
1

MapReduce Systems

Sara Bouchenak

Sara.Bouchenak@imag.fr
http://membres-liglab.imag.fr/bouchenak/teaching/

Distributed Systems & Middleware 2

� Lectures based on the following slides:

� http://code.google.com/edu/submissions/mapreduce-

minilecture/listing.html

� Authors:

� Christophe Bisciglia, Aaron Kimball, Sierra Michels-Slettvet

Except where otherwise noted, the contents of this presentation are
© Copyright 2007 University of Washington and are licensed under
the Creative Commons Attribution 2.5 License.

Distributed Systems & Middleware 3

Outline

� Part I: Motivations

� Introduction

� Parallel vs. Distributed Computing

� History of Distributed Computing

� Parallelization and Synchronization

� Part II: MapReduce theory and implementation

� Lisp/ML review (functional programming, map, fold)

� MapReduce overview

� Hadoop

Distributed Systems & Middleware 4

Computer Speedup

Moore’s Law: “The density of transistors on a chip doubles every 18
months, for the same cost” (1965)

Image: Tom’s Hardware and not subject to the Creative
Commons license applicable to the rest of this work.

2

Distributed Systems & Middleware 5

Scope of problems

� What can you do with 1 computer?

� What can you do with 100 computers?

� What can you do with an entire data center?

Distributed Systems & Middleware 6

Distributed problems

� Rendering multiple frames of high-quality animation

Image: DreamWorks Animation and not subject to the Creative Commons license applicable to the rest of this work.

Distributed Systems & Middleware 7

Distributed problems

� Simulating several
hundred or thousand
characters

Happy Feet © Kingdom Feature Productions;
Lord of the Rings © New Line Cinema, neither image is subject to the Creative

Commons license applicable to the rest of the work.

Distributed Systems & Middleware 8

Distributed problems

� Indexing the web (Google)

� Simulating an Internet-sized network for networking
experiments (PlanetLab)

� Speeding up content delivery (Akamai)

What is the key attribute that all these examples have in common?

3

Distributed Systems & Middleware 9

Parallel vs. Distributed

� Parallel computing can mean:

� Vector processing of data

� Multiple CPUs in a single computer

� Distributed computing is multiple CPUs
across many computers over the network

Distributed Systems & Middleware 10

A Brief History… 1975-85

� Parallel computing was
favored in the early years

� Gradually more thread-
based parallelism was
introduced

Image: Computer Pictures Database and Cray Research Corp and is not subject to the Creative Commons license
applicable to the rest of this work.

Distributed Systems & Middleware 11

� “Massively parallel architectures” start rising
in prominence

� Message Passing Interface (MPI) and other
libraries developed

� Bandwidth was a big problem

A Brief History… 1985-95

Distributed Systems & Middleware 12

A Brief History… 1995-Today

� Cluster/grid architecture increasingly
dominant

� Special node machines eschewed in favor of
COTS technologies

� Web-wide cluster software

� Companies like Google take this to the
extreme

4

Parallelization &
Synchronization

Distributed Systems & Middleware 14

Parallelization Idea

� Parallelization is “easy” if processing can be
cleanly split into n units:

Distributed Systems & Middleware 15

Parallelization Idea (2)

In a parallel computation, we would like to have as
many threads as we have processors. e.g., a four-
processor computer would be able to run four threads
at the same time.

Distributed Systems & Middleware 16

Parallelization Idea (3)

5

Distributed Systems & Middleware 17

Parallelization Idea (4)

Distributed Systems & Middleware 18

Parallelization Pitfalls

But this model is too simple!

� How do we assign work units to worker threads?

� What if we have more work units than threads?

� How do we aggregate the results at the end?

� How do we know all the workers have finished?

� What if the work cannot be divided into completely
separate tasks?

What is the common theme of all of these problems?

Distributed Systems & Middleware 19

Parallelization Pitfalls (2)

� Each of these problems represents a point at
which multiple threads must communicate
with one another, or access a shared
resource.

� Golden rule: Any memory that can be used
by multiple threads must have an associated
synchronization system!

Distributed Systems & Middleware 20

What is Wrong With This?

Thread 1:

void foo() {

x++;

y = x;

}

Thread 2:

void bar() {

y++;

x+=3;

}

If the initial state is y = 0, x = 6, what happens
after these threads finish running?

