
1

Introduction to Distributed Systems

Sara Bouchenak

Sara.Bouchenak@imag.fr
http://membres-liglab.imag.fr/bouchenak/teaching/

© S. Bouchenak Distributed Systems & Middleware 2

Objectives

� Introduction to distributed systems and middleware

� Conceptual and practical aspects of distributed
systems and middleware

� Illustration through current distributed systems, e.g.
web systems, database systems

© S. Bouchenak Adaptive Computing Systems 3

Agenda
Lecture, Tuesday, 09:45 – 12:45 Lab, Tuesday, 09:45 – 12:45

Introduction to distributed systems

Distributed applications with RMI (Part I)

Distributed Web applications

Distributed applications with RMI (Part II)

Interruption week

Event-based systems &
MapReduce systems

Distributed Web applications with Servlets (Part I)

Cloud computing

Distributed Web applications with Servlets (Part II)

Advanced techniques for efficient
distributed systems

Caching with Memcached

Event-based systems &
MapReduce systems

Interruption week

Advanced techniques for dependable
distributed systems

Evaluation

© S. Bouchenak Distributed Systems & Middleware 4

What is a distributed system

� “A distributed system is one in which the

failure of a computer you didn't even know

existed can render your own computer

unusable.”

Leslie Lamport, 1987.

2

© S. Bouchenak Distributed Systems & Middleware 5

Distributed system

Execution

entity

(process 1)

Computer 1

Execution

entity

(process 2)

Computer 2

Communication system

© S. Bouchenak Distributed Systems & Middleware 6

Communication mechanisms
in a distributed system

� Direct (i.e. Synchronous) communication
� Program to program

� E.g. remote procedure call

� Program to database

� E.g. distributed transaction processing

� Indirect (i.e. Asynchronous) communication
� Message passing

© S. Bouchenak Distributed Systems & Middleware 7

Communication mechanisms
in a distributed system

� Remote procedure call (e.g. a web application)

Execution

entity

(process 1)

Computer 1

Execution

entity

(process 2)

Computer 2

Communication system

1. request

2. procedure
execution

3. response

Web server
(e.g. Apache)

© S. Bouchenak Distributed Systems & Middleware 8

Communication mechanisms
in a distributed system

� Distributed transaction processing (e.g. a database server)

Execution

entity

(process 1)

Computer 1

Execution

entity

(process 2)

Computer 2

Communication system

1. request
database

Database management
system (e.g. Oracle) 2. data

processing

3. response

3

© S. Bouchenak Distributed Systems & Middleware 9

Communication mechanisms
in a distributed system

� Message passing (e.g. a chat system)

Execution

entity
(process 1)

Computer 1

Execution

entity
(process 2)

Computer 2

Communication system
put message M3

M2 M1M3 M2 M1

get message M1

M4 M3 M2 M1

put message M4

Message-oriented
middleware (e.g. JMS)

© S. Bouchenak Distributed Systems & Middleware 10

Outline

1. What is a distributed system
� Communication mechanisms in distributed

systems

� Services and interfaces in computing
systems

� Client/server architecture

2. What is a middleware

3. References

© S. Bouchenak Distributed Systems & Middleware 11

Services and interfaces in a
computing system

� Service definition

� A computing system is a set of (hardware and software)
components

� A component provides a service

� “A service is a contractually defined behavior that can be
implemented and provided by any component for use by another
component, based solely on the contract”,
Bieber el. al., Service oriented programming, http://www.openwings.org/

� Interface definition

� A service is accessible via one or several interfaces

� An interface defines the possible interaction between a service
provider and its client

© S. Bouchenak Distributed Systems & Middleware 12

Interfaces (1/2)

Service provider Service client

contract

conformity

4

© S. Bouchenak Distributed Systems & Middleware 13

Interfaces (2/2)

� A service relies on two interfaces
� Required interface (from the service client point of view)

� Provided interface (from service provider point of view)

� Contract
� The contract specifies the conformity between the provided and

required interfaces

� The service client and the service provider are considered as
black-boxes; they might be replaced by other implementations as
long as the contract is respected

� The contract may specify aspects that are not related to the
interfaces
� Non-functional properties related to QoS requirements

