
Projet PiCoq

Deliverable D4
December 2011

During year 2011, Damien Pous and Thomas Braibant developed two li-
braries to assist in the mechanization of formal proofs in Coq. The first library
provides algebraic tools for reasoning about binary relations and can be found
at http://sardes.inrialpes.fr/~braibant/atbr/. The second library helps
reasoning modulo associativity and commutativity. This library is available at
http://sardes.inrialpes.fr/~braibant/aac_tactics/. We attach to this
deliverable two papers describing these libraries: “Deciding Kleene Algebras in
Coq” for the first one, and “Tactics for Reasoning modulo AC in Coq” for the
second one.

http://sardes.inrialpes.fr/~braibant/atbr/
http://sardes.inrialpes.fr/~braibant/aac_tactics/

DECIDING KLEENE ALGEBRAS IN COQ

THOMAS BRAIBANT AND DAMIEN POUS

CNRS, INRIA, LIG, UMR 5217, Université de Grenoble, France, Europe
e-mail address: {thomas.braibant,damien.pous}@inria.fr

Abstract. We present a reflexive tactic for deciding the equational theory of Kleene al-
gebras in the Coq proof assistant. This tactic relies on a careful implementation of efficient
finite automata algorithms, so that it solves casual equations instantaneously and prop-
erly scales to larger expressions. The decision procedure is proved correct and complete:
correctness is established w.r.t. any model by formalising Kozen’s initiality theorem; a
counter-example is returned when the given equation does not hold. The correctness proof
is challenging: it involves both a precise analysis of the underlying automata algorithms
and a lot of algebraic reasoning. In particular, we have to formalise the theory of matrices
over a Kleene algebra. We build on the recent addition of first-class typeclasses in Coq in
order to work efficiently with the involved algebraic structures.

1. Introduction

1.1. Motivations. Proof assistants like Coq or Isabelle/HOL make it possible to leave
technical or administrative details to the computer, by defining high-level tactics. For
example, one can define tactics to solve decidable problems automatically (e.g., omega for
Presburger arithmetic and ring for ring equalities). Here we present a tactic for solving
equations and inequations in Kleene algebras. This tactic belongs to a larger project whose
aim is to provide tools for working with binary relations in Coq. Indeed, Kleene algebras
correspond to a non-trivial decidable fragment of binary relations. In the long term, we plan
to use these tools to formalise results in rewriting theory, process algebras, and concurrency
theory results. Binary relations play a central role in the corresponding semantics.

A starting point for this work is the following remark: proofs about abstract rewrit-
ing (e.g., Newman’s Lemma, equivalence between weak confluence and the Church-Rosser
property, termination theorems based on commutation properties) are best presented using
informal “diagram chasing arguments”. This is illustrated by Fig. 1, where the same state
of a typical proof is represented three times. Informal diagrams are drawn on the left. The
goal listed in the middle corresponds to a naive formalisation where the points related by

1998 ACM Subject Classification: F 1.1 [Finite automata], F 3.1 [Verification techniques] F.4.1 [Proof
theory], F.4.3 [Decision problems], D 2.4 [Correctness proofs].

Key words and phrases: Kleene algebra, regular expressions, decision procedure, Coq proof assistant,
reflexive tactic, finite automata, typeclasses.

This paper is a long version of the abstracts we presented at the first Coq workshop (August 2009) and
in Proc. 1st ITP, vol. 6172 of LNCS, 2010 [10].

This work was supported by the project PiCoq (ANR 2010 BLAN 0305 01).

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Thomas Braibant and Damien Pous
Creative Commons

1

· S?

&&
H·

R 88

S? &&
·

· R?

88

· S?

''
·

·
R 77

S? &&
·
R? 88

? R?

HH

R,S: relation P

H: forall p,r,q, R p r → S? r q

→ exists s, S? p s ∧ R? s q

p,q,q’, s: P

Hpq: R p q

Hqs: S? q s

Hsq’: R? s q’

exists s, S? p s ∧ R? s q’

R,S: X

H: R · S? ≤ S? · R?

R · S? · R? ≤ S? · R?

Figure 1. Diagrammatic, concrete, and abstract presentations of the same state in a proof.

relations are mentioned explicitly. This is not satisfactory: a lot of variables have to be
introduced, the goal is displayed in a rather verbose way, the user has to draw the intuitive
diagrams on its own paper sheet. On the contrary, if we move to an algebraic setting (the
right-hand side goal), where binary relations are seen as abstract objects that can be com-
posed using various operators (e.g., union, intersection, relational composition, iteration),
statements and Coq’s output become rather compact, making the current goal easier to
read and to reason about.

More importantly, moving to such an abstract setting allows us to implement several
decision procedures that could hardly be stated with the concrete presentation. For example,
after the user rewrites the hypothesis H in the right-hand side goal of Fig. 1, we obtain the
inclusion S? · R? · R?≤ S? · R?, which is a (straightforward) theorem of Kleene algebras: the
tactic we describe in this paper proves this sub-goal automatically.

1.2. Mathematical background. A Kleene algebra [38] is a tuple 〈X, ·,+, 1, 0, ?〉, where
〈X, ·,+, 1, 0〉 is an idempotent non-commutative semiring, and ? is a unary post-fix opera-
tion on X, satisfying the following axiom and inference rules (where ≤ is the partial order

defined by x ≤ y , x+ y = y):

1 + x · x? = x?
x · y ≤ y
x? · y ≤ y

y · x ≤ y
y · x? ≤ y

Terms of Kleene algebras, ranged over using x, y, are called regular expressions, irrespective
of the considered model. Models of Kleene algebras include languages, where the unit (1)
is the language reduced to the empty word, product (·) is language concatenation, and
star (?) is language iteration; and binary relations, where the unit is the identity relation,
product is relational composition, and star is reflexive and transitive closure. Here are some
theorems of Kleene algebras:

x? = x? · x? = x?? = (x+ 1)? (x+ y)? = x? · (y · x?)? x · (y · x)? = (x · y)? · x
Among languages, those that can be described by a finite state automaton (or equivalently,
generated by a regular expression) are called regular. Thanks to finite automata theory [37,
49], equality of regular languages is decidable:

“two regular languages are equal if and only if the corresponding minimal
automata are isomorphic”.

However, the above theorem is not sufficient to derive equations in all Kleene algebras: it
only applies to the model of regular languages. We actually need a more recent theorem,
by Kozen [38] (independently proved by Krob [43]):

“if two regular expressions x and y denote the same regular language, then
x = y is a theorem of Kleene algebras”.

In other words, the algebra of regular languages is initial among Kleene algebras: we can
use finite automata algorithms to solve equations in an arbitrary Kleene algebra.

The main idea of Kozen’s proof is to encode finite automata using matrices over regular
expressions, and to replay the algorithms at this algebraic level. Indeed, a finite automaton
can be represented with three matrices 〈u,M, v〉 ∈ M1,n ×Mn,n ×Mn,1: n is the number
of states of the automaton, u and v are 0-1 vectors respectively coding for the sets of initial
and accepting states, and M is the transition matrix: Mi,j labels transitions from state i to
state j. Consider for example the following non-deterministic automaton, with three states
(like for the automata to be depicted in the sequel, accepting states are marked with two
circles, and short, unlabelled arrows point to the starting states):

// 0
a ++

b

%%
1

c
kk

c // 2 a,b
uu

This automaton can be represented using the following matrices:

u =
[

1 0 0
]

M =

 0 a b
c 0 c
0 0 a+ b

 v =

 0
1
1

 .

We can remark that the product u ·M · v is a scalar (i.e., a regular expression), which can
be thought of as the set of one-letter words accepted by the automaton—in the example,
a+b. Similarly, u ·M2 ·v = u ·M ·M ·v corresponds to the set of two-letters words accepted
by the automaton—here, a · c + b · a + b · b. Therefore, to mimic the behaviour of a finite
automaton and get the whole language it accepts, we just need to iterate over the matrix
M . This is possible thanks to another theorem, which actually is the crux of the initiality
theorem: “matrices over a Kleene algebra form a Kleene algebra”. We hence have a star
operation on matrices, and we can interpret an automaton algebraically, by considering the
product u ·M? · v. (Again, in the example, we could check that this computation reduces
into a regular expression which is equivalent to (a · c)? · (a + (b + a · c) · (a + b)?), which
corresponds precisely to the language accepted by the automaton.)

1.3. Overview of our strategy. We define a reflexive tactic. This methodology is quite
standard [8, 2]. For example, this is how the ring tactic is implemented [29]. Concretely,
this means that we program the decision procedure as a Coq function, and that we prove
its correctness and its completeness within the proof assistant:

Definition decide_kleene: regex → regex → bool := ...

Theorem Kozen94: forall x y: regex, decide_kleene x y = true ↔ x == y.

The above statement corresponds to correctness and completeness with respect to the
syntactic “free” Kleene algebra: regex is the inductive type for regular expressions over
a countable set of variables, and == is the inductive equality generated by the axioms of

Kleene algebras and the rules of equational reasoning. Using reification mechanisms, this
is sufficient for our needs: the result can be lifted to other models using simple tactics.

Here are the main requirements we had to take into account for the design of the library:

Efficiency. The equational theory of Kleene algebras is PSPACE-complete [46]; this means
that the decide_kleene function must be written with care, using efficient algorithms.
Notably, the matricial representation of automata is not efficient, so that formalising
Kozen’s “mathematical” proof [38] in a naive way would be computationally impracti-
cable. Instead, we need to choose appropriate data structures for automata and algo-
rithms, and to rely on the matricial representation only in proofs, using the adequate
translation functions.

Heterogeneous models. Homogeneous binary relations are a model of Kleene algebras, but
binary relations can be heterogeneous: their domain might differ from their co-domain
so that they fall out of the scope of standard Kleene algebra. We could use a trick to
handle the special case of heterogeneous relations [42], but there is a more general and
more algebraic solution that captures all heterogeneous models: it suffices to consider
the rather natural notion of typed Kleene algebra [39]. Since we want to put forward
the algebraic approach, we tend to prefer this second option. Moreover, as pointed out
in next paragraph, we actually exploit this generalisation to formalise Kozen’s proof.

Matrices. As explained in Sect. 1.2, Kozen’s proof relies on the theory of matrices over
regular expressions, which we thus need to formalise. First, this formalisation must
be tractable from the proof point of view: the overall proof requires a lot of matricial
reasoning. Second, we must handle rectangular matrices, which appear in some parts
of the proof (see Sect. 4.4). The latter point can be achieved in a nice way thanks to
the generalisation to typed Kleene algebra: while only square matrices of form a model
of Kleene algebra, rectangular matrices form a model of typed Kleene algebra.

Sharing. The overall proof being rather involved, we need to exploit sharing as much as
possible. For instance, we work with several models of Kleene algebra (the syntactic
model of regular expressions, matrices over regular expressions, languages, matrices
over languages, and relations). Since these models share the same properties, we need
to share notation, basic laws, theorems, and tactics: this improves readability, usability,
and maintainability. Similarly, the proof requires vectors, which we define as a special
case of (rectangular) matrices: this saves us from re-developing their theory separately.

Modularity. Following mathematical and programming practice, we aim at a modular
development: this is required to be able to get sharing between the various parts of the
proof. A typical example is the definition of the Kleene algebra of matrices (Sect. 3.3),
which corresponds to a rather long proof. With a monolithic definition of Kleene
algebra, we would have to prove that all axioms of Kleene algebra hold from scratch.
On the contrary, with a modular definition, we can first prove that matrices form an
idempotent semiring, which allows us to use theorems and tactics about semiring when
proving that the defined star operation actually satisfies the appropriate laws.

Reification. The final tactic (for deciding Kleene algebras) and some intermediate tactics
are defined by reflection. Therefore, we need a way to achieve reification, i.e., to trans-
form a goal into a reified version that lets us perform computations within Coq. Since
we work with typed models, this step is more involved than is usually the case.

Outline of the paper. Section 2 is devoted to the underlying design choices. We explain
how we define matrices in Sect. 3. The algorithm and its correctness proof are described in
Sect. 4. We discuss the efficiency of the tactic in Sect. 5. We conclude with related works
and directions for future work in Sect. 6.

2. Underlying design choices

According to the above constraints and objectives, an essential decision was to build on
the recent introduction of first-class typeclasses in Coq [52]. This section is devoted to the
explanation of our methodology: how to use typeclasses to define the algebraic hierarchy in
a modular way, how to formalise typed algebras, how to reify the corresponding expressions.
We start with a brief description of the implementation of typeclasses in Coq.

2.1. Basic introduction to typeclasses in Coq. The overall behaviour of Coq type-
classes [52] is quite intuitive; here is how we would translate to Coq a simple Haskell
program that exploits a typeclass Hash to get a number out of certain kind of values:

class Hash a where

hash :: a → Int

instance Hash Int where

hash = id

instance (Hash a) ⇒ (Hash [a]) where

hash = sum . map hash

main = print

(hash 4, hash [4,5,6], hash [[4,5],[]])

Class Hash A :=

{ hash: A → nat }.
Instance hash_n: Hash nat :=

{ hash x := x }.
Instance hash_l A: Hash A → Hash (list A) :=

{ hash l := fold_left (fun a x ⇒ a + hash x) l 0 }.
Eval simpl in

(hash 4, hash [4;5;6], hash [[4;5];[]]).

Coq typeclasses are first-class; everything is done with plain Coq terms. In particular, the
Class keyword produces a record type (here, a parametrised one) and the Instance keyword
acts like a standard definition. With the above code we get values of the following types:

Hash: Type → Type hash_n: Hash nat

hash: forall A, Hash A → A → nat hash_l: forall A, Hash A → Hash (list A)

The function hash is a class projection: it gives access to a field of the class. The subtlety
is that the first two arguments of this function are implicit: they are automatically inserted
by unification and typeclass resolution. More precisely, when we write “hash [4;5;6] ”, Coq
actually reads “@hash _ _ [4;5;6]” (the ‘@name’ syntax can be used in Coq to give all argu-
ments explicitly). By unification, the first placeholder has to be list nat, and Coq needs
to guess a term of type Hash (list nat) to fill the second placeholder. This term is obtained
by a simple proof search, using the two available instances for the class Hash, which yields
“@hash_l nat hash_n”. Accordingly, we get the following explicit terms for the three calls
to hash in the above example.

input term explicit, instantiated, term
hash 4 @hash nat hash_n 4

hash [4;5;6] @hash (list nat) (@hash_l nat hash_n) [4;5;6]

hash [[4;5];[]] @hash (list (list nat)) (@hash_l (list nat) (hash_l nat hash_n)) [[4;5];[]]

X: Type.

dot: X → X → X.

one: X.

plus: X → X → X.

zero: X.

star: X → X.

dot_neutral_left:

forall x, dot one x = x.

...

T: Type.

X: T → T → Type.

dot: forall n m p, X n m → X m p → X n p.

one: forall n, X n n.

plus: forall n m, X n m → X n m → X n m.

zero: forall n m, X n m.

star: forall n, X n n → X n n.

dot_neutral_left:

forall n m (x: X n m), dot one x = x.

...

Figure 2. From Kleene algebras to typed Kleene algebras.

In summary, typeclasses provide overloading (we can use the hash function on several
types) and allow one to write much shorter and readable terms, by letting Coq infer the
obvious boilerplate. This concludes our very short introduction to typeclasses in Coq; we
invite the reader to consult [52] for more details.

2.2. Using typeclasses to structure the development. We use typeclasses to achieve
two tasks: 1) sharing and overloading notation, basic laws, and theorems; 2) getting a
modular definition of Kleene algebra, by mimicking the standard mathematical hierarchy:
a Kleene algebra contains an idempotent semiring, which is itself composed of a monoid
and a semi-lattice. This very small hierarchy is summarised below.

SemiLattice <:
Monoid <:

IdemSemiRing <: KleeneAlgebra

Before we give concrete Coq definitions, recall that we actually want to work with the
typed versions of the above algebraic structures, to be able to handle both heterogeneous
binary relations and rectangular matrices. The intuition for moving from untyped structures
to typed structures is given in Fig. 2: a typical signature for Kleene algebras is presented on
the left-hand side; we need to move to the signature on the right-hand side, where a set T

of indices (or types) is used to restrain the domain of the various operations. These indices
can be thought of as matrix dimensions; we actually moved to a categorical setting: T is a
set of objects, X n m is the set of morphisms from n to m, one is the set of identities, and
dot is composition. The semi-lattice operations (plus and zero) operate on fixed homsets;
Kleene star operates only on square morphisms—those whose source and target coincide.

Classes for algebraic operations. We now can define the Coq classes on which we based our
library. We first define three classes, for the operations corresponding to a monoid, a semi-
lattice, and Kleene star. These classes are given in Fig. 3, they are parametrised by a fourth
class, Graph, which corresponds to the carrier of the algebraic operations. In a standard,
untyped setting, we would expect this carrier to be just a set (a Type); the situation is
slightly more complicated here, since we define typed algebraic structures. According to
the previous explanations and Fig. 2, the Graph class encapsulates several ingredients: a

Class Graph := {
T: Type;

X: T → T → Type;

equal: ∀ n m, relation (X n m);

equal_:> ∀ n m, Equivalence (equal n m) }.

Class Monoid_Ops (G: Graph) := {
dot: ∀ n m p, X n m → X m p → X n p;

one: ∀ n, X n n }.

Notation "x == y" := (equal _ _ x y).

Notation "x · y" := (dot _ _ _ x y).

Notation "1" := (one _).

Class SemiLattice_Ops (G: Graph) := {
plus: ∀ n m, X n m → X n m → X n m;

zero: ∀ n m, X n m }.

Class Star_Op (G: Graph) := {
star: ∀ n, X n n → X n n }.

Notation "x + y" := (plus _ _ x y).

Notation "0" := (zero _ _).

Notation "x?" := (star _ x).

Notation "x ≤ y" := (x + y == y).

Figure 3. Classes for the typed algebraic operations.

type for the set of indices (T), an indexed family of types for the sets of morphisms (X),
and for each homset, an equivalence relation, equal—we cannot use Leibniz equality: most
models of Kleene algebra require a weaker notion of equality (relation and Equivalence are
definitions from the standard library).

We associate an intuitive notation to each operation, by using the name provided by
the corresponding class projection. To make the effect of these definitions completely clear,
assume that we have a graph equipped with monoid operations (i.e., a typing context with
G: Graph and Mo: Monoid_Ops G) and consider the following proposition:

∀ (n m: T) (x: X n m) (y: X m n), x · y == 1.

If we unfold notations, we get:

∀ (n m: T) (x: X n m) (y: X m n), equal _ _ (dot _ _ _ x y) (one _).

Necessarily, by unification, the six placeholders have to be filled as follows:

∀ (n m: T) (x: X n m) (y: X m n), equal n n (dot n m n x y) (one n).

