by “zipping” the two BDDs together until
a constant is reached. Memoisation is used to exploit sharing and
to avoid performing the same computations again and again.

Suppose now that we want to define logical disjunction on
Boolean BDD nodes. Its specification is the following:

x ∨ y = bα 7→ dxe(α) ∨ dye(α)c.

We can thus simply use the apply function, applied to the Boolean
disjunction function:

1 let dsj: bool node→ bool node→ bool node = apply (||)

3 2014/11/1

6

s1

3

s2

a

n

6

s3

6

s4

3

s5

b

m

b

n1

b

n2

c

n3

s1, s2, s3 s4, s5

a 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
b 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
c 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
t s1 s3 s2 s2 s3 s3 s2 s2 s4 s4 s5 s5 s4 s4 s5 s5

Figure 3. A symbolic DFA with five states.

Note that this definition could actually be slightly optimised by
inlining apply’s code, and noticing that the result is already known
whenever one of the two arguments is a constant:

1 let dsj: bool node→ bool node→ bool node =
2 memo_rec (fun dsj x y→
3 match c(x), c(y) with
4 | V true, _ | _, V false→ x
5 | _, V true | V false, _→ y
6 | N(a,l,r), N(a’,l’,r’)→
7 if a=a’ then node a (dsj l l’) (dsj r r’)
8 if a<a’ then node a (dsj l y) (dsj r y)
9 if a>a’ then node a’ (dsj x l’) (dsj x r’))

We ignore such optimisations in the sequel, for the sake of clarity.

3. Symbolic automata
A standard technique [10, 13, 20, 41] for working with automata
over a large input alphabet consists in using BDDs to represent the
transition function: a symbolic DFA with output set B and input
alphabet A′ = 2A for some set A is a triple 〈S, t, o〉 where S is the
set of states, t : S → BDDA[S] maps states into nodes of a BDD
over A with values in S, and o : S → B is the output function.

Such a symbolic DFA is depicted in Figure 3. It has five states,
input alphabet 2{a,b,c}, and natural numbers as output set. We
represent the BDD graphically; rather than giving the functions t
and o separately, we label the square box corresponding to a state
x with its output value o(x) and we link this box to the node
t(x) defining the transitions of x using a solid arrow. The explicit
transition table is given below the drawing.

The simple algorithm described in Figure 1 is not optimal when
working with such symbolic DFAs: at each non-trivial iteration of
the main loop, one goes through all letters of A′ = 2A to push
all the derivatives of the current pair of states to the queue todo
(line 11), resulting in a lot of redundancies.

Suppose for instance that we run the algorithm on the DFA of
Figure 3, starting from states s1 and s4. After the first iteration, r
contains the pair (s1, s4), and the queue todo contains eight pairs:

(s1, s4), (s3, s4), (s2, s5), (s2, s5), (s3, s4), (s3, s4), (s2, s5), (s2, s5)

1 let iter2 (f: α × β→ unit): α node→ β node→ unit =
2 memo_rec (fun iter2 x y→
3 match c(x), c(y) with
4 | V v, V w→ f (v,w)
5 | V _, N(_,l,r)→ iter2 x l; iter2 x r
6 | N(_,l,r), V _→ iter2 l y; iter2 r y
7 | N(a,l,r), N(a’,l’,r’)→
8 if a=a’ then iter2 l l’; iter2 r r’
9 if a<a’ then iter2 l y ; iter2 r y

10 if a>a’ then iter2 x l’; iter2 x r’)

Figure 4. Iterating over the set of pairs reachable from two nodes.

1 type (s,β) sdfa = {t: s→ s bdd; o: s→ β}
2
3 let symb_equiv (M: (s,β) sdfa) (x y: s) =
4 let r = Set.empty() in
5 let todo = Queue.singleton (x,y) in
6 let push_pairs = iter2 (Queue.push todo) in
7 while ¬Queue.is_empty todo do
8 let (x,y) = Queue.pop todo in
9 if Set.mem (x,y) r then continue

10 if M.o x 6= M.o y then return false
11 push_pairs (M.t x) (M.t y)
12 Set.add r (x,y)
13 done;
14 return true

Figure 5. Symbolic algorithm for checking language equivalence.

Assume that elements of this queue are popped from left to right.
The first element is removed during the following iteration, since
(s1, s4) already is in r. Then (s3, s4) is processed: it is added
to r, and the above eight pairs are appended again to the queue,
which now has fourteen elements. The following pair is processed
similarly, resulting in a queue with twenty one (14 − 1 + 8) pairs.
Since all pairs of this queue are already in r, it is finally emptied
through twenty one iterations, and the algorithm returns true.

Note that it would be even worse if the input alphabet was
actually declared to be 2{a,b,c,d}: even though the bit d of all letters
is irrelevant for the considered DFA, each non-trivial iteration of the
algorithm would push even more copies of each pair to the todo
queue.

What we propose here is to exploit the symbolic representation,
so that a given pair is pushed only once. Intuitively, we want to
recognise that starting from the pair of nodes (n,m), the letters
010, 011, 110 and 111 are equivalent1, since they lead to the
same pair, (s2, s5). Similarly, the letters 001, 100, and 101 are
equivalent: they lead to the pair (s3, s4).

This idea is easy to implement using BDDs: like for the apply
function (Figure 2), it suffices to zip the two BDDs together, and to
push pairs when we reach two leaves. We use for that the procedure
iter2 from Figure 3, which successively applies a given function
to all pairs reachable from two nodes. Its code is almost identical to
apply, except that nothing is constructed (and memoisation is just
used to remember those pairs that have already been visited).

We finally modify the simple algorithm from Section 2.1 by us-
ing this procedure on line 11; we obtain the code given in Figure 5.
We apply iter2 to its first argument once and for all (line 6), so
that we maximise memoisation: a pair of nodes that has been vis-

1 Letters being elements of 2{a,b,c} here, we represent them with bit-
vectors of length three

4 2014/11/1

ited in the past will never be visited again, since all pairs of states
reachable from that pair of nodes are already guaranteed to be pro-
cessed. (As an invariant, we have that all pairs reachable from a
pair of nodes memoised in push_pairs appear in r ∪ todo.)

