
Building reconfigurable component-based OS with THINK

Juraj Polakovic
FranceTelecom R&D

MAPS/AMS Lab, Grenoble

Ali Erdem Özcan
STMicroelectronics
AST Lab, Grenoble

Jean-Bernard Stefani
SARDES Project, INRIA

INRIA Rhône Alpes
firstname.name@inrialpes.fr

Abstract
Dynamic reconfiguration allows modifying a system dur-
ing its execution, and can be used to apply patches and
updates, to implement adaptive systems, dynamic instru-
mentation, or to support third-party modules. Dynamic re-
configuration is important in embedded systems, where one
does not necessarily have the luxury to stop a running sys-
tem. While several proposals have been presented in the
litterature supporting dynamic reconfiguration in operating
system kernels, these proposals in general hardwire a fixed
reconfiguration mechanism, which may be far from optimal
in certain configurations.

In this paper, we present a software-architecture-based
approach to the construction of operating systems, and we
show that it allows us 1/ to support different mechanisms
for dynamic reconfiguration, and 2/ to select between them
at build time, with little or no changes in operating system
and application components. Our approach relies on the
use of a reflective component model and of its associated
architecture description language.

1 Introduction
Dynamic reconfiguration, i.e. the ability to alter a system
during its execution, is an important requirement for mod-
ern operating systems. As has been argued in [19], dynamic
reconfiguration can be used for a number of purposes:

• Applying patches and updates, avoiding a trade-off
between availability and correctness.

• Implementing adaptive algorithms, where different
algorithms, matching different operating conditions,
can be hot-swapped to provide adaptation when con-
ditions change.

• Supporting dynamic monitoring, where instrumenta-
tion can be put in place dynamically for the duration
of the observation, and removed when no longer nec-
essary.

• Supporting application-specific optimizations, where
applications can optimize their performance by re-

placing a system component by a more specialized
one.

• Supporting third-party modules, where system com-
ponents can be dowloaded from the network and in-
stalled at run-time.

The above motivations for dynamic reconfiguration are
especially valid in the case of operating systems for em-
bedded devices, which must be adapted to a large variety
of hardware and applications, under different resource or
energy constraints.

The past fifteen years have seen numerous works deal-
ing with extensibility and reconfigurability in operating
system kernels, a number of them proposing mechanisms
for dynamic reconfiguration. However, the proposed mech-
anisms are essentially hardwired in the proposed operat-
ing system. In a domain with a large variety of supporting
hardware, and application requirements, such as embedded
systems (spanning such diverse cases as telecom routers,
mobile phones and PDAs, home entertainment appliances,
etc), different dynamic reconfiguration mechanisms may be
required for a better performance, depending in particular
on the multi-threading structure of the target system (appli-
cations + operating system). With the current proposals for
dynamic reconfiguration in operating systems, which we
review in section 2, one cannot select the more efficient dy-
namic reconfiguration mechanism according to the target
system.

In this paper, we show how this can be achieved at de-
sign time, with minimal effort, using a component-based
approach to operating system construction. Specifically,
we show how to support two known forms of dynamic
reconfiguration, which we call thread counting and dy-
namic interception, and select between them, with little
or no changes in operating system and application com-
ponents, via a high-level architecture description of the tar-
get system. As part of the evaluation of our component-
based design, we show indeed that, depending on the multi-
threading structure of the target system, and on the gran-
ularity of the possible reconfigurations, the choice of the
appropriate dynamic reconfiguration mechanism can have
a substantial impact on performance.

1

The paper is organized as follows. Section 2 discusses
related work. Section 3 discusses the support necessary
for dynamic reconfiguration and presents our component-
based framework for operating system construction, called
THINK. Section 4 presents the implementation of the
thread counting and dynamic interception mechanisms in
THINK. Section 5 provides a quantitative and qualitative
evaluation of our approach. Section 6 concludes the paper.

2 Related work
Dynamic reconfiguration has been heavily explored in re-
search areas ranging from programming languages, down
to middleware and operating system kernels. In the follow-
ing, we restrict our analysis to operating systems.

