Improving the Performances of
JMS-Based Applications

Abstract:

In the Java world, a standardized interface exists for ngesbased middleware (MOMS) :
Java Messaging Service or JMS. And like other middlewarsesdMS implementations use
clustering techniques to provide some level of performamzefault-tolerance. In this paper, we
analyse the efficiency of various clustering policy in a4igalcluster and the key parameters im-
pacting the performances of MOMs. We show that the resoefft@ency of the clustering meth-
ods can be very poor due to local instabilities and/or gléded variations. To solve these issues,
we describe the rules that control these parameters fomaperformances and we propose
a solution based on autonomic computing to (i) dynamicadlg the load distribution among
the servers (load-balancing aspect) and (ii) dynamicalbpathe replication level (provisioning
aspect). We present an evaluation that shows the impaceséttules on the performances and
the behavior of dynamically provisioned clustered queue.

Keywords: MOM, JMS, Autonomic management, Self-optimization.

1 Introduction tem using adequate tools. However if a queue is underloaded
or overloaded, an administrator cannot react as quicklyeas r

With the emergence of the internet, multiple applicatioas rauired.

quire to be integrated with each other. One common glue techT his paper targets the optimization of these clusteringtmec
nology for distributed, loosely coupled, heterogeneottswsoe anisms. This optimization will take place in two parts: (ipt
systems is Message-Oriented Middleware (MOM). MOMs apptimization of the clustered queue load-balancing andH@
based on messages as the single structure for communicaffyRamic provisioning of a queue in the clustered queue. The
coordination and synchronization, thus allowing asynobres first part allows the overall improvement of the clusteredug
execution of components. Reliable communication is guar&¢fformance while the second part optimizes the resource us
teed by message queueing techniques that can be Conﬁggggjinsid_e the clustered queue. Thus the idea is to create an
independently from the programming of software componerf'tonomic system that:

The Java community has standardized an interface for messag tyrly distributes client connections among the queues be-
ing (IMS). The use o_f MOMs in the conte_xt of mte_rnet has ev- longing to the clustered queue,

idenced a need for highly scalable and highly available MOM.

This paper analyses the performance of a MOM and proposes® dynamically adds and removes queues in the clustered
self-optimization algorithm to improve the performancettod queue depending on the load. This would allow us to use
MOM infrastructure. This mechanism is based on a queue clus- the adequate number of queues at any time.

tering solution : elustered queués a set of queues each run-
ning on different servers and sharing clients.

This paper is organized as follow: Sections 2 and 3 present
)] i . the context of this work. Section 4 details the differenesshat

We will show that in some cases this mechanism can eff@gay occur with a clustered queue. Sections 5 and 6 present the
tively provide a linear speedup but in other cases this mecRgntrol rules and the control loop. Section 7 shows perforcea

nism is completely inefficient. We analyse that the efficiengyajuation. Finally section 8 presents related work antice®
of this mechanism depends on the distribution of client @An §raws a conclusion and outlines future work.

tions to MOM queues. We describe a solution that will improve
the efficiency of this mechanism by optimizing the distribat
of client connections in the cluster queue. Furthermoréman
portant aspect of this clustering policy is the selectiorthef
level of clustering, i.e. the num_ber_of queues In t_he CllmerJMS is part of Sun’s J2EE platform. It provide a programming
queue. A commonly used solution is to select a fixed numt?ﬁtrerface (API) to interconnect different applicationsaiigh a

of queues in the clustered queue. However, this StaﬁciE’OIUtmess::xging middleware. The JMS architecture identifiesalhe f
has some drawbacks. L&t be the (fixed) number of repli- lowing elements:

cas. If N is too large, resources are wastedNifis too small,

performance may be compromised. In any case, the choice is JMS provider: an implementation of the JMS interface
problematic if the expected load of a queue is difficult tadice for a Message Oriented Middleware (MOM). Providers are
Human administrators can monitor the load of the queuing S&%pyright@ 200x Inderscience Enterprises Ltd.

Background: Java Message Service (JMS)

implemented as either a Java JMS implementation or an
adapter to a non-Java MOM.

e JMS client: a Java-based application or object that pro-

duces and/or consumes messages. - Heavy producer
e JMS producer: a JMS client that creates and sends me :@
sages. -
¢ JMS consumer a JMS client that receives messages. o g
Qusi’o , QoD
o JMS messagean object that contains the data being tran b -
ferred between JMS clients. [1
e JMS queue a staging area that contains messages tl Na R
have been sent and are waiting to be read. As the ns ;_-.gm";' um’w

queue suggests, the messages are delivered in the c....
they are sent. A message is removed from the queue once

it has been read. .
Figure 1: A queue cluster

e JMS topic: a distribution mechanism for publishing mes-

sages that are delivered to multiple subscribers.)
and decides to forward messages to the other queue (quetie 1) o

e JMS connection A connection represents a communits cluster, which is not under heavy load. Thus, the consume
cation link between the application and the messaging queue 1 also gets messages, and messages on queue O are
server. Depending on the connection type, connections@nsumed in a quicker way.
low users to create sessions for sending and receiving mes-
sages from a queue or topic.