Let us illustrate this algorithm by running it on the DFA from
Figure 3, starting from states s1 and s4 as previously. During the
first iteration, the pair (s1, s4) is added to r, and push_pairs
is called on the pair of nodes (n,m). This call virtually results

in building the following BDD, where leaves consist of calls to
Queue.push todo.

s1, s4 s2, s4 s3, s5

n, m

n1, m n2, m

n3, s4

The following three pairs are thus pushed to todo.

(s1, s4), (s3, s4), (s2, s5)

The first pair is removed by a trivial iteration: (s1, s4) already
belongs to r. The two other pairs are processed by adding them to r,
but without pushing any new pair to todo: thanks to memoisation,
the two expected calls to push_pairs n m are skipped.

All in all, each reachable pair is pushed only once to the todo
queue. More importantly, the derivatives of a given pair are ex-
plored symbolically. In particular, the algorithm would execute ex-
actly in the same way, even if the alphabet was actually declared
to be much larger (for instance because the considered states were
part of a bigger automaton with more letters). In fact, the main loop
is executed at most n2 times, where n is the total number of BDD
nodes (both leaves and decision nodes) reachable from the starting
states.

Finally note that in the code from Figure 5, the candidate rela-
tion r is redundant, as the pairs it contains are also stored implicitly
in the memoisation table of iter2 (except for the initial pair). The
corresponding lines (4, 9, and 12) can thus be removed.

3.1 Displaying symbolic counter-examples.
Bisimulation-based algorithms for language equivalence can be
instrumented to produce counter-examples in case of failure, i.e.,
a word which is accepted by one state and not by the other.

An advantage of the previous algorithm is that those counter-
examples can be displayed symbolically; thus enhancing readabil-
ity. This is particularly important in the context of formal assisted
proofs (e.g., when working with KAT in Coq [34]), where a plain
guarded string is often too big to be useful to the user, while a
‘symbolic’ guarded string—where only the bits that are relevant for
the counter-example are displayed—can be really helpful to under-
stand which hypotheses have to be used to solve the current goal.

Consider for instance the following automaton.

0

s

a

0

t

a

0

t"

1

s'

1

s"

1

t'

c

2

b

Intuitively, the topmost states s and t are not equivalent because t
can take two transitions to reach t′′, with output 0, while with two
transitions, s can only reach s′′, with output 1.

More formally, the word 100 001 over 2{a,b,c} is a counter-
example: we have

JsK(100 001) = Js′K(001) = o(s′′) = 1 ,

JtK(100 001) = Jt′K(001) = o(t′′) = 0 .

But there are plenty of other counter-examples of length two: it
suffices that: a be assigned true and b be assigned false in the first
letter, and that c be assigned true in the second letter. The values
of the bit c in the first letter, and of the bits a and b in the second
letter do not change the above computation. As a consequence, this
counter-example is best described as the pseudo-word 10- - -1, or
alternatively the word (a ∧ ¬b) c whose letters are conjunctions of
literals indicating the least requirements to get a counter example.

The algorithm from Figure 5 makes it possible to give this
information back to the user:

• modify the queue todo to store triples (w, x, y) where (x, y)
is a pair of states to process, and w is the associated potential
counter-example;

• modify the function iter2 (Figure 3), so that it uses an ad-
ditional argument to record the encountered node labels, with
negative polarity when going through the recursive call for the
left child, and positive polarity for the right child;

• modify line 10 of the main algorithm to return the symbolic
word associated with the current pair when the output test fails.

3.2 Non-deterministic automata
Standard coinductive algorithms for DFA can be applied to non-
deterministic automata (NFA) by using the powerset construction.
This construction transforms a non-deterministic automaton into a
deterministic one; we extend it to symbolic automata in the obvious
way.

A symbolic NFA is a tuple 〈S, t, o〉 where S is the set of states,
o : S → B is the output function, and t : S → BDDA[P(S)]
maps a state and a letter of the alphabet A′ = 2A to a set of
possible successor states, using a symbolic representation. The set
B of output values must be equipped with a semi-lattice structure
〈B,∧,⊥〉. Assuming such an NFA, one defines a symbolic DFA

5 2014/11/1

〈P(S), t], o]〉 as follows:

t]({x1, . . . , xn}) , t(x1) ∪ . . . ∪ t(xn) ,

o]({x1, . . . , xn}) , o(x1) ∨ · · · ∨ o(xn) .

(Where ∪ denotes the pointwise union of two BDDs over sets:
n ∪ m = bφ 7→ dne(φ) ∪ dme(φ)c.)

This DFA has exponentially many states. However, when apply-
ing bisimulation-based algorithms to such automata, one explores
them on the fly, and only those subsets that are reachable from the
initial states need to be visited. This number of reachable subsets
is usually much smaller than the exponential worst-case bound; in
fact it is quite often of the same order as the number of states of the
starting DFA (see, e.g., the experiments in Section 5).

3.3 Hopcroft and Karp: disjoint sets forests
The previous algorithm can be freely enhanced by using up-to
techniques, as described in Section 2.3: it suffices to modify line 9
to skip pairs more or less aggressively, according to the chosen up-
to technique. For an up-to technique f , line 9 thus becomes

if Set.mem (x,y) (f r) then continue .

The up-to-equivalence technique used in Hopcroft and Karp’s
algorithm can however be integrated in a deeper way, by exploiting
the fact that we work with BDDs. This leads to a second algorithm,
which we describe in this section.

Let us first recall disjoint sets forests, the data structure used by
Hopcroft and Karp to represent equivalence classes. This standard
data-structure makes it possible to check whether two elements
belong to the same class and to merge two equivalence classes,
both in almost constant amortised time [40].

The idea consists in storing a partial map from elements to ele-
ments and whose underlying graph is acyclic. An element for which
the map is not defined is the representative of its equivalence class,
and the representative of an element pointing in the map to some y
is the representative of y. Two elements are equivalent if and only
if they lead to the same representative; to merge two equivalence
classes, it suffices to add a link from the representative of one class
to the representative of the other class. Two optimisations are re-
quired to obtain the announced theoretical complexity:

• when following the path leading from an element to its repre-
sentative, one should compress it in some way, by modifying
the map so that the elements in this path become closer to their
representative. There are various ways of compressing paths, in
the sequel, we use the method called halving [40];

• when merging two classes, one should make the smallest one
point to the biggest one, to avoid generating too many long
paths. Again, there are several possible heuristics, but we elude
this point in the sequel.