Commercial operating systems, such as Linux or Win-
dows provide limited support for dynamic reconfigura-
tion, typically limited to certain functionalities, like device
drivers. It is possible to load and unload kernel modules,
however these ad-hoc mechanisms do not offer full dy-
namic reconfiguration support for the rest of the system.

Compared to monolithic operating systems, micro-
kernels (L4 [13], Chorus [16], Kea [20] or Pebble [9]) are
a step further in providing reconfigurability - a user-level
server is the unit of reconfiguration. However, a micro-
kernel itself is not reconfigurable and if reconfigurability is
implemented at the level of user-level servers, the system
pays the price of the IPC communication between these
servers. An Exokernel approach [6] allows kernel devel-
opers to build systems on top of minimum hardware ab-
straction, however it is also up to the kernel developper to
implement a reconfiguration support.

Extensible operating systems, such as SPIN [2], pro-
vide a way to extend the kernel without the cost of domain-
crossing inherent to the micro-kernel design, however with
several limitations. First, an underlying kernel core itself is
not reconfigurable. Second, extensions are only limited to
some prefefined parts of the kernel. Third, the interactions
between extensions and the kernel are expensive - an ex-
tension is a handler reacting to an event raised by a kernel
module.

Component-based OS, such as OSkit [8] or eCos
[5], provide a way to build customized kernels, based on
compile-time selection of components to be included into
the kernel. These systems also provide an architecture de-
scription language (ADL), such as Knit [15], to assist the
assembly of the kernel. However, these systems have no
support for dynamic reconfiguration.

Reconfigurable operating systems include VINO [17,
18], Synthetix [14], MMLite [10] or more recently K42
[1, 19]. In VINO all reconfigurations are handled as trans-
actions, largely using locking to synchronize the access
to kernel modules. Synthetix and MMLite use read-write

locks to synchronize accesses to a reconfigurable compo-
nent (we call this solution thread counting). K42 supports
reconfiguration through a mechanism, we call dynamic in-
terceptors, which consist in introducing interceptors at run-
time. Common to these systems is the fact that the provided
dynamic reconfiguration mechanism is strongly tied to the
design of the system.

Our approach can be contrasted with the approaches
mentioned above along three axes:

First, we use fine-grained components and in contrast
to other systems, including OSKit or eCos, our approach
does not require any minimal core set of functionalities.

Second, we use an ADL and the associated compiler
that allow us to construct operating systems by composi-
tion and to integrate non-functional elements as a reconfi-
guration mechanism for example. This allows the kernel
developer to add a reconfiguration mechanism without im-
pacting the functional part of the system.

Third, the above mentioned systems lack support for
interface type verification, generic state transfer, compo-
nent version management for reconfiguration or more com-
plex reconfigurations involving replacing several compo-
nents. The combination of the ADL and reflection capabil-
ities of the OS enables us to tackle these issues.

3 Component-based approach for
reconfiguration in THINK

3.1 Issues in dynamic reconfiguration
Reconfiguration of a software on-the-fly comprises of dif-
ferent steps. First, the part of the system to be reconfigured
(for brevity we call it the reconfiguration target) must be
clearly identified. Then, before the reconfiguration takes
place, the reconfiguration target must reach a safe state. A
common notion of safe state is that of quiescent state, i.e. a
state in which no activity currently takes place in the recon-
figuration target. When this safe state is detected, the state
of the reconfiguration target must be captured and trans-
fered to the new component and the change of configura-
tion can now take place. The change of configuration can
imply changing some attributes, modifying the connections
between modules, as well as altering the architecture of the
reconfiguration target. Before resuming the execution after
the configuration change, the references to the old compo-
nent must be redirected to the new one.

We discuss below, how a component-based approach
can help to implement these requirements.

Boundaries of reconfiguration First of all, components
are well defined encapsulation units that isolate state and
code behind well-defined access points, i.e. interfaces.

2

Thus the unit of reconfiguration is a component. In a hier-
archical component model we even have the possibility to
tune the granularity of the reconfiguration, i.e. to proceed
to coarse-grain or fine-grain changes in the system.

