
Improving the Performances of
JMS-Based Applications
Abstract:

In the Java world, a standardized interface exists for message-based middleware (MOMs) :
Java Messaging Service or JMS. And like other middleware, some JMS implementations use
clustering techniques to provide some level of performanceand fault-tolerance. In this paper, we
analyse the efficiency of various clustering policy in a real-life cluster and the key parameters im-
pacting the performances of MOMs. We show that the resource-efficiency of the clustering meth-
ods can be very poor due to local instabilities and/or globalload variations. To solve these issues,
we describe the rules that control these parameters for optimal performances and we propose
a solution based on autonomic computing to (i) dynamically adapt the load distribution among
the servers (load-balancing aspect) and (ii) dynamically adapt the replication level (provisioning
aspect). We present an evaluation that shows the impact of these rules on the performances and
the behavior of dynamically provisioned clustered queue.

Keywords: MOM, JMS, Autonomic management, Self-optimization.

1 Introduction

With the emergence of the internet, multiple applications re-
quire to be integrated with each other. One common glue tech-
nology for distributed, loosely coupled, heterogeneous software
systems is Message-Oriented Middleware (MOM). MOMs are
based on messages as the single structure for communication,
coordination and synchronization, thus allowing asynchronous
execution of components. Reliable communication is guaran-
teed by message queueing techniques that can be configured
independently from the programming of software components.
The Java community has standardized an interface for messag-
ing (JMS). The use of MOMs in the context of internet has ev-
idenced a need for highly scalable and highly available MOM.
This paper analyses the performance of a MOM and proposes a
self-optimization algorithm to improve the performance ofthe
MOM infrastructure. This mechanism is based on a queue clus-
tering solution : aclustered queueis a set of queues each run-
ning on different servers and sharing clients.

We will show that in some cases this mechanism can effec-
tively provide a linear speedup but in other cases this mecha-
nism is completely inefficient. We analyse that the efficiency
of this mechanism depends on the distribution of client connec-
tions to MOM queues. We describe a solution that will improve
the efficiency of this mechanism by optimizing the distribution
of client connections in the cluster queue. Furthermore, anim-
portant aspect of this clustering policy is the selection ofthe
level of clustering, i.e. the number of queues in the clustered
queue. A commonly used solution is to select a fixed number
of queues in the clustered queue. However, this static solution
has some drawbacks. LetN be the (fixed) number of repli-
cas. IfN is too large, resources are wasted; ifN is too small,
performance may be compromised. In any case, the choice is
problematic if the expected load of a queue is difficult to predict.
Human administrators can monitor the load of the queuing sys-

tem using adequate tools. However if a queue is underloaded
or overloaded, an administrator cannot react as quickly as re-
quired.

This paper targets the optimization of these clustering mech-
anisms. This optimization will take place in two parts: (i) the
optimization of the clustered queue load-balancing and (ii) the
dynamic provisioning of a queue in the clustered queue. The
first part allows the overall improvement of the clustered queue
performance while the second part optimizes the resource us-
age inside the clustered queue. Thus the idea is to create an
autonomic system that:

• fairly distributes client connections among the queues be-
longing to the clustered queue,

• dynamically adds and removes queues in the clustered
queue depending on the load. This would allow us to use
the adequate number of queues at any time.

This paper is organized as follow: Sections 2 and 3 present
the context of this work. Section 4 details the different cases that
may occur with a clustered queue. Sections 5 and 6 present the
control rules and the control loop. Section 7 shows performance
evaluation. Finally section 8 presents related work and section 9
draws a conclusion and outlines future work.

2 Background: Java Message Service (JMS)

JMS is part of Sun’s J2EE platform. It provide a programming
interface (API) to interconnect different applications through a
messaging middleware. The JMS architecture identifies the fol-
lowing elements:

• JMS provider : an implementation of the JMS interface
for a Message Oriented Middleware (MOM). Providers are

Copyright c© 200x Inderscience Enterprises Ltd.

1

implemented as either a Java JMS implementation or an
adapter to a non-Java MOM.

• JMS client: a Java-based application or object that pro-
duces and/or consumes messages.

• JMS producer: a JMS client that creates and sends mes-
sages.

• JMS consumer: a JMS client that receives messages.

• JMS message: an object that contains the data being trans-
ferred between JMS clients.

• JMS queue: a staging area that contains messages that
have been sent and are waiting to be read. As the name
queue suggests, the messages are delivered in the order
they are sent. A message is removed from the queue once
it has been read.

• JMS topic: a distribution mechanism for publishing mes-
sages that are delivered to multiple subscribers.

• JMS connection: A connection represents a communi-
cation link between the application and the messaging
server. Depending on the connection type, connections al-
low users to create sessions for sending and receiving mes-
sages from a queue or topic.

• JMS session: Represents a single-threaded context for
sending and receiving messages. A session is single-
threaded so that messages are serialized, meaning that
messages are received one-by-one in the order sent.