6

Distributed Systems & Middleware 21

Multithreaded = Unpredictability

� When we run a multithreaded program, we don’t
know what order threads run in, nor do we know
when they will interrupt one another.

Thread 1:

void foo() {

eax = mem[x];

inc eax;

mem[x] = eax;

ebx = mem[x];

mem[y] = ebx;

}

Thread 2:

void bar() {

eax = mem[y];

inc eax;

mem[y] = eax;

eax = mem[x];

add eax, 3;

mem[x] = eax;

}

�Many things that look like “one step” operations
actually take several steps under the hood:

Distributed Systems & Middleware 22

Multithreaded = Unpredictability

This applies to more than just integers:

� Pulling work units from a queue

� Reporting work back to master unit

� Telling another thread that it can begin the
“next phase” of processing

… All require synchronization!

Distributed Systems & Middleware 23

Synchronization Primitives

� A synchronization primitive is a special
shared variable that guarantees that it can
only be accessed atomically.

� Hardware support guarantees that operations
on synchronization primitives only ever take
one step

Distributed Systems & Middleware 24

Semaphores

� A semaphore is a flag
that can be raised or
lowered in one step

� Semaphores were flags
that railroad engineers
would use when
entering a shared track

Only one side of the semaphore can ever be red! (Can both be
green?)

7

Distributed Systems & Middleware 25

Semaphores

� set() and reset() can be thought of as lock()
and unlock()

� Calls to lock() when the semaphore is already
locked cause the thread to block.

� Pitfalls: Must “bind” semaphores to particular
objects; must remember to unlock correctly

Distributed Systems & Middleware 26

The “corrected” example

Thread 1:

void foo() {

sem.lock();

x++;

y = x;

sem.unlock();

}

Thread 2:

void bar() {

sem.lock();

y++;

x+=3;

sem.unlock();

}
Global var “Semaphore sem = new Semaphore();” guards access to
x & y

Distributed Systems & Middleware 27

Condition Variables

� A condition variable notifies threads that a
particular condition has been met

� Inform another thread that a queue now
contains elements to pull from (or that it’s
empty – request more elements!)

� Pitfall: What if nobody’s listening?

Distributed Systems & Middleware 28

The final example

Thread 1:

void foo() {

sem.lock();

x++;

y = x;

fooDone = true;

sem.unlock();

fooFinishedCV.notify();

}

Thread 2:

void bar() {

sem.lock();

if(!fooDone)
fooFinishedCV.wait(sem);

y++;

x+=3;

sem.unlock();

}
Global vars: Semaphore sem = new Semaphore(); ConditionVar
fooFinishedCV = new ConditionVar(); boolean fooDone = false;

8

Distributed Systems & Middleware 29

Too Much Synchronization?
Deadlock

Synchronization becomes even
more complicated when multiple
locks can be used

Can cause entire system to “get
stuck”

Thread A:
semaphore1.lock();
semaphore2.lock();
/* use data guarded by

semaphores */
semaphore1.unlock();
semaphore2.unlock();

Thread B:
semaphore2.lock();
semaphore1.lock();
/* use data guarded by

semaphores */
semaphore1.unlock();
semaphore2.unlock();

(Image: RPI CSCI.4210 Operating Systems notes)

Distributed Systems & Middleware 30

The Moral: Be Careful!

� Synchronization is hard

� Need to consider all possible shared state

� Must keep locks organized and use them
consistently and correctly

� Knowing there are bugs may be tricky; fixing
them can be even worse!

� Keeping shared state to a minimum reduces
total system complexity

Distributed Systems & Middleware 31

Outline

� Part I: Motivations

� Introduction

� Parallel vs. Distributed Computing

� History of Distributed Computing

� Parallelization and Synchronization

� Part II: MapReduce theory and implementation

� Lisp/ML review (functional programming, map, fold)

� MapReduce overview

� Hadoop

Distributed Systems & Middleware 32

Functional Programming Review

� Functional operations do not modify data
structures: They always create new ones

� Original data still exists in unmodified form

� Data flows are implicit in program design

� Order of operations does not matter

9

Distributed Systems & Middleware 33

Functional Programming Review

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

Order of sum() and mul(), etc does not matter
– they do not modify l

Distributed Systems & Middleware 34

Functional Updates Do Not Modify
Structures

fun append(x, lst) =

let lst' = reverse lst in

reverse (x :: lst')

The append() function above reverses a list, adds a new
element to the front, and returns all of that, reversed,
which appends an item.