Service provider Service client

contract

provided

interfa
ce required

interfa
ce

conformity

Service provider Service client

contract

provided

interfa
ce required

interfa
ce

conformity

© S. Bouchenak Distributed Systems & Middleware 14

Examples of important interfaces

in computing systems

physical communication linkmachine

operating
system

communication
system

middleware

application

application interface

middleware interface
(e.g. Java RMI)

OS interface
(e.g. Posix)

machine interface
(e.g. IA32)

transport interface
(e.g. TCP)

physical interface
(e.g. Ethernet)

© S. Bouchenak Distributed Systems & Middleware 15

Outline

1. What is a distributed system

� Communication mechanisms in distributed
systems

� Services and interfaces in computing systems

� Client/server architecture

2. What is a middleware

3. References

© S. Bouchenak Distributed Systems & Middleware 16

Client/server architecture (1)

� Definitions

� The client/server architecture is a general interaction model

� The server provides a service

� The client requests that service

� The client and the server are usually (but not necessarily) hosted by two
distinct machines

� Examples of protocols based on the client/server architecture: RPC,

Java RMI, Web Services, etc.

client server

machine 1 machine 2

communication link

1. request

3. response

2. processing

5

© S. Bouchenak Distributed Systems & Middleware 17

Client/server architecture (2)

� Request message:
� Sent by the client to the server
� Specifies the requested service (a server may provide several services)

� Contains parameters of the requested service

� Response message:
� Sent by the server to the client
� Results of service execution, or error message

� Synchronous communication between the server and the client:
� When the client sends a request, it waits (it is blocked) until the server

replies to its request

client server

machine 1 machine 2

communication link

1. request

3. response

2. processing

client server

machine 1 machine 2

communication link

1. request1. request

3. response3. response

2. processing2. processing

© S. Bouchenak Distributed Systems & Middleware 18

Client/server architecture (3)

� Advantages of the client/server architecture
� Structuring

� Separation between the interface of a service and the
implementation of that service

� Based on this separation, the client and server
implementations can be modified as long as the interface is
kept unchanged

� Protection/security

� The client and server run in different protection domains

� Resource management

� A server may be shared by several clients

© S. Bouchenak Distributed Systems & Middleware 19

Client/server architecture (4)

� A server shared by several clients

� The client point of view

� The server point of view

� Selecting a request among client requests

� Request processing model (sequential or parallel)

client server

request

response

request
processing

request
selection

request queue

client
requests

server
responses

server

© S. Bouchenak Distributed Systems & Middleware 20

Client/server architecture (5)

� Request selection (i.e. scheduling) model

� First, the server selects one of the waiting (i.e. queued) client
requests

� Then, it process the client request and builds its response

� Before it returns it to the client

� Different request selection strategies

� First-In First-Out (FIFO)

� Shortest first

� Priority-based scheduling

6

© S. Bouchenak Distributed Systems & Middleware 21

Client/server architecture (6)

� Request processing model (resource management)

� The client and server are executed by two distinct processes
(asynchronous call)

� The client waits untils it receives a response to its request

� Several requests may be processed concurrently by the server
� real parallelism (e.g. multiprocessors, I/O)
� pseudo-parallelism

� Concurrency may take the form of:
� multiple processes, or
� multiple threads

© S. Bouchenak Distributed Systems & Middleware 22

Client/server architecture (7)

� Server resource management – A unique process
while (true) {

receive(client_id,message);

extract(message, service_id, params);

results = do_service(service_id, params);

send(client_id, results);

}

request
processing

request
selection

request queue

client
requests

server
response

server

© S. Bouchenak Distributed Systems & Middleware 23

Client/server architecture (8)

� Server resource management – Multiple processes
while (true) {

receive(client_id,message);

extract(message, service_id,

params);

thr = create_thread(client_id,

service_id,params);

}

request
selection

request queue

main thread

Program executed by thread thr:

results = do_service(

service_id, params);

send(client_id, results);

exit

client
requests

response

worker thread

request
processing

server

© S. Bouchenak Distributed Systems & Middleware 24

Client/server architecture (9)

� Server resource management – A pool of processes

while (true) {

receive(client_id,message);

extract(message, service_id,

params);

work_to_do.put(client_id,

service_id,params);

}

Pool of processes:

while (true) {

work_to_do.get(

client_id, service_id,

params);

results = do_service(

service_id, params);

send(client_id, results);

}

7

© S. Bouchenak Distributed Systems & Middleware 25

Client/server architecture (10)