For our experiments we chose JORAM (Java Open Reliable
Asynchronous Messaging). It is open source software released
under the LGPL license which incorporates a 100% pure Java
implementation of JMS. JORAM adds interesting extra features
to the JMS API such as the clustered queue mechanisms. The
following section describes the mechanism of queue clustering.

3 Clustered Queues

The clustered queue feature provides a load balancing mecha-
nism. A clustered queue is a cluster of queues (a given number
of queue destinations knowing each other) that are able to ex-
change messages depending on their load.

Each queue of a cluster periodically reevaluates its load fac-
tor and sends the result to the other queues of the cluster. When
a queue hosts more messages than it is authorized to do, and
according to the load factors of the cluster, it distributesthe ex-
tra messages to the other queues. When a queue is requested
to deliver messages but is empty, it requests messages from the
other queues of the cluster. This mechanism guarantees thatno
queue is hyper-active while some others are lazy, and tends to
distribute the work load among the servers involved in the clus-
ter. The figure above shows an example of a cluster made of
two queues. An heavy producer accesses its local queue (queue
0) and sends messages. The queue is also accessed by a con-
sumer but requesting few messages. It quickly becomes loaded

Figure 1: A queue cluster

and decides to forward messages to the other queue (queue 1) of
its cluster, which is not under heavy load. Thus, the consumer
on queue 1 also gets messages, and messages on queue 0 are
consumed in a quicker way.

4 Clustered queue load-balancing

We present in this section the key parameters that influence the
behavior and the performance of a clustered queue. In the first
part, we show the impact of the distribution of clients connec-
tions on the performance; in the second part, we provide some
details about resource provisioning.

4.1 Configuration of clients connections

4.1.1 Standard queue

A standard single queueQi is connected toNi message pro-
ducers that induce a message production ratepi, and toMi mes-
sage consumers that induce a message consumption rateci. The
queue lengthli denotes the number of messages waiting to be
read in the queue;li is always positive and obeys to the law :

∆li = pi − ci

Figure 2: Standard JMS queueQi

2

Depending on the ratio between message production and
message consumption, three cases are possible:

• ∆li = 0: message production and message consump-
tion annihilate themselves and queue lengthli is constant.
QueueQi is said to bestable.

• ∆li > 0: there is more message production than message
consumption. QueueQi will grow and eventually saturate
as the queue lengthli gets too big. QueueQi is thenun-
stableand is said to beflooded. Once the queue saturates,
the message production rate of producers will be limited.
The queue then stabilizes with∆li = 0.

• ∆li < 0: there is more message consumption than mes-
sage production in the queue. Queue lengthli decreases
down to 0; the queue isunstableand said to bedraining.
Once queueQi is empty, message consumers will have to
wait and become lazy,Qi will stabilize with∆li = 0.

The message production and consumption rates are in direct
relationships with the number of message producers and con-
sumers:

pi = f(Ni)
ci = g(Mi)

Thus the stability of a standard single queue is controlled by the
ratio between the number of message producers and the number
of message consumers.

4.1.2 Clustered queue

Clustered queues are standard queues that share a common pool
of message producers and consumers, and that can exchange
message to balance the load. Each queue runs on a separate
server. All the queues of a clustered queue are supposed to
be directly connected to each other. This allows message ex-
changes between the queues of a cluster in order to empty
flooded queues and to fill draining queues.

Figure 3: Clustered queueQc

The clustered queueQc is connected toNc message produc-
ers and toMc message consumers.Qc is composed of standard
queuesQi(i ∈ [1..k]). Each queueQi is in charge of a subset
of Ni message producers and of a subset ofMi message con-
sumers:

{

Nc =
∑

i Ni

Mc =
∑

i Mi

The distribution of the clients between the queuesQi is de-
scribed as follows:xi (resp.yi) is the fraction of message pro-
ducers (resp. consumers) that are directed toQi.

{

Ni = xi ·Nc

Mi = yi ·Mc
,

{
∑

i xi = 1
∑

i yi = 1

The standard queueQi to which a consumer or producer is di-
rected to cannot be changed after the client connection to the
clustered queue. This way, the only action that may affect the
client distribution among the queues is the selection of an ade-
quate queue when the client connection is opened.

The clustered queueQc is characterized by its aggregate mes-
sage production ratepc and its aggregate message consumption
rate cc. The clustered queueQc also has a virtual clustered
queue lengthlc that aggregates the length of all contained stan-
dard queues:

lc =
∑

i

li = pc − cc,

{

pc =
∑

i pi

cc =
∑

i ci

The clustered queue lengthlc obeys to the same law as a stan-
dard queue:

• Qc is globally stable when∆lc = 0. This configuration
ensures that the clustered queue is globally stable. How-
everQc may observe local unstabilities if one of its queues
is draining or is flooded.

• If ∆lc > 0, the clustered queue will grow and eventually
saturate; then message producers will have to wait.