Now comes typeclass resolution: as explained in Sect. 2.1, the functions T, X, equal, dot, and
one, which are class projections, have implicit arguments that are automatically filled by
typeclass resolution (the graph instance for all of them, and the monoid operations instance
for dot and one). All in all, the above concise proposition actually expands into:

∀ (n m: @T G) (x: @X G n m) (y: @X G m n), @equal G n n (@dot G Mo n m n x y) (@one G Mo n).

Classes for algebraic laws. This was for syntax; we can finally define the classes for the
laws corresponding to the four algebraic structures we are interested in. They are given in
Fig. 4; we use the section mechanism to assume a graph together with the operations, which
become parameters when we close the section. (We motivate our choice to have separate
classes for operations and for laws in Sect. 2.4.3.)

The Monoid class actually corresponds to the definition of a category: we assume that
composition (dot) is associative and has one as neutral element. Its first field, dot_compat,
requires that composition also preserves the user-defined equality: it has to map equals

Section.

Context (G: Graph) {Mo: Monoid_Ops G} {SLo: SemiLattice_Ops G} {Ko: Star_Op G}.

Class Monoid := {
dot_compat:> ∀ n m p, Proper (equal n m ==> equal m p ==> equal n p) (dot n m p);

dot_assoc: ∀ n m p q (x: X n m) (y: X m p) (z: X p q), x · (y · z) == (x · y) · z;

dot_neutral_left: ∀ n m (x: X n m), 1 · x == x;

dot_neutral_right: ∀ n m (x: X m n), x · 1 == x }.

Class SemiLattice := {
plus_compat:> ∀ n m, Proper (equal n m ==> equal n m ==> equal n m) (plus n m);

plus_neutral_left: ∀ n m (x: X n m), 0 + x == x;

plus_idem: ∀ n m (x: X n m), x + x == x;

plus_assoc: ∀ n m (x y z: X n m), x + (y + z) == (x + y) + z;

plus_com: ∀ n m (x y: X n m), x + y == y + x }.

Class IdemSemiRing := {
Monoid_:> Monoid;

SemiLattice_:> SemiLattice;

dot_ann_left: ∀ n m p (x: X m p), 0 · x == (0: X m n);

dot_ann_right: ∀ n m p (x: X p m), x · 0 == (0: X n m);

dot_distr_left: ∀ n m p (x y: X n m) (z: X m p), (x + y) · z == x · z + y · z;

dot_distr_right: ∀ n m p (x y: X m n) (z: X p m), z · (x + y) == z · x + z · y }.

Class KleeneAlgebra := {
IdemSemiRing_:> IdemSemiRing;

star_make_left: ∀ n (x: X n n), 1 + x? · x == x?;

star_destruct_left: ∀ n m (x: X n n) (y: X n m), x · y ≤ y → x? · y ≤ y;

star_destruct_right: ∀ n m (x: X n n) (y: X m n), y · x ≤ y → y · x? ≤ y }.
End.

Figure 4. Classes for the typed algebraic structures.

to equals. (This field is declared with a special symbol (:>) and uses the standard Proper

class, which is exploited by Coq to perform rewriting with user-defined relations; doing so
adds dot_compat as a hint for typeclass resolution, so that we can automatically rewrite in
dot operands whenever it makes sense.) Also note that since this class does not mention
semi-lattice operations nor the star operation, it does not depend on SLo and Ko when we
close the section. We do not comment on the SemiLattice class, which is quite similar.

The first two fields of IdemSemiRing implement the expected inheritance relationship: an
idempotent semiring is composed of a monoid and a semi-lattice whose operations properly
distribute. By declaring these two fields with a :>, the corresponding projections are added
as hints to typeclass resolution, so that one can automatically use any theorem about
monoids or semi-lattices in the context of a semiring. Note that we have to use type
annotations for the two annihilation laws: in both cases, the argument n of 0 (zero) cannot
be inferred from the context, it has to be specified.

Finally, we obtain the class for Kleene algebras by inheriting from IdemSemiRing and
requiring the three laws about Kleene star to hold. The counterpart of star_make_left

and the fact that Kleene star is a proper morphism for equal are consequences of the
other axioms; this is why we do not include a star_compat or star_make_right field in the
signature: we prove these lemmas separately (and we declare the former as an instance for
typeclass resolution), this saves us from additional proofs when defining new models.

The following example illustrates the ease of use of this approach. Here is how we would
state and prove a lemma about idempotent semirings:

Goal forall ‘{IdemSemiRing} n (x y: X n n), x · (y + 1) + x == x · y + x.

Proof.

intros.

rewrite dot_distr_right, dot_neutral_right. (** (x · y + x) + x == x · y + x **)

rewrite ← plus_assoc, plus_idem.

reflexivity.

Qed.

The special ‘{IdemSemiRing} notation allows us to assume a generic idempotent semiring,
with all its parameters (a graph, monoid operations, and semi-lattice operations); when
we use lemmas like dot_distr_right or plus_assoc, typeclass resolution automatically finds
appropriate instances to fill their implicit arguments. Of course, since such simple and
boring goals occur frequently in larger and more interesting proofs, we actually defined
high-level tactics to solve them automatically. For example, we have a reflexive tactic
called semiring_reflexivity which would solve this goal directly: this is the counterpart to
ring [29] for the equational theory of typed, idempotent, non-commutative semirings.

Declaring new models. It remains to populate the above classes with concrete structures,
i.e., to declare models of Kleene algebra. We sketched the case of heterogeneous binary
relations and languages in Fig. 5; a user needing its own model of Kleene algebra just has
to declare it in the very same way. As expected, it suffices to define a graph equipped with
the various operations, and to prove that they validate all the axioms. The situation is
slightly peculiar for languages, which form an untyped model: although the instances are
parametrised by a set A coding for the alphabet, there is no notion of domain/co-domain of
a language. In fact, all operations are total, they actually lie in a one-object category where
domain and co-domain are trivial. Accordingly, we use the singleton type unit for the index
type T in the graph instance, and all operations just ignore the superfluous parameters.

2.3. Reification: handling typed models. We also need to define a syntactic model in
which to perform computations: since we define a reflexive tactic, the first step is to reify
the goal (an equality between two expressions in an arbitrary model) to use a syntactical
representation.

For instance, suppose that we have a goal of the form S · (R · S)? + f R == f R + (S · R)? · S,
where R and S are binary relations and f is an arbitrary function on relations. The usual
methodology in Coq consists in defining a syntax and an evaluation function such that this
goal can be converted into the following one:

eval (var 1 � (var 2 � var 1)~ ⊕ var 3) == eval (var 3 ⊕ (var 1 � var 2)~ � var 1),

Definition rel A B := A → B → Prop.

Instance rel_G: Graph := {
T := Type;

X := rel;

equal A B R S := ∀ i j, R i j ↔ S i j }.
Proof...

Instance rel_Mo: Monoid_Ops rel_G := {
dot A B C R S :=

fun (i: A)(j: C) ⇒ ∃ k: B, R i k ∧ S k j;

one A :=

fun (i j: A) ⇒ i=j }.
...

Instance rel_KA: KleeneAlgebra rel_G.

Proof...

Definition lang A := list A → Prop

Instance lang_G A: Graph := {
T := unit;

X _ _ := lang A;

equal _ _ L K := ∀ w, L w ↔ K w }.
Proof...

Instance lang_Mo A: Monoid_Ops (lang_G A) := {
dot _ _ _ L K :=

fun w ⇒ ∃ u v, w=u++v ∧ L u ∧ K v;

one _ :=

fun w ⇒ w=[] }.
...

Instance lang_KA: KleeneAlgebra lang_G.

Proof...

Figure 5. Instances for heterogeneous binary relations and languages.

Context ‘{KA: KleeneAlgebra}.
Variables src, tgt: label → T.

Inductive reified: T → T → Type :=

| r_dot: ∀ n m p,

reified n m → reified m p → reified n p

| r_one: ∀ n, reified n n

| ...

| r_var: ∀ i, reified (src i) (tgt i).

Variable env: forall i, X (src i) (tgt i).

Fixpoint eval n m (x: reified n m): X n m :=

match x with

| r_dot _ _ _ x y ⇒ eval x · eval y

| r_one _ ⇒ 1

| ...

| r_var i ⇒ env i

end.

Figure 6. Typed syntax for reification and evaluation function.

where ⊕ , � , and ~ are syntactic constructors, and where eval implicitly uses a reification
environment, which corresponds to the following assignment:

{1 7→ S; 2 7→ R; 3 7→ f R}.

Typed syntax. The situation is slightly more involved here since we work with typed models:
R might be a relation from a set A to another set B, S and f R being relations from B to A.
As a consequence, we have to keep track of domain/co-domain information when we define
the syntax and the reification environments. The corresponding definitions are given in
Fig. 6. We assume an arbitrary Kleene algebra (in the previous example, it would be
the algebra of heterogeneous binary relations) and two functions src and tgt associating a
domain and a co-domain to each variable (label is an alias for positive, the type of positive
numbers, which we use to index variables). The reified inductive type corresponds to the
typed reification syntax: it has dependently typed constructors for all operations of Kleene
algebras, and an additional constructor for variables, which is typed according to functions
src and tgt. To define the evaluation function, we furthermore assume an assignation env

from variables to elements of the Kleene algebra with domain and co-domain as specified
by src and tgt. Reifying a goal using this typed syntax is relatively easy: thanks to

Inductive regex: Set :=

| dot: regex → regex → regex

| plus: regex → regex → regex

| star: regex → regex

| one: regex

| zero: regex

| var: label → regex.

Inductive eq: regex → regex → Prop :=

| eq_trans: forall y x z, x== y → y== z → x== z

| plus_idem: forall x, eq (x + x) x

| plus_compat: Proper (eq ==> eq ==> eq) plus

| star_make_left: forall x, eq (1 + x? · x) (x?)

| ...

Instance re_G: Graph := {
T := unit;

X _ _ := regex;

equal _ _ := eq }.
Proof...

Instance re_Mo: Monoid_Ops re_G := {
dot _ _ _ := dot;

one _ := one }.

...

Instance re_KA: KleeneAlgebra re_G.

Proof...

Figure 7. Regular expressions, axiomatic equality, and corresponding instances.

the typeclass framework, it suffices to parse the goal, looking for typeclass projections to
detect operations of interest (recall for example that a starred sub-term is always of the
form @star _ _ _ _, regardless of the current model—this model is given in the first two
placeholders). At first, we implemented this step as a simple Ltac tactic. For efficiency
reasons, we finally moved to an OCaml implementation in a small plugin: this allows one
to use efficient data structures like hash-tables to compute the reification environment, and
to avoid type-checking the reified terms at each step of their construction.

Untyped regular expressions. To build a reflexive tactic using the above syntax, we need a
theorem of the following form (keeping the reification environment implicit for the sake of
readability):

Theorem f_correct: forall n m (x y: reified n m), f x y = true → eval x == eval y.

The function f is the decision procedure; it works on reified terms so that its type has to be
forall n m, reified n m → reified n m → bool. However, defining such a function directly
would be rather impractical: the standard algorithms underlying the decision procedure
are essentially untyped, and since these algorithms are rather involved, extending them to
take typed regular expressions into account would require a lot of work.

Instead, we work with standard, untyped, regular expressions, as defined by the induc-
tive type regex from Fig. 7. Equality of regular expressions is defined inductively, using the
rules from equational logic and the laws of Kleene algebra. By declaring the corresponding
instances, we get an untyped model (on the right-hand side of Fig. 8—like for languages,
we just ignore domain/co-domain information). This is the main model we shall work with
to implement the decision procedure and prove its correctness (Sect. 4): as announced in
Sect. 1.3, we will get:

Definition decide_kleene: regex → regex → bool := ...

Theorem Kozen94: forall x y: regex, decide_kleene x y = true ↔ x == y.

(Here the symbol == expands to the inductive equality predicate eq from Fig. 7.)

Fixpoint erase n m (x: reified n m): regex :=

match x with

| r_dot _ _ _ x y ⇒ erase x · erase y

| r_one _ ⇒ 1

| ...

| r_var i ⇒ var i

end.

Theorem erase_faithful:

forall n m (x y: reified n m),

erase x == erase y → eval x == eval y.

Proof...

Figure 8. Type erasing function and untyping theorem.

Untyping theorem. We still have to bridge the gap between this untyped decision procedure
(to be presented in Sect. 4) and the reification process we described for typed models. To
this end, we exploit a nice property of the equational theory of typed Kleene algebra: it
reduces to the equational theory of untyped Kleene algebra [48]. In other words, a typed
law holds in all typed Kleene algebras if and only if the underlying untyped law holds in all
Kleene algebras.

To state this result formally, it suffices to define the type-erasing function erase from
Fig. 8: this function recursively removes all type decorations of a typed regular expression
to get a plain regular expression. The corresponding “untyping theorem” is given on the
right-hand side: two typed expressions whose images under erase are equal in the model
of untyped regular expressions evaluate to equal values in any typed model, under any
variable assignation (again, the reification environment is left implicit here). By composing
this theorem with the correctness of the untyped decision procedure—the previous theorem
Kozen94, we get the following corollary, which allows us to get a reflexive tactic for typed
models even though the decision procedure is untyped.

Corollary dk_erase_correct: forall n m (x y: reified n m),

decide_kleene (erase x) (erase y) = true → eval x == eval y.

Proving the untyping theorem is non-trivial, it requires the definition of a proof fac-
torisation system; see [48] for a detailed proof and a theoretical study of other untyping
theorems. Also note that Kozen investigated a similar problem [39] and came up with a
slightly different solution: he solves the case of the Horn theory rather than the equational
theory, at the cost of working in a restrained form of Kleene algebras. He moreover relies
on model-theoretic arguments, while our considerations are purely proof-theoretic.

Finally note that as it is stated here, theorem erase_faithful requires the axiom
Eqdep.eq_rect_eq from Coq standard library. This comes from the inductive type reified

from Fig. 6, which has dependent parameters in an arbitrary type (more precisely, the field
T of an arbitrary graph G). We get rid of this axiom in the library at the price of an in-
direction: we actually make this inductive type depend on positive numbers and we use
an additional map to enumerate the elements of T that are actually used (since terms are
finite, there are only finitely many such elements in a given goal). Since the type of positive
numbers has decidable equality, we can eventually avoid using axiom Eqdep.eq_rect_eq [30].

2.4. More details on our approach. We conclude this section with additional remarks
on the advantages and drawbacks of our design choices; the reader may safely skip these
and move directly to Sect. 3.

Context {G: Graph} {Mo: Monoid_Ops G}
{SLo: SemiLattice_Ops G}
{Ko: Star_Op G}.

Instance G’: Graph := {
T := T;

X n m := X m n;

equal n m := equal m n;

equal_ n m := equal_ m n }.

Instance Mo’: Monoid_Ops G’ := {
dot n m p x y := @dot G Mo p m n y x;

one := @one G Mo }.

Instance SLo’: SemiLattice_Ops G’ := {
plus n m := @plus G SLo m n;

zero n m := @zero G SLo m n }.

Instance Ko’: Star_Op G’ := {
star := @star G Ko }.

Instance M’ {M: Monoid G}: Monoid G’ := {
dot_neutral_left n m :=

@dot_neutral_right G Mo M m n;

dot_neutral_right n m :=

@dot_neutral_left G Mo M m n;

dot_compat n m p x x’ Hx y y’ Hy :=

@dot_compat G Mo M p m n y y’ Hy x x’ Hx }.
Proof.

intros. symmetry. simpl. apply dot_assoc.

Qed.

...

Instance KA’ {KA: KleeneAlgebra G}:
KleeneAlgebra G’ := {

star_destruct_left n m :=

@star_destruct_right G Mo SLo Ko KA m n;

star_destruct_right n m :=

@star_destruct_left G Mo SLo KA m n }.
Proof...

Figure 9. Instances for the dual Kleene algebra.

2.4.1. Taking advantage of symmetry arguments. It is common practice in mathematics to
rely on symmetry arguments to avoid repeating the same proofs again and again. Surpris-
ingly, by carefully designing our classes and defining appropriate instances, we can also take
advantage of some symmetries present in Kleene algebra, in a formal and simple way.

The starting point is the following observation. Consider a typed Kleene algebra as
a category with additional structure on the homsets; by formally reversing all arrows, we
get a new typed Kleene algebra. Therefore, any statement that holds in all typed Kleene
algebra can be reversed, yielding another universally true statement. (This duality principle
is standard in category theory [45]; it is also used in lattice theory [21], where we can always
consider the dual lattice.)

In Coq, it suffices to define instances corresponding to this dual construction. These
instances are given in Fig. 9. The dual graph and operations are obtained by swapping
domains with co-domains; we get composition by furthermore reversing the order of the
arguments. Proving that these reversed operations satisfy the laws of a Kleene algebra is
relatively easy since almost all laws already come with their dual counterpart (we actually
wrote laws with some care to ensure that the dual operation precisely maps such laws to
their counterpart). The two exceptions are associativity of composition, which is in a sense
self-dual up to symmetry of equality, and star_make_left whose dual is a consequence of
the other axioms, so that it was not included in the signature of Kleene algebras— Fig. 4.
(Note that these instances are dangerous from the typeclass resolution point of view: they
introduce infinite paths in the proof search trees. Therefore, we do not export them and we
use them only on a case by case basis.)

With these instances defined, suppose that we have proved

Lemma iter_right ‘{KA: KleeneAlgebra}: ∀ n m x y (z: X n m), z · x ≤ y · z → z · x? ≤ y? · z.

By symmetry we immediately get

Lemma iter_left ‘{KA: KleeneAlgebra}: ∀ n m x y (z: X m n), x · z ≤ z · y → x? · z ≤ z · y?.

Proof iter_right (KA:=KA’).

Indeed, instantiating the Kleene algebra with its dual in lemma iter_right amounts to
swapping domains and co-domains in the type of variables (only z is altered since x and y

have square types) and reversing the order of all products. Doing so, we precisely get the
statement of lemma iter_left, up to conversion.

By combining the above two lemmas, we finally get the following one, which we actually
use in Sect. 4.4.

Lemma iter ‘{KA: KleeneAlgebra}: ∀ n m x y (z: X n m), x · z == z · y → x? · z == z · y?.

Proof...

2.4.2. Concrete structures. Our typeclass-based approach may become problematic when
dealing with concrete structures without using our notations in a systematic way. This
might be a drawback for potential end-users of the library. Indeed, suppose one wants
to use a concrete type rather than our uninformative projection X to quantify over some
relation R between natural numbers:

Check forall R: rel nat nat, R == R.

This term does not type-check since Coq is unable to unify rel nat nat (the declared type
for R) with @X _ _ _ (the type which is expected on both sides of a ==). A solution in this
case consists in declaring the instance rel_G from Fig. 5 as a “canonical structure”: doing
so precisely tells Coq to use rel_G when facing such a unification problem. (By the way,
this also tells Coq to use rel_G for unification problems of the form Type=β @T _, which is
required by the above example as well.)

