The probabilistic modal μ-calculus with independent product

Matteo Mio
University of Edinburgh, School of Informatics, LFCS
The Modal μ-Calculus: $L\mu$

- Interpreted on $LTS = \langle P, \{ a \rightarrow \} \rangle_{a \in L}$, with $a \rightarrow \subseteq P \times P$.
- Syntax: $F ::= X | F \lor G | F \land G | \langle a \rangle F | [a] F | \mu X.F | \nu X.F$
- Semantics: $\llbracket F \rrbracket_\rho \subseteq P$, with $\rho : Var \rightarrow 2^P$
 \[
 \llbracket F \rrbracket_\rho = \rho(X) \\
 \llbracket F \lor G \rrbracket_\rho = \llbracket F \rrbracket_\rho \cup \llbracket G \rrbracket_\rho \\
 \llbracket F \land G \rrbracket_\rho = \llbracket F \rrbracket_\rho \cap \llbracket G \rrbracket_\rho \\
 \llbracket \langle a \rangle F \rrbracket_\rho = \{ p \mid \exists q.p \xrightarrow{a} q, q \in \llbracket F \rrbracket_\rho \} \\
 \llbracket [a] F \rrbracket_\rho = \{ p \mid \forall q.p \xrightarrow{a} q \text{ implies } q \in \llbracket F \rrbracket_\rho \} \\
 \llbracket \mu X.F \rrbracket_\rho = \text{lfp of } \lambda S. \llbracket F \rrbracket_\rho[S/X] \\
 \llbracket \nu X.F \rrbracket_\rho = \text{gfp of } \lambda S. \llbracket F \rrbracket_\rho[S/X]
\]
The Modal μ-Calculus: $L\mu$

- Interpreted on $\text{LTS} = \langle P, \{ \stackrel{a}{\to}\}_{a \in L} \rangle$, with $\stackrel{a}{\to} \subseteq P \times P$.
- Syntax: $F ::= X | F \lor G | F \land G | \langle a \rangle F | [a] F | \mu X.F | \nu X.F$
- Semantics: $\llbracket F \rrbracket_\rho \subseteq P$, with $\rho : \text{Var} \rightarrow 2^P$

\[
\begin{align*}
\llbracket F \rrbracket_\rho &= \rho(X) \\
\llbracket F \lor G \rrbracket_\rho &= \llbracket F \rrbracket_\rho \cup \llbracket G \rrbracket_\rho \\
\llbracket F \land G \rrbracket_\rho &= \llbracket F \rrbracket_\rho \cap \llbracket G \rrbracket_\rho \\
\llbracket \langle a \rangle F \rrbracket_\rho &= \{ p | \exists q. p \stackrel{a}{\to} q, q \in \llbracket F \rrbracket_\rho \} \\
\llbracket [a] F \rrbracket_\rho &= \{ p | \forall q. p \stackrel{a}{\to} q \text{ implies } q \in \llbracket F \rrbracket_\rho \} \\
\llbracket \mu X.F \rrbracket_\rho &= \text{lfp of } \lambda S. \llbracket F \rrbracket_\rho[S/X] \\
\llbracket \nu X.F \rrbracket_\rho &= \text{gfp of } \lambda S. \llbracket F \rrbracket_\rho[S/X]
\end{align*}
\]

Expressivity: bisimilarity-invariant fragment of MSO (Janin, Walukiewicz 1996).
The Modal μ-Calculus: $L\mu$

- Interpreted on $LTS = \langle P, \{ \frac{a}{\rightarrow}\}_{a \in L} \rangle$, with $\frac{a}{\rightarrow} \subseteq P \times P$.
- Syntax: $F ::= X \mid F \land G \mid F \lor G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$
- Semantics: $\llbracket F \rrbracket_\rho : P \rightarrow \{0, 1\}$, with $\rho : \text{Var} \rightarrow (P \rightarrow \{0, 1\})$