As explained above, the simplest thing to do would be to replace
the bisimulation candidate r from Figure 5 by a disjoint sets forest
over the states of the considered automaton.

The new idea consists in relating the BDD nodes of the sym-
bolic automaton rather than just its states (i.e., just the BDD leaves).
By doing so, one avoids visiting pairs of nodes that have already
been visited up to equivalence.

Concerning the implementation, we first introduce a BDD uni-
fication algorithm (Figure 3.3), i.e., a variant of the function iter2
which uses disjoint sets forest rather than plain memoisation. This
function first creates an empty forest (we use Filliâtre’s module
Hmap of maps over hash-consed values to represent the correspond-
ing partial maps). The function link adds a link between two rep-
resentatives; the recursive terminal function repr looks for the rep-
resentative of a node and implements halving. The inner function

1 let unify (f: β × β→ unit): β node→ β node→ unit =
2 (* the disjoint sets forest *)
3 let m = Hmap.empty() in
4 let link x y = Hmap.add m x y in
5 (* representative of a node *)
6 let rec repr x =
7 match Hmap.get m x with
8 | None→ x
9 | Some y→ match Hmap.get m y with

10 | None→ y
11 | Some z→ link x z; repr z
12 in
13 let rec unify x y =
14 let x = repr x in
15 let y = repr y in
16 if x 6= y then
17 match c(x), c(y) with
18 | V v, V w→ link x y; f (v,w)
19 | V _, N(_,l,r)→ link y x; unify x l; unify x r
20 | N(_,l,r), V _→ link x y; unify l y; unify r y
21 | N(a,l,r), N(a’,l’,r’)→
22 if a=a’ then link x y; unify l l’; unify r r’
23 if a<a’ then link x y; unify l y ; unify r y
24 if a>a’ then link y x; unify x l’; unify x r’)
25 in unify

Figure 6. Unifying two nodes of a BDD, using disjoint set forests.

1 let dsf_equiv (M: (s,β) sdfa) (x y: s) =
2 let todo = Queue.singleton (x,y) in
3 let push_pairs = unify (Queue.push todo) in
4 while ¬Queue.is_empty todo do
5 let (x,y) = Queue.pop todo in
6 if M.o x 6= M.o y then return false
7 push_pairs (M.t x) (M.t y)
8 done;
9 return true

Figure 7. Symbolic algorithm optimised with disjoint set forests.

unify is defined similarly as iter2, except that it first takes the
representative of the two given nodes, and that it adds a link from
one to the other before recursing.

Those links can be put in any direction on lines 18 and 22, and
we should actually use an appropriate heuristic to take this decision,
as explained above. In the four other cases, we put a link either from
the node to the leaf, or from the node with the smallest label to the
node with the biggest label. By proceeding this way, we somehow
optimise the BDD, by leaving as few decision nodes as possible.

It is important to notice that there is actually no choice left
in those four cases: we work implicitly with the optimised BDD
obtained by mapping all nodes to their representatives, so that we
have to maintain the invariant that this optimised BDD is ordered
and acyclic. (Notice that this optimised BDD need not be reduced
anymore: the children of given a node might be silently equated,
and a node might have several representations since its children
might be silently equated with the children of another node with
the same label)

We finally obtain the algorithm given in Figure 7. It is similar
to the previous one (Figure 5), except that we use the new function
unify to push pairs into the todo queue, and that we no longer
store the bisimulation candidate r: this relation is subsumed by the
restriction of the disjoint set forests to BDD leaves.

6 2014/11/1

If we execute this algorithm on the symbolic DFA from Fig-
ure 3, between states s1 and s4, we obtain the disjoint set forest
depicted below using dashed red arrows. This actually corresponds
to the pairs which would be visited by the first symbolic algorithm
(Figure 5).

6 63

a

6 3

bb b

c

If instead we start from the top-most nodes in the following
partly described automaton, we would get the disjoint set forest
depicted similarly in red, while the first algorithm would go through
all violet lines, one of which is superfluous.

a

b

c

a

d

b

c

d

The corresponding optimised BDD consists of the three nodes
labelled with a, b, and d on the right-hand side. This BDD is
not reduced, as explained above: the node labelled with b should
be removed since it points twice to the node labelled with d, and
removing this node makes the node labelled with a useless, in turn.

Complexity. Concerning complexity, while the algorithm from
Figure 5 is quadratic in the number n of BDD nodes (and leaves)
that are reachable from the starting symbolic DFA, the optimised
algorithm from Figure 7 performs at most n iterations: two equiv-
alence classes of nodes are merged each time a link is added, and
we start with the discrete partition of nodes.

Unfortunately, we cannot immediately deduce that the algo-
rithm is almost linear, as did Tarjan for Hopcroft and Karp’s al-
gorithm [40]. The problem is that we cannot always freely choose
how to link two representatives (i.e., on lines 19, 20, 23, and 24 in
Figure 3.3), so that we cannot guarantee that the amortised com-
plexity of maintaining those equivalence classes is almost constant.
We conjecture that such a result holds, however, as the choice we

enforce in those cases virtually suppresses binary decision nodes,
thus reducing the complexity of subsequent BDD unifications.

Unification with row types. As mentioned in the Introduction,
Hopcroft and Karp’s algorithm can be seen as an instance of
Huet’s first-order unification algorithm for recursive terms (i.e.,
without occur-check). The algorithm presented in Figure 7, and
more specifically the BDD unification sub-algorithm (Figure 3.3)
is reminiscent of Rémy’s extension of this unification algorithm
for dealing with row types—to obtain an ML-like type inference
algorithm in presence of extensible records [33, 37, 38].

More precisely, row types are almost-constant functions from a
given set of labels to types, typically represented as association lists
with a default value. Unification of such row types is performed
pointwise, and is implemented by zipping the two association lists
together, as we do here with BDDs (which generalise from almost
constant functions to functions with finitely many output values).

It would thus be interesting to understand whether our gener-
alisation of this unification sub-algorithm, from association lists to
BDDs, could be useful in the context of unification: either by ex-
ploiting the richer structure of functions represented by BDDs, or
just for the sake of efficiency, when the set of labels is large (e.g.,
for type inference on object-oriented programs, where labels corre-
spond to method names).

