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1 Introduction

Autonomic computing, which aims at the constructioh self-managing and self-adapting
computer systems, has emerged as an importantf@goatany actors in the domain of large scale
distributed environments and applications. Thisragph more precisely aims at providing systems
and applications with self-management capabilitiéscluding self-configuration (automatic
configuration according to a specified policy) fsmtimization (continuous performance monitoring),
self-healing (detecting defects and failures, akihg corrective actions), and self-protection ifigk
preventive measures and defending against malicitiasks).

Following this approach, the Selfware project ash$roviding an infrastructure for developing
autonomic management software. An important aspedhis infrastructure is the adoption of an
architecture-based control approach as described in the SP1-L1 dontinmeeaning that the control
loops that regulate the system have the abilitintaspect the current software architecture of the
managed system, as well as they have the abilityodify (i.e. reconfigure) this architecture.

The introspection and reconfiguration capabilitiegt can be invoked within control loops mainly
rely on thecommon services provided by the Selfware infrastructure. Theseises act on a managed
system. Examples of these services are a deployseevice, allowing to deploy a managed legacy
software in a distributed environment, a monitorsgyvice allowing to observe a given managed
element, or a scripting language allowing to dyreaily explore the software architecture of a
managed system.

The objective of this document is to give detaitsttoe common services provided by the Selfware
platform. The following sub-section recalls the mdesign principles of the Selfware platform, and
then specifies the list of common services thapaogided by this platform.

The software parts associated to the present dodunase available on the site
http://wiki.jasmine.objectweb.org/xwiki/bin/view/Nt@WebHome.



2 SelfwareDesign Principles

This section recalls the main design principleshef Selfware platform, based on the notions of
Managed Elements and Autonomic Manager. Then i libe set of common services that are
provided to Managed Elements and Autonomic Managers

2.1 Managed Elementsand Autonomic Managers

As detailed in the SP1-L1 document, the autononeigulation provided by the Selfware
infrastructure on a managed system is based ongednalements (ME) and autonomic managers
(AM). A system managed with Selfware is more prelgisonstituted by a collection of managed
elements, that may consist of a single elementarghvirare of software element, or may be a complex
system in itself, such as a clustered applicatierves. A managed element provides sensor and
actuator interfaces respectively allowing to obseamd manipulate it. Sensor and actuator interfaces
are used by autonomic managers, that regulate agedrsystem through feedback control loops. An
autonomic element is the ensemble including a Behanaged elements controlled by autonomic

managers.
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A main design choice is to rely on a component rhéatebuilding both Managed Elements and
Autonomic Managers. The component model we use rectédd [3]. A managed element is
implemented as a Fractal component that encapswatentrolled legacy entity. In the same way, an
autonomic manager is a Fractal component that menia set of managed elements, analyzes
notifications coming from managed elements sensliagnoses the state of the system, decides on a
plan of actions and finally, executes the correspancommand plan.

2.2 Common Services

The common services provide a set of basic capabilused by autonomic managers to perform
elementary configuration management functions, saglinstalling and deploying components on
nodes, or communicating with sensors and actuat@@nmon services are mainly built themselves
with components, which allows to consider them asmaged elements in the managed system. The
main common services that are currently providethkySelfware infrastructure are:
* The wrapping service, that allows generating thappers used to control legacy software.
» The navigation service designed to express queridse managed system’s architecture.
* The reconfiguration service, used to define coasistreconfiguration on the managed
system’s architecture.
» The resource allocation service, that allows atiogaresources (e.g. nodes) for the managed
system as well as for the management system.
* The deployment service, that aims at deploying iithmanaged system and the management
system on remote nodes.
* The monitoring service used to gather informationtloe managed system and to aggregate
these information to provide high-level eventsdited to more semantic.



« The system representation service, used to addbildly to the configuration actions
performed by the Autonomic Managers by replicathmgcritical components.
» The decision service used to implement the reagi@veof autonomic managers.



3 Organization of the document

The rest of the document is organized as followextiBn 4 describe the main services that are
associated with Managed Elements, allowing to eitbebuild, deploy, configure, or monitor them.
Section5 focuses on the services that are more specifiagbociated with Autonomic Managers, and
puts an emphasis on the rule decision servicehdulg be noted that, as an Autonomic Manager is
also considered as a Managed Element, the seassegiated with Managed Elements also apply for
Autonomic Managers.



4 Servicesassociated with managed elements
4.1 Building Managed Elements

411 Wrapping principles

Component-based management aims at providing aranifiew of an environment composed of
different types of software. Each managed softviarencapsulated in a component and the overall
environment is abstracted as a component architectiherefore, deploying, configuring and
reconfiguring the environment is achieved by ughmg services associated with the used component-
based middleware.

The component model we used in Selfware is the t&rasomponent modef3]. A Fractal
component is a run-time entity that is encapsulatetihas one or more interfaces (access points to a
component that supports a finite set of methodagriaces can be of two kinds: server interfaces,
which correspond to access points accepting inapmiethod calls, and client interfaces, which
correspond to access points supporting outgoinghodetcalls. The signatures of both kinds of
interface can be described by a standard Javdadogedeclaration, with an additional role indicatio
(server or client). Components can be assembletbrtdo a component architecture by binding
components interfaces (different types of bindiegssts, including local bindings and distributed
RMiI-like bindings). An Architecture Description Lgnage (XML based language) allows describing
an architecture and an ADL interpreter can be usedeploy such an architecture. Finally, Fractal
provides a rich set of control interfaces for ispecting (observing) and reconfiguring a deployed
architecture.

Any software managed with Selfware is wrapped iRractal component which interfaces its
administration procedures. Therefore, the Frac@minponent model is used to implement a
management layefigure 2) on top of the legacy layer (composedhef actual managed software). In
the management layer, all components provide a gegment interface for the encapsulated software,
and the corresponding implementation (the wrapigesjpecific to each software (e.g. the Apache web
server in the case of J2EE). Fractal's controlfiates allow managing the element’s attributes and
bindings with other components, and the manageimtface of each component allows controlling
its internal configuration state. Relying on thisamagement layer, sophisticated administration
programs can be implemented, without having to de#h complex, proprietary configuration
interfaces, which are hidden in the wrappers.

Management layer
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Here, we distinguish two important roles:

1. The role of the management and control interfacedoi provide a means for configuring
components and bindings between components. ludesl methods for navigating in the
component-based management layer or modifyingifhféement reconfigurations.
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2. The role of the wrappers is to reflect changehenrhanagement layer onto the legacy layer. The
implementation of a wrapper for a specific softwaray also have to navigate in the component
management layer, to access key attributes of tmeponents and generate legacy software
configuration files. For instance, the configuratiof an Apache server requires to know the
location of the Tomcat servers it is bound to.

However wrapping components are difficult to impésrth The developer needs to have a good
understanding of the component model we use (Hyaotare precisely the programming interfaces of
the Fractal component model. Moreover, the impldaten of a wrapping component is quite
systematic and should be simplified.

Our approach to this problem is to introduce a Wiag Description Language which is used to
specify the behavior of wrappers. A WDL specifioatiis interpreted by a generic wrapper Fractal
component, the specification and the interpreteplémenting the wrapper. Therefore, the
implementation of a wrapping component is much fied.