e JMS session Represents a single-threaded context fr Clustered queue load-balancing

sending and receiving messages. A session is sin

le-
threaded so that messages are serialized, meamngqm%lpresentin this section the key parameters that infludrece t
messages are received one-by-one in the order sent. Pehavior and the performance of a clustered queue. In the firs

part, we show the impact of the distribution of clients carne
For our experiments we chose JORAM (Java Open Reliatitens on the performance; in the second part, we provide some
Asynchronous Messaging). It is open source software reteadetails about resource provisioning.
under the LGPL license which incorporates a 100% pure Java
implementation of IMS. JORAM adds interesting extra fesgur ' . . .
to lfhe JMS API such as the clustered queue mgechanisms. hle Configuration of clients connections
following section describes the mechanism of queue clingfer 4.1.1 Standard queue

A standard single queu@; is connected tadV; message pro-
ducers that induce a message productionggtend toM; mes-
sage consumers that induce a message consumptian.rates
The clustered queue feature provides a load balancing medit Y€ length; der.u.)tes the numpc_ar of messages waiting t_o be
nism. A clustered queue is a cluster of queues (a given numrbeeard in the queud; is always positive and obeys to the law :
of queue destinations knowing each other) that are able-to ex
change messages depending on their load.

Each queue of a cluster periodically reevaluates its load fa
tor and sends the result to the other queues of the clustesnWh
a queue hosts more messages than it is authorized to do, and
according to the load factors of the cluster, it distributesex-
tra messages to the other queues. When a queue is requested
to deliver messages but is empty, it requests messagestieom t
other queues of the cluster. This mechanism guaranteesdhat
queue is hyper-active while some others are lazy, and tends t
distribute the work load among the servers involved in this<l
ter. The figure above shows an example of a cluster made of
two queues. An heavy producer accesses its local queuegqueu
0) and sends messages. The queue is also accessed by a con-
sumer but requesting few messages. It quickly becomesdoade Figure 2: Standard JMS quedg

3 Clustered Queues

Ali = pi — ¢

Depending on the ratio between message production dig distribution of the clients between the quedgsis de-
message consumption, three cases are possible: scribed as followsz; (resp.y;) is the fraction of message pro-

e Al; = 0: message production and message consunqb'—Cers (resp. consumers) that are directe;to

tion annihilate themselves and queue lengtls constant. N; =z; - N, Soa=1
QueueR; is said to bestable { M, =y - M, { S o= 1

o Al >0 'i_here IS morg mltlassage p:joductl?n :Ihan rtnestsaﬁ% standard queug; to which a consumer or producer is di-
consumption. Queug; will grow and eventually satura € ected to cannot be changed after the client connectioneto th

ats g:e qlée_ue Igg@tjmbgﬂetséoz t()Jlg. Qtl;IGUQ)i IS the?un-t clustered queue. This way, the only action that may affet th
stabieand Is said 1o beooded nce Ihe queue SaturaleS, ;o v yistripution among the queues is the selection ofdet a
the message production rate of producers will be limite

.) Jate queue when the client connection is opened.

The queue then stabilizes with/; = 0. The clustered queu@.. is characterized by its aggregate mes-
e Al; < 0: there is more message consumption than m&&ge production rate. and its aggregate message consumption
sage production in the queue. Queue lenigttiecreases rate c.. The clustered queu@. also has a virtual clustered
down to 0; the queue isnstableand said to balraining. queue lengtt. that aggregates the length of all contained stan-

Once queug); is empty, message consumers will have @ard queues:
wait and become lazy); will stabilize with Al; = 0.

) .)) l_Zl_ e pczzipi
The message production and consumption rates are in direct eT 2 T PeT o o o i
relationships with the number of message producers and con- !
sumers: The clustered queue lengthobeys to the same law as a stan-
pi = f(N:) dard queue:
C; = g(ﬂfl)

e (). is globally stable whe\l. = 0. This configuration
rensures that the clustered queue is globally stable. How-
ever@). may observe local unstabilities if one of its queues
is draining or is flooded.

Thus the stability of a standard single queue is controliethb
ratio between the number of message producers and the numbe
of message consumers.

4.1.2 Clustered queue e If Al. > 0, the clustered queue will grow and eventually

Clustered queues are standard queues that share a comnhon poosaturate; then message producers will have to wait.

of message producers and consumers, and that can exchangaf Aj. < 0, the clustered queue will shrink until it is
message to balance the load. Each queue runs on a separatempty; then message consumers will also have to wait.
server. All the queues of a clustered queue are supposed to

be directly connected to each other. This allows message eXe now suppose that the clustered queue is globally stable,
changes between the queues of a cluster in order to enfdtgl we list various scenarios that illustrate the impactieht
flooded queues and to fill draining queues. distribution on performance.

Nc Optimal client distribution of the clustered queué). is
achieved when clients are fairly distributed amongklupieues

\ Q@;. Assuming that all queues and hosts have equivalent pro-
cessing capabilities and that all producers (resp. cons)me

| have equivalent message production (resp. consumptites ra

\ (and that all produced messages are equivalent : message cos
\ is uniformly distributed), this means that:
)

M2 j {xizl/k {Ni:%v
_) _ M.

