
J2EE Server Scalability through EJB Replication

Sylvain Sicard
INRIA Rhônes-Alpes

Zirst – 655 avenue de l’Europe
38334 St Ismier CEDEX - France

Sylvain.Sicard@inrialpes.fr

Noel De Palma
INRIA Rhônes-Alpes

Zirst – 655 avenue de l’Europe
38334 St Ismier CEDEX - France

Noel.DePalma@inrialpes.fr

Daniel Hagimont
INRIA Rhônes-Alpes

Zirst – 655 avenue de l’Europe
38334 St Ismier CEDEX - France

Daniel.Hagimont@inrialpes.fr

ABSTRACT
With the development of Internet-based business, Web
applications are becoming increasingly complex. The J2EE
specification aims at enabling the design of such web application
servers. These servers have to ensure scalability and availability
of the supported applications. Scalibility can be achieved using
replication techniques or partitionning techniques. The aim of this
paper is to compare these approaches. In a J2EE web application
server, one important component is the EJB tier. In this context,
the JOnAS web application server provides an example of EJB
replication system called CMI (Cluster Method Invocation). In a
first step, this paper presents a performance evaluation of CMI. It
then introduces incrementally an alternative scheme based on
partitionning and shows the performance benefits compared to
CMI.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance – Measurements,
Monitors.

General Terms
Algorithms, Measurement, Performance, Design, Reliability,
Experimentation.

Keywords
J2EE, replication, partition, scalability, EJB.

1. INTRODUCTION
The J2EE specification [14] aims at enabling the design of
complex web application servers, structured in several tiers. A
J2EE application server is generally composed of four tiers which
can execute on different machines, as illustrated in Figure 1:

� The web tier executes client requests (e.g. Apache [16]): a
reference to a static web page is resolved by the web server , a

reference to a dynamic page is forwarded to the Servlet tier.
� The Servlet tier (e.g. Tomcat [5]) generates a web page on

the fly (the creation of the web page is dynamic), from data
which can be requested to the EJB tier.

� The EJB tier (e.g. JOnAS [6]) includes the functional code of
the application which computes the data requested by the
Servlet tier. The EJB server interacts with a database server
which manages the persistent data of the application.

� The database tier (e.g. MySQL [11]) which manages
persistent data.

Figure 1 : Architecture of a typical J2EE application server

The overall J2EE application server must be scalable. The
scalability is defined as its ability to deal with an arbitrary number
of client requests in a reasonable time (for each individual client).

Scalability can be achieved by replication of the different tiers on
a cluster of machines (also called clusterization). Currently, the
replication scheme which is always employed for J2EE servers
consists in replicating all tiers: each tier (e.g. JOnAS) can be
replicated on several machines and it is entirely copied on these
machines. Client requests are routed toward one of the replicas in
order to balance the load, a random selection of the replica being
generally used (Round-Robin strategy). This solution raises an
important issue related to data consistency. A replicated tier (in
particular an EJB server) can include a modifiable state which
must be kept consistent. This has a strong incidence on the
clusterization of a web application server.

Scalability can also be achieved using patitionning technique. The
principle of partitioning is to deploy on each server only a
fragment of the application, i.e. a subset of its objects (without
any intersection between the subsets). Therefore, an object is
located in one unique partition and this partition is deployed on
one unique server. Consequently, data are not replicated and
consistency is not an issue anymore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’06, April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

This article studies the scalability of a J2EE application server by
replication of the EJB tier and and compare this approach to the
partitioning technique. In a first step, we present the context and
the motivations for our work (Section 2). After a description of
our experimentation environment (Section 3), we report on the
performance of different J2EE server configurations, which
reveals the advantages and drawbacks of these configuration
choices (Sections 4 and 5). We then present the design of an EJB
hybrid replication scheme and a performance evaluation which
demonstrates its benefits.

2. Context and motivations
The main goal of the clusterization of J2EE servers is to bring
scalability and availability for web applications. Regarding
scalability, a web application must be able to serve millions of
requests per day. This is generally enabled by massively
replicating all the J2EE tiers. An example of such a clusterized
architecture is presented in Figure 2.