4.1.2 Wrapping Description language

A WDL description defines a set ekterns which correspond to client interfaces of the wepp
component, which can be bound with other components

It also defines a set of methods that can be imydkeconfigure or reconfigure the wrapped
software. Generally, a WDL specification providgtart and stop operations for controlling the
activity of the software, and eonfigure operation for reflecting the values of the compuise
attributes in the configuration files of the soft@aOther operations can be defined accordingdo th
specific management requirements of the wrappawam. These methods are implemented in Java
and can be reused in many cases.

The attributes of the wrapper component don't lavee declared in the WDL description, since
the generic wrapper provides a generic interfacetie management of attributes.

An example of a WDL specification which wraps anaépe server in a J2EE infrastructure is
given hereafter. It defines an extemolkers) which generates the definition of a client inded that
can be used to connect the Apache server with Jameat servers.

It defines start and stop methods which can be invoked to launch/stop theloged Apache
software, aconfigure_apache method which reflects configuration attributedhe httpd.conf Apache
configuration file, and aonfigure workers method which implements the bindings with Tomcat
servers in thevorkers.properties Apache configuration file. Each method definitigresifies the Java
class and method which implements it. The Javaamphtations of these methods are often generic
(e.g.ConfigurePlainText which managed an <attribute, value> configuratitg) find have been used
in the wrapper definitions of many of the software wrapped (we also had to add an implementation
of a configuration method for XML configurationdd). A method definition includes the description
of the parameters that should be passed when ththochemplementation is invoked. These
parameters may be String constants, attribute sglattributes from the defined wrapper component)
or combinaison of both (String expressions).

In the WDL specificatiorbelow, the start method takes as parameters tHe cgimemand that
launch the server:

o dirLocal is an attribute of the wrapper component and dsfthe directory where the software
is actually deployed on the target machine

0 $dirLocal/bin/httpd is the name of the binary to be launched

o0 $dirLocal/conf/httpd.conf is the name of the configuration file which is ged to the binary
and which is generated by thenfigure_apache method of the wrapper

<?xml version="'1.0" encoding="1SO-8859-1' ?>
<wrapper name='apache'>
<extern name="workers"/>
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<method name="start" key="appli.wrapper.util.Gene ricStart"
method="start_with_pid_linux" >
<param value="$dirLocal/bin/httpd -f $dirLocal/co nf/httpd.conf "/>
</method>
<method name="configure_apache" key="appli.wrapper .util.ConfigurePlainText"

method="configure">
<param value="$dirLocal/conf/httpd.conf"/>
<param value="ServerRoot:$dirLocal" />
<param value="Port:$port"/>
<param value="User:$user"/>
<param value="Group:$group"/>
<param value="ServerAdmin:$serverAdmin"/>
</method>
<method name="configure_workers" key="appli.wrappe r.util.ConfigureWorkers"
method="configure">
<param value="$workers.nodeName"/>
<param value="$workers.workerPort"/>
</method>
<method name="stop" key="appli.wrapper.util. Generi cStop"
method="stop_with_pid_linux" >
</method>
</wrapper>

figure 3.A WDL specification

The configure_apache method is implemented by th€onfigurePlainText Java class. This
configuration method generates a configurationddmposed of <attribute,value> pairs:

o $dirLocal/conf/httpd.conf is the name of the configuration file to generate
o the attributes and values are separated by a dracker

The configure_workers method is implemented by the speci@onfigureWorkers Java class. This
configuration method generates a configurationviitech describes the bindings between Apache and
Tomcat servers. In this method, it is necessanyatdgate in the deployed component architecture to
find the Tomcat servers the Apache software is bauth:

o $workers.nodeName returns the names of the nodes hosting a Tomaaersevhich the
Apache server is bound to (a list of nhames sephrbte commas is returnedyvorkers
corresponds to a Fractal client interface whiclkeneices the Tomcat servers (their wrappers).
nodeName is an attribute defined in all the wrappers, whigtes the machine hosting the
software.

o $workers.workerPort similarly returns the portswhich the Tomcat servers are receiving
requests.

4.2 Deploying Managed Elements

This section describes the deployment service geavin Selfware, including the architecture of
the deployment system, the deployment processtenbldotstrapping of the platform.

4.2.1 Deployment System Architecture

Deployment in Selfware is architecture-based. lansethat given a description of the software
architecture, Selfware is capable to install, instde and run software components described Isy thi
architecture. Moreover, the deployment system alaw component versioning and dynamic updates
-- several versions of software components canisbex Selfware's target nodes, components can
also be replaced with new versions. The followirgufe presents the general architecture of the
Selfware deployment system which is composed af pouncipal elements: (1) The configuration and
deployment description, (2) The deployment engiBgThe targets and (4) The package repository.
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figure 4.The Selfware Deployment System

Several entities of the Selfware deployment systam be mapped, in terms of functionality, to
the abstractions defined by the OMG Deployment@adfiguration specification. Below we describe
in more details all of those elements.

4.2.2 Configuration and Deployment Description

Configuration and deployment description is an tnjou the deployment system. It contains all
the information needed by the deployment systetefdoy a given Selfware-enabled application. A
minimum set of such information is the following:

< Architecture of the application to be deployed temponents and their relation in terms of

hierarchy and interconnections

* Configuration of the components --- values of tlaiributes

* Placement information, i.e. on which machine wrgomponent is to be deployed, or certain

constraints on component co-location, without etpinformation on the target nodes

» Packaging information, i.e. in which software pagkaontains the code and other resources

needed by given component

At present there are three ways to describe a vegot configuration for Selfware --- via the
Architecture Description Language, via BeanShathemnds or using FScript.

ADL

Selfware Architecture Description Language (ADLarsextension of the Fractal ADL. Therefore,
it is XML-based and provides a static descriptidnttee system we want to deploy. Below is an
example of a Selfware deployment file:

<?xml version="1.0" encoding="1S0O-8859-1" ?>

<IDOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
"classpath://fr/jade/service/deployer/adl/xml/jad e.dtd">
<l-- ->
<l-- J2EE ARCHITECTURE ->
<l-- ->
<definition name="J2EE">
<interface name="service" ole="server" signature= "fr.jade.service.../>
<!-- START -->
<component name="start" definition="fr.jade.resou rce.start.StartType">
<virtual-node name="nodel" />
</component>
<l-- APACHE ->
<component name="apache"
definition="fr.jade.resource.j2ee.apache. ApacheResourceType">

<attributes

10
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signature="fr.jade.fractal.api.control. GenericAtt ributeController">
<attribute name="resourceName" value="apache" />
<attribute name="dirLocal" value="/tmp/j2ee" />

<attribute name="user" value="jlegrand" />
<attribute name="group" value="jlegrand" />
<attribute name="port" value="8081" />
<attribute name="serverAdmin" value="julien.| egrand@inrialpes.fr'/>
<attribute name="jkMounts" value="servlet" />
</attributes>
<virtual-node name="nodel" />
<package name="Apache Wrapper" />

</component>
<l-- TOMCAT >
<component name="tomcat"
definition="fr.jade.resource.j2ee.tomcat. Tomcat ResourceType">
ébackage name="Tomcat Wrapper" />
</component>
<l-- MYSQL -->
<component name="mysql"
definition="fr.jade.resource.j2ee.mysql.MysqlRe sourceType">
<)ébmponent>
<l-- BINDING -->
<binding client="this.service" server="start.serv ice" />
<hinding client="apache.worker" server="tomcat.re source" />
<binding client="tomcat.jdbc" server="mysqgl.res ource" />
<hinding client="start.rsrc_mysql" server="mysq l.resource" />
<binding client="start.rsrc_tomcat" server="tomca t.resource" />
<hinding client="start.rsrc_apache" server="apac he.resource" />

<virtual-node name="nodel" />
</definition>

figure 5.A simple ADL description of a J2EE architect ure

The description above defines a simple 3-tier JaEBitecture, which is built by Apache, Tomcat
and MySQL servers. As specified by the virtual-eddg, each of the tiers should be deployed on a
separate target machine. The virtual-node tag gesvonly collocation information, i.e. it does not
provide information on the exact name or IP add@sthe target machine, but only says which
components should be placed together, and whiahldimot.