Mc In these conditions, all queu&3; are stable and the queue
cluster is balanced. As a consequence, there are no internal
Figure 3: Clustered queug. gueue-to-queue message exchanges, and performance-is opti
mal. Queue clustering then provides a quasi-linear speedup
The clustered queug.. is connected taV, message produc-
ers and ta\/. message consumerg.. is composed of standardThe worst clients distribution appears when one queue only
queues);(i € [1..k]). Each queu&); is in charge of a subsethas message producers or only has message consumers. In the
of V; message producers and of a subsetgfmessage con-example depicted on Figure 3, this is realized when:

sumers:
Nc:ZiNi LC1:]. {L‘QZO leNC N2:O
M(:Zl]\/jz y1:O ’ y2=1 ’ M1:0 ’]\/IQZMC

Indeed, this configuration implies that the whole message pr e L; > 1. queue@; is overloaded and may saturate; this
duction is directed to queu®;. @, then forwards all messages induces a decreased message throughput and eventually
to Q- that in turn delivers messages to the message consumers. leads to thrashing.

e [; = 1: queueQ); is fairly loaded and delivers its optimal

Local instability is observed when some queu@s of Q. message throughput.

are unbalanced. This is characterized by a mismatch between
the fraction of producers and the fraction of consumerstiiee ~ These parameters and indicators are transposed to qustie clu

to Q;: ters. The clustered quedg. is characterized by its aggregated
T £ Yi capacityC,. and its global load...:
In the example showed in Figure @,. is composed of two Ne+ M. > .L;i-C;
standard queueg; and@-. A scenario of local instability can Ce= Z Ci, Le= C. - >, C

3

be envisioned with the following clients distribution:

The load of a clustered queue obeys to the same law as the load
{ w1 =2/3 : { w2 =1/3 of a standard queue.
n=1/3 y2=2/3 However a clustered queue allows us to contrahe number
This distribution implies that); is flooding and will have to en- ' INS!dé standard queues, and thus to control its aggrégate

. o k , . - .
queue messages, whilg, is draining and will see its consumelcapac'ltyct”: B Zf{ﬁl Olf' '[h|s(;:ontrol IS mdt_ae_:d qperated with a
clients wait. However the queue clustgr. ensures the global re-evajuation ot the clustered queue provisioning.

ili f th hank i | . .
?rtjrala t%g?; system thanks to internal message exchange. When L. < 1, the clustered queue is underloaded: if the

clients distribution is optimal, then all the standard cqegeu

inside the cluster will be underloaded; however, as the
A stable and unfair distribution can be observed when the client distribution may be non-optimal, some of the single
clustered queue is globally and locally stable, but the lisad gueues may be overloaded, even if the cluster is globally
unfairly balanced within the queues. This happens when the lazy. If the load is too low, then some queues may be re-

client distribution is non-uniform. moved from the cluster.
In the example presented in Figure 3, this can be realized by
directing more clients t6); thanQ-: e WhenL, > 1, the clustered queue is overloaded: even if
the distribution of clients over the queues is optimal, ¢her
{ T =2/3 { Ty =1/3 will exist at least one standard queue that will be over-
y1=2/3 "\ y2=1/3 loaded. One way to handle this case is to re-provision the

clustered queue by inserting one or more queues into the
In this scenario, queug; processes two third of the load, while cluster.
queuel), only processes one third. Suc situation can lead to bad
performance sinc€; may saturates whil€s is lazy.
It is_worth_/vhile Fo_indicate that these scengrios may all-hap self-optimizing clustered queue
pen since clients join and leave the system in an uncondrolle

way. Indee_q, the global stgbiljty ofa (clustered) qqeumisal In this section, we present the design of an autonomic abil-
responsability of the application developper. For instanibe ity which targets the optimization of a clustered queue. The

quteye ca:ndbe flc?c&de_d .for aﬂperict)r:i; we thgg_ assmlmge Ith_at it Itimization takes place in two steps : (i) the optimal load-
get inverted and draining after, thus providing global sigb balancing of a clustered queue, and (ii) the dynamic prowisi

overtime. ing of queues in a clustered queue.
The first part allows the overallimprovement of the clustere
4.2 Provisioning gqueue performance while the second part optimizes the queue

))) .. resource usage inside the clustered queue. Thus the idesmis t
The previous scenario of stable and non-optimal distrouti;y reate an autonomic system that :

raises the question of the capacity of a queue.

The capacityC; of standard queu@; is expressed as an op- e fairly distribute client connections to the pool of server
timal number of clients. The queue loaglis then expressed as hosts in the clustered queue,
the ratio between its current number of clients and its d&pac

e dynamically adds and removes queues in a clustered queue
I — N; + M; depending on the load. That would allow us to use the
e adequate number of queues at any time.
e [; < 1. queueQ); is underloaded and thus lazy; the mes- The implementation of these optimizations relies on the
sage throughput delivered by the queue can be improveddel of clustered queue performance which has been pre-
and ressources are wasted. sented in the previous sections.