Unfortunately, this trick does not play well with our peculiar representation of untyped
models, like languages or regular expressions (Fig. 5 and 7). Indeed, the dummy occurrences
of unit parameters prevent Coq from using the instance lang_G as a canonical structure.
Our solution in this case consists in using an appropriate notation to hide the corresponding
occurrences of X behind an informative name:

Notation language := (@X lang_G tt tt).

Notation regex := (@X re_G tt tt).

Check forall L: language, L? · L? == L?.

Also note that the ability to declare more general hints for unification [15] would certainly
help to solve this problem in a nicer way.

2.4.3. Separation between operations an laws. When defining the classes for the algebraic
structures, it might seem more natural to package operations together with their laws. For
example, we could merge the classes Monoid_Ops and Monoid from Fig. 3 and 4. There are
at least two reasons for keeping separate classes.

First, by separating operational contents from proof contents, we avoid the standard
problems due to the lack of proof irrelevance in Coq, and situations where typeclass reso-
lution might be ambiguous. Indeed, having two proofs asserting that some operations form
a semiring is generally harmless; however, if we pack operations with the proof that they

satisfy some laws, then two distinct proofs sometimes mean two different operations, which
becomes highly problematic. This would typically forbid the technique we presented above
to factorise some proofs by duality.

Second, this makes it possible to define other structures sharing the same operations
(and hence, notations), but not necessarily the same laws. We exploit this possibility, for
example, to define a class for Kleene algebra with converse using fewer laws: the good
properties of the converse operation provide more symmetries so that some laws become
redundant (we use this class to get shorter proofs for the instances from Fig. 5: the models
of binary relations and languages both have a converse operation).

This choice is not critical for the library in its current state, because we basically stop at
Kleene algebra. However, based on preliminary experiments, having this separation is cru-
cial when considering richer structures like residuated Kleene lattices [35] or allegories [24].

3. Matrices.

In this section, we describe our implementation of matrices, building on the previously
described framework. Matrices are indeed required to formalise Kozen’s initiality proof [38],
as explained in Sect. 1.2.

3.1. Which matrices to construct? Assume a graph G. There are at least three ways of
defining a new graph for matrices:

(1) Fix an object u ∈ T and use natural numbers (N) as objects: morphisms between n
and m are n×m matrices whose elements belong to the square homset X u u.

(2) Use pairs (u, n) ∈ T × N as objects: morphisms from (u, n) to (v,m) are n × m
matrices with elements in X u v.

(3) Use lists [u1, . . . , un] ∈ T? as objects: a morphism from [u1, . . . , un] to [v1, . . . , vm] is
an n×m matrix M such that Mi,j belongs to X ui vj.

The third option is the most theoretically appealing one: this is the most general construc-
tion. Although we can actually build a typed Kleene algebra of matrices in this way, this
requires dealing with a lot of dependent types, which can be tricky. The second option is
also rather natural from the mathematical point of view and it does not impose a strongly
dependent typing discipline.

However, while formalising the second or the third option is interesting per se, to get
new models of typed Kleene algebras, the first construction actually suffices for Kozen’s
initiality proof. Indeed, this proof only requires matrices over regular expressions and
languages. Since these two models are untyped (their type T for objects is just unit), the
three possibilities coincide (we can take tt for the fixed object u without loss of generality).
In the end, we chose the first option, because it is the simplest one.

3.2. Coq representation for matrices. According to the previous discussion, we assume
a graph G: Graph and an object u: T. We furthermore abbreviate the type X u u as X: this is
the type of the elements—sometimes called scalars.

Context {SLo: SemiLattice_Ops G}.
Fixpoint sum i k (f: nat → X) :=

match k with

| O ⇒ O

| S k ⇒ f i + sum (S i) k f

end.

Context {Mo: Monoid_Ops G}.
Definition mx_dot n m p (M: MX n m) (N: MX m p) :=

fun i j ⇒ sum O m (fun k ⇒ M i k · N k j).

Definition mx_one n: MX n n :=

fun i j ⇒ if eq_nat_bool i j then 1 else 0.

Figure 10. Definition of matricial product and identity matrix.

Dependently typed representation. A matrix can be seen as a partial map from pairs of
integers to X, so that the Coq type for matrices could be defined as follows:

Definition MX (n m: nat) := forall i j, i<n → j<m → X.

Definition mx_equal n m (M N: MX n m) i j (Hi: i<n) (Hj: j<m) := M i j Hi Hj == N i j Hi Hj.

This corresponds to the dependent types approach: a matrix is a map to X from two integers
and two proofs that these integers are lower than the bounds of the matrix. Except for the
concrete representation, this is the approach followed in [5, 25, 7]. With such a type, every
access to a matrix element is made by exhibiting two proofs, to ensure that indices lie
within the bounds. This is not problematic for simple operations like the function mx_plus

below: it suffices to pass the proofs around; this however requires more boilerplate for other
functions, like block decomposition operations.

Context {SLo: SemiLattice_Ops G}.
Definition mx_plus n m (M N: MX n m) i j (Hi: i<n) (Hj: j<m) := M i j Hi Hj + N i j Hi Hj.

Infinite functions. We actually adopt another strategy: we move bounds checks to equality
proofs, by working with the following definitions:

Definition MX n m := nat → nat → X.

Definition mx_equal n m (M N: MX n m) := forall i j, i<n → j<m → M i j == N i j.

Here, a matrix is an infinite function from pairs of integers to X, only equality is restricted
to the actual domain of the matrix. With these definitions, we do not need to manipulate
proofs when defining matrix operations, so that subsequent definitions are easier to write.
For instance, the functions for matrix multiplication and block manipulations are given
in Fig. 10 and Fig. 11. For multiplication, we use a very naive function to compute the
appropriate sum: there is no need to provide an explicit proof that each call to the functional
argument is performed within the bounds.

Similarly, the mx_sub function, for extracting a sub-matrix, has a very liberal type: it
takes an arbitrary p× q matrix M , it returns an arbitrary n×m matrix, and this matrix is
obtained by reading M from an arbitrary position (x, y). This function is then instantiated
with more sensible arguments to get the four functions corresponding to the decomposition
of an (x+ n)× (y +m) matrix into four blocks. The converse function, to define a matrix
by blocks, is named mx_blocks.

Bounds checks are required a posteriori only, when proving properties about these ma-
trix operations, e.g., that multiplication is associative or that the four sub-matrix functions
preserve matricial equality. This is generally straightforward: these proofs are done within
the interactive proof mode, so that bound checks can be proved with high-level tactics like

Definition mx_sub p q x y n m

(M: MX p q): MX n m :=

fun i j ⇒ M (x + i) (y + j).

Variables x y n m: nat.

Definition mx_sub00 := mx_sub (x+n) (y+m) 0 0 x y.

Definition mx_sub01 := mx_sub (x+n) (y+m) 0 y x m.

Definition mx_sub10 := mx_sub (x+n) (y+m) x 0 n y.

Definition mx_sub11 := mx_sub (x+n) (y+m) x y n m.

Definition mx_blocks x y n m

(M: MX x y) (N: MX x m)

(P: MX n y) (Q: MX n m): MX (x+n) (y+m)

:= fun i j ⇒ match S i−x, S j−y with

| O, O ⇒ M i j

| O, S j ⇒ N i j

| S i, O ⇒ P i j

| S i, S j ⇒ Q i j

end.

Figure 11. Definition of sub-matrix extraction and block matrix construction.

omega. (Note that a similar behaviour could also be achieved with a dependently typed defi-
nition of matrices by using Coq’s Program feature. We prefer our approach for its simplicity:
Program tends to generate large terms which are not so easy to work with.)

The correctness proof of our algorithm heavily relies on matricial reasoning (Sect. 4),
and in particular block matrix decomposition (Sect. 3.3 and 4.2). Despite this fact, we have
not found major drawbacks to this approach yet. We actually believe that it would scale
smoothly to even more intensive usages of matrices like, e.g., linear algebra [27].

Phantom types. Unfortunately, these non-dependent definitions allow one to type the fol-
lowing code, where the three additional arguments of dot are implicit:

Definition ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.

This definition is accepted thanks to the conversion rule: the dependent type MX n m does
not mention n nor m in its body, so that these arguments can be discarded by the type system
(we actually have MX n 16 = MX n 64). While such an ill-formed definition will be detected
at proof-time; it is a bit sad to loose the advantages of a strongly typed programming
language here. We solved this problem at the cost of some syntactic sugar, by resorting to
an inductive singleton definition, reifying bounds in phantom types:

Inductive MX (n m: nat) := box: (nat → nat → X) → MX n m.

Definition get n m (M: MX n m) := match M with box f ⇒ f end.

Definition mx_plus n m (M N: MX n m) := box n m (fun i j ⇒ get M i j + get N i j).

Coq no longer equates types MX n 16 and MX n 64 with this definition, so that the above
ill_dot function is rejected, and we can trust inferred implicit arguments (e.g., the m argu-
ment of dot).

Computation. Although we do not use matrices for computations in this work, we also
advocate this lightweight representation from the efficiency point of view. First, using non-
dependent types is more efficient: not a single boundary proof gets evaluated in matrix
computations. Second, using functions to represent matrices allows for fine-grain optimi-
sation: it gives a lazy evaluation strategy by default, which can be efficient if the matrix
resulting of a computation is seldom used, but we can also enforce a call-by-value behaviour
for some expressions, to avoid repeating numerous calls to a given expensive computation.

Indeed, we can define a memoisation operator that computes all elements of a given ma-
trix, stores the results in a map, and returns the closure that looks up in the map rather
than recomputing the result. The map can be implemented using lists or binary trees, for
example. In any case, we can then prove this memoisation operator to be an identity so
that it can be inserted in matrix computations in a transparent way, at judicious places.

Definition mx_force n m (M: MX n m): MX n m :=

let l := mx_to_maps M in box n m (fun i j ⇒ mget i (mget j l)).

Lemma mx_force_id : forall n m (M : MX n m), mx_force M == M.

3.3. Taking the star of a matrix. As expected, we declare the previous operations on
matrices (e.g., Fig. 10) as new instances, so that we can directly use notations, lemmas, and
tactics with matrices. The type of these instances are given below:

Instance mx_G: Graph := { T := nat; X := MX; equal := mx_equal }.

Instance mx_SLo: SemiLattice_Ops G → SemiLattice_Ops mx_G.

Instance mx_Mo: SemiLattice_Ops G → Monoid_Ops G → Monoid_Ops mx_G.

Instance mx_Ko: SemiLattice_Ops G → Monoid_Ops G → Star_Op G → Star_Op mx_G.

Instance mx_SL: ‘{SemiLattice G} → SemiLattice mx_G.

Instance mx_ISR: ‘{IdemSemiRing G} → IdemSemiRing mx_G.

Instance mx_KA: ‘{KleeneAlgebra G} → KleeneAlgebra mx_G.

To obtain the fourth and last instances, we have to define a star operation on matrices, and
show that it satisfies the laws for Kleene star. We conclude this section about matrices by
a brief description of this construction—see [38] for a detailed proof.

The idea is to proceed by induction on the size of the matrix: the problem is trivial if
the matrix is empty or of size 1 × 1; otherwise, we decompose the matrix into four blocks
and we recurse as follows [1]:[
A B
C D

]?
=

[
A′ A′ ·B ·D′

D′ · C ·A′ D′ +D′ · C ·A′ ·B ·D′

]
where

{
D′ = D?,

A′ = (A+B ·D′ · C)?
(†)

This definition may look mysterious; the special case where C is zero might be more intuitive:[
A B
0 D

]?
=

[
A? A? ·B ·D?

0 D?

]
. (‡)

As long as we take square matrices for A and D, the way we decompose the matrix does not
matter (we actually have to prove it). In practice, since we work with Coq natural numbers
(nat), we choose A of size 1× 1: this allows recursion to go smoothly (if we were interested
in efficient matrix computations, it would be better to half the matrix size).

The corresponding code is given in Fig. 12. We first define an auxiliary function,
mx_star’, which follows the above definition by blocks (†), assuming two functions to perform
the recursive calls (i.e., to compute A′ and D′). The function mx_star_11 computes the star
of a 1 × 1 matrix by using the star operation on the underlying element. Using these
two functions, we get the final mx_star function as a simple fixpoint. The proof that this
operation satisfies the laws of Kleene algebras is complicated [38]; note that by making
explicit the general block definition with the auxiliary function mx_star’, we can easily state
theorem mx_star_block: equation (†) holds for each possible decomposition of the matrix.

Definition mx_star’ x n

(sx: MX x x → MX x x)

(sn: MX n n → MX n n)

(M: MX (x+n) (x+n)): MX (x+n) (x+n) :=

let A := mx_sub00 M in

let B := mx_sub01 M in

let C := mx_sub10 M in

let D := mx_sub11 M in

let D’ := sn D in

let A’ := sx (A + B · D’ · C) in

mx_blocks

A’ (A’ · B · D’)

(D’ · C · A’) (D’ + D’ · C · A’ · B · D’).

Definition mx_star_11 (M: MX 1 1): MX 1 1 :=

fun _ _ ⇒ (M O O)?.

Fixpoint mx_star n: MX n n → MX n n :=

match n with

| O ⇒ fun M ⇒ M

| S n ⇒ mx_star’ mx_star_11 (mx_star n)

end.

Theorem mx_star_block x n (M: MX (x+n) (x+n)):

mx_star (x+n) M ==

mx_star’ (mx_star x) (mx_star n) M.

Proof...

Figure 12. Definition of the star operation on matrices.

4. The algorithm and its proof

We now focus on the heart of our tactic: the decision procedure and the corresponding
correctness proof. The algorithm we chose to implement to decide whether two regular
expressions denote the same language can be decomposed into five steps:

(1) normalise both expressions to turn them into “strict star form”;
(2) build non-deterministic finite automata with epsilon-transitions (ε-NFA);
(3) remove epsilon-transitions to get non-deterministic finite automata (NFA);
(4) determinise the automata to obtain deterministic finite automata (DFA);
(5) check that the two DFAs are equivalent.

The fourth step can produce automata of exponential size. Therefore, we have to carefully
select our construction algorithm, so that it produces rather small automata. More gener-
ally, we have to take a particular care about efficiency; this drives our choices about both
data structures and algorithms.

The Coq types we used to represent finite automata are given in Fig. 13; we use modules
only for handling the name-space; the type regex is that from Fig. 7 (Sect. 2.3), label and
state are aliases for the type of numbers. The first record type, MAUT.t, corresponds to the
matricial representation of automata; it is rather high-level but computationally inefficient
(MX n m is the type of n×m matrices over regex—Sect. 3). We only use this type in proofs,
through the evaluation function MAUT.eval (the function mx_to_scal casts a 1 × 1 matrix
into a regular expression). The three other types are efficient representations for the three
kinds of automata we mentioned above; fields size and labels respectively code for the
number of states and labels, the other fields are self-explanatory. In each case, we define
a translation function to matricial automata, to_MAUT, so that each kind of automata can
eventually be evaluated into a regular expression.

The overall structure of the correctness proof is depicted in Fig. 14. Datatypes are
recalled on the left-hand side; the outer part of the right-hand side corresponds to compu-
tations: starting from two regular expressions x and y, two DFAs A3 and B3 are constructed

Module MAUT.

Record t := mk {
size: nat;

initial: MX 1 size;

delta: MX size size;

final: MX size 1 }.
Definition eval(A: t): regex :=

mx_to_scal (initial A · delta A? · final A).

End MAUT.

Module NFA.

Record t := mk {
size: state;

labels: label;

delta: label → state → stateset;

initial: stateset;

final: stateset }.
Definition to_MAUT(A: t): MAUT.t := ...

Definition eval := MAUT.eval ◦ to_MAUT.

End NFA.

Module eNFA.

Record t := mk {
size: state;

labels: label;

epsilon: state → stateset;

delta: label → state → stateset;

initial: state;

final: state }.
Definition to_MAUT(A: t): MAUT.t := ...

Definition eval := MAUT.eval ◦ to_MAUT.

End eNFA.

Module DFA.

Record t := mk {
size: state;

labels: label;

delta: label → state → state;

initial: state;

final: stateset }.
Definition to_MAUT(A: t): MAUT.t := ...

Definition eval := MAUT.eval ◦ to_MAUT.

End DFA.

Figure 13. Coq types and evaluation functions for the four automata representations.

and tested for equivalence. The proof corresponds to the inner equalities (==): each au-
tomata construction preserves the semantics of the initial regular expressions, two DFAs
evaluate to equal values when they are declared equivalent by the corresponding algorithm.

In the following sections, we give more details about each step of the decision procedure,
together with a sketch of our correctness proof (although we work with different algorithms,
this proof is largely based on Kozen’s one [38]).

4.1. Normalisation, strict star form. There exists no complete rewriting system to de-
cide equations of Kleene algebra (their equational theory is not finitely based [50]); this is
why one usually goes through finite automata constructions. One can still use rewriting
techniques to simplify the regular expressions before going into these expensive construc-
tions. By doing so, one can reduce the size of the generated automata, and hence, the time
needed to check for their equivalence.

For example, a possibility consists in normalising expressions with respect to the fol-
lowing convergent rewriting system. (Although we actually implemented this trivial opti-
misation, we will not discuss it here.)

x · 0→ 0 0 · x→ 0 x+ 0→ x 0 + x→ x

x · 1→ x 1 · x→ x 0? → 1

regex

1. Normalisation

��

x_

��

y
_

��
regex

2. Construction

��

x′_

��

y′
_

��
eNFA.t

3. Epsilon removal

��

A1_

��

� eval // · · B1
�evaloo

_

��
NFA.t

4. Determinisation

��

A2_

��

� eval // · · B2
�evaloo

_

��
DFA.t A3

� eval // · · B3
�evaloo

5. Equivalence check

Figure 14. Overall picture for the algorithm and its correctness.

Among other laws one might want to exploit in a preliminary normalisation step, there are
the following ones:

1? → 1 x?? → x? .

More generally, any star expression x? where x accepts the empty word can be simplified
using the simple syntactic procedure proposed by Brüggemann-Klein [12]. For example, this
procedure reduces the expression on the left-hand side below to the one on the right-hand
side, which is in strict star form: all occurrences of the star operation act on strict regular
expressions, regular expressions that do not accept the empty word.

((a+ 1) · ((b+ 1)? · c+ d?))? → (a+ b? · c+ d)? .

In Coq, this procedure translates into a simple fixpoint whose correctness relies on the
following laws:

(x+ 1)? = x?

(x+ y?)? = (x+ y)?

(x · y)? = (x+ y)? (if x and y accept the empty word)

Fixpoint ssf: regex → regex := ...

Theorem ssf_correct: forall x, ssf x == x.