Detection of safe state In this paper, the notion of safe
state that we consider is that of quiescent state. This notion
of quiescent state is well adapted to multi-threaded operat-
ing system kernels. A component has reached a quiescent
state in multi-threaded systems when no threads are exe-
cuting inside a component.

State transfer Solutions for state transfer may be more
or less complex. We consider that the state to transfer is the
private data encapsulated by the old component. In a basic
case, one can only copy this data to the new component.
Components may also provide interfaces to give access to
such kind of operations (e.g. getter and setter operations).
This may not be sufficient if the internal data representa-
tions of the old and new components differ. In this case,
state transfer must comprise a translation between old and
new components’ data representations.

Reference redirection A component-based approach
implies programming against interfaces rather than imple-
mentations. In general, inter-component references are
formalized as bindings (also called connectors) between a
client interface and a server interface. This provides a so-
lution to the localization of the references that should be
updated.

In the rest of this section, we present our approach, the
THINK framework which comprises a component model,
an architecture description language with its compiler to C,
and a library of operating system components.

3.2 Component model
We based our work on Fractal [3, 4], a hierarchical and
reflective component model intended to implement, deploy
and manage a wide range of software systems including
operating systems and middleware.

A Fractal component is both a design and runtime en-
tity that constitutes a unit of encapsulation, composition
and configuration. Components provide server interfaces
which are the access points to the services that they imple-
ment. They express their service requirements via client
interfaces. Fractal distinguishes two kinds of components.
Primitive components are implemented in a host program-
ming language (e.g. C, Java) and can be seen as black
boxes providing and requiring services through their inter-
faces. Composite components correspond to a composition
of other components (called subcomponents), either prim-
itives or composites. The existence of composite compo-

nents makes the Fractal Component Model a hierarchical
component model.

Components in the Fractal Component Model interact
via client/server bindings. A binding constitutes a com-
munication path between components and can implement
arbitrary forms of communication (e.g asynchronous re-
quests, synchronous requests/replies, multicasting and so
forth). The simplest form of binding is a language refer-
ence (e.g. a method invocation).

A Fractal component logically comprises two different
parts. The internal part, that we call content implements
the functional interfaces of the component. The content is
encapsulated by a membrane which can implement control
over its behavior. In addition to the functional interfaces of
a component, the membrane can provide an arbitrary set of
control interfaces.

The presence of control interfaces makes Fractal a re-
flective component model where control interfaces provide
the means to observe and manipulate the internal structure
of a component. An important point is that the Fractal
Component Model does not mandate a fixed and predefined
meta-object protocol (i.e. a set of control interfaces). In-
stead, a programmer can define and implement his own set
of control interfaces.

Fractal defines some standard control interfaces in or-
der to manipulate a component’s interfaces, its subcompo-
nents, its client bindings, attributes, or its life-cycle (re-
spectively called ComponentIdentity, ContentController,
BindingController, LifeCycleController).

3.3 Architecture Description Language
The Fractal model is equipped with an architecture de-
scription language (ADL). The Fractal ADL is a high-level
declarative language in which programmers express soft-
ware configurations in terms of interfaces, attributes, com-
ponent compositions and bindings. An example of an ADL
description is given in the figure 1.

The major contribution of this paper is the ability of
adding selective reconfiguration features into a kernel us-
ing ADL descriptions. This is done by specifying a spe-
cific membrane for reconfigurable components which im-
plements the control interfaces that are needed for recon-
figuration. This way, the reconfiguration aspect of a com-
ponent is specified orthogonally to its content (functional
code) and its architecture. The ADL compiler generates
these specific membranes.