4. Kleene algebra with tests
Now we consider Kleene algebra with tests (KAT), for which we
provide several automata constructions that allow us to use the
previous symbolic algorithms.

A Kleene algebra with tests is a tuple 〈X,B, ·,+, ·?,¬, 1, 0〉
such that:

(i) 〈X, ·,+, ·?, 1, 0〉 is a Kleene algebra [26], i.e., an idempotent
semiring with a unary operation, called “Kleene star”, satisfy-
ing the following axioms:

1 + x · x? ≤ x?

y · x ≤ x ⇒ y? · x ≤ x
x · y ≤ x ⇒ x · y? ≤ x

(the preorder (≤) being defined by x ≤ y , x+ y = y);

(ii) B ⊆ X;

(iii) 〈B, ·,+,¬, 1, 0〉 is a Boolean algebra.

The elements of the set B are called “tests”; we denote them
by φ, ψ. The elements ofX , called “Kleene elements”, are denoted
by x, y, z. We sometimes omit the operator “·” from expressions,
writing xy for x · y. The following (in)equations illustrate the kind
of laws that hold in all Kleene algebra with tests:

φ+ ¬φ = 1 φ · (¬φ+ ψ) = φ · ψ = ¬(¬φ+ ¬ψ)

x?x? = x? (x+y)? = x?(yx?)? (x+xxy)? ≤ (x+xy)?

φ · (¬φ · x)? = φ φ · (φ · x · ¬φ+ ¬φ · y · φ)? · φ ≤ (x · y)?

The laws from the first line come from the Boolean algebra struc-
ture, while the ones from the second line come from the Kleene
algebra structure. The two laws from the last line require both
Boolean algebra and Kleene algebra reasoning.

Binary relations. Binary relations form a Kleene algebra with
tests; this is the main model we are interested in, in practice. The
Kleene elements are the binary relations over a given set S, the tests
are the predicates over this set, encoded as sub-identity relations,
and the star of a relation is its reflexive transitive closure.

7 2014/11/1

This relational model is typically used to interpret imperative
programs: such programs are state transformers, i.e., binary rela-
tions between states, and the conditions used to define the control-
flow of these programs are just predicates on states. Typically, a
program “while φ do p” is interpreted through the KAT expres-
sion (φ · p)? · ¬φ.

KAT expressions. We denote by Reg(V) the set of regular ex-
pressions over a set V :

x, y ::= v ∈ V | x+ y | x · y | x? .

Assuming a set A of elementary tests, we denote by B(A) the
set of Boolean expressions over A:

φ, ψ ::= a ∈ A | 1 | 0 | φ ∧ φ | φ ∨ φ | ¬φ .

Further assuming a set Σ of letters (or atomic Kleene elements),
a KAT expression is a regular expression over the disjoint union
Σ] B(A). We let p, q range over elements of Σ. Note that the
constants 0 and 1 from the signature of KAT, and usually found in
the syntax of regular expressions, are represented here by injecting
the corresponding tests.

Guarded string languages. Guarded string languages are the nat-
ural generalisation of string languages for Kleene algebra with
tests. We briefly define them.

An atom is a valuation from elementary tests to Booleans; it
indicates which of these tests are satisfied. We let α, β range over
atoms, the set of which is denoted by At: At = 2A. A Boolean
formula φ is valid under an atom α, denoted by α � φ, if φ
evaluates to true under the valuation α.

A guarded string is an alternating sequence of atoms and letters,
both starting and ending with an atom:

α1, p1, α2, . . . , αn, pn, αn+1 .

The concatenation u ∗ v of two guarded strings u, v is a partial
operation: it is defined only if the last atom of u is equal to the
first atom of v; it consists in concatenating the two sequences and
removing one copy of the shared atom in the middle.

To any KAT expression, one associates a guarded string lan-
guage, i.e., a set of guarded strings, as follows.

G(φ) = {α ∈ At | α � φ} (φ ∈ B(A))

G(p) = {αpβ | α, β ∈ At} (p ∈ Σ)

G(x+ y) = G(x) ∪G(y)

G(xy) = {u ∗ v | u ∈ G(x), v ∈ G(y)}
G(x?) = {u1 ∗ · · · ∗ un | ∃u1 . . . un, ∀i ≤ n, ui ∈ G(x)}

KAT Completeness. Kozen and Smith proved that the equational
theory of Kleene algebra with tests is complete over the relational
model [30]: any equation that holds universally in this model can
be proved from the axioms of KAT. Moreover, two expressions
are provably equal if and only if they denote the same language
of guarded strings. By a reduction to automata theory this gives
algorithms to decide the equational theory of KAT. Now we study
several such algorithms, and we show each time how to exploit
symbolic representations to make them efficient.

4.1 Brzozowski’s derivatives
Derivatives were introduced by Brzozowski [11] for (plain) regular
expressions; they make it possible to define a deterministic automa-
ton where the states of the automaton are the regular expressions
themselves.

Derivatives can be extended to KAT expressions in a very natu-
ral way [28]. We recall this extension in Figure 8: one first defines a
Boolean function εα, that indicates whether an expression accepts

εα(x+y) = εα(x)+εα(y)

εα(x·y) = εα(x)·εα(y)

εα(x?) = 1

εα(q) = 0

εα(φ) =

{
1 if α � φ
0 oth.

δαp(x+y) = δαp(x)+δαp(y)

δαp(x·y) =

{
δαp(x)·y if εα(x) = 0

δαp(x)·y+δαp(y) oth.

δαp(x
?) = δαp(x) · x?

δαp(q) =

{
1 if p = q

0 oth.

δαp(φ) = 0

Figure 8. Explicit derivatives for KAT expressions

εs(x+y) = εs(x)∨εs(y)

εs(x·y) = εs(x)∧εs(y)

εs(x?) = 1

εs(p) = 0

εs(φ) = φ

δs(x+y) = δs(x)⊕ δs(y)

δs(x·y) = (δs(x)� y)⊕ (εs(x)⊗ δs(y))

δs(x?) = δs(x)� x?

δs(p) = dp 7→ 1, 7→ 0e
δs(φ) = 0

Figure 9. Symbolic derivatives for KAT expressions

the single atom α; this function is then used to define the deriva-
tion function δαp, that intuitively returns what remains of the given
expression after reading the atom α and the letter p. These two
functions make it possible to give a coalgebraic characterisation of
the characteristic function of G. We have:

G(x)(α) = εα(x) , G(x)(αpu) = G(δαp(x))(u) .