The above theorem corresponds to the first step of the overall proof, as depicted in Fig. 14.
As we shall explain in Sect. 4.3, working with expressions in strict star form also allows
us to get a simpler and more efficient algorithm to remove epsilon transitions. This means
that we also proved the ssf function complete, i.e., that it always produces expressions in
strict star form:

i
∅/ε/a

// f

i

y

x

f

i x p y f

i ε
// p

ε
//

x

f

Fixpoint build x i f A :=

match x with

| zero ⇒ A

| one ⇒ add_one i f A

| var a ⇒ add_var a i f A

| plus x y ⇒ build x i f (build y i f A)

| dot x y ⇒
let (p,A) := incr A in

build x i p (build y p f A)

| star x ⇒
let (p,A) := incr A in

add_one i p (build x p p (add_one p f A))

end.

Figure 15. Construction algorithm—a variant of Ilie and Yu’s construction.

Inductive strict_star_form: regex → Prop := ...

Theorem ssf_complete: forall x, strict_star_form (ssf x).

One could also normalise expressions modulo idempotence of +, to avoid replications in
the generated automata. This in turn requires normalising terms modulo associativity and
commutativity of +, and associativity of ·, so that terms like ((a+b) ·c) ·d+(b+a) ·(c ·d) can
be reduced modulo idempotence. Such a phase can easily be implemented, but it results
in a slower procedure in practice (normalisation requires quadratic time and non-trivial
instances of the idempotence law do not appear so frequently). We do not include this step
in the current release.

4.2. Construction. There are several ways of constructing an ε-NFA from a regular ex-
pression. At first, we implemented Thompson’s construction [56], for its simplicity; we
finally switched to a variant of Ilie and Yu’s construction [34], which produces smaller au-
tomata. This algorithm constructs an automaton with a single initial state and a single
accepting state (respectively denoted by i and f); it proceeds by structural induction on
the given regular expression. The corresponding steps are depicted on the left-hand side of
Fig. 15; the first drawing corresponds to the base cases (zero, one, variable); the second one
is union (plus): we recursively build the two sub-automata between i and f ; the third one
is concatenation: we introduce a new state, p, build the first sub-automaton between i and
p, and the second one between p and f ; the last one is for iteration (star): we build the
sub-automata between a new state p and p itself, and we link i, p, and f with two epsilon-
transitions. The corresponding Coq code is given on the right-hand side. To avoid costly
union operations, we actually use an accumulator (A) to which we recursively add states
and transitions (the functions add_one and add_var respectively add epsilon and labelled
transitions to the accumulator—the function incr adds a new state to the accumulator and
returns this state together with the extended accumulator).

We actually implemented this algorithm twice, by using two distinct datatypes for the
accumulator: first, with a high-level matricial representation; then with efficient maps for
storing epsilon and labelled transitions. Doing so allows us to separate the correctness

Module pre_MAUT.

Record t := mk {
size: nat;

delta: MX size size }.

Definition to_MAUT i f A := MAUT.mk

(mx_point 0 i 1) (delta A) (mx_point f 0 1).

Definition eval i f := MAUT.eval ◦ (to_MAUT i f)

Definition add (x: regex) i f A :=

mk _ (delta A + mx_point i f x)

Definition add_one := add 1.

Definition add_var a := add (var a).

Definition incr A := let mk n M := A in

(n, mk (n + 1) (mx_blocks M 0 0 0)).

Fixpoint build x i f A := (* Fig. 15 *).

Definition empty := mk 2 0.

Definition regex_to_MAUT x :=

to_MAUT 0 1 (build x 0 1 empty).

End pre_MAUT.

Module pre_eNFA.

Record t := mk {
size: state;

labels: label;

epsmap: statemap stateset;

deltamap: statelabelmap stateset }.

Definition to_eNFA i f A := ...

Definition add_one i f A := ...

Definition add_var a i f A := ...

Definition incr A := ...

Fixpoint build x := (* Fig. 15 *).

Definition empty := mk 2 0 [] [].

Definition regex_to_eNFA x :=

to_eNFA 0 1 (build x 0 1 empty).

End pre_eNFA.

Figure 16. The two modules for the construction algorithm.

proof into an algebraic part, which we can do with the high-level representation, and an
implementation-dependent part consisting in showing that the two versions are equivalent.

These two versions correspond to the modules given in Fig. 16. Basically, we have the
record types MAUT.t and eNFA.t from Fig. 13, without the fields for initial and final states.
(The other difference being that we use maps rather than functions on the the efficient
side—pre_eNFA.) On the high-level side—pre_MAUT, we use generic matricial constructions:
adding a transition to the automaton consists in performing an addition with the matrix
containing only that transition (mx_point i f x is the matrix with x at position (i,f) and
zeros everywhere else); adding a state to the automaton consists in adding a empty row
and a empty column to the matrix, thanks to the mx_blocks function (defined in Fig. 11).
We did not include the corresponding details for the low-level representation: they are
slightly verbose and they can easily be deduced. Notice that pre_NFA does not include a
generic add function: while the matricial representation allows us to label transitions with
arbitrary regular expressions, the efficient representation statically ensures that transitions
are labelled either with epsilon or with a variable (a letter of the alphabet).

The final construction functions, from regex to MAUT.t or eNFA.t, are obtained by calling
build between the two states 0 and 1 of an empty accumulator (note that the occurrence
of 0 in the definition of pre_MAUT.empty denotes the empty (2, 2)-matrix).

Since the two versions of the algorithm only differ by their underlying data structures,
proving that they are equivalent is routine ([=] denotes matricial automata equality):

Lemma constructions_equiv: forall x, regex_to_MAUT x [=] eNFA.to_MAUT (regex_to_eNFA x).

Let us now focus on the algebraic part of the proof. We have to show:

Theorem construction_correct: forall x, MAUT.eval (regex_to_MAUT x) == x.

The key lemma is the following one: calling build x i f A to insert an automaton for
the regular expression x between the states i and f of A is equivalent to inserting directly
a transition with label x (recall that transitions can be labelled with arbitrary regular
expressions in matricial automata); moreover, this holds whatever the initial and final
states s and t we choose for evaluating the automaton.

Lemma build_correct: forall x i f s t A,

i<size A → f<size A → s<size A → t<size A →
eval s t (build x i f A) == eval s t (add x i f A).

As expected, we proceed by structural induction on the regular expression x. As an example
of the involved algebraic reasoning, the following property of star w.r.t. block matrices is
used twice in the proof of the above lemma: with (x, y, z) = (e, 0, f), it gives the case of
a concatenation (e · f); with (x, y, z) = (1, e, 1) it yields iteration (e?). This laws follows
from the general characterisation of the star operation on block matrices (Equation (†) in
Sect. 3.3). In both cases, the line and the column that are added on the left-hand side
correspond to the state (p) generated by the construction.

[
u 0

]
·

... 0

· · · Mi,f · · · x
... 0

0 z 0 y

?

·

 v

0

 = u ·

...

· · · Mi,f + x · y? · z · · ·
...

?

· v

In the special case where A is the empty accumulator, lemma build_correct gives:

MAUT.eval (regex_to_MAUT x) == eval 0 1 (build x 0 1 empty)

== eval 0 1 (add x 0 1 empty)

==
[

1 0
]
·
[

0 x
0 0

]?
·
[

0
1

]
==

[
1 0

]
·
[

1 x
0 1

]
·
[

0
1

]
== x

i.e., theorem construction_correct.
Finally, by combining the equivalence of the two algorithms (lemma constructions_equiv)
and the correctness of the high-level one (theorem construction_correct), we obtain the
correctness of the efficient construction algorithm. In other words, we can fill the two
triangles corresponding to the second step in Fig. 14:

Theorem construction_correct’: forall x, eNFA.eval (regex_to_eNFA x) == x.

4.3. Epsilon transitions removal. The automata obtained with the above construction
contain epsilon-transitions: each starred sub-expression produces two epsilon-transitions,
and each occurrence of 1 gives one epsilon-transition. Indeed, their transitions matrices are
of the form M = J +N with N =

∑
a a ·Na, where J and the Na are 0-1 matrices. These

matrices just correspond to the graphs of epsilon and labelled transitions.

((a+ 1) · ((b+ 1)? · c+ d?))? (a+ b? · c+ d)?

·

b,ε

��
ε

��
·

ε 11

ε

��

·

c
ss

· dcc
ε��// · ε
// ·

a,ε

NN

ε
// }

·b
ε

'' ·

c
tt// · ε
// ·

ε

JJ

a,d

ZZ ε
// }

Figure 17. Running the construction algorithm on an expression and its strict star form.

Removing epsilon-transitions can be done at the algebraic level using the following law:

(x+ y)? = x? · (y · x?)? ,

from which we get

u · (J +N)? · v = u · J? · (N · J?)? · v ,

so that the automata 〈u,M, v〉 and 〈u · J?, N · J?, v〉 are equivalent. We can moreover
notice that the latter automaton no longer contains epsilon-transitions: this is a NFA (the
transition matrix, N ·J?, can be written as

∑
a a·Na ·J?, where the Na ·J? are 0-1 matrices).

This algebraic proof is not surprising: looking at 0-1 matrices as binary relations be-
tween states, J? actually corresponds to the reflexive-transitive closure of J .

Although this is how we prove the correctness of this step, computing J? algebraically
is inefficient: we have to implement a proper transitive closure algorithm for the low-
level representation of automata. We actually rely on a property of the construction from
Sect. 4.2: when given regular expressions in strict star form (Sect. 4.1), the produced ε-
NFAs have acyclic epsilon-transitions. Intuitively, the only possibility for introducing an
epsilon-cycle in the construction from Sect. 4.2 comes from star expressions. Therefore, by
forbidding the empty word to appear in such cases, we prevent the formation of epsilon-
cycles.

Consider for example Fig. 17, where we have executed the construction algorithm of
Fig. 15 on two regular expressions (these are the expressions from Sect. 4.1—the right-hand
side expression is the strict star form of the left-hand side one). There are two epsilon-
loops in the left hand-side automaton, corresponding to the two occurrences of star that
are applied to non-strict expressions ((b+ 1)? and the whole term). On the contrary, in the
automaton generated from the strict star form—the second regular expression, the states
belonging to these loops are merged and the corresponding transitions are absent: the
epsilon-transitions form a directed acyclic graph (here, a tree).

This acyclicity property allows us to use a very simple algorithm to compute the tran-
sitive closure. With respect to standard algorithms for the general (cyclic) case, this algo-
rithm is easier to implement in Coq, slightly more efficient, and simpler to certify. More
concretely, we need to prove that the construction algorithm returns ε-NFAs whose reversed
epsilon-transitions are well-founded, when given expressions in strict star form:

Definition eNFA_well_founded A :=

well_founded (fun i j ⇒ In i (eNFA.epsilon A j)).

Theorem construction_wf: forall x,

strict_star_form x → eNFA_well_founded (regex_to_eNFA x).

(Note that this proof is non-trivial.) Our function to convert ε-NFAs into NFAs takes such
a well-founded proof as an argument, and uses it to compute the reflexive-transitive closure
of epsilon-transitions:

Definition eNFA_to_NFA (A: eNFA.t): eNFA_well_founded A → NFA.t := ...

This step is easy to implement since we can proceed by well-founded induction. In particular,
there is no need to bound the recursion level with the number of states, to keep track of
the states whose transitive closure is being computed to avoid infinite loops, or to prove
that a function defined in this way terminates. Note that we still use memoisation, to take
advantage of the sharing offered by the directed acyclic graph structure. Also note that
since this function hasto be executed efficiently, we use a standard Coq trick by Bruno
Barras to avoid the evaluation of the well-foundness proof: we guard this proof with a large
amount of constructors so that the actual proof is never reached in practice.

We finally prove that the previous function returns an automaton whose translation
into a matricial automaton is exactly 〈u · J?, N · J?, v〉, so that the above algebraic proof
applies. This closes the third step in Fig. 14.

Theorem epsilon_correct: forall A (HA: eNFA_well_founded A),

NFA.eval (eNFA_to_NFA A HA) == eNFA.eval A.

Comparison with Ilie and Yu’s construction. Let us make a digression here to compare our
construction algorithm with the one proposed by Ilie and Yu [34, Algorithm 4, p. 144]. The
steps of the recursive procedure, as presented in Fig. 15, are exactly the same; the only
difference is that they refine the automaton by merging some states and removing useless
transitions:

(a) the state introduced in the dot case is removed when it is preceded or followed by a
single epsilon-transition;

(b) epsilon-cycles introduced in the star case are merged into a single state;
(c) if at the end of the algorithm, the initial state only has one outgoing epsilon-transition,

the initial state is shifted along this transition;
(d) duplicated transitions are merged into a single one.

·

b

��

c
��// ·

ε

DD

a,d

ZZ ε
// }

For instance, running Ilie and Yu’s construction on the right-hand side ex-
pression of Fig. 17 yields the automaton on the right. This automaton
is actually smaller than the one we generate: two states and two epsilon-
transitions are removed using (a) and (c). Moreover, thanks to optimi-
sation (b), Ilie and Yu also get this automaton when starting from the
left-hand side expression, although this expression is not in strict star form.

We did not implement (a) for two reasons: first, this optimisation is not so simple to code
efficiently (we need to be able to merge states and to detect that only one epsilon transition
reaches a given state), second, it was technically involved to prove its correctness at the
algebraic level (recall that we need to motivate each step by some matricial reasoning).
Similarly, although step (c) is easy to implement, proving its correctness would require
substantial additional work. On the contrary, our presentation of the algorithm directly
enforces (d): the data structures we use systematically merge duplicate transitions.

The remaining optimisation is (b), which would be even harder to implement and to
prove correct than (a). Fortunately, by working with expressions in strict star form, the
need for this optimisation vanishes: epsilon-cycles cannot appear. In the end, although we
implement (b) by putting expressions in strict star form first, the only difference with Ilie
and Yu’s construction is that we do not perform steps (a) and (c).

4.4. Determinisation. Starting from a NFA 〈u,M, v〉 with n states, the determinisation
algorithm consists in a standard depth-first enumeration of the subsets that are accessible

from the set of initial states. It returns a DFA 〈û, M̂ , v̂〉 with n̂ states, together with a
injective map ρ from [1..n̂] to subsets of [1..n]. We sketch the algebraic part of the correctness

proof. Let X be the rectangular (n̂, n) 0-1 matrix defined by Xsj , j ∈ ρ(s); the intuition
is that X is a “decoding” matrix: it sends states of the DFA to the characteristic vectors
of the corresponding subsets of the NFA. By a precise analysis of the algorithm, we prove
that the following commutation properties hold:

M̂ ·X = X ·M (1) û ·X = u (2) v̂ = X · v (3)

Equation (1) can be read as follows: executing a transition in the DFA and then decoding
the result is equivalent to decoding the starting state and executing parallel transitions
in the NFA. Similarly, (2) states that the initial state of the DFA corresponds to the set
of initial states of the NFA, and (3) assesses that the final states of the DFA are those
containing at least one accepting state of the NFA.

From (1), we deduce that M̂
?
·X = X ·M? using the lemma iter from Sect. 2.4.1; we

conclude with (2, 3):

û · M̂
?
· v̂ = û · M̂

?
·X · v = û ·X ·M? · v = u ·M? · v .

The DFA evaluates like the starting NFA: we can fill the two squares corresponding to the
fourth step in Fig. 14.

Let us mention a Coq-specific technical difficulty in the concrete implementation of this
algorithm. The problem comes from termination: even though it theoretically suffices to
execute the main loop at most 2n times (there are 2n subsets of [1..n]), we cannot use this
bound directly in practice. Indeed, NFAs with 500 states frequently result in DFAs of about
a thousand states, which we should be able to compute easily. However, using the number
2n to bound the recursion depth in Coq requires to compute this number before entering
the recursive function. For n = 500 this is obviously out of reach (this number has to be in
unary format—nat—since it is used to ensure structural recursion).

We have tried to use well-founded recursion, which was rather inconvenient: this re-
quires mixing some non-trivial proofs with the code. We currently use the following “pseudo-
fixpoint operators”, defined in continuation passing style:

Variables A B: Type.

Fixpoint linearfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=

match n with O ⇒ k a | S n ⇒ f (linearfix n f k) a end.

Fixpoint powerfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=

match n with O ⇒ k a | S n ⇒ f (powerfix n f (powerfix n f k)) a end.

Intuitively, linearfix n f k lazily approximates a potential fixpoint of the functional f:
if a fixpoint is not reached after n iterations, it uses k to escape. The powerfix operator
behaves similarly, except that it escapes after 2n − 1 iterations: we prove that powerfix n

// x
a //

1

y
a **

2

z
a

jj

3

// u
a
// v

a **
w

a
jj

// x
a,b //

1

y
a,b //

2

z a,bii

3

4

v
a,b
++
w

a,b

jj

// u
a

99

b

;;

Figure 18. Checking for DFA equivalence (Hopcroft and Karp).

f k a is equal to linearfix (2n − 1) f k a. Thanks to these operators, we can write the
code to be executed using powerfix, while keeping the ability to reason about the simpler
code obtained with a naive structural iteration over 2n: both versions of the code are easily
proved equivalent, using the intermediate linearfix characterisation.

4.5. Equivalence checking. Two DFAs are equivalent if and only if their respective min-
imised DFAs are equal up-to isomorphism. Therefore, computing the minimised DFAs and
exploring all state permutations is sufficient to obtain decidability.

However, there is a more direct and efficient approach that does not require minimisa-
tion: one can use the almost linear algorithm by Hopcroft and Karp [33, 1]. This algorithm
proceeds as follow: starting from two DFAs 〈u1,M1, v1〉 and 〈u2,M2, v2〉, it first computes
the disjoint union automaton 〈u,M, v〉, defined by

u =
[
u1 u2

]
M =

[
M1 0
0 M2

]
v =

[
v1
v2

]
.

It then checks that the former initial states are equivalent by coinduction. Intuitively, two
states are equivalent if they can match each other’s transitions to reach equivalent states,
with the constraint that no accepting state can be equivalent to a non-accepting one.

Let us execute this algorithm on the simple example given on the left-hand side of
Fig. 18. We start with the pair of states (x, u); these two states are non-accepting so that
we can declare them equivalent a priori. We then have to check that they can match
each other’s transitions, i.e., that y and v are equivalent. Both states are accepting, we
declare them equivalent, and we move to the pair (z, w) (according to the transitions of the
automata). Again, since these two states are non-accepting, we declare them equivalent
and we follow their transitions. This brings us back to the pair (y, v). Since this pair was
already encountered, we can stop: the two automata are equivalent, they recognise the same
language. The algorithm always terminates: there are finitely many pairs of states, and
each pair is visited at most once.

