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� Lectures based on the following slides:

� http://code.google.com/edu/submissions/mapreduce-

minilecture/listing.html

� Authors:

� Christophe Bisciglia, Aaron Kimball, Sierra Michels-Slettvet

Except where otherwise noted, the contents of this presentation are 
© Copyright 2007 University of Washington and are licensed under 
the Creative Commons Attribution 2.5 License.
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Computer Speedup

Moore’s Law: “The density of transistors on a chip doubles every 18 
months, for the same cost” (1965)

Image: Tom’s Hardware and not subject to the Creative 
Commons license applicable to the rest of this work. 
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Scope of problems

� What can you do with 1 computer?

� What can you do with 100 computers?

� What can you do with an entire data center?
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Distributed problems

� Rendering multiple frames of high-quality animation

Image: DreamWorks Animation and not subject to the Creative Commons license applicable to the rest of this work.
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Distributed problems

� Simulating several 
hundred or thousand 
characters 

Happy Feet © Kingdom Feature Productions;
Lord of the Rings © New Line Cinema, neither image is subject to the Creative 

Commons license applicable to the rest of the work.     
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Distributed problems

� Indexing the web (Google)

� Simulating an Internet-sized network for networking 
experiments (PlanetLab)

� Speeding up content delivery (Akamai)

What is the key attribute that all these examples have in common?
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Parallel vs. Distributed

� Parallel computing can mean:

� Vector processing of data

� Multiple CPUs in a single computer

� Distributed computing is multiple CPUs 
across many computers over the network

Distributed Systems & Middleware 10

A Brief History… 1975-85

� Parallel computing was 
favored in the early years

� Gradually more thread-
based parallelism was 
introduced

Image:  Computer Pictures Database and Cray Research Corp and is not subject to the Creative Commons license 
applicable to the rest of this work.
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� “Massively parallel architectures” start rising 
in prominence

� Message Passing Interface (MPI) and other 
libraries developed

� Bandwidth was a big problem

A Brief History… 1985-95
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A Brief History… 1995-Today

� Cluster/grid architecture increasingly 
dominant

� Special node machines eschewed in favor of 
COTS technologies

� Web-wide cluster software

� Companies like Google take this to the 
extreme



4

Parallelization & 
Synchronization
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Parallelization Idea

� Parallelization is “easy” if processing can be 
cleanly split into n units:
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Parallelization Idea (2)

In a parallel computation, we would like to have as 
many threads as we have processors. e.g., a four-
processor computer would be able to run four threads 
at the same time.
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Parallelization Idea (3)
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Parallelization Idea (4)
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Parallelization Pitfalls

But this model is too simple! 

� How do we assign work units to worker threads?

� What if we have more work units than threads?

� How do we aggregate the results at the end?

� How do we know all the workers have finished?

� What if the work cannot be divided into completely 
separate tasks?

What is the common theme of all of these problems?
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Parallelization Pitfalls (2)

� Each of these problems represents a point at 
which multiple threads must communicate 
with one another, or access a shared 
resource.

� Golden rule: Any memory that can be used 
by multiple threads must have an associated 
synchronization system!

Distributed Systems & Middleware 20

What is Wrong With This?

Thread 1:

void foo() {

x++;

y = x;

}

Thread 2:

void bar() {

y++;

x+=3;

}

If the initial state is y = 0, x = 6, what happens 
after these threads finish running?
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Multithreaded = Unpredictability

� When we run a multithreaded program, we don’t 
know what order threads run in, nor do we know 
when they will interrupt one another.

Thread 1:

void foo() {

eax = mem[x];

inc eax;

mem[x] = eax;

ebx = mem[x];

mem[y] = ebx;

}

Thread 2:

void bar() {

eax = mem[y];

inc eax;

mem[y] = eax;

eax = mem[x];

add eax, 3;

mem[x] = eax;

}

�Many things that look like “one step” operations 
actually take several steps under the hood:
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Multithreaded = Unpredictability

This applies to more than just integers:

� Pulling work units from a queue

� Reporting work back to master unit

� Telling another thread that it can begin the 
“next phase” of processing

… All require synchronization!
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Synchronization Primitives

� A synchronization primitive is a special 
shared variable that guarantees that it can 
only be accessed atomically. 

� Hardware support guarantees that operations 
on synchronization primitives only ever take 
one step
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Semaphores

� A semaphore is a flag 
that can be raised or 
lowered in one step

� Semaphores were flags 
that railroad engineers 
would use when 
entering a shared track

Only one side of the semaphore can ever be red! (Can both be 
green?)
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Semaphores

� set() and reset() can be thought of as lock() 
and unlock()

� Calls to lock() when the semaphore is already 
locked cause the thread to block.

� Pitfalls: Must “bind” semaphores to particular 
objects; must remember to unlock correctly
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The “corrected” example

Thread 1:

void foo() {

sem.lock();

x++;

y = x;

sem.unlock();

}

Thread 2:

void bar() {

sem.lock();

y++;

x+=3;

sem.unlock();

}
Global var “Semaphore sem = new Semaphore();” guards access to 
x & y
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Condition Variables

� A condition variable notifies threads that a 
particular condition has been met 

� Inform another thread that a queue now 
contains elements to pull from (or that it’s 
empty – request more elements!)