3.4 Building OS kernels with THINK
THINK is a general framework for building component-
based systems and especially operating system kernels. It is
made of the combination of the Fractal component model,

3

SpecificOSKernel_H264

FileSystem Allocator Scheduler FrameBuffer Console

E2FS

e2fs

DiskDriver

FlatAllocator

dlmallocFlat Memory
Manager

Screen

FrameBuffer
Driver

Console
PriorityScheduler

Idle Thread

PriorityBased
Scheduler

Trap
Manager

Timer
Handler

composite SpecificOSKernel_H264 {
provides FileSystem as fs
provides Allocator as allocator
provides Scheduler as scheduler
provides FrameBuffer as fb
provides Console as console

contains fs = E2FS
contains alloc = FlatAllocator
contains sched = PriorityScheduler
contains screen = Screen

binds this.fs tp fs.fs
binds this.allocator to alloc.allocator
binds this.scheduler to sched.scheduler
binds this.fb to screen.fb
binds this.console to screen.console
binds scheduler.allocator to alloc.allocator
binds fs.allocator to alloc.allocator

membrane Simple
}

Figure 1: A simplified view of a specific OS kernel built
for the H.264 decoder and the associated ADL description.
White boxes represent Kortex’s generic components while
grey boxes represent the platform specific ones.

its ADL with the associated ADL-to-C compiler and its
component library that comprises various standard oper-
ating system functions and architecture-dependent compo-
nents. The initial version of THINK [7] was based on a
flat component model. Our current version differs from the
original one in that it is entirely based on the hierarchical
Fractal Component Model.

The Fractal ADL compiler translates the ADL code to
ANSI C and compiles and links the generated code with
component implementations (also written in C) using a
standard C compiler and linker. The generated C code
obeys to a binary format for components detailed in [7].
Figure 1 shows a THINK-based kernel example.

4 Implementation of dynamic recon-
figuration in THINK-based OS

We implemented two mechanisms for achieving quiescent
state - the first based on thread counting and the sec-
ond is based on dynamic interceptors. These mechanisms
are provided as two different membrane implementations
in the ADL, namely the Reconfig_ThreadCounting
and Reconfig_DynamicInterceptorsmembranes.
The kernel designer chooses the appropriate membrane for
a given component and the ADL compiler generates an ap-
propriate implementation of the membrane.

Requesting reconfiguration is done via the
ReconfigurationController control interface
implemented by both membranes. This interface defines
three methods: add, remove and replace. The implemen-
tations of these methods reuse Fractal control interfaces
of the membrane and of the components concerned by
the reconfiguration. For example, the following pseudo
code shows a simple implementation of the replace
operation.

/* CC: ContentController */
/* BC: BindingController */
/* LCC: LifeCycleController */
ReconfigurationController->replace(old, new, ...) {
target::CC->add(new);

/* Quiescent state request */
quiescence_request(); //method specific
//quiescence when resumed

/* stop the component: ex. driver shutdown */
old::LCC->stop();

/* State Transfer */
state = old::StateTransfer->getState();
... //state transformation
new::StateTransfer->setState(state);

target::CC->remove(old);
new::LCC->start();

/* reference redirection */
rebind_all_client_components();

}

The following subsections detail the two reconfigu-
ration mechanisms we have implemented in the THINK
framework. This work applies to multi-threaded kernels,
thus we assume the existence of a scheduler and semaphore
components, manifested by the presence of scheduler and
semaphore client interfaces in figures 2 and 3.

4.1 Thread counting
Thread counting uses interceptors to track thread accesses
to a component since the start of the system. On every
invocation of a component’s interface, the interceptor in-
crements the access counter. The counter is decremented
on every method return. Quiescent state is achieved, when
the access counter is zero - no thread is executing in the

4

component at that moment. This mechanism is described
as mutation in MMLite [10].

In the THINK framework, in order to count thread ac-
cesses on components we put in place interceptors for ev-
ery interface of the component. These interceptors have
two functions: they count accesses and, depending on the
component’s state, block or forward calls to the component.
Thread counting interceptors use two semaphore compo-
nents. One is used as a mutex to protect the counter from
concurrent access. This could be done by only disabling
interrupts when manipulating the counter, however it is
an architecture-dependent optimization of the generic so-
lution. The second semaphore is used only to block a re-
configuration request when waiting for quiescent state.