\[
\begin{align*}
\llbracket F \lor G \rrbracket = \llbracket F \rrbracket \uplus \llbracket G \rrbracket \\
\llbracket \langle a \rangle F \rrbracket(p) = \bigsqcup_{p \xrightarrow{a} q} \llbracket F \rrbracket(q) \\
\llbracket [a] F \rrbracket(p) = \bigsqcap_{p \xrightarrow{a} q} \llbracket F \rrbracket(q) \\
\llbracket \mu X.F \rrbracket = \text{lfp of } \lambda f. \llbracket F \rrbracket_{\rho[f/X]} \\
\llbracket \nu X.F \rrbracket = \text{gfp of } \lambda f. \llbracket F \rrbracket_{\rho[f/X]}
\end{align*}
\]
Game Semantics: a few examples

\[F = \nu X. \langle a \rangle X \]
There exist a infinite \(a \)-path.

\[G = \mu X. [a] X \]
Every \(a \)-path is finite.

\[H = \langle a \rangle [a] \perp \]
There is some \(a \)-step, after which no further \(a \)-step is possible.
Game Semantics: a few examples

\[F = \nu X. \langle a \rangle X \]
There exist a infinite \(a \)-path.

\[G = \mu X. [a] X \]
Every \(a \)-path is finite.

\[H = \langle a \rangle [a] \bot \]
There is some \(a \)-step, after which no further \(a \)-step is possible.

Player ♦ either gets stuck, or can force the play into an infinite \(\nu \)-loop.

So, ♦ wins this game: \(\llbracket F \rrbracket (p) = 1 \).
Game Semantics: a few examples

$a \xrightarrow{a} p \xrightarrow{a} q$

$F = \nu X. \langle a \rangle X$
There exist a infinite a-path.

$G = \mu X. [a] X$
Every a-path is finite.

$H = \langle a \rangle [a] \perp$
There is some a-step, after which no further a-step is possible.

Game associated with G:

Player \square either gets stuck, or can force the play into an infinite μ-loop.

So, \square wins this game, i.e. \Diamond loses: $
\llbracket G \rrbracket (p) = 0.$
Game Semantics: a few examples

\[\text{Game associated with } H: \]

\[F = \nu X . \langle a \rangle X \]

There exist an infinite \(a \)-path.

\[G = \mu X . [a] X \]

Every \(a \)-path is finite.

\[H = \langle a \rangle [a] \perp \]

There is some \(a \)-step, after which no further \(a \)-step is possible.

Player ♦ can make sure Player □ will get stuck.

So, ♦ wins this game: \([H](p) = 1\).
Theorem [e.g. Stirling 96]:
\([F](p) = 1 \) iff ♦ has a winning strategy in \(G^F \) from \((p:F) \).

- Denotational Semantics and Game Semantics coincide.
- Useful to have an operational interpretation for the meaning of a formula.
- Game Semantics very successful: theoretical results, model checking algorithms, ...
A PLTS is a pair \(\langle P, \{ a \rightarrow \} \rangle \) where

- \(P \) is a countable set of states,
- \(L \) is a countable set of labels, or atomic actions,
- \(a \rightarrow \subseteq P \times \mathcal{D}(P) \) is the \(a \)-transition relation.
A PLTS is a pair $\langle P, \{a \rightarrow\}_a \in L \rangle$ where

- P is a countable set of states,
- L is a countable set of labels, or atomic actions,
- $a \rightarrow \subseteq P \times \mathcal{D}(P)$ is the a-transition relation.
The Modal μ-Calculus: $L\mu$

- Interpreted on $LTS = \langle P, \{ \frac{a}{\rightarrow}\}_{a \in L} \rangle$, with $\frac{a}{\rightarrow} \subseteq P \times P$.
- Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$
- Semantics: $\llbracket F \rrbracket_\rho : P \rightarrow \{0, 1\}$, with $\rho : Var \rightarrow (P \rightarrow \{0, 1\})$

\[
\begin{align*}
\llbracket F \lor G \rrbracket &= \llbracket F \rrbracket \cup \llbracket G \rrbracket \\
\llbracket \langle a \rangle F \rrbracket(p) &= \bigcup_{p \xrightarrow{a} q} \llbracket F \rrbracket(q) \\
\llbracket \mu X.F \rrbracket &= \text{lfp of } \lambda f. \llbracket F \rrbracket_\rho[f/X] \\
\llbracket \nu X.F \rrbracket &= \text{gfp of } \lambda f. \llbracket F \rrbracket_\rho[f/X]
\end{align*}
\]
The Probabilistic Modal μ-Calculus: $pL\mu$

- Interpreted on $\text{PLTS} = \langle P, \{ \stackrel{a}{\rightarrow} \}_{a \in L} \rangle$, with $\stackrel{a}{\rightarrow} \subseteq P \times \mathcal{D}(P)$.

- Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F$

- Semantics: $\llbracket F \rrbracket_\rho : P \rightarrow [0, 1]$, with $\rho : \text{Var} \rightarrow (P \rightarrow [0, 1])$

$$\begin{align*}
\llbracket F \lor G \rrbracket & = \llbracket F \rrbracket \sqcup \llbracket G \rrbracket \\
\llbracket \langle a \rangle F \rrbracket(p) & = \bigsqcup_{p \stackrel{a}{\rightarrow} \alpha} \llbracket F \rrbracket(\alpha) \\
\llbracket \mu X.F \rrbracket & = \text{lfp of } \lambda f. \llbracket F \rrbracket_{\rho[f/X]} \\
\llbracket [a] F \rrbracket(p) & = \bigsqcap_{p \stackrel{a}{\rightarrow} \alpha} \llbracket F \rrbracket(\alpha) \\
\llbracket \nu X.F \rrbracket & = \text{gfp of } \lambda f. \llbracket F \rrbracket_{\rho[f/X]}
\end{align*}$$
The Probabilistic Modal μ-Calculus: $pL\mu$

- Interpreted on $PLTS = \langle P, \{ \stackrel{\alpha}{\rightarrow} \}_{a \in L} \rangle$, with $\stackrel{\alpha}{\rightarrow} \subseteq P \times D(P)$.
- Syntax: $F ::= X | F \lor G | F \land G | \langle a \rangle F | [a] F | \mu X.F | \nu X.F$
- Semantics: $[F]_\rho : P \rightarrow [0, 1]$, with $\rho : Var \rightarrow (P \rightarrow [0, 1])$

\[
[F \lor G] = [F] \sqcup [G] \quad [F \land G] = [F] \sqcap [G]
\]
\[
[\langle a \rangle F](p) = \bigcup_{p \stackrel{\alpha}{\rightarrow} \alpha} [F](\alpha)
\]
\[
[\mu X.F] = \text{lfp of } \lambda f \cdot [F]_{\rho[f/X]}
\]
\[
[\nu X.F] = \text{gfp of } \lambda f \cdot [F]_{\rho[f/X]}
\]
\[
[F](\alpha) = \sum_{p \in P} \alpha(p) \cdot [F](p)
\]
Game Semantics for $\mathsf{pL}\mu$: a few examples

\[
F = \nu X. \langle a \rangle X
\]
There exist an infinite a-path.

\[
G = \mu X. [a] X
\]
Every a-path is finite.

\[
H = \langle a \rangle [a] \perp
\]
There is some a-step, after which no further a-step is possible.
Game Semantics for pL_μ: a few examples

Game associated with F:

$$F = \nu X. \langle a \rangle X$$

There exist a infinite a-path.

$$G = \mu X. [a] X$$

Every a-path is finite.

$$H = \langle a \rangle [a] \bot$$

There is some a-step, after which no further a-step is possible.

Player ♦ either gets stuck (and lose), or end up in an infinite ν-loop (and win).

However, the probability of winning is 0.

So, ♦ wins this game with probability 0: $\llbracket F \rrbracket (p) = 0$.
Game Semantics for pLμ: a few examples

\[F = \nu X.\langle a\rangle X \]
There exist a infinite \(a \)-path.

\[G = \mu X.\lbrack a\rbrack X \]
Every \(a \)-path is finite.

\[H = \langle a\rangle \lbrack a\rbrack \perp \]
There is some \(a \)-step, after which no further \(a \)-step is possible.

Game associated with \(G \):

Player \(\square \) either gets stuck (and lose), or end up in a infinite \(\mu \)-loop (and win).

