
J2EE packaging, deployment and reconfiguration

using a general component model

Takoua Abdellatif1,2, Jakub Kornaś2, and Jean-Bernard Stefani2

1 Bull SA
2 LSR-IMAG laboratory (CNRS, INPG, UJF) - INRIA - Sardes project

INRIA Rhône-Alpes, 655 av. de l’Europe, F-38334 Saint-Ismier Cedex, France
Firstname.Lastname@inrialpes.fr

Abstract. This paper describes a case study of enhancing the deploy-
ment process in J2EE application servers (AS), and more precisely the
services building such servers and the applications executing on the
servers. We show how, by following a component-based approach to the
design of the server, we address the versioning and licensing issues raised
by the fact that a J2EE server is built out of heterogeneous, third-party
software.
As a proof of concept, we present a re-engineered version of the JOnAS
J2EE server implemented using Fractal, a component model providing
flexible control capabilities and hierarchical composition. We describe
how Fractal packaging together with a JOnAS-specific deployment sys-
tem are used to deploy and reconfigure our Fractal-based version of the
JOnAS server. Finally, we show how the same model and packaging can
be used to deploy applications executing on the server.

1 Introduction

J2EE [1] application servers are complex, service-oriented architectures. Existing
open-source solutions usually implement services as wrappers of legacy code. For
example, the JOnAS [2] application server3 contains a Web service wrapping
either Tomcat [3] or Jetty [4], a transaction service that wraps JOTM [5], etc.
Since services are developed by third parties, it is necessary to allow deploying
and updating them independently. Indeed, the application server must both
allow choosing between different licenses at deployment time, and allow services
to be updated when a new version is available.

Service update issues are not handled by current J2EE specifications. The
JSR88 [6] focuses on the deployment of applications, but not on the deployment
of the middleware. JSR77 [7] defines an information model that must be exposed
to managers in charge of monitoring and controlling the system. This model
does not contain the necessary information for dynamically updating services.
This lack of specification regarding the middleware management (e.g. licensing,
versioning) is currently left to the server providers.

3 JOnAS is an open-source application server freely available under an LGPL license
at http://jonas.objectweb.org



Updating a service code at runtime (i.e. without stopping the server) involves
three main tasks: (i) isolation of services as independent packages, (ii) deploy-
ment and redeployment of services, and (iii) handling service dependencies and
state at runtime. Regarding the packaging part, the main issue is to handle the
dependency between the different packages and the compatibility between code
versions they contain. Regarding the deployment and redeployment part, each
service needs to have an independent life cycle, in particular it must be deploy-
able independently from other services. Finally, handling the running service
state implies taking into account the service’s stateful data and dependencies
between the updated service and other running services.

Issues raised in point (iii) necessitate reconsidering the middleware architec-
ture. Indeed, service dependencies must be explicit so that when a service is
updated, the behavior of dependent services can be controlled. This has been
the purpose of previous work [8] on JOnAS, which led to the JonasALaCarte
prototype. JonasALaCarte adopts a component-based architecture, implemented
using the Fractal [9] component model. Fractal allows building hierarchical archi-
tectures (using composite components), where components communicate through
explicit bindings. JonasALaCarte uses Fractal components to wrap services, thus
making them independent units of configuration and deployment with an inde-
pendent lifecycle.

This paper focuses on points (i) and (ii), i.e. the packaging and deployment
parts. We show that we can adopt the same component model (Fractal) to imple-
ment the service packaging and the deployment infrastructure. Service packages
are represented by Fractal components and dependencies between packages are
expressed using Fractal bindings. Moreover, the deployment infrastructure is im-
plemented using Fractal components, which allows dynamically plugging various
deployment policies adapted to the deployment environment (e.g. centralized,
clusters, grids, etc.).

Furthermore, we show that our deployment tool and packaging model is also
applicable to J2EE applications. Unifying the packaging and deployment process
thanks to the Fractal component model allows for abstracting the management
tasks (packaging, deployment and system adaptation) to a configuration of Frac-
tal components. Regarding existent solutions in open source application servers,
our management solution is uniform: we use the same model for the packag-
ing and the AS execution at runtime. Moreover, we adopt the same package
structure for the middleware services and the J2EE applications.