The only "dynamic" aspect of this description is tirder in which the tiers are started. MySQL
needs to be started before Tomcat, which in tueds¢o be launched before the Apache server. Since
Fractal by default does not allow to specify theesrin which components are started, Selfware aises
specific component, called start, to achieve tbil.gThe start component launches all the compgnent
bound to it in an order equal to the one of bindiritherefore, in the example above, starter wil fi
launch MySQL, then Tomcat and finally Apache.

Information about component packages is providedudgih the package XML element. Each
component specifies zero or one package elemehishvare String package identifiers. Depending
on the implementation of the package repositorynfrohich the packages are obtained, package
identifiers can have different forms. At presentnease the identifiers from OSGi Bundle Repository
(OBR), as will be explained later in this chapfene rest of Selfware ADL is the standard elements
found in Fractal ADL.

Scripts

Selfware supports not only ADL-based but also $drgsed deployment through FScript. Using
scripts and an interactive console is interestisgeeially when a human administrator needs to
introspect or modify the architecture of a compdriEased application. ADL-based deployment, on
the other hand, is more adapted for the initialalgpent of the system.

11
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4.2.3 Deployment Engine (Selfware Boot)

The deployment engine is an application which gitles deployment description file or FScript
command as an input is capable to install, inséaticonfigure and start or update componentsidn t
current implementation, the deployment enginele&egely modified Fractal ADL factory that consists
of three composite components: (1) loader, (2) atempnd (3) backend each of them containing a set
of primitive components. The loader composite congpd is responsible for verifying the correctness
of the Selfware deployment file. Compiler componemates tasks that are executed by the backend
component. The compiler component consists of s¢peimitive components, which are executed in
the top-down order, therefore the package comfoleexample is executed before the type compiler.

Parsing of the ADL or the interpretation of the Rffftcommands is performed on a single
machine, called Selfware Boot. This is becauseoésdnot seem interesting to have a distributed
application for this task. However, once the deplept information has been parsed, the rest of the
deployment process is distributed -- the commuianabetween Selfware Boot and target machines
(called Selfware Nodes) is performed over a speafhmponent based implementation of RMI, called
the FractalRMI.

424 Targets (Selfware Nodes)

Targets, also called Selfware Nodes, are machinewhoch the components can be deployed.
Every Selfware Node contains a Fractal factory Wiscremotely used by Selfware Boot to instantiate
components. The most important functionality preddby the targets is support for component
installation, instantiation, versioning, updated aamoval.

To provide this functionality in the current implentation of the Selfware deployment system,
target nodes use OSGi. OSGi provides a layer betwegava Virtual Machine (JVM) and a Java-
based application. This layer manages how softwardules (called bundles) are installed in the file
system and how they are loaded by Java class madlerour work OSGIi[10] provides the
functionality that we require in terms of componeetsioning and dynamic updates. It also gives us a
standard packaging format and a simple packagesitepg in which component packages are stored,
from which they are downloaded in order to be iltesfaon Selfware Nodes, and where inter-package
dependencies are resolved. OSGi packages, caltetid@suare jar files with a specific manifest files,
which allows bundles to specify import/export degemcies. Those dependencies exist when two
bundles need to use same classes. Since each Ihasdies own class loader, without import/export
declarations ClassCastExceptions would occur arytime bundle would try to use code from another
bundle.

Selfware currently uses Felix as an implementatibthe OSGi specification. Felix implements
the OSGi R4 specification, thus the most recentatribe time of writing of this document.

4.25 Deployment

Once the Selfware Boot is given a description efdapplication to be deployed, it starts parsing it.
First it verifies that the description is correntterms of, for example, compatibility of component
interfaces. It also verifies that there is suffitiamount of Selfware Nodes available for alloaatil
any of these verifications fail, the whole deployrprocess fails.

If the verification is correct, Selfware Boot cresttasks, responsible for the allocation of nodes,
installation of software packages, creation of tyyge of components, instantiation of components,
binding them etc. Clearly those tasks have depaneleim terms of order of execution --- nodes need
to be allocated before software packages can lielled installation has to be performed before
component types can be created etc.

Once the tasks have been created and schedulgdarihexecuted. Here is a description of some
of the tasks, in their order of precedence.

« Virtual Node Creation Task: creates a virtual node.

» Install Package Task: installs a given softwarekage on a given virtual node.

12
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» Create Component Task: creates a Fractal componemgiven target machine, once the code
needed to do it was installed.

4.2.6 Component Updates and Undeployment

Updates and undeployment of application componar@smportant mechanisms that the targets
have to provide to application managers. Componeaisneed to be updated because they are buggy,
their performance is insufficient or simply a newrsion of the component's code was released.
Similarly, components may need to be undeployeaumse they are no longer needed or because the
system adapts itself to a decreased load. Thesatmpes need to be performed "cleanly”, namely the
undeployed component should be completely remonged the target machine.

To describe how Selfware handles component updaesssume that the management software
initiates the reconfiguration. We assume that aaganhas a reference to a component that it wants t
redeploy. Moreover, the manager knows about the pemkage containing this component code. For
example, it received a notification about the neawsion of this package available in the package
repository. Consider a composite component C1 ceeghof two primitives C2 and C3, both bound
at runtime. The reconfiguration steps are as fatow

« The manager calls the Component update(Componetripisn newComponentDesc,
Packageld newPackageld) method on the C3 compopasgjing the component description
and the new component package ID as an argumemt. CldmponentDescription in our
Fractal-based implementation is the Fractal compotype and the name of the component
implementation class.

 This results in C3 contacting the Generic Factomat tcreated it and calling this
factory.update(Componentld self, Packageld newCadaye) method.

* The Generic Factory deploys the new component,rgégsea componentld, and returns it to
the manager.

« The manager unbinds the old component from therotbenponents and removes it by
invoking the remove(componentld) method on C1,dbmposite. C1 forwards this method
call to the Generic Factory that created it.

« The Generic Factory maintains a mapping betweeh eamponentld and its packageld.
Every component maps to exactly one package. Tmei@eFactory obtains the component
old packageld to remove it and invokes the markidd(sackageld) method on the Installer
component.

* The manager now adds the new component C3 (withnéve implementation) to the C1
composite, binding the new version of C3 to otl@nponents and managing its life cycle.

4.3  Allocation of nodesto Managed Elements

Deploying a component implies the allocation ofoalen satisfying the component’s constraints in
terms of resources requirements. The allocationicgermay take into account several kinds of
properties like the memory size of the hosting nadeCPU speed, etc. Locality constraints between
different nodes may also be taken into accountderto place some components close to each other.
In the current Selfware infrastructure, the Allgoat service only takes into account closeness
constraints. It is based on the virtual-node priypdescribed in the ADL file of the application to
manage.

