
A Black-Box Approach for Web Application SLA

Jeremy Philippe
INRIA

Grenoble, France

Jeremy.Philippe@inria.fr

Noël De Palma
INPG

Grenoble, France

Noel.Depalma@inria.fr

Sara Bouchenak
University of Grenoble I

Grenoble, France

Sara.Bouchenak@inria.fr

Fabienne Boyer
University of Grenoble I

Grenoble, France

Fabienne.Boyer@inria.fr

Daniel Hagimont
INRIA

Grenoble, France

Daniel.Hagimont@inria.fr

ABSTRACT
Web servers nowadays have to cope with unprecedented
amounts of workload, due to increasing popularity and com-
plexity; in particular, dynamically generated content be-
comes the standard, hence the term Web application. Pro-
viding enough resources to sustain these workloads is a grand
challenge, thus the application’s runtime environment is of-
ten trusted to third-party hosting providers. To optimize
resource utilization, hosting providers tend to share server
machines between several applications. In such context, it
is desirable to make sure that hosted applications are guar-
anteed a predictable level of performance, in other words
implement service-level agreements (SLAs).

In this paper, we present an approach to Web application
SLA, based on profiling and geared at black-box server com-
ponents, which allows us to express SLAs using application-
level metrics, such as request rates. We conducted experi-
ments in the context of a two-tiers server architecture shared
by two e-commerce applications, and were able to enforce
performance guarantees expressed as a number of concur-
rent user sessions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—Distributed applications

General Terms
Performance, Measument, Management, Algorithms, Ex-
perimentation

Keywords
Web Applications, Quality of Service, Performance Isola-
tion, Request Scheduling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

1. INTRODUCTION
When several Web applications share server machines, one

particular challenge is to enforce performance isolation, i.e.
one application should not be able to “steal” resources from
other colocated applications. Performance isolation leads to
the specification of service-level agreements (SLAs) which
quantify performance guarantees.

Currently, research propositions for SLA implementation
are limited in two important ways. First, they require special-
purpose runtime environments able to perform fine-grained
resource usage accounting, which severely limits applicabil-
ity to production environments. A second limitation is the
lack of expressiveness of the metrics used to quantify per-
formance; indeed resource-level metrics are often used, e.g.
CPU or network bandwidth. Unlike static Web servers, sim-
ply specifying resource-level bandwidth guarantees is not
enough to quantify the performance of Web applications.
Rather, application-level metrics should be used, e.g. re-
quest rates or response times. In this paper, we present an
approach that strives to overcome these limitations.

2. APPROACH
Here is an example of a SLA based on application-level

metrics, i.e. metrics that explicitely express application per-
formance:

(Q) Response time for 95% of requests is under 500 ms.

(W) Number of concurrent client sessions is under 256.

It can be seen that we decompose the SLA in two parts: the
(Q) part specifies the QoS received by individual client re-
quests, while the (W) part specifies the maximum workload
intensity for which (Q) can effectively be guaranteed. To
enforce an SLA, one must provision each application with
enough resource bandwidth to ensure that it can sustain
(W) while providing (Q) to client requests. To achieve that
result, it is necessary to:

(i) determine how much resource bandwidth should be avail-
able for the application to reach the specified perfor-
mance level.

(ii) ensure that each application effectively gets that band-
width, even when competing for resources.

(i) requires the profiling of the application, in order to map
application-level performance metrics to resource-level met-
rics. (ii) requires performance isolation, that is appropri-
ate resource scheduling so that each application gets a pre-
dictable share of resource bandwidth.

To perform profiling, we dedicate server machines to ap-
plications and inject realistic workload while resource uti-
lization is monitored using standard system-wide tools. The
advantage of that approach is that it does not require fine-
grained instrumentation, as is the case of online profiling.
Thus it can be used with black-box server systems.

To ensure performance isolation when applications share
server machines, we use a form of logical partitioning based
on a frontend request scheduler. Because profiling deter-
mines the cost of application requests, the scheduler does
not need to track each application’s resource usage, which
would again require fine-grained scheduling, unavailable on
black-box systems. Instead a simple weighted round-robin
scheduling discipline can be used. That discipline allows us
to enforce performance isolation and lets unused processing
capacity to be redistributed to other applications that would
need it.

3. EVALUATION
To evaluate the validity of our approach we conducted ex-

periments involving two realistic Web applications, RUBiS
(an eBay clone) and TPC-W (an Amazon clone). RUBiS
and TPC-W were deployed on common hardware, composed
of a frontend Web tier and a backend database tier. We con-
sidered the following SLAs:

Workload
RUBiS 512 concurrent sessions
TPC-W 64 concurrent sessions

Because these two applications are well-known benchmarks,
commonly used to quantify the relative performance of dif-
ferent runtime environments, realistic client emulators read-
ily exist to inject workload, thus facilatating the profiling
task. We observed an expected linear correlation between
resource utilization and workload intensity for all resources
considered (CPU, network, disk). Only CPU utilization of
the database tier was considered in the profiles since it was
an order of magnitude greater than utilization of other re-
sources.

With these profiles, we were able to map application-level
metrics to resource-level metrics:

RUBiS TPC-W Total
Number of clients 512 64
Request rate 70.1 req/s 74.9 req/s
CPU utilization 21.5% 18.9% 40.4%

These profiles show that the server machines should pro-
vide more than enough processing bandwidth to sustain the
peak workload specified in the SLAs. However, if one ap-
plication receives workload that exceeds the SLA specifica-
tion, it must not impact performance of the other applica-
tion (if well-behaved). To evaluate performance isolation,
we injected a TPC-W workload with increasing intensity,
thus simulating an overload, while RUBiS received the peak
workload specified in the SLA (512 concurrent sessions).
We observed the aggregate processing rate delivered to RU-
BiS clients to verify that the performance guarantees were
met. In figure 1, we show comparative results for 5 request
scheduling disciplines:

(1) direct No frontend scheduler is present (clients access
the server directly).

(2) fifo First in, first out discipline.

(3) prio Priority-based discipline (RUBiS clients are strictly
prioritized).

(4) wrr-0.5 Weighted round-robin discipline (RUBiS has weight
0.5).

(5) wrr-0.25 Weighted round-robin discipline (RUBiS has
weight 0.25).

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 200 400 600 800 1000 1200 1400

R
es

po
ns

e
tim

e
fo

r
R

U
B

iS
 c

lie
nt

s
(m

s)

Number of TPC-W Clients

TPC-W/RUBiS

direct
fifo

prio
wrr (0.5)

wrr (0.25)

Figure 1: Service isolation

These graphs show that (i) when not using a class-aware
discipline (1 and 2), overloaded applications (TPC-W) can
easily “steal” resources from well-behaved applications (RU-
BiS); (ii) if properly configured (based on profiling infor-
mation), a performance isolation discipline (4) essentially
works as a strict-priority discipline (3), only in favor of well-
behaved applications; and (iii) if not configured properly,
a performance isolation discipline (5) still provides perfor-
mance guarantees, only these guarantees do not fit the re-
quested SLA.

4. CONCLUSIONS
In this paper, we have proposed a solution for SLA imple-

mentation in the context of Web applications. Contribution
of our approach is twofold; first, it can be applied to black-
box middleware components; and second, it allows the use of
application-level metrics in SLA specifications. This is done
with two steps, an offline profiling step to predict the cost
of requests and an online scheduling step to enforce perfor-
mance isolation. We conducted experiments in the context
of J2EE Web applications, and validated our approach using
two well-known J2EE benchmarks that reproduce real-life
applications.