The main innovative aspects of our work are that: we allow for versioning
and redeployment of services building the JOnAS J2EE server, we solve the
possible licensing issues by packaging each JOnAS service independently, we use
a uniform component model from the package level, through the AS level, to
the application level, and finally, in our solution, dependencies between JOnAS
services are made explicit and map on package dependencies.

The rest of the paper is structured as follows: in section 2 we briefly intro-
duce the Fractal component model and Fractal packaging. Section 3 describes the
drawbacks of JOnAS in terms of deployment and presents how, by re-engineering



JOnAS, we have obtained JonasALaCarte, a Fractal-based version of the server.
Sections 4 and 5 present how components building the JonasALaCarte are pack-
aged, deployed and redeployed. In section 6 we describe the related work before
concluding the article in section 7.

2 Fractal component model

In this section we briefly describe the Fractal component model: the principles
underlying the model, the Fractal ADL (architecture description language) and
Fractal packaging.

2.1 Fractal principles

Fractal [10] is a general component model. It distinguishes two types of compo-
nents: primitive and composite. Primitive components are standard Java classes
that conform to certain coding conventions. Composite components encapsulate
a group of primitive and/or composite components.

A Fractal component is made of two parts: a controller part, which exposes
the component’s interfaces and comprises controller and interceptor objects, and
a content part, which can be either a standard Java class in case of a primitive
component, or other components (called subcomponents), in case of a composite
component.

Similar to other component models, Fractal distinguishes server interfaces,
which correspond to provided services, and client interfaces, which correspond
to required services. Moreover, Fractal supports both primitive bindings (i.e.
Java references) and composite bindings which are built out of a set of primitive
bindings and binding components (stubs, skeletons, adapters, etc).

Figure 1 illustrates the different constructs in a typical Fractal component
architecture. The gray boxes denote the controller part of the components. Ar-
rows correspond to bindings; the interfaces appearing on the top of a component
represent the controllers, the interfaces on the left are server interfaces and on
the right are client interfaces.

Fig. 1. An example Fractal architecture.



The construction of a system with Fractal component yields a dynamically
adaptable system where the component is the unit of configuration, deployment
and reconfiguration. The system architecture, written in ADL, is expressed in
terms of the component model, exhibiting bindings between components and
containment relationships. These properties are specific to Fractal, compared to
other component models, as explained more in detail in [10]. For these reasons
we chose to build our new AS, as well as the deployment system itself, using
Fractal.

2.2 Fractal ADL

Fractal Architecture Description Language (ADL) is a mean to define architec-
tures of Fractal applications. It is XML-based, and each description of the Fractal
architecture is stored in a .fractal file. A sample ADL description of a Fractal
component is represented in figure 2. This example corresponds to an ADL de-
scription of a component named WebContainer. This component has four client
(required) interfaces, named jmx, security, jprop and lmgr, implemented by
the following Java interfaces: JmxServiceItf, SecurityServiceItf, JProperty
and LManager. The WebContainer component also has one server (provided)
interface, named service and implemented by a Java interface ServiceItf. Fi-
nally, the implementation of this component’s functional (content) part is pro-
vided by a Java class called WebContainerWrapper. WebContainer can be bound
to other components, it can also be a subcomponent of some other component.

<definition name="WebContainer">
<interface name="jmx" role="client" signature="JmxServiceItf"/>
<interface name="security" role="client" signature="SecurityServiceItf"/>

<interface name="jprop" role="client" signature="JProperty"/>
<interface name="lmgr" role="client" signature="LManager"/>

<interface name="service" role="server" signature="ServiceItf"/>
<content class="WebContainerWrapper"/>

</definition>

Fig. 2. WebContainer.fractal: A sample ADL description of a Fractal component

Fractal ADL has been designed to be open and extensible: it is made of
several units, where each unit defines syntax for one architectural aspect (like
interface, binding, attribute etc). Developers are free to define their own units.
At deployment time, an ADL description of the application is parsed by a factory
tool. This factory tool can also be extended to take into account added units.