This presentation of the algorithm makes it quadratic in worst case. Almost linear
time complexity is obtained by recording a set of equivalence classes rather than the set of
visited pairs. To illustrate this idea, consider the example on the right-hand side of Fig. 18:
starting from the pair (x, u) and following transitions along a, we reach a situation where
the pairs (x, u), (y, v), (z, w), and (z, v) have been declared as equivalent and where we
still need to check transitions along b. All of them result in already declared pairs, except

the initial one (x, u), which yields (y, w). Although this pair was not visited, it belongs to
the equivalence relation generated by the previously visited pairs. Therefore, there is no
need to add this pair, and the algorithm can stop immediately. This makes the algorithm
almost linear: two equivalence classes are merged at each step of the loop so that this loop
is executed at most n+m times, where n and m are the number of states of the compared
DFAs. Using a disjoint-sets data structure for maintaining equivalence classes ensures that
each step is done in almost-constant time [19].

To our knowledge, there is only one implementation of disjoint-sets in Coq [44]. How-
ever, this implementation uses sig types to ensure basic invariants along computations, so
that reduction of the corresponding terms inside Coq is not optimal: useless proof terms are
constantly built and thrown away. Although this drawback disappears when the code is ex-
tracted (the goal in [44] was to obtain a certified compiler, by extraction), this is problematic
in our case: since we build a reflexive tactic, computations are performed inside Coq. Con-
chon and Filliâtre also certified a persistent union-find data structure in Coq [17], but this
development consists in a modelling of an OCaml library, not in a proper Coq implementa-
tion that could be used to perform computations. Therefore, we had to re-implement and
prove this data structure from scratch. Namely, we implemented disjoint-sets forests [19]
with path compression and the usual “union by rank” heuristic, along the lines of [44], but
without using sig-types.

We do not give the Coq code for checking equivalence of DFAs here: it closely follows [1]
and can be downloaded from [9]. Note that since recursion is not structural, we need to
explicitly bound the recursion depth. As explained above, the size of the disjoint union
automaton (n+m) does the job.

Like previously, the correctness of this last step reduces to algebraic reasoning. Define
a 0-1 matrix Y to encode the equivalence relation on states obtained with a successful run
of the algorithm:

Yij =

{
1 if states i and j are equivalent,

0 otherwise.

We prove that this matrix satisfies the following properties (like for the determinisation step,
these proofs are quite technical and correspond to a detailed analysis of the algorithm—in
particular, we have to show that the bound we impose for the recursion depth is appropri-
ate):

1 ≤ Y (1) Y · Y ≤ Y (2) Y ·M ≤M · Y (3)

[u1 0] · Y = [0 u2] · Y (4) Y · v = v (5)

Equations (1, 2) correspond to the fact that Y encodes a reflexive and transitive relation.
Equation (3) comes from the fact that Y is a simulation: transitions starting from related
states yield related states. The last two equations assess that the starting states are related
(4), and that related states are either accepting or non-accepting (5).

This allows us to conclude using algebraic reasoning: from (1, 2, 3) and Kleene algebra
laws, we deduce

M? · Y = Y · (M · Y)? . (6)

Also notice that as a special case of (‡), we have

M? =

[
M1 0
0 M2

]?
=

[
M?

1 0
0 M?

2

]
,

so that we have u1 ·M?
1 · v1 = [u1 0] ·M? · v and u2 ·M?

2 · v2 = [0 u2] ·M? · v. Correctness
follows:

u1 ·M?
1 · v1 = [u1 0] ·M? · v

= [u1 0] ·M? · Y · v (by 5)

= [u1 0] · Y · (M · Y)? · v (by 6)

= [0 u2] · Y · (M · Y)? · v (by 4)

= [0 u2] ·M? · Y · v (by 6)

= [0 u2] ·M? · v = u2 ·M?
2 · v2 . (by 5)

In other words, we obtained the bottom line equality of Fig. 14.

4.6. Putting it all together. By combining the proofs from the above sections according
to Fig. 14, we obtain the decision procedure and its correctness proof:

Definition regex_to_DFA x :=

let x’ := ssf x in

let A1 := regex_to_eNFA x’ in

let A2 := eNFA_to_NFA A1 (construction_wf (ssf_complete x)) in

let A3 := NFA_to_DFA A2 in

A3.

Definition decide_kleene x y := DFA_equiv (regex_to_DFA x) (regex_to_DFA y).

Theorem decide_kleene_correct: forall x y, decide_kleene x y = true → x == y.

As explained in Sect. 2.3, although the above equality lies in the syntactic model of regular
expressions, we can actually port it to any model of typed Kleene algebras using reification
and the untyping theorem.

4.7. Completeness: counter-examples. As announced in Sect. 1.3, we also proved the
converse implication, i.e., completeness. This basically amounts to exhibiting a counter-
example in the case where the DFAs are not equivalent. From the algorithmic point of
view, it suffices to record the word that is being read in the algorithm from Sect. 4.5;
when two states that should be equivalent differ by their accepting status, we know that
the current word is accepted by one DFA and not by the other one. Accordingly, the
decide_kleene function actually returns an option (list label) rather than a Boolean, so
that the counter-example can be given to the user—in particular, in the above statement
of decide_kleene_correct, the constant true should be replaced by None. We can then get
the converse of decide_kleene_correct:

Theorem decide_kleene_complete: forall x y w, decide_kleene x y = Some w → ¬(x == y).

The proof consists in showing that the word w possibly returned by the equivalence check
algorithm is actually a counter-example, and that the language accepted by a DFA is exactly
the language obtained by interpreting the regular expression returned by DFA.eval:

Definition DFA_language: DFA.t → language := ...

Definition regex_language: regex → language := ...

Lemma language_DFA_eval: forall A, DFA_language A == regex_language (DFA.eval A).

(Recall that languages—predicates over lists of letters—form a Kleene algebra which we
defined in Fig. 5; in particular, the above symbol == denotes equality in this model, i.e.,
pointwise equivalence of the predicates.) The function DFA.eval corresponds to a matricial
product (Fig. 13) so that the above lemma requires us to work with matrices over languages.
This is actually the only place in the proof where we need this model.

5. Efficiency

Thanks to the efficient reduction mechanism available in Coq [28], and since we carefully
avoided mixing proofs with code, the tactic returns instantaneously on typical use cases. We
had to perform some additional tests to check that the decision procedure actually scales
on larger expressions. This would be important, for example, in a scenario where equations
to be solved by the tactic are generated automatically, by an external tool.

A key factor is the concrete representation of numbers, which we detail first.

5.1. Numbers, finite sets, and finite maps. To code the decision procedure, we mainly
needed natural numbers, finite sets, and finite maps. Coq provides several representations
for natural numbers: Peano integers (nat), binary positive numbers (positive), and big
natural numbers in base 231 (BigN.t), the latter being shipped with an underlying mechanism
to use machine integers and perform efficient computations. (On the contrary, unary and
binary numbers are allocated on the heap, as any other datatype.) Similarly, there are
various implementations of finite maps and finite sets, based on ordered lists (FMapList),
AVL trees (FMapAVL), or uncompressed Patricia trees (FMapPositive).

While Coq standard library features well-defined interfaces for finite sets and finite
maps, the different definitions of numbers lack this standardisation. In particular, the
provided tools vary greatly depending on the implementation. For example, the tactic
omega, which decides Presburger’s arithmetic on nat, is not available for positive. To
abstract from this choice of basic data structures, and to obtain a modular code, we designed
a small interface to package natural numbers together with the various operations we need,
including sets and maps. We specified these operations with respect to nat, and we defined
several automation tactics. In particular, by automatically translating goals to the nat

representation, we can use the omega tactic in a transparent way.
We defined several implementations of this interface, so that we could experiment with

the possible choices and compare their performances. Of course, unary natural numbers
behave badly since they bring an additional exponential factor. However, thanks to the
efficient implementation of radix-2 search trees for finite maps and finite sets (FMapPositive
and FSetPositive), we actually get higher performances by using positive binary numbers
rather than machine integers (BigN.t). This is no longer true with the extracted code: using
machine integers is faster on large expressions with a thousand internal nodes.

It would be interesting to rework our code to exploit the efficient implementation of
persistent arrays in experimental versions of Coq [3]. We could reasonably hope to win
an order of magnitude by doing so; this however requires a non-trivial interfacing work
since our algorithms were written for dynamically extensible maps over unbounded natural
numbers while persistent arrays are of a fixed size, and over cyclic 31 bits integers.

5.2. Benchmarks. Two alternative certified decision procedures for regular expression
equivalence have been developped since we proposed the present one; both of them rely
on a simple algorithm based on Brzozowski’s derivatives [13, 51]:

• Krauss and Nipkow [42] implemented a tactic for Isabelle/HOL;
• Coquand and Siles [18] implemented their algorithm in Coq; they use a particularly

nice induction scheme for finite sets, which is one of their main contributions.

We performed some benchmarks to compare the performances of these two implementa-
tions with ours (we leave the comparison of our approaches for the related works section,
Sect. 6.1). The timings are given in Table 1, they have been obtained as follows.

For each pair (n, v) given in the first two columns, we generated 500 pairs of regular
expressions, with exactly n nodes and at most v distinct variables1. Since two random
expressions tend to always be trivially distinct, we artificially modified these pairs to make
them equivalent, by adding the full regular expression on both sides. For instance, the pair
(a+b?, a ·b ·c), with four nodes and three variables, is turned into the pair (a+b?+(a+b+
c)?, a · b · c+ (a+ b+ c)?). By doing so, we make sure that all algorithms actually explore
the whole DFAs corresponding to the initial expressions.

For each of these modified pairs, we measured the time required by each implementation
(CoSi, KrNi, and BrPo respectively stand for Coquand and Siles’ implementation, Krauss
and Nipkow’ one, and ours). The timings were measured on a Macbook pro (Intel Core 2
Duo, 2.5GHz, 4Go RAM) running Mac OS X 10.6.7, with Coq 8.3 and Isabelle 2011-1. All
times are given in seconds, they correspond to the tactic scenario, where execution takes
place inside Coq or Isabelle. (When extracting our Coq procedure to OCaml, the resulting
code executes approximately 20 times faster.)

The highly stochastic behaviour of the three algorithms makes this data hard both to
compute and to analyse: while the algorithms answer in a reasonably short amount of time
for a lot of pairs, there are a few difficult pairs which require a lot of time (up to hours).
Therefore, we had to impose timeouts to perform these tests: a “>” symbol in Table 1
means that we only have a lower bound for the corresponding cell. Also, since Coquand
and Siles’ algorithm gives extremely bad performances for medium to large expressions, we
could not include timings for this algorithm in the lower rows of this table.

The mean time is reported in the fourth column. Our implementation is an order
of magnitude faster than the other ones—even several orders w.r.t. CoSi for non-trivial
expressions. However, this mean times are not representative of the actual behaviour of the
algorithms: they do not properly account for their behaviour on the few difficult pairs which
require a lot of time (both because their weight is low since they are few, and because 500
pairs are not enough to capture difficult pairs in a uniform way). This is why we include
the four remaining columns. For each of these columns, say the one entitled “90%”, we
computed the time which is sufficient to solve at least 90% of the pairs. In other words, the
column 50% corresponds to the median times, the column 90% to the last deciles, 99% to
the last percentiles, and 100% to the maximal recorded times. For instance, with 20 nodes
and 2 variables, 90% of pairs were solved within 0.152 seconds with KrNi; equivalently, 10%
pairs required more than 0.152 seconds.

We also report in Fig. 19 the distribution of the timings we obtained for the pairs with
100 nodes and at most 10 variables, with KrNi and BrPo. The time is discretized into
5ms intervals; note the horizontal logarithmic scale, which explains why the area under the

1these pairs are available on the web for the interested reader [9].

nodes vars algo. mean 50% 90% 99% 100%

5 2
CoSi 0.017 0.014 0.028 0.070 0.190
KrNi 0.067 0.066 0.071 0.091 0.097
BrPo 0.001 0.001 0.002 0.002 0.011

10 2
CoSi 0.070 0.047 0.136 0.516 1.456
KrNi 0.072 0.070 0.076 0.104 0.131
BrPo 0.002 0.002 0.002 0.003 0.004

20 2
CoSi 2.037 0.326 2.925 44.101 145.875
KrNi 0.134 0.135 0.152 0.166 0.534
BrPo 0.003 0.003 0.004 0.006 0.007

20 4
CoSi >31.043 13.708 42.983 261.022 >3600.000
KrNi 0.132 0.122 0.160 0.171 0.685
BrPo 0.006 0.006 0.008 0.012 0.016

50 4
CoSi – – – – –
KrNi 0.251 0.236 0.294 1.061 2.337
BrPo 0.019 0.018 0.028 0.049 0.057

100 10
CoSi – – – – –
KrNi 0.686 0.487 0.976 6.401 8.468
BrPo 0.135 0.128 0.190 0.314 0.359

200 20
CoSi – – – – –
KrNi >30.420 2.123 16.026 1621.541 >3600.000
BrPo 0.695 0.662 0.948 1.320 1.672

500 50
CoSi – – – – –
KrNi >280.340 96.220 >900.000 >3600.000 >4703.633
BrPo 6.007 5.676 8.103 10.912 11.949

1000 100
CoSi – – – – –
KrNi – – – – –
BrPo 29.651 27.393 41.917 59.072 70.150

Table 1. Benchmarks for the existing certified decision procedures.

KrNi curve looks smaller than the area under the BrPo curve (while they are both equal
to 500, the number of checked pairs). This kind of expressions (100 nodes, 10 variables)
corresponds to the line in Table 1 where the two algorithms are the closest in terms of
performances; we can however notice that while the median values are comparable, KrNi
suffers from a rather long trail: there is a difference of one order of magnitude for the last
percentile.

For larger expressions (500 to 1000 nodes), our tactic clearly outperforms the two other
ones, in terms of both mean time, median time, and worst cases trail. In particular, our
implementaion seems to be much more robust w.r.t. difficult pairs: in Table 1, the value of
the last percentile is always roughly equal to twice the median value, so that the mean is
always almost equal to the median.

The particular care we took to implement all steps of our procedure in an efficient way
could partially explain the observed performance gap; however, our intuition is that this gap
mainly comes from the construction algorithm we use (by Ilie and Yu [34]), which produces
much smaller automata than the ones obtained with Brzozowski derivatives [13].

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.01 0.1 1 10

ch
ec

ke
d

pa
irs

time (seconds, 5ms intervals)

KrNi
BrPo

Figure 19. Distribution of the timings measured with Krauss and Nipkow’ algorithm and ours (for
the 500 pairs with 100 nodes and at most 10 variables from Table 1).

6. Conclusions

We presented a correct and complete reflexive tactic for deciding Kleene algebra equal-
ities. This tactic belongs to a broader project whose aim is to provide algebraic tools for
working with binary relations in Coq. The development is axiom-free, it can be down-
loaded from [9]. To our knowledge, this is the first certified efficient implementation of
these algorithms and their integration as a generic tactic.

According to coqwc, the development consists of approximately 10.000 lines of Coq
code, which distribute as follows and to which we must add a 350 lines OCaml file for
performing reification:

specifications proofs comments
infrastructure 1959 1139 486
models 797 313 98
matrices 633 510 93
decision procedure 1716 2353 261

total 5105 4315 938

The infrastructure line corresponds to the basic infrastructure files, the definition of
the algebraic hierarchy using typeclasses, and basic lemmas and tactics for monoids, semi-
lattices, idempotent semirings, and Kleene algebras. As expected, this part is rather verbose.
The models line is for the definition of the various models, including languages, binary
relations, and regular expressions; proofs are either trivial or fully automatised in this part.
The matrices line corresponds to all matrix constructions (up to the fact that matrices form
a Kleene algebra); proofs are eased by the tactics we defined in the infrastructure but they
are not fully automatic: they follow standard paper proofs. The remaining line corresponds
to the decision procedure itself. As expected, this is where the ratio proofs/specification

is the largest: although we exploit high-level tactics to perform case analyses, or omega to
reason about arithmetic, most proofs are non-trivial and have to be rather explicit.

6.1. Related works.

Algebraic tools for binary relations. The idea of reasoning about binary relations alge-
braically is old [55, 22]. Among others [36, 57], Struth applied this idea within an interac-
tive theorem prover [54]. He later turned to automated first-order theorem provers (ATP):
Höfner and him verified facts about various relation algebras [31, 32] using Prover9, a res-
olution/paramodulation based ATP. Our approaches are quite different: we implemented
a decision procedure for a decidable theory, whereas their proposal consists in feeding a
generic automated prover with the axioms of some algebras, and to see how far the prover
can go by itself. As a consequence, their methodology applies directly to a very wide class of
goals and algebras, while we are restricted to the equational theory of Kleene algebras. On
the other hand, our tactic always terminates, while Prover9 is unpredictable: even for very
simple goals, it can diverge, find a proof immediately, or find a proof in a few minutes [32].
Foster, Struth, and Weber recently used Isabelle/HOL to formalise proofs about relation
algebras [23]. While our long-term goals are very close, our approaches and results are quite
different, for the same reasons as above: we focused on a single tactic to solve the whole
equational theory of Kleene algebra, while they use generic automatic methods that are
applicable to a much wider class of goals, at the cost of requiring user-guidance if the goal
is not simple enough.

Narboux defined a set of Coq tactics for diagrammatic proofs [47]. He works in the
concrete setting of binary relations, which makes it possible to represent more diagrams,
but does not scale to other models. The level of automation is rather low: it basically
reduces to a set of hints for the auto tactic.

Finite automata theory. The notion of strict star form (Sect. 4.3) was inspired by the
standard notion of star normal form [12] and the idea of star unavoidability [34]. To our
knowledge, using this notion to get ε-NFAs with acyclic epsilon-transitions is a new idea.

At the time we started this project, Briais formalised decidability of regular languages
equality [11] (but not Kozen’s initiality theorem). However, his approach is not computa-
tional, so that even straightforward identities cannot be checked by letting Coq compute.

The Isabelle/HOL tactic implemented by Nipkow and Krauss to decide regular expres-
sions equivalence [42] is simpler than the one we presented here, for several reasons. First,
they implemented an algorithm based on Brzozowski’s derivatives [13, 51], which is less
involved than ours, but also less efficient: the DFAs are produced directly from the regular
expressions, but they can be much larger [34]. This certainly explains the performance gaps
we observed in Sect. 5.2. Second, they do not prove Kozen’s initiality theorem: they prove
correctness in the model of regular languages and they use a nice mathematical trick to
reach the model of binary relations. As a consequence, their tactic cannot be used with
other models like matrices, (min,+) algebras, or weighted relations (graphs whose vertices
are labelled by the elements of an arbitrary Kleene algebra). Third, they do not formalise
the proof of completeness, or equivalently, the fact that the algorithm always terminates
(Isabelle/HOL computations do not need to terminate so that they can use a “while-option”
combinator). For all these reasons, their development is much more concise than ours.