\(\text{However, this happens with prob. 0.} \)

So, \(\lozenge \) wins this game with probability 1: \(\llbracket G \rrbracket (p) = 1. \)
Game Semantics for $pL\mu$: a few examples

There exist a infinite a-path.

Every a-path is finite.

There is some a-step, after which no further a-step is possible.

Player \Diamond reaches \bot with prob. $\frac{1}{3}$, and \Box gets stuck with probability $\frac{2}{3}$.

So, \Diamond wins this game with probability $\frac{2}{3}$: $\llbracket H \rrbracket (p) = \frac{2}{3}$.

Matteo Mio Lyon - September 2011
There exist a infinite a-path.

Every a-path is finite.

There is some a-step, after which no further a-step is possible.

In general

Best probability of satisfying F (read as in L_μ) against any hostile environment.
Theorem [Mio 2010, Morgan and McIver 2004]:

$$\llbracket F \rrbracket (p) = \text{value of the game } G^F \text{ at } (p:F).$$

where the (quantitative) value is defined as usual in game theory:

$$\bigcup \bigcap_{\sigma^\Diamond} E(M_{\sigma^\Diamond, \sigma^\Box}) = \bigcap \bigcup_{\sigma^\Box} E(M_{\sigma^\Diamond, \sigma^\Box})$$

- Denotational Semantics and Game Semantics coincide.
- Useful to have an operational interpretation for the meaning of a probabilistic sentences.
- Game Semantics provides: model checking algorithms, ...
Interpreted on PLTS = \(\langle P, \{ \xrightarrow{a} \}_{a \in L} \rangle \), with \(\xrightarrow{a} \subseteq P \times \mathcal{D}(P) \).

Syntax: \[F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F \mid F \otimes G \mid F \cdot G \]

Semantics: \[[F]_{\rho} : P \rightarrow [0, 1], \text{ with } \rho : \text{Var} \rightarrow (P \rightarrow [0, 1]) \]
\[[F \cdot G] (p) = [F] (p) \cdot [G] (p) \quad [F \otimes G] (p) = [F] (p) \odot [G] (p) \]
where \(x \odot y = x + y - (x \cdot y) \)

- the De Morgan dual of \(\cdot \) under \(\neg x = 1 - x \): \(x \odot y \overset{\text{def}}{=} \neg(\neg x \cdot \neg y) \).
Interpreted on PLTS = \langle P, \{ \overset{a}{\rightarrow}\}_{a \in L} \rangle, with \overset{a}{\rightarrow} \subseteq P \times D(P).

Syntax: \(F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F \)
\(F \circ G \mid F \cdot G \)

Semantics: \([F]_\rho : P \rightarrow [0, 1], \text{ with } \rho : \text{Var} \rightarrow (P \rightarrow [0, 1])\)
\([F \cdot G](p) = [F](p) \cdot [G](p) \quad [F \circ G](p) = [F](p) \circ [G](p)\)

where \(x \circ y = x + y - (x \cdot y)\)

- the De Morgan dual of \(\cdot \) under \(\neg x = 1 - x: x \circ y \overset{\text{def}}{=} \neg(\neg x \cdot \neg y).\)

Mathematically well defined (\(\cdot \) and \(\circ \) are monotone).
Interpreted on PLTS = $\langle P, \{\xrightarrow{a}\}_{a \in L} \rangle$, with $\xrightarrow{a} \subseteq P \times D(P)$.

Syntax: $F ::= X \mid F \lor G \mid F \land G \mid \langle a \rangle F \mid [a] F \mid \mu X.F \mid \nu X.F \mid F \odot G \mid F \cdot G$

Semantics: $\llbracket F \rrbracket_\rho : P \rightarrow [0, 1]$, with $\rho : Var \rightarrow (P \rightarrow [0, 1])$

$\llbracket F \cdot G \rrbracket (p) = \llbracket F \rrbracket (p) \cdot \llbracket G \rrbracket (p)$
$\llbracket F \odot G \rrbracket (p) = \llbracket F \rrbracket (p) \circ \llbracket G \rrbracket (p)$

where $x \circ y = x + y - (x \cdot y)$

the De Morgan dual of \cdot under $\neg x = 1 - x$: $x \odot y \overset{\text{def}}{=} \neg(\neg x \cdot \neg y)$.