2.3 Fractal packaging

Fractal packages are used to deploy Fractal applications. These packages are
stored in package repositories, which can be of various kinds, such as file sys-
tems, databases etc. Each Fractal package A.far is a Fractal component A in



a serialized form, which is described by a Fractal ADL definition A.fractal

contained in the package itself. Such a definition of packages unifies the package
and component concepts, in the sense that a package is just a special form of a
component. All the properties of Fractal packages are deduced from this iden-
tity relation: for example, Fractal packages can contain sub-packages, just like
Fractal components can contain subcomponents. Figure 3 illustrates an example
of Fractal packages, including their metadata.

package JonasALaCArte.far
JonasALaCarte.fractal:

<definition name="JonasALaCarte" version="1.0">
<component name="WebContainer" definition="WebContainer"/>
...

</definition>
ow_jonasbootstrap.jar

... other, non ADL files ...

package WebContainer.far
WebContainer.fractal:

<definition name="WebContainer" version="1.0">

<interface name="jmx" role="client"
signature="JmxServiceItf"/>

<interface name="security" role="client"
signature="SecurityServiceItf"/>

...
</definition>

catalina.jar

tomcat-coyote.jar
... other, non ADL files ...

package JMX.far
JMX.fractal:

<definition name="JMX" version="1.0">
<interface name="service" role="server"

signature="JmxServiceItf"/>
...

</definition>
jmx.jar
... other, non ADL files ...

Fig. 3. An example of Fractal package files

Dependencies between Fractal components can only be of two sorts: depen-
dencies through component encapsulation, and dependencies through compo-
nent interfaces. These two dependency types give two dependency types between
Fractal packages : (i) a containment dependency gives a strong dependency be-
tween two packages (in the example presented in figure 3, the containment of
WebContainer inside JonasALaCarte, gives a strong dependency between pack-
age JonasALaCarte.far and package WebContainer.far) (ii) a dependency
through interfaces gives a loose dependency between packages (in the example
presented in figure 3, the client interface jmx gives a loose dependency between
package WebContainer.far and any package that provides the JmxServiceItf

interface), which in the example presented in figure 3 is the JMX.far package.



3 Re-engineering JOnAS using Fractal

In this section we first briefly describe the JOnAS J2EE server. Then we outline
the drawbacks of the existing implementation of JOnAS focusing mainly on
deployment, licensing and updates issues. Finally we present our re-engineered,
Fractal-based version of the server which we call JonasALaCarte. In the next
two sections we explain how this re-engineering work allows us to address all the
deployment-related issues of the ”standard” server.

3.1 The JOnAS server

JOnAS is an open source J2EE application server. It is developed within the
ObjectWeb Consortium [11]. The server’s role is to host J2EE-compliant ap-
plications by providing them with an execution environment that offers a well-
defined set of non-functional services (persistency, transactions, security, etc.).
To achieve that, the server integrates various software from different providers,
such as the Apache Software Foundation [12], the ObjectWeb consortium etc.
This heterogeneous software builds the services that offer non-functional prop-
erties to the J2EE applications. Even though each software providing differ-
ent non-functional aspect could be considered as an independent component
with explicitly defined relations to other components, JOnAS does not employ a
component-based approach in its design. On the contrary, JOnAS is a monolithic
block of code in the sense that the relations between the third-party ”compo-
nents” integrated by the server are not explicit - they are hard-coded in JOnAS’
classes. Such an approach has major drawbacks in terms of both architecture
and deployment. In terms of software architecture, the non-component-based
approach makes the internals of JOnAS difficult to understand and the server
difficult to manage at runtime. In terms of deployment, it does not allow the
redeployment of only parts of the server - since JOnAS services are not compo-
nents, they cannot have a life cycle independent of the life cycle of the server.
Therefore, it is impossible to, for example, redeploy JOnAS services indepen-
dently. Moreover, it is impossible to address the licensing issues raised by the
fact that for certain third-party components it can be illegal to package and
distribute them together with other third-party components. To address these
issues we have re-engineered the JOnAS server to obtain a component-based
version of it.

3.2 Fractalized JOnAS

JonasALaCarte [8] is our re-engineered, component-based version of the JOnAS
server. In our re-engineering work we have adopted the Fractal component model.