The Allocation Service has the knowledge, at arsyant, of the nodes that are used (i.e., that are
hosting some part of either the managed applicatiaghe managed system itself) or free. When a new
component has to be deployed on a given virtuaénbdt is not already associated to a real node, th
Allocation service searches for a free node, ard tegisters the association between the virtudé no
and the real node. A node may return to the frate sthen no more management or application’s part
is running on it.

Any node may join the Selfware infrastructure at ame, by getting the location of the Selfware
Boot node, and then calling a registration methodhis node. In contrast, a hode is not supposed to

13
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leave the Selfware infrastructure at any time, boty when it is in the free state. Finally,
unanticipated leavings of nodes are managed asvheedaults, by the Repair service.

4.4 Navigation and Configuration of Managed Elements

4.4.1 Objectives

Selfware's targeted applications include legacyesys, which by definition present a large variety
of forms and functionalities. In order to keep toee of the Selfware platform independent of specif
technologies, the managed elements themselvesakmt the same uniform interface to the platform.
Concretely, Fractal wrappers are built using tlehéques presented in the previous section. These
wrappers expose the architecture and reconfiguratpabilities of the legacy systems in terms ef th
Fractal component model, providing a powerful andfarm management interface to be uses by the
rest of the platform.

For example, an Apache HTTP server, although imphdad in C and configured using text files,
is seen by the Selfware platform as a normal Fraotanponent, exposing its lifecycle and
configuration attributes through Fractal's standaterfaces (lifecycle and attribute controllerstliis
case).

Once this wrapping is done, the Selfware platfoam manipulate the managed elements using the
standard Fractal APl. However, the relatively l@wvédl nature of these APIs make it complex to write
reconfigurations: the resulting code is often veeybose and mixes high-level concerns with lower,
language-level « plumbing »making it difficult to write and to understandeduse even simple
reconfigurations can be so cumbersome to writejsiteven more difficult to write reliable
reconfigurations, which handle appropriately a# ttorner cases and deal with unexpected errors. In
our context, the reliability of the reconfiguratois primordial, as they will be initiated autoncatly
by the platform, without human supervision. For adsgtrators to leave the control of their
applications to an automated system, they must bavessurance that whatever it does it will not
"break" the managed system by putting it in an ahlesstate.

4.4.2 Manipulating Fractal Components using FPath and FScript

To overcome the difficulty of writing reliable Frat reconfigurations, Selfware uses a Domain-
Specific Language (DSL) named FScripi. By focusing on a limited domain (introspectiamd
reconfiguration of Fractal architectures), FScoah provide better language-level support for atact
specific concepts. In addition, we control the lznge's power of expression, semantics and
implementation, which make it possible to provideorsg guarantees on the reliability of the
reconfigurations. Concretely, FScript is made ab parts:

e FPath a DSL [9] for querying Fractal architectures. Its domam restricted to the

introspection of architectures, navigating inside them to locatements of interest by their

properties or location in the architecture. Thisuiged domain allows FPath to offer a concise yet

powerful and readable syntax inspired by XPHt&]. FPath sees a Fractal architecture as a

directed graph. Nodes in the graph represent coemispinterfaces and attributes. Directed arcs

connect these nodes and indicate the relationsbiwden the corresponding elements in the
architecture. For example, a node representingngposite component will be connected in the
graph by an arc named “child” to the nodes reptasgits direct sub-component (and vice-versa
with an arc named “parent”). Given this represeénatan FPath query “walks” in the graph along
the relations represented by the named arcs totsbke appropriate architectural elements. FPath
can be used by itself, without the rest of FScidst,a general navigation and query language for
Fractal.

! The Fractal model introduces new concepts like pmments and interfaces, but most actual

implementations, including all the ones in Javandbextend the host language with appropriatetoacts. The
typical Java code using the raw Fractal APIs isdfilowncasts and low-level objects and arraysimaations.
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* FScript itself allows for the definition of complaeconfigurations of Fractal architectures.
FScript integrates FPath seamlessly in its syrfi®ath queries being used to select the elements
to reconfigure. By design, FScript is restrictedrtanipulating the architecture of Fractal systems
(structure, state and configuration), and nothilsg.eFor example it has no support for invoking
the service interfaces of components (althoughettaae visible). This restricted power ensures
that FScript programs can not execute —dangeramsl' difficult to control code constructs
(infinite loops, /O, etc.) as would be the caseaingeneral-purpose scripting language like
BeanShell for example. One of the main contribigioh FScript is to guarantee the reliability of
dynamic, distributed and concurrent reconfiguraion Fractal.To do this, FScript considers
complex reconfigurations gsansactions. The FScript interpreter integrates with a tratieaal
monitor which gives a transactional semantics ® mbconfigurations, following the standard
ACID properties (Atomicity, Consistency, Isolatiand Durability). Indeed, reconfigurations may
be invalid and leave a system in an inconsistegiest.e. no more available/usable from a
functional point of view. The execution backendcmwétically and transparently detects and
corrects errors to make the system fault-toleraming reconfigurations. The ACID properties are
unifying concepts of transactions for distributesmputation used for supporting concurrency,
recovery, and guaranteeing system consistency.ehefth from these properties, each top-level
FScript action and function is executed as a s¢g@teansaction which can be rolled back in case
of failure so that the system comes back in a stersi state.

44.3 Integration in the Selfware platform

FPath and FScript are used in the following wayshe Selfware platform (more specifically in
Jade).

FPath is used through its Java API in the impleatént of the Jade platform itself and in the
JORAM wrapper components. Both the Jade platforchtha Fractal components wrapping JORAM
make heavy use of Fractal's introspection featuiéiting the required queries directly in Java can
result in complicated and sometimes brittle codeictv can often be replaced by a single, one-line
FPath query (which is both more readable and rpbBsfore FPath was used, the original Java code
sometimes published directly in a shared registeyreferences to some components to avoid writing
the code required to find them again at some gpoant. Using FPath made is possible to remove
these references (basically global variables), ikeeiine global registry cleaner. For example, here
the original code that finds all the JORAM servaeployed, written in pure Java:

private LinkedList<Component> getAllServers(){
LinkedList<Component> res = new LinkedList<Compon ent>();
NamingService ns= Registry.getRegistry(System.get Property("registry.host"),

Integer.parselnt(System.getProperty(“registry.por t"),
this.getClass().getClassLoa der());
for (String ref : ns.list()) {
if(ref.startsWith("JoramServer_")) {
Component server = ns.lookup(ref);

try {
server.getFcinterface("JoramServer-controll er");
res.add(server);
} catch (NoSuchinterfaceException ignored) { [* Not a server */ }
}
return res;

}

This code assumes that all the servers are putllishéhe Fractal RMI registry, under a name
which matches their Fractal name. The same codetirenvto use FPath looks like this:

/I Custom FPath function defined in a separate file
function is-joram-server(c) {
return starts-with(name($c),
"JoramServer_") && $cfinterface::JoramSer ver-controller];
}
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/I Java code
private LinkedList<Component> getAllServers() {

LinkedList<Component> res = new LinkedList<Compon ent>();

Node start = fscript.createComponentNode(myself);

String query = "./parent::*/sibling-or-self::*[is -joram-server(.)]";
for (Node node : (Set<Node>) fscript.evaluateFrom (query, start)) {

res.add(((Nodelmpl) node).getComponent());

return res;

The resulting code is shorter, more readable, avebs dhot rely on Fractal RMI to find the
components.