• If ∆lc < 0, the clustered queue will shrink until it is
empty; then message consumers will also have to wait.

We now suppose that the clustered queue is globally stable,
and we list various scenarios that illustrate the impact of client
distribution on performance.

Optimal client distribution of the clustered queueQc is
achieved when clients are fairly distributed among thek queues
Qi. Assuming that all queues and hosts have equivalent pro-
cessing capabilities and that all producers (resp. consumers)
have equivalent message production (resp. consumption) rates
(and that all produced messages are equivalent : message cost
is uniformly distributed), this means that:

{

xi = 1/k
yi = 1/k

,

{

Ni = Nc

k
,

Mi = Mc

k

In these conditions, all queuesQi are stable and the queue
cluster is balanced. As a consequence, there are no internal
queue-to-queue message exchanges, and performance is opti-
mal. Queue clustering then provides a quasi-linear speedup.

The worst clients distribution appears when one queue only
has message producers or only has message consumers. In the
example depicted on Figure 3, this is realized when:

{

x1 = 1
y1 = 0

,

{

x2 = 0
y2 = 1

,

{

N1 = Nc

M1 = 0
,

{

N2 = 0
M2 = Mc

3

Indeed, this configuration implies that the whole message pro-
duction is directed to queueQ1. Q1 then forwards all messages
to Q2 that in turn delivers messages to the message consumers.

Local instability is observed when some queuesQi of Qc

are unbalanced. This is characterized by a mismatch between
the fraction of producers and the fraction of consumers directed
to Qi:

xi 6= yi

In the example showed in Figure 3,Qc is composed of two
standard queuesQ1 andQ2. A scenario of local instability can
be envisioned with the following clients distribution:

{

x1 = 2/3
y1 = 1/3

,

{

x2 = 1/3
y2 = 2/3

This distribution implies thatQ1 is flooding and will have to en-
queue messages, whileQ2 is draining and will see its consumer
clients wait. However the queue clusterQc ensures the global
stability of the system thanks to internal message exchanges
from Q1 to Q2.

A stable and unfair distribution can be observed when the
clustered queue is globally and locally stable, but the loadis
unfairly balanced within the queues. This happens when the
client distribution is non-uniform.

In the example presented in Figure 3, this can be realized by
directing more clients toQ1 thanQ2:

{

x1 = 2/3
y1 = 2/3

,

{

x2 = 1/3
y2 = 1/3

In this scenario, queueQ1 processes two third of the load, while
queueQ2 only processes one third. Suc situation can lead to bad
performance sinceQ1 may saturates whileQ2 is lazy.

It is worthwhile to indicate that these scenarios may all hap-
pen since clients join and leave the system in an uncontrolled
way. Indeed, the global stability of a (clustered) queue is under
responsability of the application developper. For instance, the
queue can be flooded for a period; we then assume that it will
get inverted and draining after, thus providing global stability
over time.

4.2 Provisioning

The previous scenario of stable and non-optimal distribution
raises the question of the capacity of a queue.

The capacityCi of standard queueQi is expressed as an op-
timal number of clients. The queue loadLi is then expressed as
the ratio between its current number of clients and its capacity:

Li =
Ni + Mi

Ci

• Li < 1: queueQi is underloaded and thus lazy; the mes-
sage throughput delivered by the queue can be improved
and ressources are wasted.

• Li > 1: queueQi is overloaded and may saturate; this
induces a decreased message throughput and eventually
leads to thrashing.

• Li = 1: queueQi is fairly loaded and delivers its optimal
message throughput.

These parameters and indicators are transposed to queue clus-
ters. The clustered queueQc is characterized by its aggregated
capacityCc and its global loadLc:

Cc =
∑

i

Ci , Lc =
Nc + Mc

Cc

=

∑

i Li · Ci
∑

i Ci

The load of a clustered queue obeys to the same law as the load
of a standard queue.

However a clustered queue allows us to controlk, the number
of inside standard queues, and thus to control its aggregated
capacityCc =

∑k

i=1
Ci. This control is indeed operated with a

re-evaluation of the clustered queue provisioning.

• WhenLc < 1, the clustered queue is underloaded: if the
clients distribution is optimal, then all the standard queues
inside the cluster will be underloaded; however, as the
client distribution may be non-optimal, some of the single
queues may be overloaded, even if the cluster is globally
lazy. If the load is too low, then some queues may be re-
moved from the cluster.

• WhenLc > 1, the clustered queue is overloaded: even if
the distribution of clients over the queues is optimal, there
will exist at least one standard queue that will be over-
loaded. One way to handle this case is to re-provision the
clustered queue by inserting one or more queues into the
cluster.

5 A self-optimizing clustered queue

In this section, we present the design of an autonomic abil-
ity which targets the optimization of a clustered queue. The
optimization takes place in two steps : (i) the optimal load-
balancing of a clustered queue, and (ii) the dynamic provision-
ing of queues in a clustered queue.