But it never modifies lst!

Distributed Systems & Middleware 35

Functions Can Be Used As
Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its
argument; DoDouble() will do it twice.

MapReduce

10

Distributed Systems & Middleware 37

Motivation: Large Scale Data
Processing

� Want to process lots of data (> 1 TB)

� Want to parallelize across
hundreds/thousands of CPUs

� … Want to make this easy

Distributed Systems & Middleware 38

MapReduce

� Automatic parallelization & distribution

� Fault-tolerant

� Provides status and monitoring tools

� Clean abstraction for programmers

Distributed Systems & Middleware 39

Programming Model

� Borrows from functional programming

� Users implement interface of two functions:

� map (in_key, in_value) ->

(out_key, intermediate_value) list

� reduce (out_key, intermediate_value list) ->

out_value list

Distributed Systems & Middleware 40

map

� Records from the data source (lines out of
files, rows of a database, etc) are fed into the
map function as key*value pairs: e.g.,
(filename, line).

� map() produces one or more intermediate
values along with an output key from the
input.

11

Distributed Systems & Middleware 41

reduce

� After the map phase is over, all the
intermediate values for a given output key are
combined together into a list

� reduce() combines those intermediate values
into one or more final values for that same
output key

� (in practice, usually only one final value per
key)

Distributed Systems & Middleware 42

Distributed Systems & Middleware 43

Parallelism

� map() functions run in parallel, creating
different intermediate values from different
input data sets

� reduce() functions also run in parallel, each
working on a different output key

� All values are processed independently

� Bottleneck: reduce phase can’t start until map
phase is completely finished.

Distributed Systems & Middleware 44

Example: Count word occurrences

map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

12

Distributed Systems & Middleware 45

Example vs. Actual Source Code

� Example is written in pseudo-code

� Actual implementation is in C++, using a
MapReduce library

� Bindings for Python and Java exist via
interfaces

� True code is somewhat more involved
(defines how the input key/values are divided
up and accessed, etc.)

Distributed Systems & Middleware 46

Locality

� Master program divides up tasks based on
location of data: tries to have map() tasks on
same machine as physical file data, or at
least same rack

� map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

Distributed Systems & Middleware 47

Fault Tolerance

� Master detects worker failures
� Re-executes completed & in-progress map()

tasks

� Re-executes in-progress reduce() tasks

� Master notices particular input key/values
cause crashes in map(), and skips those
values on re-execution.
� Effect: Can work around bugs in third-party

libraries!

Distributed Systems & Middleware 48

Optimizations

� No reduce can start until map is complete:

� A single slow disk controller can rate-limit the
whole process

� Master redundantly executes “slow-moving”
map tasks; uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up
the total computation?

13

Distributed Systems & Middleware 49

MapReduce Conclusions

� MapReduce has proven to be a useful abstraction

� Greatly simplifies large-scale computations at
Google

� Functional programming paradigm can be applied to
large-scale applications

� Fun to use: focus on problem, let library deal w/
messy details

Distributed Systems & Middleware 50

Hadoop

� Apache Hadoop project develops open-source software for
reliable, scalable, distributed computing

� MapReduce implementation

� Who uses Hadoop
� Amazon

� Adobe
� Facebook

� FOX

� Google
� IBM

� LinkedIn

� …

Distributed Systems & Middleware 51

Outline

� Part I: Motivations

� Introduction

� Parallel vs. Distributed Computing

� History of Distributed Computing

� Parallelization and Synchronization

� Part II: MapReduce theory and implementation

� Lisp/ML review (functional programming, map, fold)

� MapReduce overview

� Hadoop

© S. Bouchenak Adaptive Computing Systems 52

Agenda
Lecture, Tuesday, 09:45 – 12:45 Lab, Tuesday, 09:45 – 12:45

Introduction to distributed systems

Distributed applications with RMI (Part I)

Distributed Web applications

Distributed applications with RMI (Part II)

Interruption week

Event-based systems &
MapReduce systems

Distributed Web applications with Servlets (Part I)

Cloud computing

Distributed Web applications with Servlets (Part II)

Advanced techniques for efficient
distributed systems

Caching with Memcached

Event-based systems &
MapReduce systems

Interruption week

Advanced techniques for dependable
distributed systems

Evaluation