The tuple 〈Reg(Σ] B(A)), δ, ε〉 can be seen as a determin-
istic automaton with input alphabet At × Σ, and output set 2At.
Thanks to the above characterisation, a state x in this automaton
accepts precisely the guarded string language G(x)—modulo the
isomorphism (At× Σ)? → 2At ≈ P((At× Σ)? ×At).

However, we cannot directly apply the explicit algorithm from
Section 2.1, because this automaton is not finite. First, there are
infinitely many KAT expressions, so that we have to restrict to
those that are accessible from the expressions we want to check for
equality. This is however not sufficient: we also have to quotient
regular expressions w.r.t. a few simple laws [28]. This quotient is
simple to implement by normalising expressions; we thus assume
that expressions are normalised in the remainder of this section.

Symbolic derivatives. The input alphabet of the above automaton
is exponentially large w.r.t. the number of primitive tests:At×Σ =
2A × Σ. Therefore, the simple algorithm from Section 2.1 is not
tractable in practice. Instead, we would like to use its symbolic
version (Figure 5).

The output values, in (2At = 2A → 2), are also exponentially
large, and are best represented symbolically, using Boolean BDDs.
In fact, any test appearing in a KAT expression can be pre-compiled
into a Boolean BDD: rather than working with regular expressions
over Σ] B(A) we thus move to regular expressions over Σ]
BDDA[2], which we call symbolic KAT expressions. We denote
the set of such expressions by SyKAT, and we let LeM denote the
symbolic version of a KAT expression e.

Note that there is a slight discrepancy here w.r.t. Section 3: the
input alphabet is 2A × Σ rather than just 2A

′
for some A′. For the

sake of simplicity, we just assume that Σ is actually of the shape
2Σ′

; alternatively, we could work with automata whose transition
functions are represented partly symbolically (for At), and partly
explicitly (for Σ)—this is what we do in the implementation.

8 2014/11/1

We define the symbolic derivation operations in Figure 9.
The output function, εs, has type SyKAT→ BDDA[2], it maps

symbolic KAT expressions to Boolean BDD nodes. The operations
used on the right-hand side of this definition are those on Boolean
BDDs. The function εs is much more efficient than its explicit coun-
terpart (ε, in Figure 8): the set of all accepted atoms is computed at
once, symbolically.

The function δs has type SyKAT → BDDA]Σ′ [SyKAT].
It maps symbolic KAT expressions to BDDs whose leaves are
themselves symbolic KAT expressions. Again, in contrast to its
explicit counterpart, δs computes all the transitions of a given
expression once and for all. The operations used on the right-hand
side of the definition are the following ones:

• n ⊕ m is defined by applying pointwise the syntactic sum
operation from KAT expressions to the two BDDs n and m:
n⊕m = bφ 7→ dne(φ) + dme(φ)c;

• n � x syntactically multiplies all leaves of the BDD n by the
expression x, from the right: n� x = bφ 7→ bnc(φ) · xc;

• f ⊗ n “multiplies” the Boolean BDD f with the BDD n:
f ⊗ n = bφ 7→ bnc(φ) if bfc(φ) = 1, 0 otherwisec.

• bq 7→ 1, 7→ 0c is the BDD mapping q to 1 and everything else
to 0 (q ∈ Σ = 2Σ′

being cast into an element of 2A]Σ′
).

By two simple inductions, one proves that for every expression
x ∈ SyKAT, atom α ∈ At, and letter p ∈ Σ, we have:

dεsLxMe(α) = εα(x)

dδsLxMe(αp) = Lδαp(x)M

(Again, we abuse notation by letting the pair αp denote an element
of 2A]Σ′

.) This ensures that the symbolic deterministic automaton
〈SyKAT, δs, εs〉 faithfully represents the previous explicit automa-
ton, and that we can use the symbolic algorithms from Section 3.

4.2 Partial derivatives
An alternative to Brzozowski’s derivatives consists in using An-
timirov’ partial derivatives [4], which generalise to KAT in a
straightforward way [34]. The difference with Brzozowski’s deriva-
tive is that they produce a non-deterministic automaton: states are
still expressions, but the derivation function produces a set of ex-
pressions. An advantage is that we do not need to normalise ex-
pressions on the fly: the set of partial derivatives reachable from an
expression is always finite.

We give directly the symbolic definition, which is very similar
to the previous one.

δ
′s(x+y) = δ

′s(x) ∪ δ
′s(y)

δ
′s(x·y) = (δ

′s(x) � y) ∪ (εs(x)� δ
′s(y))

δ
′s(x?) = δ

′s(x)� x?

δ
′s(p) = bp 7→ {1}, 7→ ∅c

δ
′s(φ) = ∅

The differences lie in the BDD operations, whose leaves are now
sets of expressions:

• n ∪ m = bφ 7→ dne(φ) ∪ dme(φ)c;
• n� x = bφ 7→ {x′ · x | x′ ∈ dne(φ)}c;
• f � n = bφ 7→ dne(φ) if dfe(φ) = 1, ∅ otherwisec.

One can finally relate partial derivatives to Brzozowski’s one:

KA `
∑
dδ

′s(x)e(αp) = Lδαp(x)M .

(The above Σ denotes the iterated sum of the set of partial
derivatives—we do not have a syntactic equality because partial
derivatives inherently exploit the fact that multiplication distributes
over sums.) Using symbolic determinisation as described in Sec-
tion 3.2, one can thus use the algorithm from Section 3 with An-
timirov’ partial derivatives.

4.3 Ilie & Yu’s construction
Other automata constructions from the literature can be generalised
to KAT expressions. We can for instance consider Ilie and Yu’s
construction [25], which produces non-deterministic automata with
epsilon transitions with exactly one initial state, and one accepting
state.

We consider a slightly simplified version here, where we omit a
few optimisations and just proceed by induction on the expression.
The four cases are depicted below: i and f are the initial and
accepting states, respectively; in the concatenation and star cases, a
new state j is introduced.

p : i p
// f x · y : i A(x) j A(y) f

x+ y : i

A(y)

A(x)

f
x? : i

1
// j

1
//

A(x)

f

To adapt this construction to KAT expressions, it suffices to
generalise epsilon transitions to transitions labelled by tests. In the
base case for a test φ, we just add a transition labelled by φ between
i and f ; the two epsilon transitions needed for the star case just
become transitions labelled by the constant test 1.

