
1

Event-Based Systems

Sara Bouchenak

Sara.Bouchenak@imag.fr
http://membres-liglab.imag.fr/bouchenak/teaching/

© S. Bouchenak Adaptive Computing Systems 2

Agenda
Lecture, Tuesday, 09:45 – 12:45 Lab, Tuesday, 09:45 – 12:45

Introduction to distributed systems

Distributed applications with RMI (Part I)

Distributed Web applications

Distributed applications with RMI (Part II)

Interruption week

Event-based systems &
MapReduce systems

Distributed Web applications with Servlets (Part I)

Cloud computing

Distributed Web applications with Servlets (Part II)

Advanced techniques for efficient
distributed systems

Caching with Memcached

Event-based systems &
MapReduce systems

Interruption week

Advanced techniques for dependable
distributed systems

Evaluation

© S. Bouchenak Distributed Systems & Middleware 3

Event-based systems: Outline

� Definitions

� Examples

� Subscription models

� Notification delivery

� Simple JMS examples

� Conclusion

© S. Bouchenak Distributed Systems & Middleware 4

Definitions

� Event

� An occurrence of some kind

� A detectable condition that can trigger a notification

� Examples

� Time is 1:00 pm

� Mouse click

� Notification

� A message informing the recipient that something happened

� An event-triggered signal sent to a run-time-defined recipient

Sender Receiver
3. Notification

2. Condition

is detected

1. Some

condition

2

© S. Bouchenak Distributed Systems & Middleware 5

Definitions (2)

� Event publisher

� Entity that is able to detect events

� A.k.a. event source, event producer, sender

� Event subscriber

� Entity that receives event notifications

� A.k.a. event subscriber, event consumer, event handler, notification
target, receiver

� Event-based system

� A.k.a. publish/subscribe system, message-oriented middleware (MOM),
message-based system, store-and-forward system

© S. Bouchenak Distributed Systems & Middleware 6

Definitions (3)

� Notification filter

� Matches a set of notifications

� Example: mouse click on a button

� Content-based publish/subscribe

� Subscribers issue subscriptions that contain filters

� Filters match a set of notifications a subscriber is interested in

� Clients

� Event publishers and event subscribers

© S. Bouchenak Distributed Systems & Middleware 7

Publish-subscribe system

Publisher

Notification Service

Local Broker Local Broker

Subscriber

(un)sub notify pub adv

Network

© S. Bouchenak Distributed Systems & Middleware 8

Examples

� Applications

� Graphical user interface (e.g. Java Swing)

� System monitoring

� Workflow systems

� Active database systems with event-condition-action (ECA) rules

� Event-based system implementations

� Java Message Service

� CORBA Event and Notification Service

3

© S. Bouchenak Distributed Systems & Middleware 9

Outline

� Definitions

� Examples

� Subscription models

� Notification delivery

� Simple JMS examples

� Conclusion

© S. Bouchenak Distributed Systems & Middleware 10

Subscription models

� Channel

� Type

� Filter

� Group

© S. Bouchenak Distributed Systems & Middleware 11

Subscription models - Channels

Event
Publisher

All
Notifications

Single Channel

Events

© S. Bouchenak Distributed Systems & Middleware 12

Subscription models - Types

Event
Publisher

Notifications of Type 1

Events

Notifications of Type 2

Notifications of Type n

Channel of Type 1

Channel of Type 2

Channel of Type n

…

4

© S. Bouchenak Distributed Systems & Middleware 13

Subscription models - Filters

� Content-based filtering
� Notifications carry payload representing content

� Subscriptions describe what content is of interest

� Notification service applies filter to content of all incoming
notifications

� Only notifications that pass filter are delivered to subscribers

� Example:

� In a News service, a client subscribes only for news stories that
contain a set of words

© S. Bouchenak Distributed Systems & Middleware 14

Subscription models – Filters (2)

� Attribute-based filtering (topic-based or subject-
based filtering)
� A system is classified using a set of attributes

� Subscriptions identify notifications of interest by specifying
constraints in the attribute space

� Only notifications that fulfill attribute constraints are delivered to
subscribers

� Example:

� In a News service, a client subscribes for news stories with the
attribute constraints
[news.date: today] and [news.location: Haiti]