5.1 Controlrules 5.2.1 System events and controls

The global clients distributio) of the clustered queu@. is Without modification, the underlying JMS middleware does no
captured by the fractions of message produaegrand con- provide facilities such as session migration that wouldvallis
sumersy;. The optimal clients distributiorD,,, is realized to migrate clients from one queue to another. However dledte
when all queues are stabléi(z; = y;) and when the load is queue systems allow the control of the queue that will haadle
fairly balanced over all queuesi(j =; = z;, y; = y;). This new message producer (resp. consumer). This control trans-

implies that the optimal distribution is reached when=y; = lated in the model terms means that saméresp. y;) will be
1/k. increased, and we have the choicedfor
On the contrary, a message producer (resp. consumer) that
1 N 1/k 1/k leaves the system induces an unavoidable and uncontrated d
D= . . , Dopt = . crease in some; (resp.y;).

. 1/.k 1;k Thus a clustered queue system generates 4 types of events
koYK that we can use to control and optimize the system:

Local instabilities are characterized by a mismatch between

the fraction of message producersand consumerg; on a

standard queue. The purpose of this rule is the stabilityllof a

standard queues so as to minimize internal queue-to-quese M The control rules must then be implemented as handlers to

sage transfert. these events. The algorithms that control the distributibn

clients and the queue cluster provisioning are depictedlin A
(R1) =; > y;i: Q; is flooding with more message productioaorithmS 1 and2q P ¢ P

than consumption and should then seek more consumers
and/or fewer producers.

join(Producer) join(Consumer)
leave(Producery;) leave(Consumet);)

Algorithm 1 Client joining algorithm

on join(ClientTypee {Producer, ConsumgrQ.)
(L. > 1) then

/I Queue cluster will be overloaded

/I An additional queue is required

Qr+1 — NewQueue()

Load balancing rules control the load applied to a single AddQueue)., Qr+1)

standard queue. The goal is then to enforce a fair load balgnc end if

over all queues. Q; = ElectQueudl., ClientType)

return CreateSession(ClientTyg;)

(R2) =; < y;: Q; is draining with more message consump-
tion than production and should then seek more producer§c
and/or fewer consumers.

(R3) L; > 1: Q; is overloaded and should avoid accepting new
clients as it may degrade its performance.

(Ry) L; < 1: Q; is underloaded and should request mofdgorithm 2 Client leaving algorithm

clients so as to optimize resource usage. on leave(ClientTypes {Producer, Consumgr@; € Q.)
if (IsMarked(;, “to be removed”) and ISEmptgJ;) then

RemoveQueug]., Q;)
Global provisioning rules control the load applied to the DestroyQueue);)

whole clustered queue. These rules targetthe optimal stheo gn(if
clustered queue while the load applied to the system evolves if (1, < 1) then

. , _ Qi = ElectRemovableQueu@()
(Rs) L. > 1: the queue cluster is overloaded and requires an if Q; # null then

increased capacity to handle all its clients in an optimal Mark(Q:, “to be removed”)
way. end if
end if

(Re) L. < 1: the queue cluster is underloaded and could ac-

cept a decrease in capacity.
P pacty The ElectQueue(ClientType) function chooses the queue tha

is most far away from the targeted client distribution. The
5.2 Algorithm elected queué&),; then maximizes the gap to the optimal. When
considering a new client that is a message producer (resp. co

This section presents an algorithm for the self-optima@bf symer), the gap is evaluated witfik — z; (resp. withl /k — ;).
queue clustering systems. As a first step we do not allow theys(, satisfies:

modification of the underlying middleware. This constraigt
stricts the control mechanisms that we can use to implerhent t x; = min; z; (when ClientType = Producer)
autonomic behaviour. y; = min; y; (when ClientType = Consumer)

The ElectRemovableQueug() chooses one queue that can elects a server according to the current state of the system
be removed from the queue cluster. A queue cannot be removed (the servers, the load of each queue in terms of producers
on demand since it may still have clients connected to it: a and consumers).
gqueue can only be removed when its last client decides teleav i) .

Thus the removal of a queu; will need two steps: (11, is cIoseConnectlon(....)t.effectlvely closes the conngctlon to the
marked “to be removed” and no more clients will be addressed S€rver and notifies the ClusterManager so it can decrease
to it; (2) whenQ,'s last client leaves(); can then be removed "€ number of queues in the cluster if necessary.

from the cluster. Moreover, even@. is underloaded, queue

Q; should not be removed if its removal 6%, be overloaded. 6.2.2 ClusterManager

Thus the condition to allow;’s removal is: This component stores the state of the global system, ie. th

number of servers currently used, the number of clients con-
nected to each server, their type. The state changes as clien
[gauests are received from the LBConnectionFactory. The di
ferent requests are:

C; <C.— (N.+ M)

The following section gives implementation details abo
these algorithms.

e aconsumer wants a connection;