The first part allows the overall improvement of the clustered
queue performance while the second part optimizes the queue
resource usage inside the clustered queue. Thus the idea is then
to create an autonomic system that :

• fairly distribute client connections to the pool of server
hosts in the clustered queue,

• dynamically adds and removes queues in a clustered queue
depending on the load. That would allow us to use the
adequate number of queues at any time.

The implementation of these optimizations relies on the
model of clustered queue performance which has been pre-
sented in the previous sections.

4

5.1 Control rules

The global clients distributionD of the clustered queueQc is
captured by the fractions of message producersxi and con-
sumersyi. The optimal clients distributionDopt is realized
when all queues are stable (∀i xi = yi) and when the load is
fairly balanced over all queues (∀i, j xi = xj , yi = yj). This
implies that the optimal distribution is reached whenxi = yi =
1/k.

D =







x1 y1

...
...

xk yk






, Dopt =







1/k 1/k
...

...
1/k 1/k







Local instabilities are characterized by a mismatch between
the fraction of message producersxi and consumersyi on a
standard queue. The purpose of this rule is the stability of all
standard queues so as to minimize internal queue-to-queue mes-
sage transfert.

(R1) xi > yi: Qi is flooding with more message production
than consumption and should then seek more consumers
and/or fewer producers.

(R2) xi < yi: Qi is draining with more message consump-
tion than production and should then seek more producers
and/or fewer consumers.

Load balancing rules control the load applied to a single
standard queue. The goal is then to enforce a fair load balancing
over all queues.

(R3) Li > 1: Qi is overloaded and should avoid accepting new
clients as it may degrade its performance.

(R4) Li < 1: Qi is underloaded and should request more
clients so as to optimize resource usage.

Global provisioning rules control the load applied to the
whole clustered queue. These rules target the optimal size of the
clustered queue while the load applied to the system evolves.

(R5) Lc > 1: the queue cluster is overloaded and requires an
increased capacity to handle all its clients in an optimal
way.

(R6) Lc < 1: the queue cluster is underloaded and could ac-
cept a decrease in capacity.

5.2 Algorithm

This section presents an algorithm for the self-optimization of
queue clustering systems. As a first step we do not allow the
modification of the underlying middleware. This constraintre-
stricts the control mechanisms that we can use to implement the
autonomic behaviour.

5.2.1 System events and controls

Without modification, the underlying JMS middleware does not
provide facilities such as session migration that would allow us
to migrate clients from one queue to another. However clustered
queue systems allow the control of the queue that will handlea
new message producer (resp. consumer). This control trans-
lated in the model terms means that somexi (resp.yi) will be
increased, and we have the choice fori.

On the contrary, a message producer (resp. consumer) that
leaves the system induces an unavoidable and uncontrolled de-
crease in somexi (resp.yi).

Thus a clustered queue system generates 4 types of events
that we can use to control and optimize the system:

join(Producer) join(Consumer)
leave(Producer,Qi) leave(Consumer,Qi)

The control rules must then be implemented as handlers to
these events. The algorithms that control the distributionof
clients and the queue cluster provisioning are depicted in Al-
gorithms 1 and 2.

Algorithm 1 Client joining algorithm

on join(ClientType∈ {Producer, Consumer}, Qc)
if (Lc ≥ 1) then

// Queue cluster will be overloaded
// An additional queue is required
Qk+1 ← NewQueue()
AddQueue(Qc, Qk+1)

end if
Qi = ElectQueue(Qc, ClientType)
return CreateSession(ClientType,Qi)

Algorithm 2 Client leaving algorithm

on leave(ClientType∈ {Producer, Consumer}, Qi ∈ Qc)
if (IsMarked(Qi, “to be removed”) and IsEmpty(Qi) then

RemoveQueue(Qc, Qi)
DestroyQueue(Qi)

end if
if (Lc < 1) then

Qi = ElectRemovableQueue(Qc)
if Qi 6= null then

Mark(Qi, “to be removed”)
end if

end if

The ElectQueue(ClientType) function chooses the queue that
is most far away from the targeted client distribution. The
elected queueQi then maximizes the gap to the optimal. When
considering a new client that is a message producer (resp. con-
sumer), the gap is evaluated with1/k−xi (resp. with1/k−yi).
ThusQi satisfies:

{

xi = minj xj (when ClientType = Producer)
yi = minj yj (when ClientType = Consumer)

5

The ElectRemovableQueue(Qc) chooses one queue that can
be removed from the queue cluster. A queue cannot be removed
on demand since it may still have clients connected to it: a
queue can only be removed when its last client decides to leave.
Thus the removal of a queueQi will need two steps: (1)Qi is
marked “to be removed” and no more clients will be addressed
to it; (2) whenQi’s last client leaves,Qi can then be removed
from the cluster. Moreover, even ifQc is underloaded, queue
Qi should not be removed if its removal letQc be overloaded.
Thus the condition to allowQi’s removal is:

Ci ≤ Cc − (Nc + Mc)

The following section gives implementation details about
these algorithms.