© S. Bouchenak Distributed Systems & Middleware 15

Subscription models – Filters (3)

� Sequence-based filtering (composite events)
� Subscribers describe a certain sequence of events of interest

� When events occur that fit the sequence, a notification is sent to

subscribers

� Example:

� In a Weather and traffic news service, a client subscribes for the

following composite events

[trafficAlert.route: 66] and
[trafficAlert.date: today] and
[precipitationAlert.location: California] and

[precipitationAlert.date: today]

© S. Bouchenak Distributed Systems & Middleware 16

Subscription models – Filters (4)

� Translation-based filtering (message

transforming)

� Notification content:

filter converts content from one language to another, from one

format to another

� Notification type:

filter converts content from one type to another

5

© S. Bouchenak Distributed Systems & Middleware 17

Subscription models – Groups

� Group

� Set of subscribers for the same events and same filters

� Simplify subscription and notification-delivery process

� A subscriber belonging to a group receives all notifications

the group is subscribed to

� A subscriber may belong to multiple groups

© S. Bouchenak Distributed Systems & Middleware 18

Subscription models – Groups (2)

� Predefined groups

� Groups defined by an event publisher or notification service

� Example:

� A notification service of a banking system predefines groups:
administrator, supervisor, and technician.

� Implicit groups

� Groups set up automatically when two or more subscribers
request the same subscription (for notification optimization

purposes)

� Subscribers are generally not aware that they belong to an

implicit group

© S. Bouchenak Distributed Systems & Middleware 19

Subscription models – Groups (3)

� Explicit groups

� Created at runtime via a system-dependent operation

� Subscribers can then join the group

� Location groups

� A group associated with the the location of the subscribers

© S. Bouchenak Distributed Systems & Middleware 20

Notification delivery

� Delivery order

� Event notifications may reach final destination in an order

different from the order in which they were sent

� Possible causes: system loading, propagation latency

� Causal order

� Notifications reach their destination ordered in the same way as
events that triggered them

6

© S. Bouchenak Distributed Systems & Middleware 21

Outline

� Definitions

� Examples

� Subscription models

� Notification delivery

� Simple Java Messaging Service (JMS) examples

� Conclusion

© S. Bouchenak Distributed Systems & Middleware 22

A simple point-to-point JMS example

� The sending program, SimpleQueueSender.java, performs
the following steps:

1. Performs a Java Naming and Directory Interface (JNDI) API
lookup of the QueueConnectionFactory and queue

2. Creates a connection and a session

3. Creates a QueueSender

4. Creates a TextMessage

5. Sends one or more messages to the queue

6. Sends a control message to indicate the end of the message
stream

7. Closes the connection in a finally block, automatically closing the
session and QueueSender

© S. Bouchenak Distributed Systems & Middleware 23

SimpleQueueSender
import javax.jms.*;

import javax.naming.*;

public class SimpleQueueSender {

/**

* Main method.

*

* @param args the queue used by the example and, optionally, the number of messages to send

*/

public static void main(String[] args) {

String queueName = null;

Context jndiContext = null;

QueueConnectionFactory queueConnectionFactory = null;

QueueConnection queueConnection = null;

QueueSession queueSession = null;

Queue queue = null;

QueueSender queueSender = null;

TextMessage message = null;

final int NUM_MSGS;

if ((args.length < 1) || (args.length > 2)) {

System.out.println("Usage: java SimpleQueueSender " + "<queue-name> [<number-of-messages>]");

System.exit(1);

}

queueName = new String(args[0]);

if (args.length == 2){

NUM_MSGS = (new Integer(args[1])).intValue();

} else {

NUM_MSGS = 1;

}

© S. Bouchenak Distributed Systems & Middleware 24

SimpleQueueSender (2)
/*

* Create a JNDI API InitialContext object if none exists yet.

*/
try {

jndiContext = new InitialContext();
} catch (NamingException e) {

System.out.println("Could not create JNDI API " + "context: " + e.toString());

System.exit(1);
}

/*
* Look up connection factory and queue. If either does not exist, exit.

