
INRIA Rhne-Alpes
655, avenue de l’Europe, Montbonnot

38334 St Ismier Cedex, France
http://www.inria.fr

JADE
An Autonomic Management System

Experiment with Self-Healing
Fabienne Boyer, Sylvain Sicard

{Fabienne Boyer, Sylvain Sicard}@inrialpes.fr
http://sardes.inrialpes.fr/research/jade

1 Introduction
■ Distributed systems

◆ Many nodes
◆ Heterogenous environment
◆ Dynamic context
◆ Failure probability increase with

number of nodes
◆ . . .
◆ . . .

■ Management
◆ Complex task (configuration,

deployment, failure management, etc)
◆ Achieved by humans

■ Consequence
◆ Error prone (configuration files)
◆ Low reactivity
◆ Overcost (Hardware/Human)

2 Approach
■ Autonomous Systems
■ Properties (Kephart et al. [2])

◆ Self-Configuration
◆ Self-Healing
◆ Self-Optimizing
◆ Self-Protect

■ Improvements
◆ Less errors
◆ Higher reactivity
◆ Better ressource usage

3 Legacy Wrapping
■ Systematic legacy wrapping

◆ Management of legacy entities is
wrapped in FRACTAL components

◆ Provides
■ Uniform view of management
interfaces

■ Introspection capabilities
■ Architectural view of legacy
software

◆ Legacy and wrapper are collocated

■ Gain
◆ Architectural view
◆ Introspection, Monitoring
◆ Deployment
◆ Reconfiguration
◆ Uniform Management interface

4 System Representation
■ Provides a backup view of the

systems architecture and
configuration

■ Principles
◆ Isomorphic component structure
◆ Is causally connected to the system

■ . . .
■ . . .
■ . . .

5 Self-Healing Control Loop
■ Targets

◆ Fail silent failure of nodes ◆ Architectural Repair

■ Autonomic Manager is built as a retroaction control-loop
◆ Monitor : Ping
◆ Analyse : Analyse failure and

system architecture to insulate
failure

◆ Plan : Build a target architecture
and a reconfiguration planification

◆ Execute : Basic reconfiguration
(binding and content)

◆ Knowledge : System Representation

■ Repair actions are triggered by node failure notifications.
■ Repair algorithm steps
1.Analyze failure

◆ Identify Failed node
◆ Identify components hosted by the failed node

2.Compute a target architecture
◆ Allocate a new node in the cluster
◆ Build an equivalent architecture in a Repair Plan

3.Deploy the target architecture
◆ Compute a diff between Running system and Repair Plan
◆ Patch (deploy) the diff on the running system

6 J2EE Repair Scenario
■ J2EE architectures are challenging for self-management

◆ Distributed
◆ Heterogeneous
◆ Very complex management (administrators need to be experts)

■ Fail-Silent failure injected on Tomcat node

7 Conclusions
■ Contributions

◆ Architectural-Based Management
◆ Legacy systems management
◆ Uniform management interface
◆ Architectural patterns
◆ Reflexivity
◆ Generic failure management

■ Future work
◆ Other applications (JORAM/JMS

usecase)
◆ Other environments (Grid,

Peer-to-peer, etc)
◆ Fiabilisation of singles points of

failure (Meta layer and Failure
Manager)

[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Rajamani and W. Zwaenepoel. Specification and Implementation of Dynamic Web Site Benchmarks InIEEE 5th Annual Workshop on Workload Characterization (WWC-5),
Austin, TX, Nov. 2002.

[2] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing In IEEE Computer Magazine, Volume 36, Number 1, 2003.

[3] E. Bruneton, T. Coupaye and J. B. Stefani. Recursive and Dynamic Software Composition with Sharing InInternational Workshop on Component-Oriented Programming (WCOP-02), Malaga, Spain, June 2002, http://fractal.objectweb.org/.

[4] S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, A. Mos, N. de Palma, V. Quma and J. B. Stefani. Architecture-Based Autonomous Repair Management: An Application to J2EE Clusters In 24th IEEE Symposium on Reliable Distributed Systems
(SRDS-2005), Orlando, FL, Oct. 2005.

The3
rd IEEE International Conference on Autonomic Computing — Dublin, Ireland June 2006