6 Implementation Details e a producer wants a connection;

. e aconsumer wants to close a connection on sepyer
6.1 Requirements

.] e a producer wants to close a connection on seier
To implement a self-managed queue cluster using the auto-

nomic computing design principles require the followingmaln the first two cases, the ClusterManager elects a servieigtak
agement capabilities: into account the capacities in terms of clients. If the duss
evaluated to be full of producers or consumers, the LBCiuste
e to know the current number of message producers and cRamager uses the procedunswQueue(fandAddQueue()to
sumers, launch a JORAM server on a free host and to create a queue
linked to the cluster on that server. Of course, the clustn-m
58& will update its internal image of the global system atco
ing to this.
e to route a new client connection to the best queue to reach
the optimal,

e to know where the servers are deployed, where the que
are deployed and what is their configuration,

7 Evaluation
e to detect the overload or the underload of a queue cluster

A series of experiments was run to assess the performance
of JORAM. Rather than finding an absolute maximum, these
e to add and remove a queue in a server. eXperimentS were aimed at flndll’lg the relevant factors impaC
ing the performance of JORAM queues. The focus was on as-
sessing the usefulness of using queue clusters insteadghé si
gueues.

To simplify, we will consider that clients create only ones-se

sion by connection. By doing this we assimilate the creatighvironment The experiments presented below were run on
of sessions and the creation of connections. Assumingtttes, a cluster of Mac Mini computers with the following specifica-
first prototype is achieved by wrapping the standard JMS Coans:

nectionFactory by a "LBConnectionFactory” (where LB stand
for Load Balancing). e Mac OS X 10.4.7, Intel Core Duo 1.66 GHz, 2 GB SDRAM

DDR2 (667 MHz frontal bus)

e to allocate a new server to create a new queue,

6.2 The control loop

6.2.1 LBConnectionFactory e Java J2SDK1.4.43, JORAM 4.3.21

As the client gets the connection factory through JNDI, it ¢ Ethernet Gigabit network

gets the LBConnectionFactory instead. This is the main non-))
functionnal hook in the system that allows to control thergis N €ach experiment, the measurements were taken with JMX

bution of producers and consumers among servers. This cBfipbes located on a computer outside the cluster. Each JORAM
ponent offers the following methods: queue ran a JMX server which was accessed by one of the IMX

probes. The monitored attributes on the queue ibrsIsgs-
createConnection(...)takes the type of the client as a paranbeliverSinceCreatiomwhich is the number of messages read by
eter (Producer or Consumer). To create the connectmmsumers on the queue since its creationNedsageCounter
with the right server, it requests a component called “Clushich is the number of messages presently waiting in theeueu
terManager” which provisions (“resizes”) the cluster anthe JMX probes were reading these attributes every second.

In the following experiments, each JORAM queue was lo- 0.3 : — :
cated ona dist_inct node. The queues were running in a persis- me;ggg”&%%ﬂiﬂgy]e‘g%”egsg‘azs‘ess”}%ﬁ """"" 1 8000
tent configuration. The producers and consumers were tansa_ g psmessage consumption (messages/ms);
tional with a commit between each message. The Java Virtuél ~
Machine hosting each queue was able to use 1536 MBytes §f ¢ | e 1 6000
memory. The Garbage Collector was disabled to prevent ra@- ”‘
dom hits on performance. The size of the JMS messages used g 15
was 1 KBytes. The network was not considered to be meaning—
ful factor in these experiments. £ o1

To obtain meaningful results, each experiment was run three
times. The charts were constructed using the average of the 0.05 |
three tests. The average throughput was calculated ergudi ;
the first five and last five seconds as a way to only account for o ¥
the stable part of the process.

1 4000

1 2000

of enqueued waiting messages

‘ ‘ [N o
100 150 200 250
Time (s)

The number of waiting messages factor This experiment Figure 5: Behaviour of a single queue with one message pro-
aims at showing the impact of the number of messages Wal.?cerand one message consumer

ing in the queue on the performance. In a first step, producers
write 1500 messages in a single queue, while in a second step,

it 0.3 ‘ ; ; ;
consumers read these messages from the queue until it ig.empt # of enqueued waiting messages ———

Figure 4 shows this experiment. We observe that the number of message production (messages/ms)
0.25 | message consumption (messages/ms),

]
? <
25 ‘ ‘ — ‘ ‘ 5 o
of enqueued waiting messages --------- Q 0.2t =
message production (messages/ms) * o =)
. message consumption (messages/ms); - 1 30000 g @ £
g 27 € E 0151 g
= a = z
g £ 2 118
g o 5 01 g
@ 1 20000 S 3 g
£ g = 5]
= 5 7 o005 5
3 o} $+
=3 >
S)
= >
3 1 10000 & 0 ‘ ‘ 0
‘f_E [150 200 250
o .
g Time (s)
‘ ‘ ——— 0 Figure 6: Behaviour of a single queue with one message pro-

0O 20 40 60 80 100 120 140
Time (5) ducer and two message consumers

Figure 4: Impact of the Waiting Messages on the Perfo"m’m(‘fﬁction and consumption rates. The queue length remains low
.) . and thus the performance are stable. An experiment with one

messages waiting in the queue has a _strong direct 'mpacmsage producer and third message consumers shows a very

the performance: the message processing rate of the queugi§ar queue behaviour. From these experiments, we deduce

creases as the queue length grows. that the optimal clients ratio is one message producer for tw
Moreover we observe that the performance of the qUeU&{8ssage consumers.