As a result of our re-engineering work, all JOnAS services and management
entities became Fractal components. As illustrated in figure 4, each instance
of the JonasALaCarte server is therefore a composite component encapsulat-
ing a set of interacting services (primitive components). The latter are bound
using Fractal bindings. The first advantage of such an approach, compared to



traditional JOnAS server, is that the architecture of the server is explicit - con-
nections between services are well defined, services building the server can be
managed thanks to the control interfaces of the components that wrap these ser-
vices. Second advantage is that components building the server can be packaged,
deployed and redeployed independently. Note, however, that for most of these
components it is impossible to have two versions of them running in a single
application server. This is due to the way these components are implemented.

Fig. 4. Architecture of the JonasALaCarte J2EE server.

We have implemented a JSR77 lifecycle controller of each deployable Frac-
tal component (in our case the services and the management components) as a
Fractal controller. Figure 5 presents the JSR77 automate. When a Fractal com-
ponent is deployed, its state is set to Starting. Each service component asks the
Loader Manager for its class loader, performs some initialization operations and
starts. If the service starting succeeds, its lifecycle controller is positioned to the
Running state; otherwise the latter is set to Failed. To stop a service its state
is set to Stopping and the service performs some state storage and clean-up. If
these operations succeed, the service sets its state to Stopped, otherwise it is set
within a configurable time-out to Failed.

4 Packaging

In this section we describe how Fractal packaging applies in the context of the
Fractalized JOnAS server.

Fractalized JOnAS services are fractal components, therefore packages used
for storage and deployment of these services are Fractal packages (serialized
forms of Fractal components).

As stated in section 2.3, package-level dependencies between services build-
ing the server are the same as runtime-level dependencies, and are therefore



Fig. 5. JSR77 component lifecycle automate.

expressed in the same ADL file. However, this file is enriched with versioning in-
formation needed by the package-management system. This information is used
to solve package dependency and compatibility issues.

In addition to the .fractal file, each package contains also the .jar files
that provide the actual code needed by the services at execution.

package WebContainer-1.0.far
WebContainer.fractal:

<definition name="org.objectweb.jonasALaCarte.WebContainer"
version="1.0">
<interface name="jmx" role="client"

signature="org.objectweb.jonas.jmx.JmxServiceItf"
compatibility="[1.0, *]"/>

<interface name="security" role="client"
signature="org.objectweb.jonas.security.SecurityServiceItf"
compatibility="[1.0, *]"/>

<interface name="jprop" role="client"
signature="org.objectweb.jonasALaCarte.configurator.JProperty"

compatibility="[1.0, *]"/>
<interface name="lmgr" role="client"

signature="org.objectweb.jonasALaCarte.loaderManager.LManager"
compatibility="[1.0, *]"/>

<interface name="service" role="server"

signature="org.objectweb.jonas.service.ServiceItf"/>
<content

class="org.objectweb.jonas.web.wrapper.catalina55.WebContainerWrapper"/>
... the rest of the ADL file

</definition>

catalina.jar
tomcat-coyote.jar

... other, non ADL files ...

Fig. 6. The content, including metadata, of the WebContainer-1.0.far package

As can be seen, dependencies between packages correspond to the runtime
dependencies between services building the server. Therefore, the
WebContainer-1.0.far package depends on any package providing the
JmxServiceItf interface, any package providing the SecurityServiceItf in-



terface etc. These package dependencies are resolved by the JonasALaCarte de-
ployment mechanism.

The J2EE modules (WARs, EARs, RARs and EJBJars), as defined in JSR88
are wrapped as Fractal components. The ADL files in the .far archives describe
the module version and the dependencies between the module and the services
where it will be deployed. The deployment manager checks the code version
compatibility. On the other hand, we express in ADLs, the dependencies between
the modules themselves. For example, it is possible that two EARs archives need
to share the same RARs. Note that JSR88 specification does not address the
dependency between modules. We offer this feature thanks to our packaging
structure without breaking the specification. Again, adopting the same package
structure for both applications and middleware allows using the same APIs and
management tools.

Since packages are only units of code distribution, they do not provide in-
formation on how the code contained in a package should be loaded at runtime,
that is information relative to class loading. This is important in the context
of JOnAS, since the server employs a rather complex class-loading hierarchy,
allowing for example for run-time versioning of code. We believe that this class
loading hierarchy is orthogonal to the code packaging - it is the deployment tool’s
role to have enough knowledge and means to create class loader hierarchies for
the packages it obtains from package repositories. Thus, as will be explained in
the next section, our deployment tool creates a proper class loader hierarchy for
JOnAS.