As expected, when starting from a symbolic KAT expression,
those counterparts to epsilon transitions are labelled by Boolean
BDD nodes rather than by explicit Boolean expressions.

Epsilon cycles. The most important optimisation we miss with
this simplified presentation of Ilie and Yu’s construction is that we
should merge states that belong to cycles of epsilon transitions. An
alternative to this optimisation consists in normalising first the ex-
pressions so that for all subexpressions of the shape e?, e does not
contain 1, i.e., εs(e) 6= 1. Such a normalisation procedure has been
proposed for plain regular expressions by Brüggemann-Klein [8].
When working with such normal forms, the automata produced
by the above simplified construction (on plain regular expressions)
have acyclic epsilon transitions, so that the aforementioned optimi-
sation is unnecessary.

This normalisation procedure generalises easily to (symbolic)
KAT expressions. For instance, here are typical normalisations:

(φ+ p)? 7→ p? (1)

(p? + q)? 7→ (p+ q)? (2)

((1 + p)(1 + q))? 7→ (p+ q)? (3)

We say that Symbolic KAT expressions satisfying the above prop-
erty are in strict star form. The normalisation procedure is linear in
the size of the expressions; it always produces a smaller expression.
As a consequence, when deciding whether a KAT equation holds
or not, it is always beneficial to put the expressions in strict star
form first, independently from the considered automata construc-
tion. (See the experiments in Section 5).

According to the example (1), it might be tempting to strengthen
example (3) into ((φ + p)(ψ + q))? 7→ (p + q)?. Such a step is
invalid, unfortunately. (The second expression accepts the guarded
string αpβ for all α, β, while the starting expression needs β � ψ.)
This example seems to show that one cannot ensure that all starred

9 2014/11/1

iterations time NFA states DFA states
symb equiv dsf equiv symb equiv dsf equiv

Antimirov ◦ ssf 6 715 3 980 0.53s 0.47s 2 704 4 142
Antimirov 7 141 4 256 0.84s 0.74s 3 039 4 442
Ilie & Yu ◦ ssf 6 985 4 209 1.77s 1.73s 4 716 4 441
Ilie & Yu 7 328 4 445 3.89s 3.83s 5 730 4 647
Brzozowski ◦ ssf 11 952 6 525 6.88s 4.67s - 6 684
Brzozowski 19 781 10 080 43.00s 30.00s - 10 265

Table 1. Checking random saturated pairs of expressions.

subexpressions are mapped to 0 by εs. As a consequence we cannot
assume that test-labelled transitions generated by Ilie and Yu’s
construction form an acyclic graph in general.

4.4 Test-labelled transitions removal
The above construction produces symbolic NFA with test-labelled
transitions, which have to be eliminated in order to apply the algo-
rithms from Section 3. Other constructions from the literature pro-
duce automata with epsilon transitions and can be adapted to KAT
using test-labelled transitions. A generic procedure for eliminating
such transitions is thus desirable.

The usual technique with plain automata consists in computing
the reflexive transitive closure of epsilon transitions, to precompose
the other transitions with the resulting relation, and declare a state
as accepting in the new automaton whenever it can reach an accept-
ing state through this reflexive-transitive closure.

More formally, let us recall Kozen’s matricial representation
of non-deterministic automaton with epsilon transitions [26], as
tuples 〈n, u, J,N, v〉, where u is a (1, n) 01-matrix denoting the
initial states, J is a (n, n) 01-valued matrix denoting the epsilon
transitions, N is a (n, n) matrix representing the other transitions
(with entries sets of letters in Σ), and v is a (n, 1) 01-matrix
encoding the accepting states.

The language accepted by such an automaton can be represented
by the following matricial product, using Kleene star on matrices:

u · (J +N)? · v .

Thanks to the algebraic law (a+b)? = a? · (b ·a?)?, which is valid
in any Kleene algebra, we get

KA ` u · (J +N)? · v = u · (J?N)? · (J?v) .

We finally check that 〈n, u, 0, J?N, J?v〉 represents a non-deterministic
automaton without epsilon transitions. This is how Kozen validates
epsilon elimination for plain automata, algebraically [26].

The same can be done here for KAT by noticing that tests (or
Boolean BDD nodes) form a Kleene algebra with a degenerate star
operation: the constant-to-1 function. One can thus generalise the
above reasoning to the case where J is a tests-valued matrix rather
than a 01-matrix.

The iteration J? of such a matrix can be computed using stan-
dard shortest-path algorithms [21], on top of the efficient semiring
of Boolean BDD nodes. The resulting automaton has the expected
type:

• there is a transition labelled by αp between i and j if there
exists a k such that α � (J?)i,k and p ∈ Nk,j . (The corre-
sponding non-deterministic symbolic transition function can be
computed efficiently using appropriate BDD functions.)

• The output value of a state i is the Boolean BDD node obtained
by taking the disjunction of all the (J?)i,j such that j is an
accepting state (i.e., just (J?)(i,f) when using Ilie and Yu’s
construction).

5. Experiments
We implemented all presented algorithms in OCaml; the corre-
sponding library is available online, together with an applet allow-
ing to trace them on user-provided examples [35].

Symbolic KAT expressions are hash-consed, which allows us
to represent sets of expressions using Patricia trees (e.g., for An-
timirov’ partial derivates). Expressions are also normalised us-
ing smart constructors: sums associated to the left, sorted, and
without duplicates; products are associated to the left; consecutive
tests are merged; units are cancelled as much as possible. For An-
timirov’ construction and for Ilie and Yu’s construction, the pro-
duced symbolic NFA are memoised once and for all, and reindexed
so that their states are just natural numbers. This allows us to use
bit-vectors to represent sets produced during determinisation. The
queue todo used for storing the pairs to process is a FIFO queue,
so that the automata are explored in a breadth-first manner.

