
1

Distributed Multi-Tier 

Web Applications

Sara Bouchenak

Sara.Bouchenak@imag.fr
http://membres-liglab.imag.fr/bouchenak/teaching/

© S. Bouchenak Distributed systems & Middleware 2

Introduction – Web applications

Web client

Computer 1

Web server

Computer 2

Communication system

1. Web 
request

2. request 
processing

3. Web 
response

© S. Bouchenak Distributed systems & Middleware 3

Motivations

� Processing a request on the server may successively involve 

several types of logic:

� Data access logic

� Example: read data from a persistent storage (e.g. a database)

� Business logic

� Example: use the read data to perform any application-specific 

processing

� Presentation logic

� Example: use the obtained result to build a user-friendly response 

to the client

© S. Bouchenak Distributed systems & Middleware 4

Example 1

Web client

Computer 1 Computer 2

Communication system

Web server

Presentation 

logic

Business 

logic

Data access 

logic

1. Web request to 
static content

3. Web 
response

2



2

© S. Bouchenak Distributed systems & Middleware 5

Example 2

Web client

Computer 1 Computer 2

Communication system

Web server

Presentation 

logic

Business 

logic

Data access 

logic

1. Web request to dynamic 
content with volatile data

3. Web 
response

2

© S. Bouchenak Distributed systems & Middleware 6

Example 3

Web client

Computer 1 Computer 2

Communication system

Web server

Presentation 

logic

Business 

logic

Data access 

logic

1. Web request to dynamic 
content with persistent data

3. Web 
response

2

© S. Bouchenak Distributed systems & Middleware 7

Motivations

� These types of logic may be more or less heavy in terms of 

processing time

� A unique server that hosts multiple types of logic may suffer 

from scalability issues in case of heavy workload (#concurrent 

web clients)

� Solution: 

� Separate the different types of logic in different servers

� Multi-tier architecture

© S. Bouchenak Distributed systems & Middleware 8

Overview of the multi-tier 

architecture

Web client

Computer 0

Communication system

Web tier

Computer 1

Business 

tier

Computer 2

Data 

access tier

Computer 3



3

© S. Bouchenak Distributed systems & Middleware 9

Multi-tier architecture

� Java 2 Enterprise Edition

� Web tier
� Run a web server

� Receive requests from web clients

� Run web components
� May forward requests to the business tier

� Return web documents as responses (e.g. static HTML pages or dynamically 
generated web pages)

� Business tier
� Run an application server

� Receive requests from the web tier

� Run business components
� May forward requests to the data access tier (via JDBC)

� Data access tier
� Run a database server

� Receive requests from the business tier

© S. Bouchenak Distributed systems & Middleware 10

J2EE multi-tier systems

� Web components

� J2EE web components are either servlets or pages created using 
JSP technology (JSP pages)

� Servlets are Java programming language classes that dynamically 
process requests and construct responses

� JSP pages are text-based documents that execute as servlets but 
allow a more natural approach to creating static content

� Static HTML pages and applets are bundled with web components 
during application assembly 

© S. Bouchenak Distributed systems & Middleware 11

J2EE multi-tier systems (2)

� Business components
� Business code, i.e. the logic that solves or meets the needs of a particular 

business domain such as banking, retail, or finance, is handled by 
enterprise beans running in the business tier 

� There are three kinds of enterprise beans: session beans, entity beans, 
and message-driven beans

� A session bean represents a transient conversation with a client. When 
the client finishes executing, the session bean and its data are gone

� An entity bean represents persistent data stored in one row of a database 
table. If the client terminates or if the server shuts down, the underlying 
services ensure that the entity bean data is saved

� A message-driven bean combines features of a session bean and a Java 
Message Service (JMS) message listener, allowing a business 
component to receive JMS messages asynchronously

© S. Bouchenak Distributed systems & Middleware 12

A simple example

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HTML form data 

// (e.g. data the user entered and submitted)

...

// Perform any internal processing for generating dynamic results

...

// Use "response" to specify the HTTP response line and headers 

// (e.g. specifying the content type).

PrintWriter out = response.getWriter(); 

// Use "out" to send content to browser
...

}

...



4

© S. Bouchenak Distributed systems & Middleware 13

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HTML form data 

// (e.g. data the user entered and submitted)

String accountIdStr = req.getParameter(“accountId");

int accountId = Integer.parseInt(accountIdStr);

if (accountId != null) {

...

}

...

}

A simple example (2)

© S. Bouchenak Distributed systems & Middleware 14

import java.sql.*;

public class MyServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

...

// Perform any internal processing for generating dynamic results

float balance = 0;

Connection conn = DriverManager.getConnection(url, user, password);

Statement stmt = conn.createStatement();

ResultSet rs =stmt.executeQuery("SELECT balance FROM accounts WHERE id=“ 
+ accountId);

try {

if (rs.next())

balance = rs.getFloat("balance");

rs.close(); stmt.close();

} catch (Exception e) {

e.printStackTrace();

}

...

}

A simple example (3)

© S. Bouchenak Distributed systems & Middleware 15

A simple example (4)

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class MyServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

...

res.setContentType(“text/html”);

PrintWriter out = res.getWriter();

out.println(“<HTML>”);

out.println(“<HEAD> <TITLE> Account ” + accountId + “</TITLE></HEAD>”);

out.println(“<BODY>”);

out.println(“Current balance is ” + balance);

out.println(“</BODY>”); 

out.println(“</HTML>”);
out.close();

}

}

© S. Bouchenak Distributed systems & Middleware 16

J2EE features

� Java Servlet technology

� JavaServer Pages technology

� Enterprise JavaBeans technology

� Java Message Service

� Java Transaction

� JavaMail

� Java API for XML processing

� Java API for XML-based RPC

� Java DataBase Connectivity (JDBC)

� Java Naming and Discovery Interface (JNDI)

� Java authentication and authorization service



5

© S. Bouchenak Distributed systems & Middleware 17

Other features of distributed 
Web applications

� Caching

� Prefetching

� Partitioning

� Replication

� Load balancing

� Cloud computing: toward on-demand remote and elastic 
applications

© S. Bouchenak Distributed systems & Middleware 18

References

� Sun Microsystems.  The J2EE Tutorial
http://java.sun.com/j2ee/1.4/docs/tutorial/

© S. Bouchenak Adaptive Computing Systems 19

Agenda
Lecture, Tuesday, 09:45 – 12:45 Lab, Tuesday, 09:45 – 12:45

Introduction to distributed systems

Distributed applications with RMI (Part I)

Distributed Web applications

Distributed applications with RMI (Part II)

Interruption week

Event-based systems &
MapReduce systems

Distributed Web applications with Servlets (Part I)

Cloud computing

Distributed Web applications with Servlets (Part II)

Advanced techniques for efficient 
distributed systems

Caching with Memcached

Event-based systems &
MapReduce systems

Interruption week

Advanced techniques for dependable 
distributed systems

Evaluation