noticeably higher for message production than for message c

sumption. Indeed, the next experiments figure out the optima

ratio between message producers and message consumers &rage queue limit In order to assess the interest of having a
sign to a single queue in order to ensure its stability. Is¢hex- cluster queue instead of a single queue, we need to measure th
periments, a single message producer injects 15000 masshgghest throughput a single queue can reach with the prslyjiou
into the queue, and one or more message consumers readi¢iseribed parameters. We made multiple measurements with a
messages. Figure 5 presents the results when the queue igsaaging number of producers and consumers accessing &sing|
signed a single message producer and a single message qoede. As explained before, for a given number of producers,
sumer. In this configuration, the queue is strongly unstafite the ratio to obtain the best throughput was always one pexduc
about two times more message production than consumption.two consumers. These measurements are summed up on
This leads to a growing queue length, hence reduced perféigure 7. These results account for the strong interest in dy
mance. Figure 6 presents the results when the queue is loadedic provisioning and optimization of the load-balancoig

with one message producer and two message consumersclustered queues in order to always provide the best ckdter
this scenario, the queue is stable with equivalent message pgueue size and clients distribution for best performance.

0.5 20

of‘enqueued wéiting messaé]es ——————————
message production (messages/ms) ———
message consumption (messages/ms);

A\}erage fhroughbut (méssageé/ms) I

0.4
15 1

03

0.2 r

05 r 1

Throughput (messages/ms)
=
Throughput (messages/ms)

0.1 r

i
[S)
of enqueued waiting messages

0 1 1 1 1 1 1 1 o U 3 PRV Al L 0
0 5 10 15 20 25 30 35 40 0 50 100 150 200

Number of clients Time (s)

Figure 7: Capacity of a stantard single queue Figure 9: Optimized queue cluster load-balancing

7.1 Load-balancing optimization son, when using our dynamic load-balancing optimizatiba, t
queue cluster presents a very stable and balanced behdwiour

The following presents an evaluation of the queue clustt1o deed, the message production rate and the message consump-
balancing optimization that fairly distributes client e@ttions tjon rate both reach 0.35 messages/ms.

among the queues. For this evaluation, we expose a queue clus
ter composed of two queues to 4 messages producers and 8
sage consumers. A single message producer emits 10000
sages, while a message consumer reads 5000 messages. \Welisow consider the evaluation of the dynamic provisioning
configuration ensures that the queue cluster is stable. réBjualgorithm which dynamically adapts the number of queues in-
side a queue cluster depending on the load. The workload ap-
10000 plied to the queue cluster consists in 5 message producérs an
10 message consumers. As in the previous experiment, a mes-
sage producer generates 10000 messages while a message con-
sumer gets 5000 messages. To generate an increasing whrkloa
the clients are created gradually, one at a time, and newtclie
creations are separated with a delay of 10s. The queue clus-
ter is kept stable by creating clients so as to respect a oétio
two message consumers for one message producer. The queue
cluster initially contains one single standard queue. &g

S- . N
és_ Dynamic provisioning

0.5

of enhueued waifing messagés ——————————
message production (messages/ms) ———
essage consumption (messages/ms);

3

0.4 1 8000

03 1 6000

0.2 r 1 4000

Throughput (messages/ms)

0.1 r 1 2000

of enqueued waiting messages

0.5 50

" #of ehqueuéd waitin‘g mességes —
message production (messages/ms) ———
0 message consumption (messages/ms);

0 50 100 150 200
Time (s)

Figure 8: Standard Joram queue cluster load-balancinggira -

presents the results of this experiment when the queue cl
ter is driven with the standard JORAM load-balancing styate
while figure 9 presents these results when the cluster ignrivEe 0.1
by our optimized load-balancer. When using the originatifoa
balancing strategy, we observe a noticeable unstability evi AR o

higher message production rate than the message consamptio 0 50 100 150 200 250 300 350

rate (see Figure 8). This behaviour is the consequence af a ba Time (s)

distribution of the clients over the internal queues of thister,

which generates local instabilities that are hardly conspésd Figure 10: Static provisioning of a clustered queue

by the internal queue-to-queue message exchange mechanism

This directly threatens the queue cluster performancetwisic shows the behaviour of the queue cluster under a staticprovi
then suboptimal, with less than 0.3 messages/ms. In compsioning policy, while figure 11 presents its behaviour urdier

rougfy_put (messages/ms)
of enqueued waiting messages

: : : : 300 A first category has focused on studying on resource man-
mefsgfgg”gr%fjﬂig3’}’]""('21”9932“‘,;39%5;}3?5 """"" agement of Internet s_ervices has considered the man_agefnent
message consumption (messages/ms); a dynamically extensible set of resources, where the infres
i i ture can dynamically grow or shrink [1, 2, 3, 4, 5, 6].