5 Deployment and Updates

This section describes how Fractal packages containing the JOnAS services are
deployed by our deployment tool and how JOnAS services can be redeployed
without the need to redeploy the whole server. The first part of this section
describes the architecture of the JonasALaCarte deployment tool, the second
part outlines the properties of this deployment tool and finally the third part
presents a redeployment use case.

5.1 Architecture

As illustrated in figure 7, our deployment tool is built of the following com-
ponents: The Deployment Manager, the Repository and the Loader Manager.
The role of the Deployment Manager is to parse the package meta-data, to iden-
tify the dependencies between the packages and check package availability and
version compatibility. If no problem (lack of necessary packages, package incom-
patibility, etc.) is detected, the deployment manager extracts the content of .far
packages (middleware or application ones) and asks the Repository component
to store locally the content of these packages. Various storage policies can be
implemented. In our current implementation, the Repository component stores
the contents of packages in a folder structure equivalent to the one defined by



JOnAS. It is possible to have other storage semantics or other storage support
like data bases for persistence. The deployment manager asks the Initiator

component to deploy services. The latter invokes then the start interfaces on the
different service components.

Fig. 7. Uniform Fractal-based representation of packages, the deployment infrastruc-
ture and the middleware

The Initiator component polls the service lifecycle states and sends a no-
tification to the deployment manager if a service deployment fails. As a future
work we plan to implement some repair deployment policies as Fractal compo-
nents. Note that currently the same protocol is used for the deployment of J2EE
applications [13].

5.2 Properties

Our deployment architecture has three main properties:
Separation of deployment policies from deployment mechanisms by

adopting a component-based architecture. In our context, the deployment poli-
cies define (i) how packages are stored, (ii) how dependencies between packages
are handled, and (iii) how class loaders are created. Implementing these three
concerns using separate components communicating through well defined inter-
faces allows modifying the behavior of each component independently from the
others. For example, our existing implementation of the Loader Manager com-
ponent creates a class loader hierarchy equivalent to the one used in JOnAS [14].
Another possible implementation could use Module Loader [15] as a class loading
mechanism, and thus allow for the usage of any of the module loader’s search



policies. Finally, an implementation of the Loader Manager could map directly
the packaged components, based on their metadata, on the namespaces provided
by class loaders as we explain it in [16].

Unification of the packaging and the deployment tools by adopting
the component model used to build the middleware itself. Adopting the same
component model allows abstracting the management of the different phases
to the configuration of Fractal components. This unification allows for using
the same API to monitor and manage the application server lifecycle steps:
from packaging to runtime execution. Currently, we enhanced the fractal ex-
plorer tool [17] to offer a common GUI for these steps. Figure 8 illustrates the
navigation through Fractal packages of the server, the deployment components
and the middleware services. Later in this section we explain in detail how this
GUI tool allows for management and redeployment of components building the
JonasALaCarte server.

Unification of the packaging and the deployment of J2EE appli-

cations and middleware. To achieve this goal, we adopt the same package
structure and deployment tool for both middleware and applications. Indeed,
the middleware services as well as J2EE applications are packaged as Fractal
packages (.fars).

5.3 Redeployment use case

The Deployment Manager allows for redeployment of services. For that it obtains
the new far from the package repository, asks the Initiator to store the far’s
content locally and calls the deploy interface of the Initiator component. The
Initiator calls redeploy interface of the service. The service is then stopped
together with all the services that use it. The service component subject to
redeployment asks the Loader Manager for its new class loader and restarts.