FScript is used to program reconfigurations of #nehitecture, including the deployment of
components in Jade Nodes, in place of ad-hoc BedinSinipts used earlier. Once a Jade instance is
running (a JadeBoot and several JadeNodes), tamative FScript console can be used to interact
with the remote components using Fractal RMI. Thlesole can then be used to navigate inside the
platform and managed elements (using FPath queard)to invoke programmed reconfigurations of
their architectures (using FScript scripts). TheedScript scripts can also be invoked automayicall
as part of an autonomic response of the Selfwaatiopin. Previously, Jade used BeanStedtipts
for this. Although BeanShell is more lightweightdadlynamic than Java, it is still a general purpose
language, with no direct support for Fractal-speabncepts, and none of the guarantees offered by
FScript regarding the reliability of the reconfigtions. Because both BeanShell and FScript interact
with the platform through Fractal RMI, they can bsed at the same time, which is especially
important to provide an incremental migration pathle BeanShell scripts are converted into FScript.

Other possible uses which are being investigatellide writing the autonomic repair algorithm
which is integrated in Jade using FScript instefagawa. It is not yet clear whether FScript's powfer
expression is sufficient to express the algorittiiso, the interactions between the transactional
semantics offered by FScript and the repair featunst be investigated further: both features' goal
to ensure the continuity of service of the managgeplication(s), but they are triggered by different
kinds of errors and use different (but relatedhieégues.

45 Monitoring Managed Elements

45.1 Monitoring objectives

With regard to the control loop principle the Selfe architecture is based on, the monitoring
service is in charge of getting data from ad hatsees associated to the Managed Elements, and to
make these data available for the decision functi@mely the Autonomic Managers. These data
typically describe the dynamic state of the managjethent rather than its static constitution (ég.

a computer, number of processors or memory sizeyeder, changes may occur even to something
that would look like a "static constitution". Fonstance, some advanced computers may have a
varying number of processors and memory size. $helmges may be of interest for the autonomic
management features, and shall be taken into atdyuthe monitoring service. There are actually
two kinds of data:

» plain measures of resource consumption (e.g. CRig, tiree memory, database connection

pool usage, request queue size in an arbitrarylenwdde...);

« alarms that notify the occurrence of an event thaot necessarily measurable (e.g. a garbage

collector occurrence in a JVM, a node failure,)etc.

The monitoring feature shall be able to use bagthish and pull model. The pull model is useful to
measure resource consumption at an arbitrary rhtle whe push model enables quickly delivering
alarms. Care should be taken not to overload twesport layer towards the decision function, or

2 BeanShell is a general-purpose scripting langfiagéava. It is very close to Java, but supporntsoae

interactive and dynamic usage.
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overwhelm the decision function itself, by a hutgenf of measures and alarms. For this reason, the
monitoring service shall be able to provide statidly condensed measures. However, the decision
function may be interested in getting detailed linfation and accessing to all measures in a given
time frame or from a given starting date. So, tlenmoring service shall also provide a dynamically
enabled or disabled memory. Since the monitorimgice is supposed to be on during all the lifetime
of the autonomic system, this memory feature shallenabled in aeasonable way so that the
corresponding amount of storing space does noessigi grow.

The monitoring service relies on components thaeole a given resource, namely probes. In the
following, we describe the architectural descriptad these probes in two steps:
e basic probes that provide the monitoring service;
* an extension of the basic probes to introduce prsfering and aggregation through a
composite probe architecture.

45.2 Probecomponents

Basically, a probe is a component with an autonaaativity for observing and getting measures
from the resource it observes. This activity is toalied accordingly to the lifecycle specification
depicted irfigure 6.

init() failure deployed stop()
successful init()
sanQ faiure I italized | ,
successful start()
resume() failure successful resume() ‘ stop()
suspended running b
successful suspend
stop() ‘ 0
ﬁn
failure completion
\

+| aborted I Icompleted I I stopped |+

int() faire |suocessful nt)

figure 6. Lifecycle of probe components

A probe component first exists in tdeployed state. It is typically initialized and started dathen
possibly suspended and resumed. The end of aci&ityepicted as a pseudo state that actually
represents three states:

» aborted means something did wrong and the probe couldgcleve what it was supposed to do

(i.e. either its computation or a lifecycle tramsitrequest);

« completed means the probe normally terminated its activity;
« stopped means that the blade did not reach the end atttsity, but simply conformed to thatop
lifecycle transition request.

Once the end of activity has been reached, theebdativity may be rerun after an initialization
step. Suspend and resume requests may be usefal samee faults have been detected or some
reconfiguration is under way, in order to avoidtiggt meaningless measures and possibly bursty
generations of alarms. Suspending a probe is als@yato check the disturbance caused by its
activity.

We now go into the details of the basic probe camepb architecture using the Fractal model.
This architecture comes from the CL|JF] load testing framework's so-calldilade architecture,
hence the frequent use of "blade" in the terminplods shown by0O, the probe component type
consists of three mandatory server interfaces (ham®ata_collector_administration,
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Storage_proxy_administration and Blade_control) ammhe mandatory client interface
(Supervisor_information).

Activity control

(init, start, stop, suspend...) [|Blade control activity @
"Progress” statistical data for L
g monitoring purpose Data collector administration mandatory client interface
) AL
Management of local events |— Storage proxy administration - o
N buffering and 00”30"0” feedback information about
v blade  status (initialized,

Supervisor information running, suspended...) and

alarms

mandatory server interfaces

figure 7. Fractal-based architecture of basic probe s. The probe's activity consists in getting informa tion
from the resource it is observing.

Interfaces Blade_control and Supervisor_informatoa tightly coupled because most of probe
activity control operations (init, start, stop, geed...) are asynchronous: the call returns as asdtie
operation processing starts. Once the operatiderminated, a call-back operation from interface
Supervisor_information is used to inform the sugEmvcomponent about the actual probe state. The
reason for asynchronous operations in probe agtidntrol is that we consider scalability issues. A
typical usage of activity control operations issimultaneously initialize, start, suspend, etc.lohe
set of probes. We could implement asynchrony atstingervisor's side, simply by using parallel
threads calling activity control operations and timgi for operation return. But, first, this could
introduce a possible high overload on the supervisgou consider large scale systems (hundreds of
probes or more). Second, we still need a call-lmgecation to give feedback about the probe state at
least for states aborted and completed. As a ragelt rather introduce asynchronous operations and
a unified way of providing the supervisor with feadk information about probes states. At last,
interface Supervisor_information provides an opematto notify arbitrary alarm events to the
Supervisor. Interface Blade control offers two axtperations, respectively to consult and modify
specific properties. These properties include tbevation or deactivation of the memory of the
various events (measures, lifecycle, alarms) iegees.

Interface Data_collector_administration providestistical data about the probe — typically about
the measures obtained from the resource it obsefbhese data are represented as an array of integer
values. It may look like an arbitrary limitation thto be able to deliver other data types, but it is
actually a pragmatic choice that is directly inediby the LeWYS projedé]. This choice seems
particularly relevant to monitor such things likdP\C usage percentage, free memory, average
throughputs and response times, etc. In a generglwe consider that for other needs than numerical
monitoring resource usage, alarms are a good wawtifiying probe events holding data of arbitrary
type. For instance, a node failure would be typjaabtified through an alarm.