Figure 2 : Clusterized J2EE Architecture

In this example, the web tier is composed of a set of replicated
Apache web servers. The Apache servers only include a read-only
state, so they don't bring any data consistency problem.
Replication can be made transparent to the client thanks to the
hardware or software techniques, such as: Level-4 switch (where
a dedicated router can simultaneously distribute up to 700000
TCP connections towards different servers), TCP handoffs (where
a frontal server establishes TCP connections and delegates
treatments to slave servers), or Round-Robin DNS (where a DNS
server periodically change the IP addresses associated with the
name of the web site).

The Servlet tier is composed of replicated Tomcat Servlet servers.
The Apache tier distributes incoming requests between Tomcat
servers thanks to the AJP13 connector and the Apache mod_jk
plugin which implements the load balancing strategy between the
Tomcat replicas. The Tomcat replicas can maintain a modifiable
global state. This state is kept consistent thanks to a group
communication protocol.

The EJB tier is composed of replicated JOnAS EJB servers. The
EJB servers manage a set of beans (Java objects) which include a
modifiable state. In this example, replication and consistency are
enforced by CMI (Cluster Method Invocation, the EJB
clusterization tools provided by JOnAS). Each Tomcat server
interacts with EJB servers through cluster-stubs (similar to RMI

stubs, but in CMI) which distribute the load between the replicas
following a Round-Robin strategy.

An EJB server, in its treatments, may have to interact with the
database tier which manage persistent version of beans. These
interactions being very costly, the EJB server manages a cache of
beans which keeps a local copy of beans that were fetched from
the database. However, if the EJB server is replicated, the same
bean may be copied in the caches of two different EJB server
replicas (see Figure 3), thus leading to a consistency problem.
CMI prevents this problem by disabling cache management in the
EJB servers. Any (committed) bean modification by one EJB
server is applied on the database and subsequently read from the
database by another EJB server which shares the same bean.
Shared beans are therefore synchronized by the database.

Figure 3 – Data consistency problem

The database tier is composed of a set of replicated Mysql
database servers. The databases are kept consistent thanks to C-
JDBC [2]. The EJB servers are connected to the databases via a
C-JDBC controller which balances the load between the database
replicas, but also maintains consistency between the replicas by
consistently propagating updates on the replicas.

3. Environnement
For our experimentations, we used the Apache HTTP server
(version 1.3.31), the Tomcat Servlet server (version 3.3.1a), the
JOnAS EJB server (version 1.4.2), the MySQL database server
(version 4.0.20). In order to ensure that the database tier does not
saturate before the EJB tier, we used the C-JDBC middleware
(version 1.0) to over-allocate machines at the database tier.

To evaluate the performance of our J2EE application server, we
used the RUBiS benchmark [1]. RUBiS is a prototype of web
application which models an auction system similar to eBay.
RUBiS implements all the basic functions of this type of web site.
Among the most important ones are browsing items, bidding,
buying or selling items, leaving comments on other users rating or
consulting one's user page. The system is sized according to
observations found on the eBay web site.

RUBiS is a full J2EE application which, once deployed on a
hardware configuration, allows measurement of the web server
under a given workload. RUBiS provides different
implementations of the same application in order to stress the
different tiers of the J2EE architecture. We used an EJB based
implementation, the Session Facade Bean pattern and a CMP
persistence management, as it sets more load on the JOnAS server
and less on the Tomcat server. RUBiS includes a load injector

which emulates clients which connect to the web site from a web
browser. The behavior of the clients is modeled with Markov
chains. The clients emulator also performs monitoring of all the
involved machines. In the reported experiments, we are mainly
interested in the overall web site throughput in terms of requests
per second, when stressful load is generated. We generate this
load by creating a large number of clients (eventually of different
machines).

4. EJB Server without replication
In this section, we are interested in studying the performance of a
single EJB JOnAS server. As we have seen in Section 2,
replication may be conflicting with caching. We are therefore
interested in studying the effect of caching on the performance of
an EJB server.

We recall that in the EJB specification, application components
which are persistent are called entity beans; only entity bean can
be kept in the cache. Beans can be created thanks to a factory. A
factory provides both the means to create a bean and to obtain a
reference to an existing one from a symbolic name. Each factory
in an EJB server maintains its own cache. Therefore, there's one
cache per bean factory and a one cache only includes beans
created by its associated factory.