We performed a few experiments to compare the presented algo-
rithms and constructions. We generated random KAT expressions
over two sets of seven primitive tests and seven atomic elements,
with seventy connectives, and excluding explicit occurrences of the
constants 0 and 1. A hundred pairs of random expressions were
checked for equality after being saturated by adding the constant
Σ? on both sides. (A difficulty here is that random pairs of ex-
pressions are almost always distinguished by a very short guarded
string, which is found almost immediately thanks to the breadth-
first strategy, independently from the size of the expressions and
from the up-to techniques at work. Instead, we would like to evalu-
ate the algorithms based on their running time on more interesting
pairs, where the expressions are either equivalent or distinguished
only by long guarded strings. By saturating the expressions with
the constant Σ?, we artificially make the expressions equivalent.
Moreover, looking at an execution of the presented algorithms on
such saturated pairs, what happens is that the output test (line 10
on Figure 1) always succeeds, so that the algorithms stop only once
the whole automata have been explored and a bisimulation has been
found. Moreover, an analysis of the various automata constructions
shows that the automata constructed for an expression p are very
similar to the automata constructed for the expression p + Σ?: ex-
ploring the latter is as hard as exploring the former.)

The results are displayed in Table 1: for each construction and
for each of the two symbolic algorithms, we give the total num-
ber of iterations (i.e., the number of times we execute line 10 in
Figure 5), and the global running time2. Each construction is asso-
ciated to two lines, depending on whether we first put expressions
in strict star form or not. We additionally provide the total number
of NFA states generated by Antimirov’ and Ilie and Yu’s construc-
tions, as well as the total number of DFA states generated for the
three constructions.

One can notice than Antimirov’ partial derivatives provide the
fastest algorithms. Ilie and Yu’s construction yield approximately

2 Theses experiments were performed on a MacBook Pro, OS X 10.9.5,
2,4GHz Intel Core i7, 4Go 1333MHz DDR3, OCaml 4.02.1

10 2014/11/1

the same number of iterations as Antimirov’ partial derivatives,
but require more time: computing the transitive closure for epsilon
removal is a costly operation. Brzozowski’s construction gives poor
results both in terms of time and iterations: the produced automata
are larger, and more difficult to compute.

Concerning the equivalence algorithm, one notices that using
disjoint set forests significantly reduces the number of iterations.
There is almost no difference in the running times with the first
two constructions, because most of the time is spent in constructing
the automata rather than checking them for equivalence. This is no
longer true with Brzozowski’s construction, for which the automata
are sufficiently big to observe a difference.

6. Directions for future work
The equational theory of KAT is PSPACE-complete, but none of
the presented algorithms are PSPACE (just because of the use
BDDs, but also because the bisimulation candidate, which has to be
stored, can be exponentially large). Experiments however suggest
that they can be useful in practice: the symbolic DFA produced
by the various constructions proposed in this paper tend to be of
reasonable size. Quantifying this empirical observation in a formal
way seems extremely difficult.

A natural extension of this work would be to apply the proposed
algorithms to KAT+B! [19] and NetKAT [2], two extensions of
KAT with important applications in verification: while programs
with mutable tests in the former case, and network programming in
the later case.

KAT+B! has a EXPSPACE-complete equational theory, and its
structure makes explicit algorithms completely useless. Designing
symbolic algorithms for KAT+B! seems challenging.

NetKAT remains PSPACE-complete, and Foster et al. propose
in the present volume a coalgebraic decision procedure relying on
a variation of Antimirov’ derivatives [17]. To get a practical al-
gorithm, they represent automata transitions using sparse matri-
ces, and they exploit some form of symbolic treatment by using
what they call “bases”. KAT can be encoded into NetKAT, so that
their algorithm could be used for KAT. This encoding is however
not streamlined, and it is non-trivial to understand the behaviour
of their algorithm on the resulting instances. Conversely, adapting
the algorithms presented in the present paper to cope with NetKAT
seems feasible, although not straightforward. Concerning the sym-
bolic treatment of automata, our use of BDDs seems more powerful
and less ad-hoc than their use of bases, but the precise relationship
remains unclear, and we leave its formal analysis for future work.

Moving away from KAT specificities, we leave open the ques-
tion of the complexity of our symbolic variant of Hopcroft and
Karp’s algorithm (Figure 7). Tarjan proved that their algorithm is
almost linear in amortised time complexity, and he made a list of
heuristics for linking and path compression schemes that lead to
that complexity [40]; together with Goel, Khanna and Larkin, he
recently showed that this complexity is still reached (asymptoti-
cally) with randomized linking [18]. A similar study for the sym-
bolic counterpart we propose here remains to be done.

Acknowledgments
We are grateful to the anonymous referees who provided thorough
and detailed reviews, and in particular to the one who noticed the
relationship between the present work and Rémy’s type inference
algorithm for row types.

References
[1] P. A. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, and T. Vojnar. When

simulation meets antichains. In Proc. TACAS, volume 6015 of Lecture
Notes in Computer Science, pages 158–174. Springer Verlag, 2010.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. Netkat: semantic foundations for net-
works. In Proc. POPL, pages 113–126. ACM, 2014.

[3] A. Angus and D. Kozen. Kleene algebra with tests and program
schematology. Technical Report TR2001-1844, CS Dpt., Cornell
University, July 2001.

[4] V. M. Antimirov. Partial derivatives of regular expressions and finite
automaton constructions. Theoretical Computer Science, 155(2):291–
319, 1996.

[5] S. L. Bloom, Z. Ésik, and G. Stefanescu. Notes on equational theories
of relations. Algebra Universalis, 33(1):98–126, 1995.

[6] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations
up to congruence. In Proc. POPL, pages 457–468. ACM, 2013.

[7] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In Proc. CAV, volume 3114 of Lecture Notes in Computer
Science, pages 372–386. Springer Verlag, 2004.

[8] A. Brüggemann-Klein. Regular expressions into finite automata. The-
oretical Computer Science, 120(2):197–213, 1993.

[9] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[10] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[11] J. A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 11(4):481–494, 1964.

[12] E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra
with tests. Technical Report TR96-1598, CS Dpt., Cornell University,
1996.

[13] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In
POPL, pages 541–554. ACM, 2014.

[14] L. Doyen and J.-F. Raskin. Antichain Algorithms for Finite Automata.
In Proc. TACAS, volume 6015 of Lecture Notes in Computer Science.
Springer Verlag, 2010.

[15] Z. Ésik and L. Bernátsky. Equational properties of Kleene algebras of
relations with conversion. Theoretical Computer Science, 137(2):237–
251, 1995.