Coquand and Siles’ recent implementation of the same algorithm than Krauss and Nip-
kow in Coq [18] is not efficient, and cannot reliably be used for expressions with more than
twenty nodes (see Table 1). A possible explanation could be that they mix proofs and
computations: this is known to be problematic since proofs then have to be passed around
along reductions, even with vm_compute—the efficient Coq normalisation function [28]. Like
Krauss and Nipkow, they do not formalise Kozen’s initiality theorem; they prove the com-
pleteness of their algorithm, though.

Formalisation of algebraic hierarchies. The problem of formalising mathematical structures
or algebraic hierarchies in type theory is well-known and usually considered as difficult [4,
6, 26, 14, 25]. Thanks to the recent addition of first-class typeclasses [52], we can use a
very simple and naive solution here, which gives us overloading for notations, lemmas, and
tactics, as well as modularity, sharing, and a basis for reification (Sect. 2).

Since we started this project, Spitters and van der Weegen also described how to use
typeclasses to define an algebraic hierarchy [53]. Leaving apart the fact that we work with
typed structures, they follow the strategy we presented here (and previously in [10]); in
particular, they use separate classes for operations and laws, and they attach notations to
class projections. They actually use an even stronger discipline: each operation comes with
a class (e.g., our Monoid_Ops class corresponds to their classes SemiGroupOp and MonoidUnit).

We discussed two drawbacks of this approach in Sect. 2.4, the most important one from
our point of view being the difficulty we had when trying to work with richer structures.
Indeed, the hierarchy we need for this work is really small (it has depth three where the one
from [25] had depth ten at the time of writing), so that there are few instances to declare
for typeclass resolution. As a consequence, typeclass resolution is efficient and the approach
works out of the box. On the contrary, our attempts to define richer structures were rather
frustrating. There are many more instances to declare (these include all the inheritance
relationships, all model constructions like matrices, all the compatibility lemmas that give
the ability to rewrite using user-defined relations). Thus, typeclass resolution becomes too
slow to be used in practice—when we manage not to introduce infinite loops, which also
happens to be difficult.

Therefore, for rather large algebraic hierarchies, it is unclear to us whether one should
pursue with this simple approach, betting that these problems can be resolved by improving
the implementation of typeclasses. Despite their apparent complexity, solutions like the ones
proposed in [25] might be less hazardous.

6.2. Directions for future work. We conclude with possible directions for future work.

Earlier failure checks. Our algorithm for checking equivalence of DFAs returns whenever
two non-equivalent states are encountered. This makes the tactic faster in case of failure,
which is interesting when the tactic is used in a “try” block, where failures are expected
to happen. We could actually go one step further, by checking the equivalence on-the-fly,
during the determinisation phase. This means computing the DFAs lazily and stopping
as soon as a discrepancy is found. Doing so, we would avoid the potentially expensive
computation of the whole DFAs in case of failure. Although this approach is definitely
more efficient than the current one for the case of failures, it introduces some difficulties in
the correctness proof, which we did not complete.

A simpler proof of initiality. Since we wanted to get a tactic for all models of Kleene
algebras, we had to formalise Kozen’s initiality proof. With this goal in mind, the derivative-
based algorithm implemented by Nipkow and Krauss [42] is quite appealing for its simplicity.
Moreover, since the notion of derivative is purely syntactic, it is very well suited to algebraic
reasoning. However, rather surprisingly, we could not find a way to replay Kozen’s initiality
proof with this algorithm. We leave this question for future work.

KAT, Hoare logic. We plan to extend our decision procedure to deal with Kleene algebras
with tests (KAT), so as to provide automation to prove correctness of programs in Hoare
logic [40]. A first possibility would be to encode KAT expressions into KA [41] and to use
the current tactic. This encoding being exponential in the number of predicate variables, it
is unclear whether this approach would be tractable. A more involved approach would be
to use the dedicated automata construction presented in [16].

Richer algebras. Kleene algebras lack several important operations from binary relations:
intersection, converse, complement, residuals. . . We plan to develop other tools for alge-
bras dealing with these operators, like Kleene algebras with converse [20], residuated Kleene
lattices [35], or allegories [24]. In particular, residuated structures provide means of encod-
ing properties like well-foundedness [22], which are quite important for program semantics.
These structures are not known to be decidable; waiting for new algorithms to be found, we
can already build on our library to implement various tools for working with these structures
in the Coq proof assistant.

Acknowledgements. We warmly thank Guilhem Moulin, Assia Mahboubi, Matthieu
Sozeau, Bruno Barras, and Hugo Herbelin for highly stimulating discussions. We are also
grateful to the anonymous referees of the first Coq workshop in 2009 and ITP in 2010,
whose remarks helped us to improve both the library and its description.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The semantics of reflected proof. In LICS,
pages 95–105. IEEE Computer Society, 1990.

[3] M. Armand, B. Grégoire, A. Spiwack, and L. Théry. Extending Coq with imperative features and its
application to SAT verification. In Proc. ITP, volume 6172 of Lecture Notes in Computer Science, pages
83–98. Springer Verlag, 2010.

[4] G. Barthe. Implicit coercions in type systems. In TYPES, volume 1158 of Lecture Notes in Computer
Science, pages 1–15. Springer Verlag, 1995.

[5] Y. Bertot, G. Gonthier, S. Ould Biha, and I. Pasca. Canonical big operators. In Proc. TPHOL, volume
5170 of Lecture Notes in Computer Science, pages 86–101. Springer Verlag, 2008.

[6] G. Betarte and A. Tasistro. Formalisation of systems of algebras using dependent record types and
subtyping: an example. In Proc. 7th Nordic workshop on Pro- gramming Theory, 1995.

[7] F. Blanqui, S. Coupet-Grimal, W. Delobel, and A. Koprowski. CoLoR: a Coq library on rewriting and
termination, 2006.

[8] R. Boyer and J. Moore. Metafunctions: proving them correct and using them efficiently as new proof
procedures. In The Correctness Problem in Computer Science. NY: Academic Press, 1981.

[9] T. Braibant and D. Pous. Coq library: ATBR, algebraic tools for working with binary relations. http:
//sardes.inrialpes.fr/~braibant/atbr/, May 2009.

http://sardes.inrialpes.fr/~braibant/atbr/
http://sardes.inrialpes.fr/~braibant/atbr/

[10] T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene algebras. In Proc. ITP, volume
6172 of Lecture Notes in Computer Science, pages 163–178. Springer Verlag, 2010.

[11] S. Briais. Coq development: Finite automata theory. http://www.prism.uvsq.fr/~bris/tools/

Automata_080708.tar.gz, July 2008.
[12] A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Computer Science,

120(2):197–213, 1993.
[13] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
[14] C. Sacerdoti Coen and E. Tassi. Working with mathematical structures in Type Theory. In Proc.

TYPES, volume 4941 of Lecture Notes in Computer Science, pages 157–172. Springer Verlag, 2007.
[15] C. Sacerdoti Coen and E. Tassi. Nonuniform coercions via unification hints. In Proc. TYPES, volume 53

of EPTCS, pages 16–29, 2009.
[16] E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra with tests, 1996. TR96-1598, CS

Dpt., Cornell University.
[17] S. Conchon and J.-C. Filliâtre. A Persistent Union-Find Data Structure. In Proc. ACM SIGPLAN

Workshop on ML, pages 37–45, Freiburg, Germany, October 2007.
[18] T. Coquand and V. Siles. A decision procedure for regular expression equivalence in type theory. In

Proc. CPP, volume 7086 of Lecture Notes in Computer Science, pages 119–134. Springer Verlag, 2011.
[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

Cambridge, MA, second edition, 2001.

[20] S. Crvenkovic, I. Dolinka, and Z. Ésik. The variety of Kleene algebras with conversion is not finitely
based. Theoretical Computer Science, 230(1-2):235–245, 2000.

[21] Brian Davey and Hilary Priestley. Introduction to Lattices and Order. Cambridge University Press, 1990.
[22] H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to mathematical induction.

Theoretical Computer Science, 179(1-2):103–135, 1997.
[23] S. Foster, G. Struth, and T. Weber. Automated engineering of relational and algebraic methods in

Isabelle/HOL - (invited tutorial). In Proc. RAMICS, volume 6663 of Lecture Notes in Computer Science,
pages 52–67. Springer Verlag, 2011.

[24] P. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.
[25] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical structures. In Proc.

TPHOL, volume 5674 of Lecture Notes in Computer Science, pages 327–342. Springer Verlag, 2009.
[26] H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. A constructive algebraic hierarchy in Coq.

Journal of Symbolic Computation, 34(4):271–286, 2002.
[27] G. Gonthier. Point-free, set-free concrete linear algebra. In Proc. ITP, volume 6898 of Lecture Notes in

Computer Science, pages 103–118. Springer Verlag, 2011.
[28] B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In Proc. ICFP, pages 235–

246, 2002.
[29] B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right in Coq. In TPHOL,

volume 3603 of Lecture Notes in Computer Science, pages 98–113. Springer Verlag, 2005.
[30] M. Hedberg. A Coherence Theorem for Martin-Löf’s Type Theory. J. of Functional Programming,

8(4):413–436, 1998.
[31] P. Höfner and G. Struth. Automated reasoning in Kleene algebra. In Proc. CADE, volume 4603 of

Lecture Notes in Computer Science, pages 279–294. Springer Verlag, 2007.
[32] P. Höfner and G. Struth. On automating the calculus of relations. In IJCAR, volume 5195 of Lecture

Notes in Computer Science, pages 50–66. Springer Verlag, 2008.
[33] J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite automata. Technical

Report 114, Cornell University, December 1971.
[34] L. Ilie and S. Yu. Follow automata. Information and Computation, 186(1):140–162, 2003.
[35] P. Jipsen. From semirings to residuated Kleene lattices. Studia Logica, 76(2):291–303, 2004.
[36] W. Kahl. Calculational relation-algebraic proofs in Isabelle/Isar. In Proc. RelMiCS, volume 3051 of

Lecture Notes in Computer Science, pages 178–190. Springer Verlag, 2003.
[37] S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies, pages

3–41. Princeton University Press, 1956.
[38] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Information

and Computation, 110(2):366–390, 1994.
[39] D. Kozen. Typed Kleene algebra, 1998. TR98-1669, CS Dpt. Cornell University.

http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz

[40] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log., 1(1):60–76, 2000.
[41] D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability. In CSL, volume 1258

of Lecture Notes in Computer Science, pages 244–259. Springer Verlag, September 1996.
[42] A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation algebra, 2011. To

appear in J. of Algebraic Reasoning.
[43] D. Krob. Complete systems of B-rational identities. Theoretical Computer Science, 89(2):207–343, 1991.
[44] X. Leroy. A formally verified compiler back-end. J. of Algebraic Reasoning, 43(4):363–446, 2009.
[45] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in Math-

ematics. Springer Verlag, 2nd edition, 1998.
[46] A.R. Meyer and L. J. Stockmeyer. Word problems requiring exponential time. In Proc. STOC, pages

1–9. ACM, 1973.
[47] J. Narboux. Formalisation et automatisation du raisonnement géométrique en Coq. PhD thesis, Uni-

versité Paris Sud, September 2006.
[48] D. Pous. Untyping typed algebraic structures and colouring proof nets of cyclic linear logic. In Proc.

CSL, volume 6247 of Lecture Notes in Computer Science, pages 484–498. Springer Verlag, August 2010.
[49] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and

Development, 3(2):114–125, 1959.
[50] V. Redko. On defining relations for the algebra of regular events. Ukrain. Mat. Z., 16:120–126, 1964.
[51] J. J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc. CONCUR, volume

1466 of Lecture Notes in Computer Science, pages 194–218. Springer Verlag, 1998.
[52] M. Sozeau and N. Oury. First-class type classes. In Proc. TPHOL, volume 4732 of Lecture Notes in

Computer Science, pages 278–293. Springer Verlag, 2008.
[53] B. Spitters and E. van der Weegen. Type classes for mathematics in type theory. MSCS, special issue

on ‘Interactive theorem proving and the formalization of mathematics’, 21:1–31, 2011. (A four pages
abstract appeared in Proc. ITP 2010.).

[54] G. Struth. Calculating Church-Rosser proofs in Kleene algebra. In Proc. RelMiCS, volume 2561 of
Lecture Notes in Computer Science, pages 276–290. Springer Verlag, 2001.

[55] A. Tarski and S. Givant. A Formalization of Set Theory without Variables, volume 41 of Colloquium
Publications. American Mathematical Society, Providence, Rhode Island, 1987.

[56] K. Thompson. Regular expression search algorithm. C. ACM, 11:419–422, 1968.
[57] D. von Oheimb and T.F. Gritzner. RALL: Machine-supported proofs for relation algebra. In Proc.

CADE, volume 1249 of Lecture Notes in Computer Science, pages 380–394. Springer Verlag, 1997.

Tactics for Reasoning modulo AC in Coq?

Thomas Braibant and Damien Pous??

LIG, UMR 5217, CNRS, INRIA, Grenoble

Abstract. We present a set of tools for rewriting modulo associativity
and commutativity (AC) in Coq, solving a long-standing practical prob-
lem. We use two building blocks: first, an extensible reflexive decision
procedure for equality modulo AC; second, an OCaml plug-in for pattern
matching modulo AC. We handle associative only operations, neutral
elements, uninterpreted function symbols, and user-defined equivalence
relations. By relying on type-classes for the reification phase, we can infer
these properties automatically, so that end-users do not need to specify
which operation is A or AC, or which constant is a neutral element.

1 Introduction

Motivations. Typical hand-written mathematical proofs deal with commuta-
tivity and associativity of operations in a liberal way. Unfortunately, a proof
assistant requires a formal justification of all reasoning steps, so that the user
often needs to make boring term re-orderings before applying a theorem or using
a hypothesis. Suppose for example that one wants to rewrite using a simple hy-
pothesis like H: ∀x, x+−x = 0 in a term like a+b+c+−(c+a). Since Coq standard
rewrite tactic matches terms syntactically, this is not possible directly. Instead,
one has to reshape the goal using the commutativity and associativity lemmas:

rewrite (add_comm a b), ← (add_assoc b a c).
rewrite (add_comm c a), ← add_assoc.
rewrite H.

(* ` ((a+b)+c)+-(c+a) = ... *)
(* ` (b+(a+c))+-(c+a) = ... *)
(* ` b+((a+c)+-(a+c)) = ... *)
(* ` b+0 = ... *)

This is not satisfactory for several reasons. First, the proof script is too verbose
for such a simple reasoning step. Second, while reading such a proof script is
easy, writing it can be painful: there are several sequences of rewrites yielding
to the desired term, and finding a reasonably short one is difficult. Third, we
need to copy-paste parts of the goal to select which occurrence to rewrite using
the associativity or commutativity lemmas; this is not a good practice since the
resulting script breaks when the goal is subject to small modifications. (Note
that one could also select occurrences by their positions, but this is at least as
difficult for the user which then has to count the number of occurrences to skip,
and even more fragile since these numbers cannot be used to understand the
proof when the script breaks after some modification of the goal.)

In this paper, we propose a solution to this short-coming for the Coq proof-
assistant: we extend the usual rewriting tactic to automatically exploit associa-
tivity and commutativity (AC), or just associativity (A) of some operations.

? Appeared in Proc. CPP, volume 7086 of LNCS, Springer-Verlag, 2011.
?? Supported by “Choco”, ANR-07-BLAN-0324 and “PiCoq”, ANR-10-BLAN-0305.

Trusted unification vs untrusted matching. There are two main approaches to
implementing rewriting modulo AC in a proof-assistant. First, one can extend
the unification mechanism of the system to work modulo AC [20]. This option is
quite powerful, since most existing tactics would then work modulo AC. It how-
ever requires non-trivial modifications of the kernel of the proof assistant (e.g.,
unification modulo AC does not always yield finite complete sets of unifiers). As
a consequence, this obfuscates the meta-theory: we need a new proof of strong
normalisation and we increase the trusted code base. On the contrary, we can
restrict ourselves to pattern matching modulo AC and use the core-system itself
to validate all rewriting steps [8]. We chose this option.

Contributions, scope of the library. Besides the facts that such tools did not
exist in Coq before and that they apparently no longer exist in Isabelle/HOL
(see §6.1 for a more thorough discussion), the main contributions of this work lie
in the way standard algorithms and ideas are combined together to get tactics
that are efficient, easy to use, and covering a large range of situations:

– We can have any number of associative and possibly commutative opera-
tions, each possibly having a neutral element. For instance, we can have the
operations min, max, +, and ∗ on natural numbers, where max and + share the
neutral element 0, ∗ has neutral element 1, and min has no neutral element.

– We deal with arbitrary user-defined equivalence relations. This is important
for rational numbers or propositions, for example, where addition and sub-
traction (resp. conjunction and disjunction) are not AC for Leibniz equality,
but for rational equality, Qeq (resp. propositional equivalence, iff).

– We handle “uninterpreted” function symbols: n-ary functions for which the
only assumption is that they preserve the appropriate equivalence relation—
they are sometimes called “proper morphisms”. For example, subtraction on
rational numbers is a proper morphism for Qeq, while pointwise addition of
numerators and denominators is not. (Note that any function is a proper
morphism for Leibniz equality.)

– The interface we provide is straightforward to use: it suffices to declare in-
stances of the appropriate type-classes [22] for the operations of interest, and
our tactics will exploit this information automatically. Since the type-class
implementation is first-class, this gives the ability to work with polymorphic
operations in a transparent way (e.g., concatenation of lists is declared as
associative once and for all.)

Methodology. Recalling the example from the beginning, an alternative to ex-
plicit sequences of rewrites consists in making a transitivity step through a term
that matches the hypothesis’ left-hand side syntactically:

transitivity (b+((a+c)+−(a+c))).
ring. (* aac_reflexivity *)

rewrite H.

(* ` ((a+b)+c)+-(c+a) = ... *)
(* ` ((a+b)+c)+-(c+a) = b+((a+c)+-(a+c)) *)
(* ` b+((a+c)+-(a+c)) = ... *)
(* ` b+0 = ... *)

Although the ring tactic [14] solves the first sub-goal here, this is not always the
case (e.g., there are AC operations that are not part of a ring structure). There-
fore, we have to build a new tactic for equality modulo A/AC: aac_reflexivity.

Another drawback is that we also have to copy-paste and modify the term man-
ually, so that the script can break if the goal evolves. This can be a good practice
in some cases: the transitivity step can be considered as a robust and readable
documentation point; in other situations we want this step to be inferred by the
system, by pattern matching modulo A/AC [15].