6 Implementation Details

6.1 Requirements

To implement a self-managed queue cluster using the auto-
nomic computing design principles require the following man-
agement capabilities:

• to know the current number of message producers and con-
sumers,

• to know where the servers are deployed, where the queues
are deployed and what is their configuration,

• to route a new client connection to the best queue to reach
the optimal,

• to detect the overload or the underload of a queue cluster,

• to allocate a new server to create a new queue,

• to add and remove a queue in a server.

6.2 The control loop

To simplify, we will consider that clients create only one ses-
sion by connection. By doing this we assimilate the creation
of sessions and the creation of connections. Assuming this,the
first prototype is achieved by wrapping the standard JMS Con-
nectionFactory by a ”LBConnectionFactory” (where LB stands
for Load Balancing).

6.2.1 LBConnectionFactory

As the client gets the connection factory through JNDI, it
gets the LBConnectionFactory instead. This is the main non-
functionnal hook in the system that allows to control the distri-
bution of producers and consumers among servers. This com-
ponent offers the following methods:

createConnection(...)takes the type of the client as a param-
eter (Producer or Consumer). To create the connection
with the right server, it requests a component called “Clus-
terManager” which provisions (“resizes”) the cluster and

elects a server according to the current state of the system
(the servers, the load of each queue in terms of producers
and consumers).

closeConnection(...)effectively closes the connection to the
server and notifies the ClusterManager so it can decrease
the number of queues in the cluster if necessary.

6.2.2 ClusterManager

This component stores the state of the global system, i.e. the
number of servers currently used, the number of clients con-
nected to each server, their type. The state changes as client
requests are received from the LBConnectionFactory. The dif-
ferent requests are:

• a consumer wants a connection;

• a producer wants a connection;

• a consumer wants to close a connection on serverQi;

• a producer wants to close a connection on serverQi.

In the first two cases, the ClusterManager elects a server taking
into account the capacities in terms of clients. If the cluster is
evaluated to be full of producers or consumers, the LBCluster-
Manager uses the proceduresNewQueue()andAddQueue()to
launch a JORAM server on a free host and to create a queue
linked to the cluster on that server. Of course, the cluster man-
ager will update its internal image of the global system accord-
ing to this.

7 Evaluation

A series of experiments was run to assess the performance
of JORAM. Rather than finding an absolute maximum, these
experiments were aimed at finding the relevant factors impact-
ing the performance of JORAM queues. The focus was on as-
sessing the usefulness of using queue clusters instead of single
queues.

Environment The experiments presented below were run on
a cluster of Mac Mini computers with the following specifica-
tions:

• Mac OS X 10.4.7, Intel Core Duo 1.66 GHz, 2 GB SDRAM
DDR2 (667 MHz frontal bus)

• Java J2SDK1.4.213, JORAM 4.3.21

• Ethernet Gigabit network

In each experiment, the measurements were taken with JMX
probes located on a computer outside the cluster. Each JORAM
queue ran a JMX server which was accessed by one of the JMX
probes. The monitored attributes on the queue wereNbMsgs-
DeliverSinceCreationwhich is the number of messages read by
consumers on the queue since its creation andMessageCounter
which is the number of messages presently waiting in the queue.
The JMX probes were reading these attributes every second.

6

In the following experiments, each JORAM queue was lo-
cated on a distinct node. The queues were running in a persis-
tent configuration. The producers and consumers were transac-
tional with a commit between each message. The Java Virtual
Machine hosting each queue was able to use 1536 MBytes of
memory. The Garbage Collector was disabled to prevent ran-
dom hits on performance. The size of the JMS messages used
was 1 KBytes. The network was not considered to be meaning-
ful factor in these experiments.

To obtain meaningful results, each experiment was run three
times. The charts were constructed using the average of the
three tests. The average throughput was calculated excluding
the first five and last five seconds as a way to only account for
the stable part of the process.

The number of waiting messages factor This experiment
aims at showing the impact of the number of messages wait-
ing in the queue on the performance. In a first step, producers
write 1500 messages in a single queue, while in a second step,
consumers read these messages from the queue until it is empty.
Figure 4 shows this experiment. We observe that the number of

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140
 0

 10000

 20000

 30000

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

of

 e
nq

ue
ue

d
w

ai
tin

g
m

es
sa

ge
s

Time (s)

of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 4: Impact of the Waiting Messages on the Performance

messages waiting in the queue has a strong direct impact on
the performance: the message processing rate of the queue de-
creases as the queue length grows.