Oceano provides an adaptive hosting environment with a dy-
namic partitioning of the resources among the running appli
cations [1]. This dynamism allows the system to react to load
peaks by increasing the partition size of the concernedi-appl
cation and to shift unused resources from under-loaded-appl
cations to the others. The main issue in this work seems to be
the node allocation delay. That explains why the platform as
sumes that some application parts cannot be dynamically and

‘ ‘ N S S 0 are thus statically allocated and configured (e.g. the datab
0 50 100 150 200 250 300 tier). OnCall is similar to Oceano but specifically targedstf
Time (s) handling of load spikes thanks to an approach based on Virtua
_) o machines which can be promptly activated when required [2].
Figure 11: Dynamically provisioned clustered queue | case of load spikes extra nodes are allocated to apjlicati
willing to pay more, based on a free market of nodes. Contrary
to Oceano this project does not assume any statically addca
resources and looks more generic with respect to the managed

0.5

0.4
1 200
03

0.2 r
1 100

Throughput (messages/ms)

0.1 r

of enqueued waiting messages

namic provisioning. When statically provisioning, the gae
clqster contains one single queue during the entire exmﬁmﬁgplicaﬂons though this aspect has not been demonstrated.
tation, no matter how many clients are connected to it. T in[3, 4], the authors propose a self-optimized dynamic prov
queue cluster stabilizes quickly after the second stepratou. =~ ' "' "% propo b y P
time 50s, with message production and consumption rate Signing algorithm that specifically targets a cluster obdiatses.

about 1.9 messagesims unilneend of e experiment WEGSINY Pt R e S e s s omoln
the queue cluster is dynamically provisioned, the queustetu P 9 9

behaves as in the previous experiment as long as the Capaoéi{reshness with respect to the active database instaites.

of the single queue is sufficient to absord the workload. Th (oritributes to improve the latency of provisioning openas.

arount time 120s, as the workload exceeds the capacity of a a‘u r;g?;wgrrs gﬁglclfttifr?smth(;ﬁs“ﬁ:tz E;;ng:é;ﬁéfﬁ a

i
gle queue, the cluster is provisioned with a second queue, ‘ﬁé) . . .
which new clients are directed. As expected, the performanc ataclysm is a hosting platform for Intemet service which

of the queue cluster doubles, jumping from 1.9 messages/m Eatures dynamic provisioning through a dynamic partitign
3.7 messages/ms ' of nodes between the running applications and a adaptiee siz

based admission control mechanism which takes advantage of
_ a request classifier to optimally degrades the service tyuali
7.3 Conclusion for the measurements case of overloads [5, 6]. The provisioning algorithm is loase

. . . .on a basic model of clustered network services. Cataclysn ha
These measurements show some interesting points. In aasue)%l

Leue. the critical factor impacting the performance isie- en specially designed to absorb extreme overloads: zbe si
q ' rorimp 9 P . l%ased admission controller prevents the system from thngsh
ber of messages waiting in the queue. Increasing the number

of producers and consumers on a single queue leads to anaTQ' a result of accepting too many requests, additionalingak
prodi T singie g L acpvantage of arequest classifier to maximize the revenirglur
crease in performance which is not linear. Furthermorelagei

. . overloads, while the dynamic provisioning algorithm adgs e

throughput is reached when the number of clients correspond . T :
; ra resources in case of overloads. The provisioning dlyori

to the capacity of the queue.

relies on a coarse-grained modeling of simple Internetcesv
In a cluster queue, the balance of the cluster and the Sl;!"abli‘he strength of Cataclysm is the cooperation of admission co

.Of the.|.r1ternal gueues are exremely important. Even aBI'Qltbl and dynamic provisioning as components of an integrate
instability between the queues strongly decreases thaalbv esource management system. It assumes simple Internet ser

throughput. The instabili_ty seems to lead to an increashen ices structures where the database back-end is statiwal:

number of messages waltm_g in the queues. In contrast ofa Bned.

%Z dqsut% uae’|iﬁ:glrr;gcqrggggsinl:):rfs(;?rgl:nigd weII—baIancedacIustBesides the above-mentioned heuristics-based apprqaches
' another category of work on resource management of Internet

services has studied mathematical characterization aaigitan

cal modeling of the systems [7, 8, 9, 10, 11].

8 Related work For instance, in [8, 12], authors propose a model for multi-

tier Internet applications. This model captures the stnecand

The related work for this paper comes from the context of rie behavior of Internet applications built as cooperativiities

sources management for Internet services. Past work on(re: entities in series) thanks to a network of queues. Sdiran

source management of internet services falls to differate-c tions between queues standing for two connected tiers ake pr

gories. abilistic. Indeed this allows the model to capture requpsts

cessing paths (including caching mechanisms) throughoappi2]

priate values for these transition probabilities. Repisraand
load-balancing, concurrency limits and requests classifin

Norris, J., Coleman, K., Fox, A., Candea, G.: OncCall:
Defeating spikes with a free-market application cluster.
In: 1st International Conference on Autonomic Comput-

and differentiation are taken into account as enhancemegats

the baseline model. The effectiveness of the model to aehie
accurate capacity planning is demonstrated in a dynamic pr]
visioning scenario in which parameters of the model areredete
mined by mean-value analysis.