[16] J.-C. Filliâtre and S. Conchon. Type-safe modular hash-consing. In
ML, pages 12–19. ACM, 2006.

[17] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A
coalgebraic decision procedure for NetKAT. In Proc. POPL. ACM,
2015.

[18] A. Goel, S. Khanna, D. Larkin, and R. E. Tarjan. Disjoint set union
with randomized linking. In Proc. SODA, pages 1005–1017. SIAM,
2014.

[19] N. B. B. Grathwohl, D. Kozen, and K. Mamouras. KAT + B! In Proc.
CSL-LICS. ACM, July 2014.

[20] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in
practice. In TACAS, volume 1019 of Lecture Notes in Computer
Science, pages 89–110. Springer Verlag, 1995.

[21] P. Höfner and B. Möller. Dijkstra, Floyd and Warshall meet Kleene.
Formal Aspects of Computing, 24(4-6):459–476, 2012.

[22] J. E. Hopcroft. An nlog n algorithm for minimizing states in a finite
automaton. Technical report, Stanford University, 1971.

[23] J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equiv-
alence of finite automata. Technical Report 114, Cornell University,
December 1971.

[24] G. Huet. Résolution d’équations dans les langages d’ordre 1,2, ... ,ω.
PhD thesis, Université Paris VII, 1976. Thèse d’État.

[25] L. Ilie and S. Yu. Follow automata. Information and Computation,
186(1):140–162, 2003.

11 2014/11/1

http://dx.doi.org/10.1007/978-3-642-12002-2_14
http://dx.doi.org/10.1007/978-3-642-12002-2_14
http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1145/2535838.2535862
http://hdl.handle.net/1813/5831
http://hdl.handle.net/1813/5831
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.1145/2429069.2429124
http://dx.doi.org/10.1145/2429069.2429124
http://dx.doi.org/10.1007/978-3-540-27813-9_29
http://dx.doi.org/10.1007/978-3-540-27813-9_29
http://dx.doi.org/10.1016/0304-3975(93)90287-4
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1145/321239.321249
http://www.cs.cornell.edu/~kozen/papers/ckat.pdf
http://www.cs.cornell.edu/~kozen/papers/ckat.pdf
http://dx.doi.org/10.1145/2535838.2535849
http://dx.doi.org/10.1007/978-3-642-12002-2_2
http://dx.doi.org/10.1016/0304-3975(94)00041-G
http://dx.doi.org/10.1016/0304-3975(94)00041-G
http://dx.doi.org/10.1145/1159876.1159880
http://dx.doi.org/10.1145/2676726.2677011
http://dx.doi.org/10.1145/2676726.2677011
http://dx.doi.org/10.1137/1.9781611973402.75
http://dx.doi.org/10.1137/1.9781611973402.75
http://dx.doi.org/10.1145/2603088.2603095
http://dx.doi.org/10.1007/3-540-60630-0_5
http://dx.doi.org/10.1007/3-540-60630-0_5
http://dx.doi.org/10.1007/s00165-012-0245-4
http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114
http://yquem.inria.fr/~huet/PUBLIC/Huet1976.pdf
http://dx.doi.org/10.1016/S0890-5401(03)00090-7

[26] D. Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. Information and Computation, 110(2):366–
390, 1994.

[27] D. Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427–443, May 1997.

[28] D. Kozen. On the coalgebraic theory of Kleene algebra with tests.
Technical report, CIS, Cornell University, March 2008.

[29] D. Kozen and M.-C. Patron. Certification of compiler optimizations
using Kleene algebra with tests. In Proc. CL2000, volume 1861
of Lecture Notes in Artificial Intelligence, pages 568–582. Springer
Verlag, 2000.

[30] D. Kozen and F. Smith. Kleene algebra with tests: Completeness and
decidability. In Proc. CSL, volume 1258 of Lecture Notes in Computer
Science, pages 244–259. Springer Verlag, September 1996.

[31] E. F. Moore. Gedanken-experiments on sequential machines. Au-
tomata Studies, Annals of Mathematical Studies, 34:129–153, 1956.

[32] R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973–989, 1987.

[33] F. Pottier and D. Rémy. Advanced Topics in Types and Programming
Languages, chapter The Essence of ML Type Inference. MIT Press,
2004.

[34] D. Pous. Kleene Algebra with Tests and Coq tools for while programs.
In Proc. ITP, volume 7998 of Lecture Notes in Computer Science,
pages 180–196. Springer Verlag, 2013.

[35] D. Pous. Web appendix to this paper, with Ocaml implementation of
the proposed algorithms, 2014.
http://perso.ens-lyon.fr/damien.pous/symbolickat.

[36] D. Pous and D. Sangiorgi. Advanced Topics in Bisimulation and
Coinduction, chapter about “Enhancements of the coinductive proof
method”. Cambridge University Press, 2011.

[37] D. Rémy. Algèbres Touffues. Application au Typage Polymorphe des
Objets Enregistrements dans les Langages Fonctionnels. PhD thesis,
Université Paris VII, 1990. Thèse de doctorat.

[38] D. Rémy. Extension of ML type system with a sorted equational theory
on types, 1992. Research Report 1766.

[39] D. Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8:447–479, 1998.

[40] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215–225, 1975.

[41] M. Veanes. Applications of symbolic finite automata. In CIAA, volume
7982 of Lecture Notes in Computer Science, pages 16–23. Springer
Verlag, 2013.

[42] M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains:
A new algorithm for checking universality of finite automata. In Proc.
CAV, volume 4144 of Lecture Notes in Computer Science, pages 17–
30. Springer Verlag, 2006.

12 2014/11/1

http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1145/256167.256195
http://hdl.handle.net/1813/10173
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-63172-0_43
http://dx.doi.org/10.1007/3-540-63172-0_43
http://people.mokk.bme.hu/~kornai/termeszetes/moore_1956.pdf
http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://perso.ens-lyon.fr/damien.pous/symbolickat
http://www.cambridge.org/gb/knowledge/isbn/item6542021
http://www.cambridge.org/gb/knowledge/isbn/item6542021
http://gallium.inria.fr/~remy/ftp/eq-theory-on-types.pdf
http://gallium.inria.fr/~remy/ftp/eq-theory-on-types.pdf
http://dx.doi.org/10.1017/S0960129598002527
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1007/978-3-642-39274-0_3
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/11817963_5