Moreover we observe that the performance of the queue is
noticeably higher for message production than for message con-
sumption. Indeed, the next experiments figure out the optimal
ratio between message producers and message consumers to as-
sign to a single queue in order to ensure its stability. In these ex-
periments, a single message producer injects 15000 messages
into the queue, and one or more message consumers read the
messages. Figure 5 presents the results when the queue is as-
signed a single message producer and a single message con-
sumer. In this configuration, the queue is strongly unstablewith
about two times more message production than consumption.
This leads to a growing queue length, hence reduced perfor-
mance. Figure 6 presents the results when the queue is loaded
with one message producer and two message consumers. In
this scenario, the queue is stable with equivalent message pro-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250
 0

 2000

 4000

 6000

 8000

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

of

 e
nq

ue
ue

d
w

ai
tin

g
m

es
sa

ge
s

Time (s)

of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 5: Behaviour of a single queue with one message pro-
ducer and one message consumer

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250
 0

 1

 2
T

hr
ou

gh
pu

t (
m

es
sa

ge
s/

m
s)

of

 e
nq

ue
ue

d
w

ai
tin

g
m

es
sa

ge
s

Time (s)

of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 6: Behaviour of a single queue with one message pro-
ducer and two message consumers

duction and consumption rates. The queue length remains low,
and thus the performance are stable. An experiment with one
message producer and third message consumers shows a very
similar queue behaviour. From these experiments, we deduce
that the optimal clients ratio is one message producer for two
message consumers.

Single queue limit In order to assess the interest of having a
cluster queue instead of a single queue, we need to measure the
highest throughput a single queue can reach with the previously
described parameters. We made multiple measurements with a
varying number of producers and consumers accessing a single
queue. As explained before, for a given number of producers,
the ratio to obtain the best throughput was always one producer
for two consumers. These measurements are summed up on
Figure 7. These results account for the strong interest in dy-
namic provisioning and optimization of the load-balancingof
clustered queues in order to always provide the best clustered
queue size and clients distribution for best performance.

7

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

Number of clients

Average throughput (messages/ms)

Figure 7: Capacity of a stantard single queue

7.1 Load-balancing optimization

The following presents an evaluation of the queue cluster load-
balancing optimization that fairly distributes client connections
among the queues. For this evaluation, we expose a queue clus-
ter composed of two queues to 4 messages producers and 8 mes-
sage consumers. A single message producer emits 10000 mes-
sages, while a message consumer reads 5000 messages. This
configuration ensures that the queue cluster is stable. Figure 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200
 0

 2000

 4000

 6000

 8000

 10000

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

of

 e
nq

ue
ue

d
w

ai
tin

g
m

es
sa

ge
s

Time (s)

of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 8: Standard Joram queue cluster load-balancing strategy

presents the results of this experiment when the queue clus-
ter is driven with the standard JORAM load-balancing strategy,
while figure 9 presents these results when the cluster is driven
by our optimized load-balancer. When using the original load-
balancing strategy, we observe a noticeable unstability with a
higher message production rate than the message consumption
rate (see Figure 8). This behaviour is the consequence of a bad
distribution of the clients over the internal queues of the cluster,
which generates local instabilities that are hardly compensated
by the internal queue-to-queue message exchange mechanism.
This directly threatens the queue cluster performance which is
then suboptimal, with less than 0.3 messages/ms. In compari-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200
 0

 10

 20

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

of

 e
nq

ue
ue

d
w

ai
tin

g
m

es
sa

ge
s

Time (s)

of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 9: Optimized queue cluster load-balancing

son, when using our dynamic load-balancing optimization, the
queue cluster presents a very stable and balanced behaviour. In-
deed, the message production rate and the message consump-
tion rate both reach 0.35 messages/ms.

7.2 Dynamic provisioning

We now consider the evaluation of the dynamic provisioning
algorithm which dynamically adapts the number of queues in-
side a queue cluster depending on the load. The workload ap-
plied to the queue cluster consists in 5 message producers and
10 message consumers. As in the previous experiment, a mes-
sage producer generates 10000 messages while a message con-
sumer gets 5000 messages. To generate an increasing workload,
the clients are created gradually, one at a time, and new client
creations are separated with a delay of 10s. The queue clus-
ter is kept stable by creating clients so as to respect a ratioof
two message consumers for one message producer. The queue
cluster initially contains one single standard queue. Figure 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250 300 350
 0

 25

 50

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
m

s)

of

 e
nq

ue
ue

d
w

ai
tin

g
m

es
sa

ge
s

Time (s)

of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 10: Static provisioning of a clustered queue

shows the behaviour of the queue cluster under a static provi-
sioning policy, while figure 11 presents its behaviour underdy-

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250 300
 0

 100

 200

 300
T

hr
ou

gh
pu

t (
m

es
sa

ge
s/

m
s)

of

 e
nq

ue
ue

d
w

ai
tin

g
m

es
sa

ge
s

Time (s)

of enqueued waiting messages
message production (messages/ms)

message consumption (messages/ms);

Figure 11: Dynamically provisioned clustered queue

namic provisioning. When statically provisioning, the queue
cluster contains one single queue during the entire experimen-
tation, no matter how many clients are connected to it. The
queue cluster stabilizes quickly after the second step around
time 50s, with message production and consumption rates of
about 1.9 messages/ms until the end of the experiment. When
the queue cluster is dynamically provisioned, the queue cluster
behaves as in the previous experiment as long as the capacity
of the single queue is sufficient to absord the workload. Then,
arount time 120s, as the workload exceeds the capacity of a sin-
gle queue, the cluster is provisioned with a second queue, to
which new clients are directed. As expected, the performance
of the queue cluster doubles, jumping from 1.9 messages/ms to
3.7 messages/ms.