Mathematically well defined (\cdot and \odot are monotone).

But is it meaningful?

$\llbracket F \cdot G \rrbracket$ probability that F and G holds independently?

$\llbracket F \odot G \rrbracket$ probability that F or G holds independently?
Why $pL\mu^{\circ}$??

Let us define

- $\mathbb{P}_{>0} F \overset{\text{def}}{=} \mu X.(F \odot X)$, and
- $\mathbb{P}_{=1} F \overset{\text{def}}{=} \nu X.(F \cdot X)$.

Then

- $\llbracket \mathbb{P}_{>0} F \rrbracket (p) = \begin{cases} 1 & \text{if } \llbracket F \rrbracket (p) > 0 \\ 0 & \text{otherwise} \end{cases}$

- $\llbracket \mathbb{P}_{=1} F \rrbracket (p) = \begin{cases} 1 & \text{if } \llbracket F \rrbracket (p) = 1 \\ 0 & \text{otherwise} \end{cases}$

This allows:

- the expression of interesting (new) properties involving qualitative/quantitative assertions (see paper).
- The encoding of the qualitative fragment of PCTL into $pL\mu^{\circ}$.
Game Semantics for pLμ: a few examples

Game associated with $H \cdot J$:

$$H = \langle a \rangle [a] \bot$$
Probability to reach after some a-step
a state without a-edges.

$$J = \langle a \rangle \langle a \rangle ^{\top}$$
Probability to reach after some a-step
a state with some a-edge.

$$H \cdot J$$
Probability of satisfying both H and J
when H and J independently verified.
Game Semantics for pL₂: a few examples

\[H = \langle a \rangle [a] \perp \]
Probability to reach after some a-step a state without a-edges.

\[J = \langle a \rangle \langle a \rangle \top \]
Probability to reach after some a-step a state with some a-edge.

\[H \cdot J \]
Probability of satisfying both \(H \) and \(J \) when \(H \) and \(J \) independently verified.

\[\langle H \cdot J \rangle (p) = \frac{2}{9}. \]

Game associated with \(H \cdot J \):

\[\diamond \text{ wins iff } \text{He wins in both sub-games.} \]

\[\text{Since they are independent, this will happen with probability } \frac{1}{3} \cdot \frac{2}{3}. \]
Game Semantics for pL\(\mu\): a few examples

Game associated with \(\mu X.(H \odot X)\):

\[
H = \langle a \rangle [a] \perp
\]
Probability to reach after some \(a\)-step a state without \(a\)-edges.

\[
\mathbb{P}_{>0} H = \mu X.(X \odot H)
\]
1 if \(H\) is possible,
0 otherwise.

\[
\uparrow
\]
probability that \(H\) holds at least once if verified infinitely many times.
Game Semantics for pLµ: a few examples

\[H = \langle a \rangle [a] \perp \]

Probability to reach after some a-step a state without a-edges.

\[\mathbb{P}_{>0} H = \mu X. (X \odot H) \]

1 if \(H \) is possible,
0 otherwise.

\[\uparrow \]

probability that \(H \) holds at least once if verified infinitely many times.

\[\Diamond \text{ will win in at least on sub-game almost surely!} \]

\[\llbracket \mu X. (H \odot X) \rrbracket (p) = 1. \]
These ideas are formalized using $2\frac{1}{2}$-player tree games, which build on the intuitive idea of concurrent and independent execution of sub-games.

A new class of games having trees as outcomes, rather than paths.

The branches of the trees are generated when the game is split in concurrent and independent sub-games.

The winning-set of a $2\frac{1}{2}$-player tree game is a set Φ of trees which we call branching plays.

In the case of $pL\mu\diamond$ games the winning set, is the set of trees such that \diamond can find a winning path by making or choices at the branching nodes $p : F \diamond G$, against any and choice made by \boxdot on the nodes $p : F \cdot G$.

i.e. the trees that, once interpreted as ordinary 2-player parity games, are won by \diamond.