The figure 2 shows the architecture of a reconfigurable
variant of the screen component identified on figure 1.
As such, this component is reconfigurable using thread-
counting - I1 and I2 interceptors are placed in front of con-
sole and framebuffer components’ interfaces. From the
point of view of the kernel designer (ADL specification),
the screen component has two subcomponents and a mem-
brane providing dynamic reconfiguration using the thread-
counting mechanism. The ADL compiler generates the
necessary membrane components and their bindings (im-
plementations of ReconfigurationController, ContentCon-
troller, bindings to semaphore components...).

se
m

ap
h

o
re

ComponentIdentityReconfigurationController ContentController

screen

co
n

so
le

framebufferI2

se
m

ap
h

o
re

consoleI1

fr
am

eb
u

ff
er

implem:
thread
counting implem.implem.

framebuffer

CI, BC, SC, LCC

CI, BC, SC, LCC

CI: ComponentIdentity BC: BindingController
SC: StateTransferController LCC: LifeCycleController

Figure 2: Thread counting interceptors: A fully reconfig-
urable composite component with interceptors. Parts actu-
ally written by the developer are in bold components gen-
erated by the ADL compiler are in grey.

In this approach, the level of reconfigurability of a ker-
nel, understood as composite component, is fixed at design-
time i.e. when writing the kernel architecture description.

One can build a fully reconfigurable kernel turning each
and every component in the kernel configuration into a re-
configurable component, but this obvisouly implies mem-
ory and performance overheads due to the presence of inter-
ceptors at every component interface in the system. Some
optimizations are possible, for instance in a case where a
subcomponent interface is directly exported by a parent
composite but we did not implement them.

4.2 Dynamic interceptors

As a second method for detecting quiescent state, we
have implemeneted the dynamic interception mechanism.
This work is directly inspired by the K42 project ([19,
1]). We have implemented all mechanisms described in
K42 - mediators (dynamic interceptors in THINK), the
thread generation mechanism algorithm and finally the
three phases hot-swapping algorithm. The implementa-
tion of this reconfiguration mechanism is provided as the
Reconfig_DynamicInterceptors membrane.

When a reconfiguration is requested (via the
ReconfigurationController interface) the
interfaces of the component to be reconfigured are
wrapped with interceptors that will help to detect that a
quiescent state has been reached, so the component can be
removed safely. However as interceptors are introduced
at run-time, they do not have any knowledge of the
component execution history - if any thread is executing
in the component. In order to guarantee quiescent state,
the system makes two assumptions about the threaded
programming model i) system threads are short-lived
and ii) system threads are non-blocking. Thanks to these
assumptions, threads can be divided in generations and
one can build tracking mechanisms which can advise
when a particular generation has terminated. We refer the
interested reader to the K42 publication [19] for detailed
discussion of the generation tracking mechanism and
quiescent state mechanism built on top of it.

The generation tracking mechanism is implemented as
a THINK-component and is used by all interceptors. It
plays two roles: it keeps track of the thread generations
and it handles generation swap requests. In THINK-based
OS, thread components are registered for execution with
a scheduler component. We modified the scheduler com-
ponent to call the generation component when creating or
destroying a thread. The generation tracking component
requires a semaphore that is used to block requests until a
generation swap occurs.

A dynamic interceptor tracks and forwards all incom-
ing calls. When the current thread generation has termi-
nated, it can guarantee that it is tracking all the threads ac-
cessing the component, a sufficient condition to determine
quiescent state. When a quiescent state is reached, dynamic

5

interceptors block incoming threads on a semaphore. Dy-
namic interceptors are instanciated by the implementation
of the ReconfigurationController control inter-
face, using an interceptor factory which is automatically
generated from the ADL description.

The figure 3 shows a simplified configuration of a re-
configurable screen component with dynamic intercep-
tors. Note, eventhough the architecture of membranes used
in thread counting and dynamic interception are very differ-
ent, the ADL descriptions for a reconfigurable component
are similar - they differ only in the definition of the used
membrane.