In a J2EE application, a deployment descriptor specifies for each
factory whether its beans can be shared or not (between different
replicas). If a bean can be shared, it will not be maintained in its
factory's cache and it will be systematically read/written from/to
the database for each access to the bean (actually for each
transaction). If the bean cannot be shared, it will only be loaded
from the database at first invocation and kept in the cache for
further accesses.

4.1 Performance with cache
In this section, we report the performance obtained with the
RUBiS benchmark when the cache is enabled. In this experiment,
the application descriptor specifies that beans cannot be shared.
The cluster configuration we used for this measurement includes
7 machines as described in Figure 4. In this experiment, the load
on the database tier is not very important and does not require a
cluster of databases (using C-JDBC), but we settled such a
database cluster in order to be consistent with other experiments
(described further in the paper). Therefore, throughputs and
latencies observed in all our experiments can be compared.

Figure 4 – Configuration for caching measurements

Figure 5 presents the results of this performance evaluation. It
shows the throughput of the overall J2EE server (in number of

requests per second) according to the number of clients. We
observe that as long as none of the servers in the configuration
saturates, the throughput increases linearly according to the
injected load. The maximal throughput is reached for about 160
clients. This maximum corresponds to the saturation of the CPU
resource on the machine which hosts the JOnAS server.

Figure 5 – Throughput with one EJB server and cache

enabled

4.2 Performance without cache
The goal is here to reproduce the same experience, but with cache
disabled on the EJB server, in order to quantify the impact of
caching on performance. In this configuration, each access to a
bean involves an access to the database.

Figure 6 presents the results of this evaluation. We observe that
overall, the behavior of the server is similar as in the previous
experience, except that here, the CPU resource saturates for a
number of clients close to 80. We don't report results for more
than 210 clients because at this load level, the EJB server was so
saturated (including errors of many kinds) that results were
unstable.

These two experiments show the impact of EJB caching on the
performance of the overall J2EE server. Thanks to EJB caching,
beans are kept locally on the EJB server, which reduces
interactions with the database tier. In order to be efficient, a cache
system must have a good hit rate. Thanks to complementary
experiments, we measured that our hit rate in the JOnAS cache
was about 86%, which is rather good, but is however application
dependent;

The results obtained here show that caching at the level of the
EJB server can have a very significant impact on the overall
performance of the J2EE server. In a context where we aim at
replicating the EJB server, and as replication may be conflicting
with caching, it is crucial to find the best trade-off.

Figure 6 - Throughput with one EJB server and cache

disabled

5. Replication of the EJB server with CMI
5.1 CMI without cache
The goal of this experience is to measure the performance of the
EJB replication system based on CMI (which disables cache), and
to compare it with those of a single EJB server with cache
enabled (which was given in Section 4.1). We aim at showing that
the performance benefits from replication can be counterbalanced
by the disabling of the cache. This experience will also provide us
a reference performance level, with which we can compare in
further experiments.

CMI is a sub-component of JOnAS which implements an
evolution of RMI-JRMP (Java Remote Message Protocol). CMI
balances the invocation load between a set of JOnAS servers, thus
providing scalability.

The invocation of a method on a bean from a servlet is performed
as follows. The client queries a JNDI [15] name server to obtain
from a symbolic name a reference (stub) to a factory. This factory
is itself a name server for the beans it manages. The client can
then query this factory to obtain a reference (stub) to a bean. The
client can then invoke a method on that bean.

Figure 7 – Principle of CMI

The principle of CMI is illustrated in Figure 7. Each JOnAS
server deploys all the bean factories of the application (all the
factories are replicated on each EJB server). The JNDI server is
replicated on each JOnAS server and the replicas are
synchronized using group communication in order to register one
CMI factory stub for each factory. A CMI factory stub includes
all the RMI stubs of the factory replicas. When a client queries

the JNDI server, it can be answered by any of the JNDI replicas
and obtains a CMI factory stub. When a factory is queried using a
CMI stub, the CMI stub selects one of the RMI stubs and uses it
with a normal RMI invocation. The load balancing is
implemented by the stub election algorithm (round robin). A
factory replica on one EJB server returns a RMI stub which
references a replica of the bean in that EJB server (this bean is
eventually loaded from the database tier).