The redeployment of JonasALaCarte services can be performed using the
Fractal Explorer tool that we have extended for our needs. Figure 8 illustrates an
example of redeploying the WebContainer component. Figure 8a presents the ini-
tial state of the redeployment operation. On the left we can see all the subcompo-
nents of the JonasALaCarte composite component, including the WebContainer
component. We can also see the redeployment-controller, a Fractal controller
specific to JonasALaCarte, responsible for initiating the redeployment of ser-
vices. In figure 8b we see that the administrator chose the WebContainer com-
ponent for redeployment. At this stage, the deployment manager queries the
(possibly remote) package repository for the available versions of .far files con-
taining the WebContainer component. As can be seen in figure 8c, two versions
of this component are available and the administrator decides to deploy the ”2.0”
version of the component. This example shows how we achieve our goal of being
capable to redeploy the services building the JOnAS server. Moreover, since ser-
vices are packaged independently, we also solve the possible licensing issues. It
has to be mentioned that redeployment of the WebContainer also involves the
redeployment of all war and ear files.



(a) (b)

(c)

Fig. 8. Example of JonasALaCarte service redeployment using Fractal Explorer titi

In the use case described above we do not address the state preservation
issue. The capacity to provide such state preservation depends on the properties
of legacy software building the server.

6 Related work

The related work can be divided into two types of systems: the J2EE application
servers and the generic, “Module” systems for Java.

6.1 J2EE servers

In JBoss [18], the architecture of the AS is completely based on JMX. A JMX
agent represents the middleware kernel. The services are implemented as MBeans
and are deployed using the MLet service. In JBoss, some tools are built on top of



JMX to express the dependencies between MBeans and thus between services.
JBoss adopts different packaging structures for the application deployment mod-
ules (JARs, RARs, EARs) and the service deployment modules (SARs). Con-
sequently, there is no uniform package structure for the middleware and the
application parts. MBeans architecture unit is not exploited for the packaging
and the deployment. Regarding JBoss, JonasALaCarte is based on a uniform
model, the Fractal component model, for the packaging, the deployment and
the middleware architecture. Furthermore, we are not aware of the dynamic
versioning feature in JBoss, which we provide in JonasALaCarte.

Geronimo [19] developers are aware of the JMX limitation to uniform the
complexity of the system. In fact, relation betweens the MBeans and the com-
munication between them are not in the scope of the JMX model. Geronimo
adopts instead an IoC [20] kernel based architecture. Inversion of Control, also
called dependency injection, is a pattern supported by IoC containers and frame-
works to achieve separation of concerns. Components inside the container can
isolate dependencies and have these dependencies injected into them during ex-
ecution/deployment. Components inside Geronimo are called GBeans and are
the manageable units in Geronimo. The deployment process is separated into
the user part (the modules creation) and the execution part (the configurations
creation). During deployment, one or more modules are packaged together into a
configuration. Internally, Geronimo sees only configurations, as packaged deploy-
ment of one or more GBeans. Like Fractal ADLs in JonasALaCarte, a Geron-
imo deployment plan is the Geronimo-specific meta-data. Like in Geronimo, our
packaging and deployment tools aim at unifying the complex system by adopt-
ing the same structure of the deployment modules and deployment plans for the
middleware and the J2EE applications. However, in JonasALaCarte, we adopt
the same model for the packaging, the deployment tools and the middleware im-
plementation itself. The administrator handles the packages, the management
units and the middleware as Fractal components.

6.2 “Module” systems

OSGi [21] allows the deployment of Java applications packaged in a form of
bundles and runtime updates of those bundles. A bundle contains jar files and
metadata describing those files (versioning etc.). The OSGi platform’s role is to
manage the lifecycle of bundles (deployment, activation, updates etc.). One of the
contributions brought by the OSGi to Java community is taking jar versioning
into account. The main drawback of OSGi compared to Fractal, and therefore
to our solution, is that it does not provide an explicit notion of application’s
architecture. Moreover, OSGi services are not hierarchical and provide no control
interfaces.

MJ [22] is a module system for Java. Its primary goal is to solve the issue
of unexpected interactions between software components raised by large Java
systems. To achieve it, MJ uses multiple class loaders but provides a high-level
interface to manage these class loaders. However, MJ does not address the issue
of redeployment of modules. With regards to MJ, our solution focuses mainly



on the packaging, deployment and updates of services building such large Java
systems, and J2EE servers in particular. The unexpected interactions between
services do not occur in JonasALaCarte since we reuse the runtime separation
of services provided by the standard hierarchy of JOnAS class loaders.