Finally, another category of work [13][14][15] as studied
JMS performances. Regarding JMS performance, [13] pr¢4] Soundararajan, G., Amza, C., Goel, A.: Database replica
vides an analysis of the throughput performance of JIMS Using tion policies for dynamic content applications. In: First
Websphere-MQ. [14] analyses a specific performance prablem EuroSys Conference (EuroSys 2006), Leuven, Belgium
The Message Waiting Time for the Fiorano-MQ Server. [15] (April 2006)

describes a QoS Evaluation of JMS, it examines the impact of .
JMS attributes on performance. [5] Urgaonkar, B., Shenoy, P.: Cataclysm: Handling extreme

overloads in internet services. Technical report, Depart-
ment of Computer Science, University of Massachusetts
(November 2004)

[6] Urgaonkar, B., Shenoy, P.J.: Cataclysm: policing ex-
Providing a scalable and efficient Message Oriented Middle- treme overloads in internet applications. In: Proceedings
ware is an important topic for today’s computing environtsen of the 14th international conference on World Wide Web,
This paper analyses the performance of a Message Oriented (WWW'05), Chiba, Japan (May 2005) 740-749
Middleware and proposes a self-optimization algorithmnte i [7] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.. Dy-

prove the efficiency of the MOM infrastructure. namic provisioning of multi-tier internet applications: |
Proceedings of the 2nd IEEE International Conference on
Autonomic Computing (ICAC’05), Seattle (June 2005)

ing (ICAC’04), New York, NY, USA (May 2004) 198-205

Soundararajan, G., Amza, C.: Autonomic provisioning of
backend databases in dynamic content web servers. Tech-
nical report, Department of Electrical and Computer En-
gineering, University of Toronto (2005)

9 Conclusion and future work

This optimization takes place in two parts: (i) the optimiza
tion of the clustered queue load-balancing and (ii) the dyina o)
provisioning of a queue in the clustered queue. The first pal$] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M.,
allows the overall improvement of the clustered queue perfo 1antawi, A.. Analytic modeling of multitier internet ap-
mance while the second part optimizes the resource usade ins ~ Plications. ACM Transaction on the Welg1) (2007) 2

the clustered queue. [9] Chandra, A., Gong, W., Shenoy, P.. Dynamic resource
allocation for shared data centers using online measure-
ments. In: Proceedings of the Eleventh IEEE/ACM Inter-
national Workshop on Quality of Service (IWQoS 2003),
Monterey, CA (June 2003)

We describe (i) the key parameters impacting the perfor-
mance of the MOM and (ii) the rules that control these parame-
ters for optimal performances. This paper also presentsan e
uation that shows the impact of these parameters on therper, [0

. : - 0]
mances and the behavior of dynamically provisioned cleste
queue.

Zhang, Q., Cherkasova, L., Smirni, E.: A regression-
based analytic model for dynamic resource provisioning
of multi-tier applications. In: ICAC '07: Proceedings of

the Fourth International Conference on Autonomic Com-
Currently, the control loop has a very basic actuator toedriv. puting, Jacksonville, Florida, USA (June 2007) 27

a client connection to a specific queue. The advantage of this .
actuator is its simplicity. However, the control loops catre- [11] Stewart, C., Shen, K.: Performance modeling and sys-
configure the client connection during a session. Part of our €M Management for multi-componentonline services. In:
future work is about providing a more powerful actuator. sThi ~ NSDI'05: Proceedings of the 2nd conference on Sympo-
actuator will provide the control loop with the ability to grate sium on Networked Systems Design & Implementation.
a client connection when necessary. This will require a raech (2005) 71-84

nism to move session data on other queue. [12] Urgaonkar, B., Pacifici, G., Shenoy, P.J., Spreitzer, M
Tantawi, A.N.: An analytical model for multi-tier inter-
net services and its applications. In: Proceedings of the
International Conference on Measurements and Modeling
of Computer Systems (SIGMETRICS’05), Banff, Alberta,

[1] Appleby, K., Fakhouri, S.A., Fong, L.L., Goldszmidt, Canada (June 2005) 291-302
G.S., Kalantar, M.H., Krishnakumar, S., Pazel, D.P., P¢t3] Henjes, R., Menth, M., , Zepfel, C.: Throughput perfor-
shing, J.A., Rochwerger, B.: Océano-SLA based manage- mance of java messaging services using websphereMQ.
ment of a computing utility. In: Proceedings of Integrated In: 5th International Workshop on Distributed Event-
Network Management. (2001) 855-868 Based Systems (DEBS), Lisboa, Portugal (7 2006)

REFERENCES

10

[14] Menth, M., Henjes, R.: Analysis of the message waiting
time for the fioranoMQ JMS server. In: 26th International
Conference on Distributed Computing Systems (ICDCS),
Lisboa, Portugal (7 2006)

[15] Chen, S., Greenfield, P.: Qos evaluation of jms: An em-
pirical approach. In: HICSS '04: Proceedings of the Pro-
ceedings of the 37th Annual Hawaii International Confer-
ence on System Sciences (HICSS’04) - Track 9, Washing-
ton, DC, USA, IEEE Computer Society (2004) 90276.2

11