All in all, we proceed as follows to define our aac_rewrite rewriting tactic.
Let ≡AC denote equality modulo A/AC; to rewrite using a universally quantified
hypothesis of the form H : ∀x̃, px̃ = qx̃ in a goal G, we take the following steps,
which correspond to building the proof-tree on the right-hand side:

1. choose a context C and a substitution σ
such that G ≡AC C[pσ] (pattern match-
ing modulo AC);

2. make a transitivity step through C[pσ];
3. close this step using a dedicated decision

procedure (aac_reflexivity);
4. use the standard rewrite;
5. let the user continue the proof.

G ≡AC C[pσ]
3

H

...

C[qσ]
5

C[pσ]
4

G
2

For the sake of efficiency, we implement the first step as an OCaml oracle, and we
check the results of this (untrusted) matching function in the third step, using
the certified decision procedure aac_reflexivity. To implement this tactic, we
use the standard methodology of reflection [8,1,14]. Concretely, this means that
we implement the decision procedure as a Coq function over “reified” terms,
which we prove correct inside the proof assistant. This step was actually quite
challenging: to our knowledge, aac_reflexivity is the first reflexive Coq tactic
that handles uninterpreted function symbols. In addition to the non-trivial reifi-
cation process, a particular difficulty comes from the (arbitrary) arity of these
symbols. To overcome this problem in an elegant way, our solution relies on a
dependently typed syntax for reified terms.

Outline. We sketch the user interface (§2) before describing the decision proce-
dure (§3) and the algorithm for pattern matching modulo AC (§4). We detail our
handling of neutral elements and subterms separately (§5). We conclude with
related works and directions for future work (§6).

2 User interface, notation

Declaring A/AC operations. We rely on type-classes [22] to declare the properties
of functions and A/AC binary operations. This allows the user to extend both
the decision procedure and the matching algorithm with new A/AC operations
or units in a very natural way. Moreover, this is the basis of our reification
mechanism (see §3.2).

The classes corresponding to the various properties that can be declared are
given in Fig. 1: being associative, commutative, and having a neutral element.
Basically, a user only needs to provide instances of these classes in order to

Variables (X: Type) (R: relation X) (op: X → X → X).
Class Associative := law_assoc: ∀x y z, R (op x (op y z)) (op (op x y) z).
Class Commutative := law_comm: ∀x y, R (op x y) (op y x).
Class Unit (e: X) := { law_id_left: ∀x, R (op e x) x; law_id_right: ∀x, R (op x e) x }.

Instance plus_A: Associative eq plus.
Instance plus_C: Commutative eq plus.
Instance plus_U: Unit eq plus O.

Instance app_A X: Associative eq (app X).
Instance app_U X: Unit eq (app X) (nil X).

Instance and_A: Associative iff and.
Instance and_C: Commutative iff and.
Instance and_U: Unit iff and True.
Instance and_P: Proper (iff ⇒iff ⇒iff) and.
Instance not_P: Proper (iff ⇒iff) not.

Fig. 1. Classes for declaring properties of operations, example instances.

use our tactics in a setting with new A or AC operations. These classes are
parameterised by a relation (R): one can use an arbitrary equivalence relation.

Fig. 1 also contains examples of instances. Polymorphic values (app, nil) are
declared in a straightforward way. For propositional connectives (and, not), we
also need to show that they preserve equivalence of propositions (iff), since this
is not Leibniz equality; we use for that the standard Proper type-class—when
the relation R is Leibniz equality, these instances are inferred automatically. Of
course, while we provide these instances, more can be defined by the user.

Example usage. The main tactics we provide are aac_rewrite, to rewrite modulo
A/AC, and aac_reflexivity to decide an equality modulo A/AC. Here is a
simple example where we use both of them:
H1: ∀x y z, x∩y ∪ x∩z = x∩(y∪z)
H2: ∀x y, x∩x = x
a, b, c, d: set
=====================
(a∩c ∪ b∩c∩d) ∩ c = (a ∪ d∩b) ∩ c

Proof.
aac_rewrite H1; (* c ∩ (a ∪ b∩d) ∩ c = ... *)
aac_rewrite H2; (* c ∩ (a ∪ b∩d) = ... *)
aac_reflexivity.
Qed.

As expected, we provide variations to rewrite using the hypothesis from right to
left, or in the right-hand side of the goal.

Listing instances. There might be several ways of rewriting a given equation:
several subterms may match, so that the user might need to select which oc-
currences to rewrite. The situation can be even worse when rewriting modulo
AC: unlike with syntactical matching, there might be several ways of instan-
tiating the pattern so that it matches a given occurrence. (E.g., matching the
pattern x+ y + y at the root of the term a+ a+ b+ b yields two substitutions:
{x 7→ a + a; y 7→ b} and the symmetrical one—assuming there is no neutral
element.) To help the user, we provide an additional tactic, aac_instances, to
display the possible occurrences together with the corresponding instantiations.
The user can then use the tactic aac_rewrite with the appropriate options.

Notation and terminology. We assume a signature Σ and we let f, g, h, . . . range
over function symbols, reserving letters a, b, c, . . . for constants (function symbols
of arity 0). We denote the set of terms by T (Σ). Given a set V of variables, we let
x, y, z, . . . range over (universally quantified) variables; a pattern is a term with

variables, i.e., an element of T (Σ + V). A substitution (σ) is a partial function
that maps variables to terms, which we extend into a partial function from
patterns to terms, as expected. Binary function symbols (written with an infix
symbol, �) can be associative (axiom A) and optionally commutative (axiom C);
these symbols may be equipped with a left and right unit u (axiom Uu,�):

A� : x � (y � z) ≡ (x � y) � z C� : x � y ≡ y � x Uu,� : x � u ≡ x ∧ u � x ≡ x

We use +i (or +) for associative-commutative symbols (AC), and ∗i (or ∗) for
associative only symbols (A). We denote by ≡AC the equational theory gener-
ated by these axioms on T (Σ). For instance, in a non-commutative semi-ring
(+, ∗, 0, 1), ≡AC is generated by A+, C+, A∗ and U1,∗, U0,+.

3 Deciding equality modulo AC

In this section, we describe the aac_reflexivity tactic, which decides equality
modulo AC, is extensible through the definition of new type-class instances, and
deals with uninterpreted function symbols of arbitrary arity. For the sake of
clarity, we defer the case where binary operations have units to §5.1.

3.1 The algorithm and its proof

A two-level approach. We use the so called 2-level approach [4]: we define an
inductive type T for terms and a function eval: T → X that maps reified terms to
user-level terms living in some type X equipped with an equivalence relation R,
which we sometimes denote by ≡. This allows us to reason and compute on the
syntactic representation of terms, whatever the user-level model.

We follow the usual practice which consists in reducing equational reasoning
to the computation and comparison of normal forms: it then suffices to prove
that the normalisation function is correct to get a sound decision procedure.
Definition norm: T → T := ...
Lemma eval_norm: ∀u, eval (norm u) ≡ eval u.
Theorem decide: ∀u v, compare (norm u) (norm v) = Eq → eval u ≡ eval v.

This is what is called the autarkic way : the verification is performed inside the
proof-assistant, using the conversion rule. To prove eval u ≡ eval v, it suffices to
apply the theorem decide and to let the proof-assistant check by computation
that the premise holds. The algorithm needs to meet two objectives. First, the
normalisation function (norm) must be efficient, and this dictates some choices
for the representation of terms. Second, the evaluation function (eval) must be
simple (in order to keep the proofs tractable) and total: ill-formed terms shall
be rejected syntactically.

Packaging the reification environment. We need Coq types to package infor-
mation about binary operations and uninterpreted function symbols. They are
given in Fig. 2, where respectful is the definition from Coq standard library for
declaring proper morphisms. We first define functions to express the fact that

(* type of n-ary homogeneous functions *)
Fixpoint type_of (X: Type) (n: nat): Type :=
match n with O ⇒ X | S n ⇒ X → type_of X n end.

(* relation to be preserved by n-ary functions *)
Fixpoint rel_of (X: Type) (R: relation X) (n: nat): relation (type_of X n) :=
match n with O ⇒ R | S n ⇒ respectful R (rel_of n) end.

Module Bin.
Record pack X R := {
value: X → X → X;
compat: Proper (R ⇒R ⇒R) value;
assoc: Associative R value;
comm: option (Commutative R value) }.

End Bin.

Module Sym.
Record pack X R := {
ar: nat;
value: type_of X ar;
compat: Proper (rel_of X R ar) value }.

End Sym.

Fig. 2. Types for symbols.

n-ary functions are proper morphisms. A “binary package” contains a binary op-
eration together with the proofs that it is a proper morphism, associative, and
possibly commutative (we use the type-classes from Fig. 1). An “uninterpreted
symbol package” contains the arity of the symbol, the corresponding function,
and the proof that this is a proper morphism.

The fact that symbols arity is stored in the package is crucial: by doing so, we
can use standard finite maps to store all function symbols, irrespective of their
arity. More precisely, we use two environments, one for uninterpreted symbols
and one for binary operations; both of them are represented as non-dependent
functions from a set of indices to the corresponding package types:

Variables (X: Type) (R: relation X).
Variable e_sym: idx → Sym.pack X R.
Variable e_bin: idx → Bin.pack X R.

(The type idx is an alias for positive, the set of binary positive numbers; this
allows us to define the above functions efficiently, using binary trees).

Syntax of reified terms. We now turn to the concrete representation of terms.
The first difficulty is to choose an appropriate representation for AC and A
nodes, to avoid manipulating binary trees. As it is usually done, we flatten these
binary nodes using variadic nodes. Since binary operations do not necessarily
come with a neutral element, we use non-empty lists (resp. non-empty multi-
sets) to reflect the fact that A operations (resp. AC operations) must have at
least one argument. (We could even require A/AC operations to have at least
two arguments but this would slightly obfuscate the code and prevent some
sharing for multi-sets.) The second difficulty is to prevent ill-formed terms, like
“log 1 2 3”, where a unary function is applied to more than one argument. One
could define a predicate stating that terms are well-formed [11], and use this
extra hypothesis in later reasonings. We found it nicer to use dependent types
to enforce the constraint that symbols are applied to the right number of ar-
guments: it suffices to use vectors of arguments rather than lists. The resulting
data-type for reified terms is given in Fig. 3; it depends on the environment for

(* non-empty lists/multisets *)
Inductive nelist A :=
| nil: A → nelist A
| cons: A → nelist A → nelist A.

Definition nemset A :=
nelist (A∗positive).

(* reified terms *)
Inductive T: Type :=
| bin_ac: idx → nemset T → T
| bin_a : idx → nelist T → T
| sym: ∀i, vect T (Sym.ar (e_sym i)) → T.

Fixpoint eval (u: T): X :=
match u with
| bin_ac i l ⇒ let o:=Bin.value (e_bin i) in

nefold_map o (fun(u,n)⇒copy o n (eval u)) l
| bin_a i l ⇒ let o:=Bin.value (e_bin i) in

nefold_map o eval l
| sym i v ⇒ xeval v (Sym.value (e_sym i))
end
with xeval i (v: vect T i): Sym.type_of i→ X :=
match v with
| vnil ⇒(fun f ⇒ f)
| vcons u v ⇒(fun f ⇒ xeval v (f (eval u)))
end.

Fig. 3. Data-type for terms, and related evaluation function.

uninterpreted symbols (e_bin). This definition allows for a simple implementa-
tion of eval, given on the right-hand side. For uninterpreted symbols, the trick
consists in using an accumulator to store the successive partial applications.

As expected, this syntax allows us to reify arbitrary user-level terms. For
instance, take (a∗S(b+b))−b. We first construct the following environments where
we store information about all atoms:

e_sym e_bin

1 ⇒ L ar := 1; value := S; compat := ... M
2 ⇒ L ar := 0; value := a; compat := ... M
3 ⇒ L ar := 0; value := b; compat := ... M
_ ⇒ L ar := 2; value := minus; compat := ... M

1 ⇒ L value := plus; compat := ... ;
assoc := _ ; comm := Some ... M

_ ⇒ L value := mult; compat := ... ;
assoc := _ ; comm := None M

These environment functions are total: they associate a semantic value to indices
that might be considered as “out-of-the-bounds”. This requires environments to
contain at least one value, but this makes the evaluation function total and
easier to reason about: there is no need to return an option or a default value in
case undefined symbols are encountered. We can then build a reified term whose
evaluation in the above environments reduces to the starting user-level terms:

Let t := sym 4 Jbin_a 2 [(sym 2 JK); (sym 1 Jbin_ac 1 [(sym 3 JK,1);(sym 3 JK,1)K)]; sym 3 JKK.
Goal eval e_sym e_bin t = (a∗S(b+b))−b. reflexivity. Qed.

Note that we cannot split the environment e_bin into two environments e_bin_a

and e_bin_ac: since they would contain at least one binary operation with the
proof that it is A or AC, it would not be possible to reify terms in a setting
with only A or only AC operations. Moreover, having a single environment for
all binary operations makes it easier to handle neutral elements (see §5.1).

Normalisation of reified terms in Coq. Normal forms are computed as follows:
terms are recursively flattened under A/AC nodes and arguments of AC nodes
are sorted. We give excerpts of this Coq function below, focusing on AC nodes:
bin_ac’ is a smart constructor that prevents building unary AC nodes, and
norm_msets norm i normalises and sorts a multi-set, ensuring that none of its
children starts with an AC node with index i.

Definition bin_ac’ i (u: nemset T): T := match u with nil (u,1) ⇒ u | _ ⇒ bin_ac i u end.
Definition extract_ac i (s: T): nemset T :=
match s with bin_ac j m when i = j ⇒ m | _ ⇒ [s,1] end.

Definition norm_msets norm i (u: nemset T): nemset T :=
nefold_map merge_sort (fun (x,n) ⇒ copy_mset n (extract_ac i (norm x))) u

...
Fixpoint norm (u: T): T := match u with
| bin_ac i l ⇒ if is_commutative e_bin i then bin_ac’ i (norm_msets norm i l) else u
| bin_a i l ⇒ bin_a’ i (norm_lists norm i l)
| sym i l ⇒ sym i (vector_map norm l)
end.

Note that norm depends on the information contained in the environments:
the look-up is_commutative s_bin i in the definition of norm is required to make
sure that the binary operation i is actually commutative (remember that we
need to store A and AC symbols in the same environment, so that we might
have AC nodes whose corresponding operation is not commutative). Similarly,
to handle neutral elements (§5.1), we will rely on the environment to detect
whether some value is a unit for a given binary operation.

Correctness and completeness. We prove that the normalisation function is
sound. This proof relies on the above defensive test against ill-formed terms:
since invalid AC nodes are left intact, we do not need the missing commutativity
hypothesis when proving the correctness of norm. We did not prove completeness.
First, this is not needed to get a sound tactic. Second, this proof would be quite
verbose (in particular, it requires a formal definition of equality modulo AC on
reified terms). Third, we would not be able to completely prove the complete-
ness of the resulting tactic anyway, since one cannot reason about the OCaml
reification and normalisation functions in the proof-assistant [14,7].

3.2 Reification

Following the reflexive approach to solve an equality modulo AC, it suffices to
apply the above theorem decide (§3.1) and to let Coq compute. To do so, we
still need to provide two environments e_bin and e_sym and two terms u and v,
whose evaluation is convertible to the starting user-level terms.

Type-class based reification. We do not want to rely on annotations (like pro-
jections of type-classes fields or canonical structures) to guess how to reify the
terms: this would force the users to use our definitions and notations from the
beginning. Instead, we let the users work with their own definitions, and we
exploit type-classes to perform reification. The idea is to query the type-class
resolution mechanism to decide whether a given subterm should be reified as an
AC operation, an A operation, or an uninterpreted function symbol.

The inference of binary A or AC operations takes place first, by querying for
instances of the classes Associative and Commutative on all binary applications.
The remaining difficulty is to discriminate whether other applications should be
considered as a function symbol applied to several arguments, or as a constant.
For instance, considering the application f (a+b) (b+c) c, it suffices to query for
Proper instances in the following order:

1. Proper (R ⇒ R ⇒ R ⇒ R) (f) ?
2. Proper (R ⇒ R ⇒ R) (f (a+b)) ?
3. Proper (R ⇒ R) (f (a+b)(b+c)) ?
4. Proper (R) (f (a+b)(b+c) c) ?

The first query that succeeds tells which partial application is a proper mor-
phism, and with which arity. Since the relation R is reflexive, and any element is
proper for a reflexive relation, the inference of constants—symbols of arity 0—is
the catch-all case of reification. We then proceed recursively on the remaining
arguments; in the example, if the second call is the first to succeed, we do not
try to reify the first argument (a+b): the partial application f(a+b) is considered
as an atom.

Reification language. We use OCaml to perform this reification step. Using the
meta-language OCaml rather than the meta-language of tactics Ltac is a matter
of convenience: it allows us to use more efficient data-structures. For instance,
we use hash-tables to memoise queries to type-class resolution, which would have
been difficult to mimic in Ltac or using canonical structures. The resulting code
is non-trivial, but too technical to be presented here. Most of the difficulties come
from the fact that we reify uninterpreted functions symbols using a dependently
typed syntax, and that our reification environments contain dependent records:
producing such Coq values from OCaml can be tricky. Finally, using Coq’s plug-
in mechanism, we wrap up the previous ideas in a tactic, aac_reflexivity, which
automates this process, and solves equations modulo AC.

Efficiency. The dependently typed representation of terms we chose in order to
simplify proofs does not preclude efficient computations. The complexity of the
procedure is dominated by the merging of sorted multi-sets, which relies on a
linear comparison function. We did not put this decision procedure through an
extensive testing; however, we claim that it returns instantaneously in practice.
Moreover, the size of the generated proof is linear with respect to the size of the
starting terms. By contrast, using the tactic language to build a proof out of
associativity and commutativity lemmas would usually yield a quadratic proof.

4 Matching modulo AC

Solving a matching problem modulo AC consists in, given a pattern p and a
term t, finding a substitution σ such that pσ ≡AC t. There are many known
algorithms [11,12,15,18]; we present here a simple one.

Naive algorithm. Matching modulo AC can easily be implemented non-determi-
nistically. For example, to match a sum p1 + p2 against a term t, it suffices
to consider all possible decompositions of t into a sum t1 + t2. If matching p1
against t1 yields a solution (a substitution), it can be used as an initial state
to match p2 against t2, yielding a more precise solution, if any. To match a
variable x against a term t, there are two cases depending on whether or not the

val (�=): α m → (α → β m) → β m
val (�|): α m → α m → α m
val return: α → α m
val fail: unit → α m

Fig. 4. Search monad primitives.

val split_ac: idx → term → (term ∗ term) m
val split_a : idx → term → (term ∗ term) m

Fig. 5. Search monad derived functions.

mtch (p1 +i p2) t σ = split_ac i t �= (fun (t1,t2) → mtch p1 t1 σ �= mtch p2 t2)
mtch (p1 ∗i p2) t σ = split_a i t �= (fun (t1,t2) → mtch p1 t1 σ �= mtch p2 t2)
mtch (f(p)) (f(u)) σ = fold_2 (fun acc p t → acc �= mtch p t) (return σ) p u
mtch (var x) t σ when Subst.find σ x = None = return (Subst.add σ x t)
mtch (var x) t σ when Subst.find σ x = Some v = if v ≡AC t then return σ else fail()

Fig. 6. Backtracking pattern matching, using monads.

variable has already been assigned in the current substitution. If the variable
has already been assigned to a value v, we check that v ≡AC t. If this is not the
case, the substitution must be discarded since x must take incompatible values.
Otherwise, i.e., if the variable is fresh, we add a mapping from x to v to the
substitution. To match an uninterpreted node f(q) against a term t, it must be
the case that t is headed by the same symbol f , with arguments u; we just match
q and u pointwise.