With the CMI scheme, all the factories (including the cache in
each factory) are replicated. Thus, a bean can be loaded in two
different EJB servers and the EJB server does not implement a
distributed cache algorithm to maintain consistency between
different bean copies. Therefore, using CMI requires disabling
caching. This implies an increase of the number of interaction
with the database tier. For each access to a bean, the state of the
bean must be loaded from the database, and written to the
database if modified. Functionally, CMI implements a sort of
RAID-1 architecture where the EJB server is replicated and
requests are distributed over the replicas.

For the evaluation of CMI, the configuration we used (Figure 8) is
the same as the one used to evaluate caching (Figure 4), except
that we replicate the JOnAS server.

Figure 8 – Configuration for CMI measurements

5.2 Performance
Figure 9 reports the results. We can see that in this experience, the
system reaches a maximal throughput for a number of clients
close to 160 with a throughput of 23 requests per second. This
experience shows that with the allocation of two nodes for the
EJB tier, CMI can only provide the same throughput as one single
EJB server which is cache enabled.

These results are fully consistent with those previously reported
for the performance of caching. The maximal throughput in this
evaluation (22 req/s) is twice the one obtained with one EJB
server cache disabled (Section 4.2 – 12 req/s). This evaluation
shows that the scalability of CMI is rather good.

Figure 9 - Throughput with two EJB servers, CMI and cache

disabled

6. Factory partitioning
6.1 Description
In this section, we consider a solution based on partitioning and
we compare it to CMI. With CMI, each JOnAS server deploys the
whole application. The principle of partitioning is to deploy on
each JOnAS server only a fragment of the application, i.e. a
subset of its beans (without any intersection between the subsets).
Therefore, a bean is located in one unique partition and this
partition is deployed on one unique EJB server. Consequently,
beans cannot be replicated and consistency is not an issue
anymore. Bean caching can therefore be activated in all EJB
servers. In the following experiment, we used factory partitioning,
i.e. each factory is deployed on a unique JOnAS server.

Figure 10 – Principle of factory partitioning

To implement this solution, we need to provide servlets the ability
to locate the EJB servers where factories are deployed. This
location is implicitly managed in the stubs that factories register
in the JNDI naming service, as a factory stub (which is a RMI
stub) is able to route an invocation towards the EJB server which
hosts the factory. By configuring an architecture where all the
EJB servers share the same JNDI service (Figure 10), factory
location is implicit. In the evaluation configuration, we ran a
JNDI server on a separate machine. Functionally, this solution
implements a sort of RAID-0 architecture where the EJB server is
replicated but the replicas are not equipotent. In this approach,
availability is ensured by redeploying on a new machine beans
located on a faulting machine. The transaction service enforces
consistency.

6.2 Performance
Our evaluation has been conducted with the same configuration as
the one used to evaluate CMI (Figure 8).

Figure 11 - Throughput with two EJB servers, partitioning

and cache enabled

As we can see in Figure 11, the maximal throughput is obtained
for 90 clients with a throughput of 13 requests per second. These
results are quite disappointing. The maximal throughput is almost
half the one obtained with CMI with the same hardware
configuration.

To analyze more precisely these results, let's examine the
differences between CMI and the proposed solution. The cost to
locate a bean from a servlet through the JNDI service should be
the same in both cases (a remote invocation in both cases).

 With CMI, each JOnAS server integrates its own JNDI service,
but in our solution the JNDI service is implemented as a server on
a separate machine. Then, each request to JNDI from a bean
within JOnAS requires a remote invocation in our solution, while
it is a local invocation in the case of CMI.

AS shown in Figures 12 and 13, the number of remote
communications is more important in our partitioning solution.
With CMI, as soon as a session started in an EJB server, all
invocations (to JNDI, a factory or a bean) are local.

Figure 12 – Communications involved in a request with CMI

Figure 13 – Communications involved in request with

partitioned EJB

6.3 Variant of the solution
This variant aims at reducing as much as possible remote

communications. In this purpose, we replicated the JNDI service
similarly to the CMI solution, as illustrated in Figure 14.

Figure 14 – Factory partitioning and JNDI service replication

Figure 15 reports the obtained performance results (with the same
hardware configuration). The maximal throughput is about 16
requests per second for a number of 130 clients. These results are
still poorer than CMI. The reason is that factory partitioning
generate a large number of remote invocations between the two
JOnAS servers, between remote beans. This overhead is not
amortized by the advantage of having the cache enabled.