� Pitfall: What if nobody’s listening?
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The final example

Thread 1:

void foo() {

sem.lock();

x++;

y = x;

fooDone = true;

sem.unlock();

fooFinishedCV.notify();

}

Thread 2:

void bar() {

sem.lock();

if(!fooDone) 
fooFinishedCV.wait(sem);

y++;

x+=3;

sem.unlock();

}
Global vars: Semaphore sem = new Semaphore(); ConditionVar 
fooFinishedCV = new ConditionVar(); boolean fooDone = false;
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Too Much Synchronization? 
Deadlock

Synchronization becomes even 
more complicated when multiple 
locks can be used

Can cause entire system to “get 
stuck”

Thread A:
semaphore1.lock();
semaphore2.lock();
/* use data guarded by    

semaphores */
semaphore1.unlock(); 
semaphore2.unlock();

Thread B:
semaphore2.lock();
semaphore1.lock();
/* use data guarded by    

semaphores */
semaphore1.unlock(); 
semaphore2.unlock();

(Image: RPI CSCI.4210 Operating Systems notes)
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The Moral: Be Careful!

� Synchronization is hard

� Need to consider all possible shared state

� Must keep locks organized and use them 
consistently and correctly

� Knowing there are bugs may be tricky; fixing 
them can be even worse!

� Keeping shared state to a minimum reduces 
total system complexity
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Functional Programming Review

� Functional operations do not modify data 
structures: They always create new ones 

� Original data still exists in unmodified form

� Data flows are implicit in program design

� Order of operations does not matter
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Functional Programming Review

fun foo(l: int list) =

sum(l) + mul(l) + length(l)

Order of sum() and mul(), etc does not matter 
– they do not modify l

Distributed Systems & Middleware 34

Functional Updates Do Not Modify 
Structures

fun append(x, lst) =  

let lst' = reverse lst in

reverse ( x :: lst' )

The append() function above reverses a list, adds a new 
element to the front, and returns all of that, reversed, 
which appends an item. 

But it never modifies lst!
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Functions Can Be Used As 
Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its 
argument; DoDouble() will do it twice.

MapReduce
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Motivation: Large Scale Data 
Processing

� Want to process lots of data ( > 1 TB)

� Want to parallelize across 
hundreds/thousands of CPUs

� … Want to make this easy
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MapReduce

� Automatic parallelization & distribution

� Fault-tolerant

� Provides status and monitoring tools

� Clean abstraction for programmers
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Programming Model

� Borrows from functional programming

� Users implement interface of two functions:

� map  (in_key, in_value) -> 

(out_key, intermediate_value) list

� reduce (out_key, intermediate_value list) ->

out_value list
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map

� Records from the data source (lines out of 
files, rows of a database, etc) are fed into the 
map function as key*value pairs: e.g., 
(filename, line).

� map() produces one or more intermediate
values along with an output key from the 
input.
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reduce

� After the map phase is over, all the 
intermediate values for a given output key are 
combined together into a list

� reduce() combines those intermediate values 
into one or more final values for that same 
output key 

� (in practice, usually only one final value per 
key)
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Parallelism

� map() functions run in parallel, creating 
different intermediate values from different 
input data sets

� reduce() functions also run in parallel, each 
working on a different output key

� All values are processed independently

� Bottleneck: reduce phase can’t start until map 
phase is completely finished.
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Example: Count word occurrences

map(String input_key, String input_value):

// input_key: document name 

// input_value: document contents 

for each word w in input_value: 

EmitIntermediate(w, "1"); 

reduce(String output_key, Iterator 
intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += ParseInt(v);

Emit(AsString(result)); 
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Example vs. Actual Source Code

� Example is written in pseudo-code

� Actual implementation is in C++, using a 
MapReduce library

� Bindings for Python and Java exist via 
interfaces

� True code is somewhat more involved 
(defines how the input key/values are divided 
up and accessed, etc.)
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Locality

� Master program divides up tasks based on 
location of data: tries to have map() tasks on 
same machine as physical file data, or at 
least same rack

� map() task inputs are divided into 64 MB 
blocks: same size as Google File System 
chunks
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Fault Tolerance

� Master detects worker failures
� Re-executes completed & in-progress map() 

tasks

� Re-executes in-progress reduce() tasks

� Master notices particular input key/values 
cause crashes in map(), and skips those 
values on re-execution.
� Effect: Can work around bugs in third-party 

libraries!
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Optimizations

� No reduce can start until map is complete:

� A single slow disk controller can rate-limit the 
whole process

� Master redundantly executes “slow-moving” 
map tasks; uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up 
the total computation?
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MapReduce Conclusions

� MapReduce has proven to be a useful abstraction 

� Greatly simplifies large-scale computations at 
Google 

� Functional programming paradigm can be applied to 
large-scale applications

� Fun to use: focus on problem, let library deal w/ 
messy details 
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Hadoop

� Apache Hadoop project develops open-source software for 
reliable, scalable, distributed computing

� MapReduce implementation

� Who uses Hadoop
� Amazon

� Adobe
� Facebook

� FOX

� Google
� IBM

� LinkedIn

� …
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Agenda
Lecture, Tuesday, 09:45 – 12:45 Lab, Tuesday, 09:45 – 12:45

Introduction to distributed systems

Distributed applications with RMI (Part I)

Distributed Web applications

Distributed applications with RMI (Part II)

Interruption week

Event-based systems &
MapReduce systems

Distributed Web applications with Servlets (Part I)

Cloud computing

Distributed Web applications with Servlets (Part II)

Advanced techniques for efficient 
distributed systems

Caching with Memcached

Event-based systems &
MapReduce systems

Interruption week

Advanced techniques for dependable 
distributed systems

Evaluation