Interface Storage_proxy_administration is bounthostorage proxy role played by the probe, to
enable possible buffering and final collection @bl events. This interface provides methods to
possibly allocate a buffer for a new run, and tilecd events.

45.3 Composite probes

The basic probes described above are primarilygdedi to be used in a single level, as a flat
layer: each probe is managed one by one and mendoe resource. For both scalability and
convenience reasons, it appears useful to be alglenipose these basic probes into composite probes
whose data don't come from a resource observdiigrffom a set of other probes, whatever they are
basic or composite (séigure 8). Here, the idea is to take advantageherFractal model's support for
component hierarchy and sharing to be able to:

« obtain as many measures as possible from a mirgetabf basic probes, with an adaptable

level of details and different aggregated values;

e transparently manage a whole hierarchy of probesitih a single composite probe.
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figure 8. General view of a composite probe hierarc  hy.

Let's take the use case of monitoring the systesd lof a clustered computing system (see
figure 9). For each cluster node, a basic probe&essary to observe the CPU load and the memory
usage. Other system resources could be addedstaghicase: network bandwidth, disk transfer rate,
etc. Now, getting all the measures from all theagidoprobes, as well as managing all these prabes,
quite cumbersome. Conversely, composite probedegelting a global system load indicator for the
cluster obtained through a single probe that traresyply handles control operations for the undedyi
sub-probes. Then, the global system load probe lmalyased on individual system load probes that
aggregate measures from basic probes (CPU, mentanglly, component/probe sharing enables an
arbitrary number of different aggregations, suclhasglobal cluster CPU load indicator provided by
the cluster_CPU composite probe.

cluster_CPU cluster
N ~ %used RAM
! ~7HCPU "
Wuceu /N R
) \\ R S
,’l * system?2 system1
\
! \
/ *\ %CPU %CPU
/ Aol ,~ ;M %used RAM
/ TN %used RAM,” |
/ .’ Vs \\ ,, '
,l ,’, /// . , '
,I ,,’ , \\ ,/ :
’ e e \ ’
/ ,’, ’ \ ,/ :
s /s \\' H
cpu2 memory2 cpu memory1
’ W used ram
EJ/OC(I;:’TJUuser | [ised ram [MB]
0
.CPU kemel [BFached [MB]
’ o uffers [MB]
6 used swap
[lised swap [MB]

figure 9. Sample composite probes hierarchy for moni toring a clustered system

4.5.4 Integration tothe Selfware platform

First, these probes are Fractal components, wisidtey to an easy integration to the Selfware
platform. They will straightforwardly benefit frothe deployment service. Then, they shall be skghtl
extended to become Managed Elements, in order nefivdrom the Selfware autonomic features,

19



Java EE management scenarios

such as self-repair (replace a faulty probe) drs®mifiguration (e.g. increase or decrease the 8agp
rate or measurements).

The link between Autonomic Managers and probesbeagither direct, through plain Fractal RMI
bindings, or indirect through some communicaticmednt dedicated to the transport of measures and
commands. The main reason for using an intermediment is both for fault tolerance and
scalability issues:

* anode that is becoming unreachable must not resalglobal freeze of every communication

between AMs and probes;

* alarge-scale system results in a huge numberotfegrthat requires a special communication

hierarchy (that can be addressed also by the catagwsbe architecture presented above).

This element could be introduced through a plaimmaonication component, or through specific
Fractal bindings. This point will be refined in teecond version of Selfware's architecture, once we
get feedback from experiences with the first versio

4.6 Checkpointing Managed Elements

4.6.1 Objectives

The main objective of the SR (System Represenfa8ervice is to maintain a causally connected
representation of the overall Selfware managemestés, including both its autonomic managers and
its managed elements. The tepawsal connection means that relevant changes occurring in the
management system are mirrored in the system pBgn and, conversely, that any changes in the
system representation are reflected in the acuughliton of the management system.

The overall Selfware management system is builh Witactal components. In the case of the
management of legacy software, the managed elenaeatsomponents wrapping the management
interface of the legacy into a uniform managematdrface defined by Selfware, as described in the
SP1-L1 document. The System Representation iscalsposed of Fractal components, that exhibit a
configuration state isomorphic with the configunatistate of the actual management system. The
notion of configuration state more precisely includes the components name batés, bindings,
compositions, and lifecycle states.

All these aspects are isomorphic in the componeaqitg provided by the System Representation
and in the component-graph corresponding to thevded management system, resulting in a dual
architecture as illustrated by the following Figure

Dual Dual Dual
Dual /J/ Dual Dual

System Hepresentatinn Causal
connection

ME ME ME i
ME ME ME

Management System

figure 10. Duality between the Management Layer and  the System Representation

The causal connection between the Selfware manademsystem and the SR (System
Representation) is managed on a per-component. asysSR-component (meaning a component
belonging to the System Representation) is causallnected to a component belonging to the
Selfware management system and reversely. We sdiystith components are duals of each other.
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Being given a component ¢ belonging to the Selfwaa@agement system, and its dual in the System
Representation ¢’, the following properties areueed by the SR service.

- dualic) = ¢' and reversely (c and ¢’ may be distants)

Static _ - functionnal Interfaces (c ) = functionnal interfaces (¢
Properties - controllers interfaces (c ) = controllers interfaces (c')
- aAttributes names and valug (c) = attributes names and values (c')
Cynamic - Lifecycle state (¢ ] = lifecycle state (o)
Froperties - For each component ¥ = subcomponent (o), there is a component ®' =

subcomponent (¢ where dualix) = »
- For each hindings (e, ¥), there is & hindings (', ¥ where dual() =

The causal connection is maintained as follows:

« On bootstrap of the Selfware management systemStlstem Representation contains an
architecture description of the system after ih#t&#ion (including nodes that run the
management system with the components they contain)

e Any update of the configuration state of the SefBwamanagement system (e.g., adding a new
node, deploying a new software element on a giwalehis reported at the level of the System
representation, and reversely.

4.6.2 Design Principles

As said in[3], a Fractal component is a runtime entity thas lbne or more business interfaces, as
well as a predefined and extensible set of conirtarfaces. The control interfaces provide a meta-
level access to a component internals allowingcfimponent introspection and intercession. These
interfaces are implemented by a set of extensitgrollers. The main predefined Fractal controllers
are those dealing with the configuration state cb@ponent:

» The Name controller allows setting and gettingRrectal name of a component.

* The Attribute controller allows setting and gettihg exported attributes of a component.

« The Binding controller mainly allows binding and bimding the client interfaces of a

component.

e The Content controller mainly allows adding and oging sub-components in a composite
component.

e The Life-cycle controller mainly allows starting dastopping the threads of execution in a
component.

The main design principles of the SR service ayeqtlefine an additional controller in charge of
managing the bijection between a component arglia$ and (2) to modify the existing controllers in
order to ensure that any configuration action peméal on a component is reported on its dual.
Following these design principles, the business gfeat Fractal component stays untouched by the SR
service that only deals with the control part (ifdee and implementation) of a component.

The modification of the pre-defined controllerspisrformed at two levels. First, the interfaces
provided by the controllers have been extendedrderoto support a notification protocol. For
instance, when a configuration action such as hjnid(invoked on a component ¢, a corresponding
action bindNotify(..) is invoked on c¢’s dual comgor.