Figure 15 - Throughput with two EJB servers, partitioning,

replicated JNDI service and cache enabled

A more accurate partitioning strategy (by bean and not by
factory) would improve performance. However, we pursue in the

next section with a hybrid solution (between partitioning and
CMI) which appears to be much more suited.

7. Hybrid solution
7.1 Description
The principle of this solution is to distinguish read-only data from
data which can be written. It requires knowledge of the data
access pattern of the application. Read-only data are replicated in
all the EJB servers while writable data are partitioned between the
EJB servers. In both cases, caching can be enabled in all the EJB
servers. This solution is hybrid between the two previous
solutions. Figure 16 illustrates its architecture. Factories X,Y and
Z manage writable beans and are partitioned, while factory A
manages read-only beans and is replicated.

Figure 16 – Partitioning of writable data and replication of

read-only data

The JNDI service returns a CMI stub for read-only bean factories
and a RMI stub for writable bean factories. Therefore, invocations
on read-only beans are distributed among replicas following
CMI's load balancing algorithm (round-robin) and invocations on
writable beans are routed towards the EJB server which hosts the
invoked bean's factory. Caching is enabled in every EJB servers.

7.2 Performance
We replicated all the stateless session beans which don't raise any
consistency problem. We analyzed the RUBiS application in
order to identify beans that can be replicated. We found that entity
beans Query, Category, Region, OldItem, Comment, Bid and
BuyNow are read-only and that entity beans User, Item and
IDManager are writable. Figure 17 reports the obtained results
(with the same hardware configuration).

Figure 17 - Throughput with two EJB servers, CMI for read-
only beans, partitioning for writable beans and cache enabled

We observe a maximal throughput of 30 requests per second for
180 clients. This hybrid solution improves performance by 20-
30% compared to CMI. Its drawback is that it is not completely
generic as it requires knowledge of the application.

8. Related work
Resource replication (at any level: disk, process, machine, etc.)
has been much more studied in the purpose to provide fault
tolerance than in the goal to provide scalability. However, fault
tolerance and scalability are tightly coupled (especially in
distributed systems) and often considered together, as illustrated
by the definition of the performability metric [10]. Replication
mechanisms introduced for fault tolerance often improve
scalability (as a side effect). For instance, RAID-1 hard disks
replication [12] tolerates a disk crash but also improve the
performance of the overall persistent storage. This observation
has motivated the C-JDBC project [2] whose objective is to
provide scalability for relational database systems which
enforcing their fault tolerance. C-JDBC exploits the principles of
RAID to replicate a database on several machines and to maintain
its consistency.

Resource replication allows obtaining scalability in two cases:

� The replicas are idempotent and the treatment of requests is
not replicated (requests are distributed among replicas and their
treatment always takes place on one server).

� The treatment of requests is replicated on several servers and
the replicas are not necessarily idempotent.

For example, the active replication model and primary-backup
replication model were designed to ensure fault tolerance, but
they don't provide scalability [4].

Replication of stateless servers has been explored, especially for
static web pages servers. Web servers can be replicated and
requests distributed between replicas with a Round-Robin DNS or
a L4 switch [7][13]. In the case of a statefull server, state
consistency is the important issue; current solutions rely either on
(i) broadcast of the state (or of updates) to the replicas [5][8]
using group communication protocols (multicast IP, JGroup, etc.)
or (ii) externalization of the state on a transactional support shared
by all the replicas [6]; the choice of this transactional support is
key to performance [3], but the most common choice (and
inefficient) is to use a database system. Other solutions are

considering replication in volatile memory in order to improve the
management of this state [9].

Our hybrid solution is an alternative which consists in partitioning
the state between a set of servers; therefore the state is distributed,
but not replicated, which prevents the overhead due to
consistency management. Fault tolerance is provided by the
underlying transactional database system.

9. Conclusion
The J2EE specification allows designing multi-tiers application
servers. A J2EE server is generally composed of four tiers, each
being executed on a separate machine: a Web server tier, a Servlet
server tier, an EJB server tier and a database server tier. The
growth of the load that these servers (in terms of number of
requests) may have to face raises the issue of the scalability of
J2EE architectures.