7.3 Conclusion for the measurements

These measurements show some interesting points. In a single
queue, the critical factor impacting the performance is thenum-
ber of messages waiting in the queue. Increasing the number
of producers and consumers on a single queue leads to an in-
crease in performance which is not linear. Furthermore a ceiling
throughput is reached when the number of clients corresponds
to the capacity of the queue.

In a cluster queue, the balance of the cluster and the stability
of the internal queues are extremely important. Even a slight
instability between the queues strongly decreases the overall
throughput. The instability seems to lead to an increase in the
number of messages waiting in the queues. In contrast of a sin-
gle queue, adding queues in a stable and well-balanced cluster
leads to a linear increase in performance.

8 Related work

The related work for this paper comes from the context of re-
sources management for Internet services. Past work on re-
source management of internet services falls to different cate-
gories.

A first category has focused on studying on resource man-
agement of Internet services has considered the managementof
a dynamically extensible set of resources, where the infrastruc-
ture can dynamically grow or shrink [1, 2, 3, 4, 5, 6].

Oceano provides an adaptive hosting environment with a dy-
namic partitioning of the resources among the running appli-
cations [1]. This dynamism allows the system to react to load
peaks by increasing the partition size of the concerned appli-
cation and to shift unused resources from under-loaded appli-
cations to the others. The main issue in this work seems to be
the node allocation delay. That explains why the platform as-
sumes that some application parts cannot be dynamically and
are thus statically allocated and configured (e.g. the database
tier). OnCall is similar to Oceano but specifically targets fast
handling of load spikes thanks to an approach based on virtual
machines which can be promptly activated when required [2].
In case of load spikes extra nodes are allocated to applications
willing to pay more, based on a free market of nodes. Contrary
to Oceano this project does not assume any statically allocated
resources and looks more generic with respect to the managed
applications though this aspect has not been demonstrated.

In [3, 4], the authors propose a self-optimized dynamic provi-
sioning algorithm that specifically targets a cluster of databases.
Regarding load spikes the system always provisions a set of un-
used nodes with database instances kept within a given range
of freshness with respect to the active database instances.This
contributes to improve the latency of provisioning operations.
Furthermore oscillations are explicitly prevented as a result of a
delay-aware allocation mechanism of database replica.

Cataclysm is a hosting platform for Internet service which
features dynamic provisioning through a dynamic partitioning
of nodes between the running applications and a adaptive size-
based admission control mechanism which takes advantage of
a request classifier to optimally degrades the service quality in
case of overloads [5, 6]. The provisioning algorithm is based
on a basic model of clustered network services. Cataclysm has
been specially designed to absorb extreme overloads: the size-
based admission controller prevents the system from thrashing
as a result of accepting too many requests, additionally taking
advantage of a request classifier to maximize the revenue during
overloads, while the dynamic provisioning algorithm adds ex-
tra resources in case of overloads. The provisioning algorithm
relies on a coarse-grained modeling of simple Internet services.
The strength of Cataclysm is the cooperation of admission con-
trol and dynamic provisioning as components of an integrated
resource management system. It assumes simple Internet ser-
vices structures where the database back-end is staticallyprovi-
sioned.

Besides the above-mentioned heuristics-based approaches,
another category of work on resource management of Internet
services has studied mathematical characterization and analyti-
cal modeling of the systems [7, 8, 9, 10, 11].

For instance, in [8, 12], authors propose a model for multi-
tier Internet applications. This model captures the structure and
the behavior of Internet applications built as cooperativeentities
(i.e. entities in series) thanks to a network of queues. Transi-
tions between queues standing for two connected tiers are prob-
abilistic. Indeed this allows the model to capture requestspro-

9

cessing paths (including caching mechanisms) through appro-
priate values for these transition probabilities. Replication and
load-balancing, concurrency limits and requests classification
and differentiation are taken into account as enhancementsover
the baseline model. The effectiveness of the model to achieve
accurate capacity planning is demonstrated in a dynamic pro-
visioning scenario in which parameters of the model are deter-
mined by mean-value analysis.

Finally, another category of work [13][14][15] as studied
JMS performances. Regarding JMS performance, [13] pro-
vides an analysis of the throughput performance of JMS Using
Websphere-MQ. [14] analyses a specific performance problem:
The Message Waiting Time for the Fiorano-MQ Server. [15]
describes a QoS Evaluation of JMS, it examines the impact of
JMS attributes on performance.