ReconfigurationController ComponentIdentityContentController

al
lo

ca
to

r
sc

he
du

le
r

ge
ne

ra
tio

n

screen

co
n

so
le

fr
am

eb
u

ff
er

implem:
dynamic

interceptors

interceptor
factory
(shared)

semaphore
factory
(shared)

implem.implem.

console

framebuffer

CI, BC, SC, LCC

CI, BC, SC, LCC

CI: ComponentIdentity BC: BindingController
SC: StateTransferController LCC: LifeCycleController

Figure 3: A reconfigurable kernel using dynamic intercep-
tors and the corresponding ADL description, in grey com-
ponents generated by the ADL compiler.

The main drawback of thread counting was the inflex-
ibility due to the fact that the reconfiguration capabilities
were chosen at build-time, moreover, the run-time over-
head caused by thread counting interceptors was constant
during the whole life-cycle of the system. With dynamic
interceptors, interceptors are deployed dynamically, once
the reconfiguration is requested, until the completion of the
reconfiguration. Thus, there is no overhead during nor-
mal kernel run and all components are potentially recon-
figurable.

5 Evaluation

This section is devoted to the evaluation of our proposition
in terms of flexibility and performance. We used a com-
ponentized version of a reference H.264 video decoder as
application benchmark.

5.1 Qualitative assessment
In order to demonstrate the flexiblity of the proposed
approach consider the following ADL description of
the screen component as it can be found in the
SpecificOSKernel_H264 composite component in
the figure 1.

composite screen {
contains fb = video.lib.framebuffer
contains console = video.lib.console

binds console.framebuffer to fb.framebuffer
binds this.console to console.console
binds this.framebuffer to fb.framebuffer

membrane Simple
}

As such, the shown composite is not reconfigurable
(Simple membrane).

To add reconfiguration capabilities using thread-
counting the kernel designer simply overloads the
membrane parameter of the component. For instance,
when thread-counting is required the overloaded mem-
brane parameter simply takes the following form:

composite screen_reconfig extends screen {
membrane Reconfig_ThreadCounting

}

A version of the screen component using the dy-
namic interceptors reconfiguration mechanism is obtained
in a similar way. Both reconfigurable versions of the
screen component have the same functional subcompo-
nents (console and fb), they differ in the membrane
generated by the ADL compiler. These membrane archi-
tectures correpond respectively to figures 2 and 3.

These examples illustrate the fact that with our ap-
proach, switching reconfiguration mechanisms at build-
time is fairly easy, it only involves a change in architecture
descriptions.

5.2 Performance evaluation
In the following we compare performance overheads of
both implemented approaches for reconfiguring a THINK-
based component kernel. We also evaluated the memory
overheads of both mechanism that are order of 1% when
using thread counting, and 10% when using dynamic inter-
ceptors (overhead due to the fact that we do not use generic
interceptors and the ADL compiler generates an interceptor
factory for every interface type.)

Micro-benchmarks
Both of the implemented mechanisms for dynamic recon-
figuration make a heavy use of interceptors. Table 1 sum-
marizes results obtained by measuring only the cost of dif-
ferent interceptors and compares it to the cost of a simple

6

function call in C and to a basic THINK component call.
These measures were obtained on an ARM XScale proces-
sor (Intel PXA255 on an iPAQ h2200) running at 400Mhz,
with a 100Mhz memory bus.

call type time (µs)
C function call 0, 03
THINK method call 0, 06
THINK method call via
thread counting interceptor

0, 6 (0, 27)

THINK method call via
dynamic interceptor

0, 4 (0, 27)

Table 1: Overheads of different interceptor types, com-
pared to a simple THINK method call. Results in brack-
ets show results obtained with agressively hand-optimized
interceptors.

A THINK component is called via a function pointer
involving two memory loads with an indirection. A compo-
nent’s method has at least one argument, the component’s
data pointer, involving another memory load with indirec-
tion. This explains the ratio of two observed between a
component call and a plain C function call.

Interceptors used for thread counting protect their ac-
cess counter by a semaphore component. In total six com-
ponent calls are performed when a call traverses a static in-
terceptor (two calls to the semaphore component that calls
itself twice the interrupts disabling component). The return
of a component call is handled in the same way. This is a
generic architecture and it is clear that it can be subject of
aggressive optimization. We hand-optimized the intercep-
tors (result in brackets) by directly disabling interrupts in
the interceptor to protect the access counter. However such
a hand-optimization is architecture-dependent.