The widely adopted approach consists in replicating the different
tiers of the J2EE server, the unit of replication being the tier
server as a whole. This approach has the advantage to manage
replicas uniformly (the clones are not distinguished), which
simplifies the routing of the requests (any replica can treat any
request). However, the difficult issue raised by this approach is
consistency management of state of a tier server when this state
can be modified, which is the case for the EJB server. CMI is the
solution of the JOnAS EJB server; CMI ensures consistency by
synchronizing the replicas through the database tier (it forces
propagation of accesses to the database), but it requires caching in
JOnAS to be disabled.

In the context of a clusterized J2EE architecture, we compared the
performance of a J2EE server with a single EJB server (with
cache enabled) and with an EJB server replicated with CMI (with
cache disabled). We observed and analyzed the benefits from
using CMI. We then introduced a solution based on bean
partitioning, which aims at improving the performance of CMI,
by enabling EJB server replication and caching. The evaluation
showed that this solution performs poorer than CMI, but our
analysis allowed designing a hybrid solution between CMI and
partitioning. In this hybrid solution, read-only beans are replicated
with CMI (and can be cached) and writable beans are partitioned
(a single copy is managed and can be cached). This solution
improves the throughput of the J2EE server by 20-30% compared
to CMI.

We are pursuing this work following two-directions:

� We wish to evaluate the strategies presented in this paper
with a greater number of nodes and to study different
partitioning policies, especially by beans instead of by factories.

� We are currently implementing facilities to dynamically
adjust the number of server replicas according to the load that
each tier has to face.

10. Bibliography
[1] E. Cecchet, J. Marguerite and W. Zwaenepoel.

Performance and Scalability of EJB Applications. In
Proceedings of OOPSLA, Seattle (USA), November
4th-8th, 2002.

[2] E. Cecchet, J. Marguerite and W. Zwaenepoel. C-
JDBC: Flexible Database Clustering Middleware. In
Proceedings of USENIX Annual Technical
Conference, Freenix track, Boston, MA, USA, june
2004.

[3] G. Gama, K. Nagaraja, R. Bianchini, R. P. Martin, W.
Meira Jr.and T. D. Nguyen. State Maintenance and Its
Impact on the Performability of Multi-tiered Internet
Services. In Proceedings of the 23rd Symposium on
Reliable Distributed Systems (SRDS), Florianopolis,
Brazil, October 2004

[4] R. Guerraoui, A. Schiper. Fault_Tolerance by
Replication in Distributed Systems. Département
d’Informatique Ecole Polytechnique Fédérale de
Lausanne, 1996.

[5] Jakarta Tomcat Servlet Engine –
http://jakarta.apache.org/tomcat/

[6] JOnAS Open Source EJB Server –
http://www.objectweb.org

[7] E. Katz, M. Butler, and R. McGrath. A scalable http
server : The ncsa prototype. Computer Networks and
ISDN systems, 27:155–164, 1994.

[8] S. Labourey. Load Balancing and Failover in the JBoss
Application Server », Sept 2003
http://www.clustercomputing.org/index.jsp?page=/con
tent/tfcc-5-2-labourey.shtml

[9] B. C. Ling, Emre Kiciman, Armando Fox. Session
State: Beyond Soft State. In Proceedings of the 1st
USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI 2004), San
Francisco, CA, March 29-31, 2004

[10] J.F. Meyer. Performability Evaluation: Where It Is
and What Lies Ahead. IEEE International Computer
Performance and Dependability Symposium, April
1995.

[11] MySQL – http://www.mysql.com
[12] D. A. Patterson, G. Gibson and R.H. Katz. A Case for

Redundant Arrays of In-expensive Disks (RAID). In
Proceedings of the ACM SIGMOD International
Conference onManagement of Data, Chicago, IL,
USA, 109-116, 1988.

[13] S. Sudarshan, R. Piyush. Link level Load Balancing
and Fault Tolerance in NetWare 6. NetWare Cool
Solutions Article, March 2002.

[14] Sun Microsystems – Enterprise Java Beans
Specifications – http://java.sun.com/j2ee/

[15] Sun Microsystems – Java Naming and Directory
Interface (JNDI) – http://java.sun.com/products/jndi/

[16] The Apache Software Foundation
 http://www.apache.org/