That’s why we call them $2\frac{1}{2}$-player meta-parity games.
One can define the notion of (upper and lower) \textbf{value} of a $2\frac{1}{2}$-player tree game.

\[Val_{\downarrow}(G) = \bigcup \bigcap E_{\sigma^\Diamond,\sigma^\Box}(\Phi) \]

\[Val_{\uparrow}(G) = \bigcap \bigcup E_{\sigma^\Box,\sigma^\Diamond}(\Phi) \]

\textbf{Theorem (MA$_{\aleph_1}$):} If G is a pLμ^\Diamond game, then:

\[Val_{\downarrow}(G) = Val_{\uparrow}(G). \]

\textbf{Theorem (MA$_{\aleph_1}$):} For every pLμ^\Diamond formula F:

\[[F](p) = \text{value of } G^F \text{ at } (p, F). \]
Our theorems hold in $\text{ZFC} + \text{MA}_{\aleph_1}$ set theory.

- MA is an axiom considered by set theorists as a weaker alternative to CH.

- MA_{\aleph_1} is a consequence of $\text{MA} + \neg\text{CH}$ and itself implies $\neg\text{CH}$.

- In particular it implies that:
 - measurable sets are closer under ω_1 unions.
 - measures are ω_1-continuous.

- Therefore our proof is a consistent proof.
Our theorems hold in $\text{ZFC} + \text{MA}_{\mathbb{N}_1}$ set theory.

- MA is an axiom considered by set theorists as a weaker alternative to CH.
- $\text{MA}_{\mathbb{N}_1}$ is a consequence of $\text{MA} + \neg \text{CH}$ and itself implies $\neg \text{CH}$.
- In particular it implies that:
 - measurable sets are closer under ω_1 unions.
 - measures are ω_1-continuous.

- Therefore our proof is a consistent proof.

- Also Fermat’s Last Theorem is proved in $\text{ZFC} + \text{U!!}$
 \[\forall a, b, c \in \mathbb{Z}. a^n + b^n \neq c^n, \text{ when } n > 3. \]
We use MA_{\aleph_1} to handle the complexity of the winning sets Φ of μ° games.

► We prove that Φ is always a Δ^1_2 set.

► Hence not Borel, and not necessarily measurable.

► But we characterize Φ as a ω_1-union of measurable sets: $\Phi = \bigcup_{\alpha < \omega_1} \Phi^\alpha$.

► Hence, under MA_{\aleph_1}, Φ is measurable, and its measure is the limit of the measures of the approximants.

$$\mu(\Phi) = \bigsqcup_{\alpha < \omega_1} \mu(\Phi^\alpha)$$
Many open problems!
Many open problems!

- can MA_{\aleph_1} be dropped from the proof?
Many open problems!

- Can MA_{\aleph_1} be dropped from the proof?
- Is a finite $pL_{\mu^{\otimes}}$-game positionally determined?
Many open problems!

- Can MA_{\aleph_1} be dropped from the proof?
- Is a finite pL_{μ^\square}-game positionally determined?
 - Conjecture was: YES!
Many open problems!

- Can MA_{\aleph_1} be dropped from the proof?
- Is a finite pL_μ^ω-game positionally determined?
 - Conjecture was: YES!
 - Answer is: NO!
Many open problems!

- can MA_{\aleph_1} be dropped from the proof?
- Is a finite pL_{μ^\ominus}-game positionally determined?
 - Conjecture was: YES!
 - Answer is: NO!
- Is the value of a finite pL_{μ^\ominus}-game decidable? !!!
Many open problems!

- Can MA_{\aleph_1} be dropped from the proof?
- Is a finite pL_μ^\odot-game positionally determined?
 - Conjecture was: YES!
 - Answer is: NO!
- Is the value of a finite pL_μ^\odot-game decidable? !!!
 - Failure of positional determinacy makes this problem challenging.
Many open problems!