Second, the implementation of the controllers fatmrs have been specialized in order to manage
the causal connection with the dual components.eMwecisely, each time@nfiguration action is
performed on a component, the controller perfornting action has to perform an additional step that
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consist in notifying its “dual” controller. Theseesign principles are illustrated figure 11 and in
figure 13.

setDual, getlual
' }
R R
ST S -
Q. e 2] &
%, %, "
00 %% QY
b % Yy, %,
Q. D, % Yy 2
%, %, & S, %, %, %,
Zomponent Zomponent
c c’
Dwring the creation of a reflexive component ¢ |, create its dual ¢’ and assign their
dual references

figure 11. Controllers associated to the components managed b y the SR service

The specialization of the controllers implementati@lies on the mixins technique used for
implementing Fractal controllers in an efficientdaaxtensible wayl4]. This technique allows adding
actions to be executed on behalf of a given comttelface, in a very easy and incremental manner.

4.6.3 Component creation

In order to create components associated with & miypaesentation, a specific Fractal factory
component is provided by the SR service. This facie called “Reflexive Bootstrap Component”,
and is itself a Fractal component associated wilbal representation that is calléwhl factory. Any
creation of a component ¢ performed by such a faesonotified at the dual factory, that consequyent
creates the dual component of c.

ReflexiveBootstrapComponent.newFcInstance(..):
¢ = factory.newlnstance();
dualFactory = factory.getDual();
dualc = dualFactory.newFcInstanceNotification(..);
c.setDual(dualc);
dualc.setDual(c);

figure 12. Actions performed at component creation time

More precisely, the reflexive bootstrap componesfggms the actions listed above when it is
asked for a component creation. It starts by angadi first component instance, and then it asks its
associated dual factory to create the componengsidstance. Finally, it updates the dual refeesnc
of the created components.
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controltethod (parameters) - controltethodiotification (dual{parameters))
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- c

After the execution of controliethod (parameters), call:
c.getFcinterfacels reflexive-controller ») getDual() controlfethod (dual{parameters))

figure 13. Execution of a control method on a compon ent managed by the System representation
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5 Decision support for autonomic managers

5.1 Introduction

In the Selfware architecture, the Autonomic Manaigein charge of reacting when a defect is
detected in the Managed Elements it is respongdrlelt actually implements the logic the self-*
features. The autonomic control loop starts with tonitoring function described in sectiéb, and
ends by acting on the Fractal system through régortion actions that would be typically supported
as shown in sectioa.4. In between, the decision making function mayiriiegrated in a variety of
ways (see discussion in secti®.4), and may be based on a variety of decisibsystems, ranging
from basic algorithms hard-coded in a Java compinen a variety of artificial intelligence
techniques: rule engines, Bayesian networks, caingsr solving, neural networks or genetic
algorithms.

Some existing works address various approachemfidementing decision module. Each solution
is effective for solving specific types of problenigaditional solutions based on heurisfit$],[16]
aims to provides fast solutions for specific protse Those fast solutions provide good result bueha
a limited scope. Extends a heuristic is not obviaod could dramatically decrease 1/ its performance
2/its quality.

By the usage of policies or rules, it is possildemplement more flexible decision modules. Such
systems extends Policies Base Management SystdBMS)Por Expert Systems. In the context of
Autonomic Computing, such approaches use Eventi@iondiction (ECA) solutions[1]. In this
situation, the decision module is composed by afailes. Each rule describes an action to execute
when certain events occurred on certain conditidi®se approaches are more declarative than
heuristics-bases solutions as they often use dfispdomain language to writes the rules. However,
those approaches have some limitations in certaiit@ments. Some conflicts between rules could
occur when there is a certain overlapping in thers® or the target. Those limitations could be
minimized statically by providing some mechanismghie languages or dynamically by observing
results after the execution of a rule. The inclnsid meta-heuristics or priority between rules is
another solution.

Last, approaches using Constraints Programmingds,ehandbook] (CP) propose a more safe and
flexible approach. A constraint solver aims to fiedlutions to a problem that satisfy a set of

constraints. Those constraints are written by ugaPs by using propagation and pruning aims toesolv

better solutions. However, considering the sizéhefsearch-tree, these solutions could not besas fa
as heuristic-based approach or PBMS.

Our goal is not to make a prescription on whethee technique is better than another one.
Although giving a classification of the best apmioavith regard to categories of autonomic features
and systems would be of major interest, we thirdt this definitely out of reach for the Selfware
project, and probably for today's autonomic compmuttommunity. Our pragmatic goal consists in
beginning by trying a couple of decision-makinghi@iques and to see how it can be integrated in an
AM of our architecture. This section will be exteddin a second version, featuring in more details
other ways of supporting decision making.

5.2 Decision making with activerules (ECA rules)

Selfware deliverable SP1-L1 introduces the ratieraald the main constituents of an active rule
service that allows for the use of active rulesadsasic decision making mechanism in component-
based autonomic systems. SP1-L1 mentions majotsthiat deserve a special attention: the design of
the rule model (both rule definition model and raleecution model) and its architectural integration
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This section of SP1-L2 gives a more detailed viéthe rule model and its architectural integration
the form of an active rule service.

521 Overview

Reactive behaviour, the ability to (r)eact autooally to take corrective actions in response to the
occurrence of situations of interest (events) ikeg feature in autonomic computing. In active
database systems, this behaviour is typically ipa@ted by Event-Condition-Action (ECA or active)
rules (when a specified event occurs, evaluatenditon predicate, and if true execute some action
operations).

The approach we propose consists in defining a amesim for the integration of these rules in
component-based systems to augment them with amionoperties. The contribution is twofold.

« First, the proposal of a rule model, i.e. a rulérdgon model together with a rule execution
model, that can be coherently integrated into apmrant model.

 Second, the proposal of a graceful architecture thar integration of active rules into
component-based systems in which the rules as agetheir semantics (execution model,
behaviour) are represented/implemented as compmnevitich permits i) to construct
personalized rule-based systems and ii) to modifachically the rules and their semantics in
the same manner as the underlying component-bgséeis by means of configuration and
reconfiguration.

These foundations form the basis of a frameworkibavhich can be seen as a library of
components to construct events, conditions, actiomies and policies (and their execution sub-
components). The framework implementation is exkdesadditional components can be added at
will to the library to render more elaborate andren@pecific semantics according to certain
applicative requirements.

5.2.2 RuleDé€finition Modé

The rule definition model specifies what are therf@f events, conditions and actions considered
and manipulated by the active rule service.

Event

An event is a happening of interest at a given tpimitime. It is characterized by an event type,
i.e., an expression describing a class of signifiGacurrences of interest. The active rule service
considers the following event typesapplicative which corresponds to inter-component interactions,
i) structural which represents modifications (reconfiguration$)the structure (topology) of the
system, like adding or removing a component, ortrdgsg or creating bindings between
components, iii)system-level which characterises events coming from the extesnaunderlying
environment or context of execution (e.g. JVM ar8l €ents).

In Selfware architecture, events (probes) are tkdesnd notified by the monitoring service to the
rule service.

Condition

Conditions are optional and express additional traimgs on the state of the system that must be
satisfied for the action part to be executed. Cuorliexpressions (e.g. whether an attribute's vedue
bigger than a particular value or not) are bookegmressions built using logical operators.