Monadic implementation. We use a monad for non-deterministic and backtrack-
ing computations. Fig. 4 presents the primitive functions offered by this monad:
�= is a backtracking bind operation, while �| is non-deterministic choice. We
have an OCaml type for terms similar to the inductive type we defined for Coq
reified terms: applications of A/AC symbols are represented using their flattened
normal forms. From the primitives of the monad, we derive functions operating
on terms (Fig. 5): the function split_ac i implements the non-deterministic split
of a term t into pairs (t1, t2) such that t ≡AC t1 +i t2. If the head-symbol of t is
+i, then it suffices to split syntactically the multi-set of arguments; otherwise, we
return an empty collection. The function split_a i implements the correspond-
ing operation on associative only symbols. The matching algorithm proceeds by
structural recursion on the pattern, which yields the code presented in Fig. 6
(using an informal ML-like syntax). A nice property of this algorithm is that it
does not produce redundant solutions, so that we do not need to reduce the set
of solutions before proposing them to the user.

Correctness. Following [11], we could have attempted to prove the correctness of
this matching algorithm. While this could be an interesting formalisation work
per se, it is not necessary for our purpose, and could even be considered an
impediment. Indeed, we implement the matching algorithm as an oracle, in an
arbitrary language. Thus, we are given the choice to use a free range of optimi-
sations, and the ability to exploit all features of the implementation language.
In any case, the prophecies of this oracle, a set of solutions to the matching
problem, are verified by the reflexive decision procedure we implemented in §3.

Variable e_bin: idx → Bin.pack X R

Record binary_for (u: X) := {
bf_idx: idx;
bf_desc: Unit R (Bin.value (e_bin bf_idx)) u }.

Record unit_pack := {
u_value: X;
u_desc: list (binary_for u_value) }.

Variable e_unit: idx → unit_pack.

Fig. 7. Additional environment for terms with units.

5 Bridging the gaps

Combining the decision procedure for equality modulo AC and the algorithm for
matching modulo AC, we get the tactic for rewriting modulo AC. We now turn
to lifting the simplifying assumptions we made in the previous sections.

5.1 Neutral elements

Adding support for neutral elements (or “units”) is of practical importance:

– to let aac_reflexivity decide more equations (e.g., max 0 (b∗1)+a = a+b);
– to avoid requiring the user to normalise terms manually before performing

rewriting steps (e.g., to rewrite using ∀x, x∪x = x in the term a∩b∪∅∪b∩a);
– to propose more solutions to pattern matching problems (consider rewriting
∀xy, x · y ·x⊥ = y in a · (b · (a · b)⊥), where · is associative only with a neutral
element: the variable y should be instantiated with the neutral element).

Extending the pattern matching algorithm. Matching modulo AC with units
does not boil down to pattern matching modulo AC against a normalised term:
a ·b ·(a ·b)⊥ is a normal form and the algorithm of Fig. 6 would not give solutions
with the pattern x · y · x⊥. The patch is however straightforward: it suffices to
let the non-deterministic splitting functions (Fig. 5) use the neutral element
possibly associated with the given binary symbol. For instance, calling split_a

on the previous term would return the four pairs 〈1, a · b · (a · b)⊥〉, 〈a, b · (a · b)⊥〉,
〈a · b, (a · b)⊥〉, and 〈a · b · (a · b)⊥, 1〉, where 1 is the neutral element.

Extending the syntax of reified terms. An obvious idea is to replace non-empty
lists (resp. multi-sets) by lists (resp. multi-sets) in the definition of terms—Fig. 3.
This has two drawbacks. First, unless the evaluation function (Fig. 3) becomes a
partial function, every A/AC symbol must then be associated with a unit (which
precludes, e.g., min and max to be defined as AC operations on relative numbers).
Second, two symbols cannot share a common unit, like 0 being the unit of both
max and plus on natural numbers: we would have to know at reification time
how to reify 0, is it an empty AC node for max or for plus? Instead, we add an
extra constructor for units to the data-type of terms, and a third environment to
store all units together with their relationship to binary operations. The actual
definition of this third environment requires a more clever crafting than the other
ones. The starting point is that a unit is nothing by itself, it is a unit for some
binary operations. Thus, the type of the environment for units has to depend

on the e_bin environment. This type is given in Fig. 7. The record binary_for

stores a binary operation (pointed to by its index bf_idx) and a proof that the
parameter u is a neutral element for this operation. Then, each unit is bundled
with a list of operations it is a unit for (unit_pack): like for the environment e_sym
, these dependent records allow us to use plain, non-dependent maps. In the end,
the syntax of reified terms depends only on the environment for uninterpreted
symbols (e_sym), to ensure that arities are respected, while the environment for
units (e_unit) depends on that for binary operations (e_bin).

Extending the decision tactic. Updating the Coq normalisation function to deal
with units is fairly simple but slightly verbose. Like we used the e_bin environ-
ment to check that bin_ac nodes actually correspond to commutative operations,
we exploit the information contained in e_unit to detect whether a unit is a neu-
tral element for a given binary operation. On the contrary, the OCaml reification
code, which is quite technical, becomes even more complicated. Calling type-class
resolution on all constants of the goal to get the list of binary operations they
are a unit for would be too costly. Instead, we perform a first pass on the goal,
where we infer all A/AC operations and for each of these, whether it has a neu-
tral element. We construct the reified terms in a second pass, using the previous
information to distinguish units from regular constants.

5.2 Subterms

Another point of high practical importance is the ability to rewrite in subterms
rather than at the root. Indeed, the algorithm of Fig. 6 does not allow to match
the pattern x+x against the terms f(a+a) or a+b+a, where the occurrence ap-
pears under some context. Technically, it suffices to extend the (OCaml) pattern
matching function and to write some boilerplate to accommodate contexts; the
(Coq) decision procedure is not affected by this modification. Formally, subterm-
matching a pattern p in a term t results in a set of solutions which are pairs
〈C, σ〉, where C is a context and σ is a substitution such that C[pσ] ≡AC t.

Variable extensions. It is not sufficient to call the (root) matching function on
all syntactic subterms: the instance a+ a of the pattern x+ x is not a syntactic
subterm of a+ b+ a. The standard trick consists in enriching the pattern using
a variable extension [19,21], a variable used to collect the trailing terms. In
the previous case, we can extend the pattern into y + x + x, where y will be
instantiated with b. It then suffices to explore syntactic subterms: when we try
to subterm-match x+ x against (a+ c) ∗ (a+ b+ a), we extend the pattern into
y+x+x and we call the matching algorithm (Fig. 6) on the whole term and the
subterms a, b, c, a+ c and a+ b+ a. In this example, only the last call succeeds.

The problem with subterms and units. However, this approach is not complete in
the presence of units. Suppose for instance that we try to match the pattern x+x
against a∗b, where ∗ is associative only. If the variable x can be instantiated with
a neutral element 0 for +, then the variable extension trick gives four solutions:

a ∗ b+ [] (a+ []) ∗ b a ∗ (b+ [])

(These are the returned contexts, in which [] denotes the hole; the substitution
is always {x 7→ 0}.) Unfortunately, if ∗ also has a neutral element 1, there are
infinitely many other solutions:

a ∗ b ∗ (1 + []) a ∗ b+ 0 ∗ (1 + []) a ∗ b+ 0 ∗ (1 + 0 ∗ (1 + [])) . . .

(Note that these solutions are distinct modulo AC, they collapse to the same term
only when we replace the hole with 0.) The latter solutions only appear when the
pattern can be instantiated to be equal to a neutral element (modulo A/AC).
We opted for a pragmatic solution in this case: we reject these peculiar solutions,
displaying a warning message. The user can still instantiate the rewriting lemma
explicitly, or make the appropriate transitivity step using aac_reflexivity.

6 Conclusions

The Coq library corresponding to the tools we presented is available from [9].
We do not use any axiom; the code consists of about 1400 lines of Coq and 3600
lines of OCaml. We conclude with related works and directions for future work.

6.1 Related Works

Boyer and Moore [8] are precursors to our work in two ways. First, their paper
is the earliest reference to reflection we are aware of, under the name “Meta-
functions”. Second, they use this methodology to prove correct a simplification
function for cancellation modulo A. By contrast, we proved correct a decision
procedure for equality modulo A/AC with units which can deal with arbitrary
function symbols, and we used it to devise a tactic for rewriting modulo A/AC.

Ring. While there is some similarity in their goals, our decision procedure is
incomparable with the Coq ring tactic [14]. On the one hand, ring can make
use of distributivity and opposite laws to prove goals like x2−y2= (x−y)∗(x+y),
holding in any ring structure. On the other hand, aac_reflexivity can deal with
an arbitrary number of AC or A operations with their units, and more impor-
tantly, with uninterpreted function symbols. For instance, it proves equations
like f(x∩y) ∪ g(∅∪z) = g z ∪ f(y∩x), where f, g are arbitrary functions on sets.
Like with ring, we also have a tactic to normalise terms modulo AC.

Rewriting modulo AC in HOL and Isabelle. Nipkow [17] used the Isabelle system
to implement matching, unification and rewriting for various theories including
AC. He presents algorithms as proof rules, relying on the Isabelle machinery
and tactic language to build actual tools for equational reasoning. While this
approach leads to elegant and short implementations, what is gained in concise-
ness and genericity is lost in efficiency, and the algorithms need not terminate.
The rewriting modulo AC tools he defines are geared toward automatic term nor-
malisation; by contrast, our approach focuses on providing the user with tools
to select and make one rewriting step efficiently.

Slind [21] implemented an AC-unification algorithm and incorporated it in
the hol90 system, as an external and efficient oracle. It is then used to build
tactics for AC rewriting, cancellation, and modus-ponens. While these tools ex-
ploit pattern matching only, an application of unification is in solving existential
goals. Apart from some refinements like dealing with neutral elements and A
symbols, the most salient differences with our work are that we use a reflexive
decision procedure to check equality modulo A/AC rather than a tactic imple-
mented in the meta-language, and that we use type-classes to infer and reify
automatically the A/AC symbols and their units.

Support for the former tool [17] has been discontinued, and it seems to be
also the case for the latter [21]. To our knowledge, even though HOL-light and
HOL provide some tactics to prove that two terms are equal using associativity
and commutativity of a single given operation, tactics comparable to the ones
we describe here no longer exist in the Isabelle/HOL family of proof assistants.

Rewriting modulo AC in Coq. Contejean [11] implemented in Coq an algorithm
for matching modulo AC, which she proved sound and complete. The emphasis
is put on the proof of the matching algorithm, which corresponds to a concrete
implementation in the CiME system. Although decidability of equality modulo
AC is also derived, this development was not designed to obtain the kind of
tactics we propose here (in particular, we could not reuse it to this end). Finally,
symbols can be uninterpreted, commutative, or associative and commutative,
but neither associative only symbols nor units are handled.

Gonthier et al. [13] have recently shown how to exploit a feature of Coq’s
unification algorithm to provide “less ad hoc automation”. In particular, they
automate reasoning modulo AC in a particular scenario, by diverting the unifica-
tion algorithm in a complex but really neat way. Using their trick to provide the
generic tactics we discuss here might be possible, but it would be difficult. Our
reification process is much more complex: we have uninterpreted function sym-
bols, we do not know in advance which operations are AC, and the handling of
units requires a dependent environment. Moreover, we would have to implement
matching modulo AC (which is not required in their example) using the same
methodology; doing it in a sufficiently efficient way seems really challenging.

Nguyen et al. [16] used the external rewriting tool ELAN to add support
for rewriting modulo AC in Coq. They perform term rewriting in the efficient
ELAN environment, and check the resulting traces in Coq. This allows one to
obtain a powerful normalisation tactic out of any set of rewriting rules which
is confluent and terminating modulo AC. Our objectives are slightly different:
we want to easily perform small rewriting steps in an arbitrarily complex proof,
rather than to decide a proposition by computing and comparing normal forms.

The ELAN trace is replayed using elementary Coq tactics, and equalities
modulo AC are proved by applying the associativity and commutativity lemmas
in a clever way. On the contrary, we use the high-level (but slightly inefficient)
rewrite tactic to perform the rewriting step, and we rely on an efficient reflexive
decision procedure for proving equalities modulo AC. (Alvarado and Nguyen

first proposed a version where the rewriting trace was replayed using reflection,
but without support for modulo AC [2].)

From the user interface point of view, leaving out the fact that the support
for this tool has been discontinued, our work improves on several points: thanks
to the recent plug-in and type-class mechanisms of Coq, it suffices for a user to
declare instances of the appropriate classes to get the ability to rewrite modulo
AC. Even more importantly, there is no need to declare explicitly all uninter-
preted function symbols, and we transparently support polymorphic operations
(like List.app) and arbitrary equivalence relations (like Qeq on rational numbers,
or iff on propositions). It would therefore be interesting to revive this tool using
the new mechanisms available in Coq, to get a nicer and more powerful interface.

Although this is not a general purpose interactive proof assistant, the Maude
system [10], which is based on equational and rewriting logic, also provides an
efficient algorithm for rewriting modulo AC [12]. Like ELAN, Maude could be
used as an oracle to replace our OCaml matching algorithm. This would require
some non-trivial interfacing work, however. Moreover, it is unclear to us how to
use these tools to get all matching occurrences of a pattern in a given term.

6.2 Directions for Future works.

Heterogeneous terms and operations. Our decision procedure cannot deal with
functions whose range and domain are distinct sets. We could extend the tactic
to deal with such symbols, to make it possible to rewrite using equations like
∀uv, ‖u+ v‖ ≤ ‖u‖+ ‖v‖, where ‖ · ‖ is a norm in a vector space. This requires a
more involved definition of reified terms and environments to keep track of type
information; the corresponding reification process seems quite challenging.

We could also handle heterogeneous associative operations, like multiplica-
tion of non-square matrices, or composition of morphisms in a category. For
example, matrix multiplication has type ∀ n m p, X n m → X m p → X n p (X n m be-
ing the type of matrices with size n,m). This would be helpful for proofs in
category theory. Again, the first difficulty is to adapt the definition of reified
terms, which would certainly require dependently typed non-empty lists.

Other decidable theories. While we focused on rewriting modulo AC, we could
consider other theories whose matching problem is decidable. Such theories in-
clude, for example, the Abelian groups and the Boolean rings [6] (the latter
naturally appears in proofs of hardware circuits).

Integration with other tools. Recently, tactics have been designed to exploit
external SAT/SMT solvers inside Coq [3]. These tactics rely on a reflexive proof
checker, used to certify the traces generated by the external solver. However,
in the SMT case, these traces do not contain proofs for the steps related to
the considered theories, so that one needs dedicated Coq decision procedures to
validate these steps. Currently, mostly linear integer arithmetic is supported [3],
using the lia tactic [5]; our tactic aac_reflexivity could be plugged into this
framework to add support for theories including arbitrary A or AC symbols.

Acknowledgements

We would like to thank Matthieu Sozeau for his precious help in understanding
Coq’s internal API.

References

1. S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The Semantics of
Reflected Proof. In Proc. LICS, pages 95–105. IEEE Computer Society, 1990.

2. C. Alvarado and Q.-H. Nguyen. ELAN for Equational Reasoning in Coq. In Proc.
LFM’00. INRIA, 2000. ISBN 2-7261-1166-1.

3. M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In Proc. CPP,
LNCS. Springer, 2011. To appear in this volume.

4. G. Barthe, M. Ruys, and H. Barendregt. A Two-Level Approach Towards Lean
Proof-Checking. In Proc. TYPES, LNCS, pages 16–35. Springer, 1995.

5. F. Besson. Fast reflexive arithmetic tactics the linear case and beyond. In Selected
papers of TYPES’06, volume 4502 of LNCS, pages 48–62. Springer, 2007.

6. A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schauß. Unification in Boolean Rings
and Abelian groups. J. Symb. Comput., 8(5):449–477, 1989.

7. S. Boutin. Using Reflection to Build Efficient and Certified Decision Procedures.
In Proc. TACS, volume 1281 of LNCS, pages 515–529. Springer, 1997.

8. R. S. Boyer and J. S. Moore, editors. The Correctness Problem in Computer
Science. Academic Press, 1981.

9. T. Braibant and D. Pous. Tactics for working modulo AC in Coq. Coq library
available at http://sardes.inrialpes.fr/~braibant/aac_tactics/, June 2010.

10. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In Proc RTA, volume 2706 of LNCS. Springer, 2003.

11. E. Contejean. A Certified AC Matching Algorithm. In Proc. RTA, volume 3091
of LNCS, pages 70–84. Springer, 2004.

12. S. Eker. Single Elementary Associative-Commutative Matching. J. Autom. Rea-
soning, 28(1):35–51, 2002.

13. G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad hoc proof
automation less ad hoc. In Proc. ICFP. ACM, 2011. To appear.

14. B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right
in Coq. In Proc. TPHOLs, volume 3603 of LNCS, pages 98–113. Springer, 2005.

15. J. M. Hullot. Associative Commutative pattern matching. In Proc. IJCAI, pages
406–412. Morgan Kaufmann Publishers Inc., 1979.

16. Q. H. Nguyen, C. Kirchner, and H. Kirchner. External Rewriting for Skeptical
Proof Assistants. J. Autom. Reasoning, 29(3-4):309–336, 2002.

17. T. Nipkow. Equational reasoning in Isabelle. Sci. Comp. Prg., 12(2):123–149, 1989.
18. T. Nipkow. Proof transformations for equational theories. In Proc. LICS, pages

278–288. IEEE Computer Society, 1990.
19. G. Peterson and M. Stickel. Complete sets of reductions for some equational

theories. J. ACM, 28(2):233–264, 1981.
20. G. Plotkin. Building in equational theories. Machine Intelligence 7, 1972.
21. K. Slind. AC Unification in HOL90. In Proc. HUG, volume 780 of LNCS, pages

436–449. Springer, 1993.
22. M. Sozeau and N. Oury. First-class type classes. In Proc. TPHOL, volume 4732

of LNCS, pages 278–293. Springer, 2008.

http://sardes.inrialpes.fr/~braibant/aac_tactics/