� Server resource management – A pool of processes

request
selection

request queue

main thread

worker thread

request
processing

worker thread

request
processing

client
requests

response

worker thread

request
processing

server

work_to_do

© S. Bouchenak Distributed Systems & Middleware 26

Client/server architecture (11)

� Application of the client/server architecture

� With low level operations

� Using functions of the communication system

� Example: Sockets
� TCP, connected mode

� UDP, unconnected mode

� With high level operations

� Using a middleware

� Example: RMI in object-oriented middleware
� Remote method invocation

© S. Bouchenak Distributed Systems & Middleware 27

Outline

1. What is a distributed system

� Communication mechanisms in distributed
systems

� Services and interfaces in computing systems

� Client/server architecture

2. What is a middleware

3. References

© S. Bouchenak Distributed Systems & Middleware 28

What is a middleware

physical communication link

operating
system

machinemachine

operating
system

communication
system

middleware middleware

applicationapplication

8

© S. Bouchenak Distributed Systems & Middleware 29

Functions of a middleware

� A middleware has mainly four functions

� Make distribution as invisible (transparent) as possible

� Provide a homogeneous view of underlying heterogeneous

hardware and software systems

� Provide services of common use for distributed systems

� Provide a high-level interface or API (Applications

Programming Interface) for programming distributed

applications

© S. Bouchenak Distributed Systems & Middleware 30

Middleware for distributed
systems

� Middleware aims at simplifying programming
distributed systems

� Implementation, evolution and reuse of applications code

� Inter-platform portability of applications

� Interoperability between heterogeneous applications

© S. Bouchenak Distributed Systems & Middleware 31

Examples of middleware
solutions

� Sun JVM

� CORBA

� Microsoft .NET

� Sun J2EE / EJB

� …

© S. Bouchenak Distributed Systems & Middleware 32

Types of distributed systems

� Distributed computing systems

� Distributed information systems

� Distributed pervasive systems

9

© S. Bouchenak Distributed Systems & Middleware 33

Distributed computing
systems

� Objective

� Distributed systems configured for high performance computing

� Cluster computing

� A group of high-end systems connected through a LAN

� Homogeneous, i.e. same OS, hardware

� Single managing node

� Grid computing

� Heterogeneity

� Geographical dispersion

� Applications

� Video streaming

� Web services

� Scientific computing
M. van Steen, Lecture on Distributed Systems, Chapter 1, http://www.cs.vu.nl/~steen/

© S. Bouchenak Distributed Systems & Middleware 34

Distributed information
systems

M. van Steen, Lecture on Distributed Systems, Chapter 1, http://www.cs.vu.nl/~steen/

� Objective

� Providing consistent access to (shared) data that can be distributed and

accessed concurrently

� Observation

� Transactions

� ACID properties

� Applications

� Streaming applications

� Data access with reliability
and consistency requirements

© S. Bouchenak Distributed Systems & Middleware 35

Distributed pervasive systems

� Objective

� Providing consistent access to (shared) data that can be distributed and

accessed concurrently

� Observation

� Contextual change

� Ad-hoc composition

� Applications

� Domotics (home automation)

M. van Steen, Lecture on Distributed Systems, Chapter 1, http://www.cs.vu.nl/~steen/

© S. Bouchenak Distributed Systems & Middleware 36

Outline

1. What is a distributed system

2. What is a middleware

� What is a middleware

� Functions of a middleware

� Middleware for distributed systems

� Examples of middleware solutions

� Types of distributed systems

3. References

10

© S. Bouchenak Distributed Systems & Middleware 37

References

� Chris Britton, Peter Bye. IT Architectures and Middleware: Strategies for
Building Large, Integrated Systems (2nd Edition). Addison-Wesley, 2004.

� George Coulouris, Jean Dollimore, Tim Kindberg. Distributed Systems:
Concepts and Design (4th Edition). Addison Wesley, 2005.

� Arno Puder, Kay Römer, Frank Pilhofer. Distributed Systems Architecture: A
Middleware Approach. Morgan Kaufmann, 2005.

� Andrew S. Tanenbaum, Maarten van Steen. Distributed Systems: Principles
and Paradigms (2nd Edition). Prentice Hall, 2006.

� This lecture is partly based on lectures given by Sacha Krakowiak,
http://sardes.inrialpes.fr/people/krakowia/