9 Conclusion and future work

Providing a scalable and efficient Message Oriented Middle-
ware is an important topic for today’s computing environments.
This paper analyses the performance of a Message Oriented
Middleware and proposes a self-optimization algorithm to im-
prove the efficiency of the MOM infrastructure.

This optimization takes place in two parts: (i) the optimiza-
tion of the clustered queue load-balancing and (ii) the dynamic
provisioning of a queue in the clustered queue. The first part
allows the overall improvement of the clustered queue perfor-
mance while the second part optimizes the resource usage inside
the clustered queue.

We describe (i) the key parameters impacting the perfor-
mance of the MOM and (ii) the rules that control these parame-
ters for optimal performances. This paper also presents an eval-
uation that shows the impact of these parameters on the perfor-
mances and the behavior of dynamically provisioned clustered
queue.

Currently, the control loop has a very basic actuator to drive
a client connection to a specific queue. The advantage of this
actuator is its simplicity. However, the control loops cannot re-
configure the client connection during a session. Part of our
future work is about providing a more powerful actuator. This
actuator will provide the control loop with the ability to migrate
a client connection when necessary. This will require a mecha-
nism to move session data on other queue.

REFERENCES

[1] Appleby, K., Fakhouri, S.A., Fong, L.L., Goldszmidt,
G.S., Kalantar, M.H., Krishnakumar, S., Pazel, D.P., Per-
shing, J.A., Rochwerger, B.: Océano-SLA based manage-
ment of a computing utility. In: Proceedings of Integrated
Network Management. (2001) 855–868

[2] Norris, J., Coleman, K., Fox, A., Candea, G.: OnCall:
Defeating spikes with a free-market application cluster.
In: 1st International Conference on Autonomic Comput-
ing (ICAC’04), New York, NY, USA (May 2004) 198–205

[3] Soundararajan, G., Amza, C.: Autonomic provisioning of
backend databases in dynamic content web servers. Tech-
nical report, Department of Electrical and Computer En-
gineering, University of Toronto (2005)

[4] Soundararajan, G., Amza, C., Goel, A.: Database replica-
tion policies for dynamic content applications. In: First
EuroSys Conference (EuroSys 2006), Leuven, Belgium
(April 2006)

[5] Urgaonkar, B., Shenoy, P.: Cataclysm: Handling extreme
overloads in internet services. Technical report, Depart-
ment of Computer Science, University of Massachusetts
(November 2004)

[6] Urgaonkar, B., Shenoy, P.J.: Cataclysm: policing ex-
treme overloads in internet applications. In: Proceedings
of the 14th international conference on World Wide Web,
(WWW’05), Chiba, Japan (May 2005) 740–749

[7] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dy-
namic provisioning of multi-tier internet applications. In:
Proceedings of the 2nd IEEE International Conference on
Autonomic Computing (ICAC’05), Seattle (June 2005)

[8] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M.,
Tantawi, A.: Analytic modeling of multitier internet ap-
plications. ACM Transaction on the Web1(1) (2007) 2

[9] Chandra, A., Gong, W., Shenoy, P.: Dynamic resource
allocation for shared data centers using online measure-
ments. In: Proceedings of the Eleventh IEEE/ACM Inter-
national Workshop on Quality of Service (IWQoS 2003),
Monterey, CA (June 2003)

[10] Zhang, Q., Cherkasova, L., Smirni, E.: A regression-
based analytic model for dynamic resource provisioning
of multi-tier applications. In: ICAC ’07: Proceedings of
the Fourth International Conference on Autonomic Com-
puting, Jacksonville, Florida, USA (June 2007) 27

[11] Stewart, C., Shen, K.: Performance modeling and sys-
tem management for multi-component online services. In:
NSDI’05: Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation.
(2005) 71–84

[12] Urgaonkar, B., Pacifici, G., Shenoy, P.J., Spreitzer, M.,
Tantawi, A.N.: An analytical model for multi-tier inter-
net services and its applications. In: Proceedings of the
International Conference on Measurements and Modeling
of Computer Systems (SIGMETRICS’05), Banff, Alberta,
Canada (June 2005) 291–302

[13] Henjes, R., Menth, M., , Zepfel, C.: Throughput perfor-
mance of java messaging services using websphereMQ.
In: 5th International Workshop on Distributed Event-
Based Systems (DEBS), Lisboa, Portugal (7 2006)

10

[14] Menth, M., Henjes, R.: Analysis of the message waiting
time for the fioranoMQ JMS server. In: 26th International
Conference on Distributed Computing Systems (ICDCS),
Lisboa, Portugal (7 2006)

[15] Chen, S., Greenfield, P.: Qos evaluation of jms: An em-
pirical approach. In: HICSS ’04: Proceedings of the Pro-
ceedings of the 37th Annual Hawaii International Confer-
ence on System Sciences (HICSS’04) - Track 9, Washing-
ton, DC, USA, IEEE Computer Society (2004) 90276.2

11