7 Conclusion

In this paper we addressed the issue of service versioning and licensing in the
context of J2EE application servers. We presented the use case of updating the
Web container service in JOnAS J2EE server at runtime. To allow redeploy-
ment, services are packaged independently and a middleware deployment tool is
used to instantiate them. Furthermore, we reconsidered the architecture of the
JOnAS application server since updating a service requires that each service has
a lifecycle independent from the lifecycle of the application server. We selected
the Fractal component model for the redesign and the reimplementation of the
JOnAS application server and its management units. This choice was driven by
the fact that construction of a system with the Fractal component model yields a
dynamically adaptable system where the components are units of configuration,
deployment and reconfiguration.

We illustrated that by adopting a component-based approach to package the
services, to build the deployment tool and to architecture the middleware itself
we achieve our versioning goal in a flexible and practical way. By flexibility we
understand the ability to change the deployment policies, the class loading strate-
gies or the package storage backends by replacing the correspondent component
with a new component implementing the new policy. Our solution is practical
because by unifying the implementation of the packages, the deployment tool
and the middleware, the management tasks from packaging to the middleware
monitoring and adaptation are abstracted to the configuration of Fractal com-
ponents. The manager deals with the same API for the administration of the
application server in its different phases: from packaging to the dynamic adap-
tation at execution time. We illustrated in this paper how an administrator can
navigate through the same graphical interface (Fractal Explorer) to explore a
service package, to perform a redeployment operation and to check the success
of the service redeployment.

Currently, we implemented the packaging and the deployment infrastructure
for the middleware services. In future, we plan to apply our solution to the
packaging and the deployment of the J2EE applications, as we explained in this
paper. We also aim at unifying the management of the J2EE middleware and the
applications. Finally, we plan to enhance the deployment process by developing
new deployment policies, such as transactions, security and failure recovery, as
Fractal components.

References

1. J2EE: Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee/docs.html.



2. JOnAS: Java Open Application Server http://jonas.objectweb.org/.
3. Apache Tomcat http://jakarta.apache.org/tomcat/.
4. Jetty Java HTTP Servlet Server http://jetty.mortbay.org/jetty/.
5. Java Open Transaction Manager http://jotm.objectweb.org/.
6. J2EE Deployment Specification (JSR88) http://jcp.org/jsr/detail/88.jsp.
7. J2EE Management Specification (JSR77) http://jcp.org/jsr/detail/77.jsp.
8. Abdellatif, T.: Enhancing the Management of a J2EE Application Server using a

Component-Based Architecture. In: Proceeding of the 31st EUROMICRO Con-
ference (EUROMICRO’2005), Porto, Portugal (2005)

9. Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Composition Framework
(2002) http://www.objectweb.org.

10. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An Open
Component Model and its Support in Java. In: Proceedings of the International
Symposium on Component-based Software Engineering (CBSE’2004), Edinburgh,
Scotland (2004)

11. The ObjectWeb Consortium http://objectweb.org.
12. The Apache Software Foundation http://apache.org.
13. Exertier, F.: J2ee deployment: The jonas case study. CoRR cs.NI/0411054

(2004)
14. JOnAS class loader hierarchy (2004) http://jonas.objectweb.org/current/doc/.
15. Hall, R.S.: A Policy-Driven Class Loader to Support Deployment in Extensible

Frameworks. In: Proceedings of the International Conference on Component De-
ployment (CD’2004), Edinburgh, Scotland (2004)

16. Kornas, J., Leclercq, M., Quema, V., Stefani, J.B.: Sup-
port for evolutionary changes in Java applications (2004)
http://sardes.inrialpes.fr/papers/kornas04cl.pdf.

17. The Fractal Project http://fractal.objectweb.org.
18. Fleury, M., Lindfors, J.: JMX-Managing J2EE with Java Management Extensions.

Sams, The JBoss Group (2002)
19. Mulder, A.: Apache Geronimo Development and Deployment. Pearson Education

(2004)
20. The PicoContainer project http://www.picocontainer.org/.
21. Open Services Gateway Initiative, OSGi service gateway specification, Release 3

http://www.osgi.org.
22. Corwin, J., Bacon, D.F., Grove, D., Murthy, C.: Mj: a rational module system

for java and its applications. In: Conference on Object-Oriented Programming
Systems Languages and Applications (OOPSLA’2003), Anaheim, California, USA
(2003)