More complex expressions can be formed based oneguen the structure of the (component-
based) system as well as on its behaviour. A qgtlel selects the various components linked to a
particular one is one such example. In case ofnaptex query that does not return a boolean result,
the condition is considered to be true if the quetyrns a non-empty result.

In Selfware architecture, such conditions are esg®d as FPath expressions and evaluated by the
FPath engine which is part of the Selfware navayaservice.
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Action

The corrective (re)actions that the target systeamle subjected to are expressed in the action part
of the rule. The event and condition parts of thke serve to analyse the symptoms affecting the
system.

To rectify the anomalies, the action can range freimple parameterizations of component
attributes, for example, an increase in the size @iche or pool, to complex structural reconfigana
operations, which can include addition removal eglacement of one or several components. Other
types of actions can be envisaged, like externdifications, for example, an email or SMS
notification to an administrator. In Selfware atelsture complex reconfiguration action plans are
expressed as FScript expressions and executecedyStript (transactional) engine which is part of
the Selfware navigation service.

5.2.3 RuleExecution Model

Rule Execution Cycle

The entire execution of a single rule is comprigkthe following phases and various states:

» Triggering and Event Processing Phase {R(E)}: gtiase begins with the notification of the
event(s) that triggers ("wakes up") the rule. Thdifitation is performed by the entity on
which the event occurs. It consists in processimg e¢vent(s) based on the various rule
execution parameters. The rule goes frontitiggerable state to thériggered state.

* Condition Evaluation Phase {R(C)}: the second phaisthe execution evaluates the condition
expression. If the condition is satisfied then thée transits from thesvaluable state to
evaluated state.

e Action Execution Phase {R(A)}: the last phase oé ttule execution corresponds to the
execution of the action part of the rule. It takies rule from thesxecutable state to the final
state ofexecuted state (generally confounded with the initiafgerable state), thus inducing a
positive feedback change in the system behaviour.

Execution units and execution points in component-b ased execution models

If active rules have an execution model (behaviairYheir own (cf. previous and following
paragraphs), the introduction of active rules isyatem (be it a database or a component-based
system) has a non negligible impact on the behawvbthat system. Indeed, there exists a dependency
between the execution of the system and the execofi rules, for it is the former that triggers the
latter and also the two executions are interwomeriwined together.

A key difference between active database systerhgrevactive rules have been extensively
studied, and active component-based systems, wiemgant to apply active rules, is that execution
models in active database systems are based ocetiteal concept, that dfansaction, which is
(generally) inexistent in component-based systems.

Transaction is a core and foundational conceptotive database systems because, thanks to
transactiondemarcations (start, commit, abort/rollback), they provide a natural and convenient
execution unit} for the execution of active rules. An executiamtspecifies an interval (between two
execution points in a sequential flow or basicalyween two points in time) during which events can
be detected/notified to interested rules and rabas be evaluated and executed. On the one hand,
component-based systems generally do not consaesactions. On the other hand, the behaviour of
a component-based system generally refers to attenathrough interfaces only, thanks to operation
invocation. Hence, we define the execution unitamponent-based systems as delimited by the
interval between two execution points: the receptib an operation invocation on a server interface
and the emission of a response onto a client aterf

For method invocations on a component's functiontatfaces (which produce applicative events),
and operations that modify the structure of theesys(which produce structural events), we may
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signal two eventsbegin andend. Other forms of events (e.g. system events) caintegrated in the
model by considering that their begin and end evané merged (i.e. they both represent the same
execution point or point in time).

Rule Execution Dimensions

Based on these definitions of execution units amet@tion points, adapted from those in active
database systems, the approach for defining aemdeution model for autonomic component-based
systems consists in defining a setdiensions with their possible values; together with a specif
(deterministic) behaviour/semantics to all comborad of dimensions and values. Indeed, the
condition of a triggered rule is not always evadgaimmediately (hence the two separate states
triggered and evaluable; and a triggered rule with a satisfied conditienriot always executed
immediately (hence the two separate stataliated andexecutable.

When and how (e.g. immediately or later, in themeaactivity/thread that the operation that
generated the event or a new one, etc.) a ruleorepsed depends on the varidusensions of the
rule execution model (behaviour model). Of courgleen multiple rules are concerned, which is the
case in real autonomic systems, an execution madel specifies when and how rules triggered
simultaneously (by same or different events). Thisandled byule execution strategies or policies
which basically specify the scheduling of rulegy(elepth-first order, width-first order, flat ordday
cycles in sequential or parallel settings).

We do not detail these aspects here (interestetbreanay refer to N. Jayaprakash PhD thesis).
Roughly, the dimensions and values currently haht)e the active rule service are the following:
execution mode: [immediate, delayed]; activity mode: [same, saper event processing mode:
[instance, set]; local execution strategy: [mixestjieential order and parallel]; Global execution
strategy: [flat, depth-first, width-first].

5.2.4 Architectural Integration

The architecture of an autonomic infrastructureedasn active rules is inspired from the
fundamental management notiondoimain [13] which consists in grouping the components on which
the various reactive operations can be carriedfdbmain is:

e aunit of composition that enables logical structural partitioning ohgabnents in a system,

and

< aunit of control that defines the type of (reflexive) control penfied onto these components.

The similarities between a Fractal component aedctimcept of domain suggest that a domain
can be aptly modelled as a Fractal component. Torporate reactive behaviour, several types of
domains have been defined, each with a particyfa of control unit applied onto its composition
unit. They are each represented by a Fractal coemtpknown asactive domain. The autonomic
infrastructure is formed by an assembly of sucletrea domains - superimposed on the target system.

Architectural Design

The set of domains that form our autonomic infrasttire are listed below and their relationships
illustrated byfigure 13.

« An Event (E) domain contains software entities where eventsitgfrést need to be detected
(generally applicative components). Its controlt isiresponsible for identifying the software
entities (components) that would belong to the eattinstrumenting them appropriately and
processing the events on their occurrences.

« A Condition (C) domain contains software entities that repredemtstope of the queries that
are to be evaluated. The functions of its controt includes identifying the components that
would be in its jurisdiction, and evaluating quera them.

* A Action (A) domain encapsulates software entities on whiciorzctare to be executed. The
type of control enforced involves identifying thenstituents of the domain's content and
executing the corrective operations on request.
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* A Rule (R) domain comprises of exactly one instamicthe above 3 subdomains, i.e., Event,
Condition (optional) and Action. R's control urstresponsible for coordinating the execution
of its subdomains.

e The content part oPolicy (P)domain is composed of Rule domains, and its contrif
possesses the rights to their execution.

* The entire control space is a sinflelicy Manager (PM) domain that contains all the Policy
domains with the sole functionality of coordinatitg execution of individual rules.
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flgure 14. H|erarch|cal Domains

The detailed design and implementation of activenailos cannot be detailed here (cf. N.
Jayaprakash PhD thesis wof8]). It involved especially of careful design afraponents membranes
of active domains where some of them are 'classwaitrollers (plain Java) when others are
themselves implemented as Fractal components wiheeegrained reconfigurations are needed.
Active domains together with their sub-domains awnponents and controllers used in their
membranes form a modular and extensible framevwawlkit for the construction of ECA rule-based
autonomic architectures which is part of the Seléa@ecision service.
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