*/
try {

queueConnectionFactory = (QueueConnectionFactory) jndiContext.lookup("QueueConnectionFactory");

queue = (Queue) jndiContext.lookup(queueName);
} catch (NamingException e) {

System.out.println("JNDI API lookup failed: " + e.toString());
System.exit(1);

}

7

© S. Bouchenak Distributed Systems & Middleware 25

SimpleQueueSender (3)
/*

* Create connection.

* Create session from connection; false means session is not transacted.

* Create sender and text message.
* Send messages, varying text slightly.

* Send end-of-messages message.

* Finally, close connection.

*/

try {

queueConnection = queueConnectionFactory.createQueueConnection();
queueSession = queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

queueSender = queueSession.createSender(queue);

message = queueSession.createTextMessage();

for (int i = 0; i < NUM_MSGS; i++) {

message.setText("This is message " + (i + 1));

queueSender.send(message);
}

/*

* Send a non-text control message indicating end of messages.

*/

queueSender.send(queueSession.createMessage());
} catch (JMSException e) {

System.out.println("Exception occurred: " + e.toString());

} finally {

if (queueConnection != null) {

try {

queueConnection.close();
} catch (JMSException e) {}

}

}

© S. Bouchenak Distributed Systems & Middleware 26

A simple point-to-point JMS example (2)

� The receiving program, SimpleQueueReceiver.java,
performs the following steps:

1. Performs a JNDI API lookup of the QueueConnectionFactory
and queue

2. Creates a connection and a session

3. Creates a QueueReceiver

4. Starts the connection, causing message delivery to begin

5. Receives the messages sent to the queue until the end-of-
message-stream control message is received

6. Closes the connection in a finally block, automatically closing the
session and QueueReceiver

© S. Bouchenak Distributed Systems & Middleware 27

SimpleQueueReceiver
import javax.jms.*;

import javax.naming.*;

public class SimpleQueueReceiver {

/**

* Main method.

*

* @param args the queue used by the example

*/
public static void main(String[] args) {

String queueName = null;

Context jndiContext = null;

QueueConnectionFactory queueConnectionFactory = null;

QueueConnection queueConnection = null;

QueueSession queueSession = null;
Queue queue = null;

QueueReceiver queueReceiver = null;

TextMessage message = null;

/*

* Read queue name from command line and display it.
*/

if (args.length != 1) {

System.out.println("Usage: java " + "SimpleQueueReceiver <queue-name>");

System.exit(1);

}

queueName = new String(args[0]);

© S. Bouchenak Distributed Systems & Middleware 28

SimpleQueueReceiver (2)
/*

* Create a JNDI API InitialContext object if none exists yet.

*/
try {

jndiContext = new InitialContext();
} catch (NamingException e) {

System.out.println("Could not create JNDI API " + "context: " + e.toString());

System.exit(1);
}

/*
* Look up connection factory and queue. If either does not exist, exit.

*/
try {

queueConnectionFactory = (QueueConnectionFactory) jndiContext.lookup("QueueConnectionFactory");

queue = (Queue) jndiContext.lookup(queueName);
} catch (NamingException e) {

System.out.println("JNDI API lookup failed: " + e.toString());
System.exit(1);

}

8

© S. Bouchenak Distributed Systems & Middleware 29

SimpleQueueReceiver (3)
/*

* Create connection.

* Create session from connection; false means session is not transacted.

* Create receiver, then start message delivery.
* Receive all text messages from queue until a non-text message is received indicating end of message stream.

* Close connection.

*/

try {

queueConnection = queueConnectionFactory.createQueueConnection();

queueSession = queueConnection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
queueReceiver = queueSession.createReceiver(queue);

queueConnection.start();

while (true) {

Message m = queueReceiver.receive(1);

if (m != null) {

if (m instanceof TextMessage) {
message = (TextMessage) m;

System.out.println("Reading message: " + message.getText());

} else {

break;

}

}
}

} catch (JMSException e) {

System.out.println("Exception occurred: " + e.toString());

} finally {

if (queueConnection != null) {

try {
queueConnection.close();

} catch (JMSException e) {}

}

}

© S. Bouchenak Distributed Systems & Middleware 30

References

� Ted Faison. Event-Based Programming: Taking Events to the Limit.
Springer-Verlag, 2006.

� Michael Jaeger. Self-Managing Publis/Subscribe Systems: Foundations,
Algorithms and Analysis. VDM Verlag, 2007.