The computation performed in dynamic interceptors is
more complex, involving tracking the identity of the caller
(getting the reference from the scheduler component and
saving it). However dynamic interceptors perform a com-
putation only when the component is called, not on the re-
turn.

Note that thread counting interceptors are used during
the whole lifecycle of a system, whereas dynamic inter-
ceptors are only deployed only during reconfiguration, thus
paying no overhead during normal kernel run.

Performance overheads
A previously componentized version of the reference H.264
video decoder [11] was used as an application benchmark
[12]. This application was co-located with the dedicated
kernel (SpecificOSKernel_H264, see figure 1). The
coarse-grained operating system components which are the
allocator, the screen, the filesystem and the scheduler com-

ponents were specified as being reconfigurable i.e. imple-
menting a membrane providing dynamic reconfiguration.
In each run the application was decoding 200 video frames
from a H.264 video stream. We were reconfiguring the
frame-buffer subcomponent of the screen composite com-
ponent. Overheads of both implemented reconfiguration
mechanisms were evaluated on two variations of the appli-
cation, the first using "classic" threads, with no restriction,
and the second using threads conforming to the require-
ment to use dynamic interceptors - non blocking and short-
lived.

Table 2 shows the performance results obtained. Note,
the reconfiguration mechanism using dynamic interceptors
is applicable only when using short-lived and non-blocking
threads. In this case, thread-counting is also applicable.
We measured execution times with and without reconfigu-
ration of the frame-buffer subcomponent of the screen com-
ponent.

no reconfig. one reconfig.
"classic" threads:

non reconfigurable 4, 74s -
thread counting 4, 95s (4, 4%) 4.99s (5, 2%)

short-lived and non-blocking threads:
non reconfigurable 7, 14s -

dynamic interceptors 7, 14s 7, 42 (3, 9%)
thread counting 7, 24s (1, 4%) 7.32s (2, 5%)

Table 2: Duration of decoding 200 video frames with
different reconfigurable kernels compared to a non-
reconfigurable version of the same kernel architecture.

As expected, there is no overhead during normal run
when using dynamic interceptors for dynamic reconfigu-
ration, whereas with thread counting we observed a slight
overhead. However with one reconfiguration performed,
dynamic interceptors present a more important overhead
than thread counting, due to an increased reconfiguration
complexity.

The overheads observed depend on the combined ratio
between i) the complexity of the interceptor used for recon-
figuration, ii) the complexity of the frame-buffer (simple in
this case) and iii) the access pattern of the component (and
consequently the interceptor). For example in a video ap-
plication, the frame-buffer component (as opposed to the
scheduler for example) is massively accessed, resulting in
a poorer performance when counting thread accesses. Also
note that the observed measures include the complexity of
the new frame-buffer.

An important observation can be made when compar-
ing results of reconfiguration overheads of the two concur-
rency models. Using thread counting for dynamic recon-
figuration exhibits better performance results for this sys-
tem than using dynamic interception. We conclude that the

7

choice of a reconfiguration mechanism for a dedicated ker-
nel is not simply a matter of relative performance during
nominal behavior, but depends also crucialy on the multi-
threading structure of the target system and the chosen de-
gree of dynamic reconfigurability.

As the operational conditions of a kernel may also
evolve over time, it may be interesting to switch between
dynamic reconfiguration mechanisms. However we did not
yet consider how to implement this switch during execu-
tion.

6 Conclusion
Dynamic reconfiguration mechanisms provide a way of
modifying a deployed operating system without service
interruption. We have described two implementations of
such mechanisms in the THINK framework providing a
full support for reconfiguration in THINK-based OS. With
our approach, functional implementation of a kernel can be
mostly independent of the choice of reconfiguration mech-
anism. This is in contrast to previous proposals, such as
K42 or MMLite, which tied their reconfiguration mecha-
nisms to the kernel design.