- Can MA_{\aleph_1} be dropped from the proof?
- Is a finite $pL\mu\circledast$-game positionally determined?
 - Conjecture was: YES!
 - Answer is: NO!
- Is the value of a finite $pL\mu\circledast$-game decidable? !!!
 - Failure of positional determinacy makes this problem challenging.
- Study the logical-equivalence (or metric) induced by the logic $pL\mu\circledast$, or even the modal fragment $\{\top, \bot, \lor, \land, \langle a \rangle, [a], \cdot, \otimes\}$.
THANKS
A few interesting examples

Figure: Example of PLTS

1. $F_2 \overset{\text{def}}{=} \nu X. \langle a \rangle X$

 “Best probability of making an infinite sequence of a’s”.
A few interesting examples

1. $F_2 \overset{\text{def}}{=} \nu X \cdot \langle a \rangle X$
 “Best probability of making an infinite sequence of a’s”.

2. $F_3 \overset{\text{def}}{=} \mu X \cdot (F_2 \lor \langle b \rangle X)$
 “Best probability of making a finite sequence of b’s followed by an infinite sequence of a’s”.

Figure: Example of PLTS
A few interesting examples

\[F_2 \overset{\text{def}}{=} \nu X.\langle a \rangle X \]
“Best probability of making an infinite sequence of a’s”.

\[F_3 \overset{\text{def}}{=} \mu X.\left(F_2 \lor \langle b \rangle X \right) \]
“Best probability of making a finite sequence of b’s followed by an infinite sequence of a’s”.

\[F_5 \overset{\text{def}}{=} \langle a \rangle \langle a \rangle 1 \land [a] [a] 0 \]
\[0 \leq \lbrack F_5 \rbrack (p) \leq \frac{1}{2} \text{ for all } p \]
The logic is not Boolean! (Kleene Algebra)
Figure: Example of PLTS

1. \(G_1 \overset{\text{def}}{=} P_{=1}(\nu X.\langle a\rangle X) \)

 “Holds at \(p \), if the best probability of making an infinite sequence of \(a \)'s is 1”.

Matteo Mio

Lyon - September 2011
1. $G_1 \overset{\text{def}}{=} \mathbb{P}_1(\nu X.\langle a \rangle X)$
 “Holds at p, if the best probability of making an infinite sequence of a’s is 1”.

2. $G_2 \overset{\text{def}}{=} \mu X.(G_1 \lor \langle b \rangle X)$
 “Best probability of reaching, by a finite sequence of b’s, a state where G_1 holds”.

Figure: Example of PLTS
1. \(G_1 \overset{\text{def}}{=} \mathbb{P}_{=1}(\nu X. \langle a \rangle X) \)
 "\textbf{Holds at} \(p \), if the best probability of making an infinite sequence of \(a \)'s is 1".

2. \(G_2 \overset{\text{def}}{=} \mu X. (G_1 \lor \langle b \rangle X) \)
 "Best probability of reaching, by a finite sequence of \(b \)'s, a state where \(G_1 \) holds".

3. \(G_5 \overset{\text{def}}{=} \mathbb{P}_{>0}(\mu X. (G_1 \lor \langle b \rangle X)) \)
 "Holds iff the probability (above) is greater than 0".

\[\text{Figure: Example of PLTS} \]
\begin{align*}
1. \quad & H_1 = \nu X \cdot \mathbb{P}_{>0} \langle a \rangle X \\
& \text{“Holds if it is possible to make infinitely many possible } a \text{'s:} \\
& p \xrightarrow{a} d_1 \sim p_1 \xrightarrow{a} d_2 \sim p_2 \ldots \text{ with } d_n(p_n) > 0
\end{align*}

\begin{align*}
2. \quad & H_2 = \mu X \cdot \mathbb{P}_{=1} [a] X \\
& \text{Dual of } H_1: \text{“holds if it is impossible to make infinitely many} \\
& \text{possible } a \text{'s:}
\end{align*}

\begin{align*}
3. \quad & H_3 = \mu X \cdot ((\mathbb{P}_{>0} \langle a \rangle X) \lor \mathbb{P}_{=1} H) \\
& \text{“Holds if it is possible to make finitely many possible } a \text{'s and} \\
& \text{reach a state where } H \text{ holds with probability 1.}
\end{align*}