Our application benchmarks showed that there is no
universal mechanism for reconfiguration, in particular the
choice of the most efficient reconfiguration mechanism de-
pends both on the multi-threading structure of the appli-
cation and on the granularity of the reconfigurability i.e.
which components are targeted to be reconfigurable in the
chosen architecture. This comforts our approach for pro-
viding a flexible way to choose between different reconfi-
guration mechanism via architecture descriptions.

THINK is freely available at
http://think.objectweb.org.

References
[1] A. Baumann, G. Heiser, J. Appavoo, D. DaSilva,

O. Krieger, R. Wisniewski, and J. Kerr. Providing dynamic
update in an operating system. In Proceedings of the 2005
USENIX Annual Technical Conference, 2005.

[2] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. E. Fiuczyn-
ski, D. Becker, C. Chambers, and S. Eggers. Extensibil-
ity safety and performance in the SPIN operating system.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, 1995.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani. An open component model and its support in
java. In Proceedings of the 7th International Symposium on
Component-Based Software Engineering (CBSE), 2004.

[4] E. Bruneton, T. Coupaye, and J.-B. Stefani. The Fractal
Component Model. http://fractal.objectweb.org.

[5] eCos. http://sources.redhat.com/ecos.

[6] D. Engler, M. Kaashoek, and J. O’Toole, Jr. Exokernel: an
operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, 1995.

[7] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. Think:
a software framework for component-based operating sys-
tem kernels. In Proceedings of the 2002 USENIX Annual
Technical Conference, 2002.

[8] B. Ford, J. Lepreau, S. Clawson, K. V. Maren, B. Robinson,
and J. Turner. The Flux OS Toolkit: Reusable Components
for OS Implementation. In HOTOS ’97: Proceedings of the
6th Workshop on Hot Topics in Operating Systems (HotOS-
VI), 1997.

[9] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-
schatz. The Pebble Component-Based Operating System.
In Proceedings of the USENIX Annual Technical Confer-
ence, 1999.

[10] J. Helander and A. Forin. MMLite: a highly componen-
tized system architecture. In EW 8: Proceedings of the 8th
ACM SIGOPS European workshop on Support for compos-
ing distributed applications, 1998.

[11] JVT software page. http://bs.hhi.de/suehring/tml.
[12] O. Layaida, A. E. Özcan, and J.-B. Stefani. A component-

based approach for MPSoC SW design: Experience with
OS customization for H.264 decoding. In 3rd Workshop on
Embedded Systems for Real-Time Multimedia, 2005.

[13] J. Liedtke. On micro-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles,
1995.

[14] C. Pu, T. Autrey, A. P. Black, C. Consel, C. Cowan, J. In-
ouye, L. Kethana, J. Walpole, and K. Zhang. Optimistic
incremental specialization: Streamlining a commercial op-
erating system. In Proceedings of the 15th ACM Symposium
on Operating System Principles, 1995.

[15] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit:
Component Composition for Systems Software. In Pro-
ceedings of the 4th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2000.

[16] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois,
P. Leonard, and W. Neuhauser. CHORUS distributed op-
erating system. In Computing Systems, Vol. 1(4), 1988.

[17] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with
disaster: Surviving misbehaved kernel extensions. In Pro-
ceedings of the 2nd USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), 1996.

[18] C. Small and M. Seltzer. Structuring the kernel as a toolkit
of extensible, reusable components. In Proceedings of the
4th International Workshop on Object-Orientation in Oper-
ating Systems, 1995.

[19] C. Soules, J. Appavoo, K. Hui, R. Wisniewski, D. D. Silva,
G. Ganger, O. Krieger, M. Stumm, M. Auslander, M. Os-
trowski, B. Rosenburg, and J. Xenidis. System support for
online reconfiguration. In Proceedings of the 2003 USENIX
Annual Technical Conference, 2003.

[20] A. Veitch and N. Hutchinson. Dynamic Service Reconfigu-
ration and Migration in the Kea Kernel. In Proceedings of
the International Conference on Configurable Distributed
Systems (ICCDS), 1998.

8

