

Livrable Selfware SP1

Lot 2, November 27th, 2007

Selfware Common Services for Self-Management

Authors

Fabienne Boyer (INRIA/Sardes)
Thierry Coupaye (France Telecom)
Pierre-Charles David (LINA/EMN)
Bruno Dillenseger (France Telecom)
Daniel Hagimont (IRIT/ENSEEIHT)
Thomas Ledoux (LINA/EMN)
Marc Léger (France Telecom-EMN)

Version 1.0

Contents
1 Introduction 3
2 Selfware Design Principles 4

2.1 Managed Elements and Autonomic Managers ... 4
2.2 Common Services ... 4

3 Organization of the document 6
4 Services associated with managed elements 7

4.1 Building Managed Elements... 7
4.1.1 Wrapping principles 7
4.1.2 Wrapping Description language 8

4.2 Deploying Managed Elements.. 9
4.2.1 Deployment System Architecture 9
4.2.2 Configuration and Deployment Description 10

ADL 10
Scripts 11

4.2.3 Deployment Engine (Selfware Boot) 12
4.2.4 Targets (Selfware Nodes) 12
4.2.5 Deployment 12
4.2.6 Component Updates and Undeployment 13

4.3 Allocation of nodes to Managed Elements ... 13
4.4 Navigation and Configuration of Managed Elements.. 14

4.4.1 Objectives 14
4.4.2 Manipulating Fractal Components using FPath and FScript 14
4.4.3 Integration in the Selfware platform 15

4.5 Monitoring Managed Elements... 16
4.5.1 Monitoring objectives 16
4.5.2 Probe components 17
4.5.3 Composite probes 18
4.5.4 Integration to the Selfware platform 19

4.6 Checkpointing Managed Elements ... 20
4.6.1 Objectives 20
4.6.2 Design Principles 21
4.6.3 Component creation 22

5 Decision support for autonomic managers 24
5.1 Introduction... 24
5.2 Decision making with active rules (ECA rules).. 24

5.2.1 Overview 25
5.2.2 Rule Definition Model 25

Event 25
Condition 25
Action 26

5.2.3 Rule Execution Model 26
Rule Execution Cycle 26
Execution units and execution points in component-based execution models 26
Rule Execution Dimensions 27

5.2.4 Architectural Integration 27
Architectural Design 27

6 References 29

1 Introduction

Autonomic computing, which aims at the construction of self-managing and self-adapting
computer systems, has emerged as an important goal for many actors in the domain of large scale
distributed environments and applications. This approach more precisely aims at providing systems
and applications with self-management capabilities, including self-configuration (automatic
configuration according to a specified policy), self-optimization (continuous performance monitoring),
self-healing (detecting defects and failures, and taking corrective actions), and self-protection (taking
preventive measures and defending against malicious attacks).

Following this approach, the Selfware project aims at providing an infrastructure for developing
autonomic management software. An important aspect of this infrastructure is the adoption of an
architecture-based control approach as described in the SP1-L1 document, meaning that the control
loops that regulate the system have the ability to introspect the current software architecture of the
managed system, as well as they have the ability to modify (i.e. reconfigure) this architecture.

The introspection and reconfiguration capabilities that can be invoked within control loops mainly
rely on the common services provided by the Selfware infrastructure. These services act on a managed
system. Examples of these services are a deployment service, allowing to deploy a managed legacy
software in a distributed environment, a monitoring service allowing to observe a given managed
element, or a scripting language allowing to dynamically explore the software architecture of a
managed system.

The objective of this document is to give details on the common services provided by the Selfware
platform. The following sub-section recalls the main design principles of the Selfware platform, and
then specifies the list of common services that are provided by this platform.

The software parts associated to the present document are available on the site
http://wiki.jasmine.objectweb.org/xwiki/bin/view/Main/WebHome.

2 Selfware Design Principles

This section recalls the main design principles of the Selfware platform, based on the notions of
Managed Elements and Autonomic Manager. Then it lists the set of common services that are
provided to Managed Elements and Autonomic Managers.

2.1 Managed Elements and Autonomic Managers

As detailed in the SP1-L1 document, the autonomic regulation provided by the Selfware
infrastructure on a managed system is based on managed elements (ME) and autonomic managers
(AM). A system managed with Selfware is more precisely constituted by a collection of managed
elements, that may consist of a single elementary hardware of software element, or may be a complex
system in itself, such as a clustered application server. A managed element provides sensor and
actuator interfaces respectively allowing to observe and manipulate it. Sensor and actuator interfaces
are used by autonomic managers, that regulate a managed system through feedback control loops. An
autonomic element is the ensemble including a set of managed elements controlled by autonomic
managers.

figure 1. An autonomic element

A main design choice is to rely on a component model for building both Managed Elements and
Autonomic Managers. The component model we use is Fractal [3]. A managed element is
implemented as a Fractal component that encapsulates a controlled legacy entity. In the same way, an
autonomic manager is a Fractal component that monitors a set of managed elements, analyzes
notifications coming from managed elements sensors, diagnoses the state of the system, decides on a
plan of actions and finally, executes the corresponding command plan.

2.2 Common Services
The common services provide a set of basic capabilities used by autonomic managers to perform
elementary configuration management functions, such as installing and deploying components on
nodes, or communicating with sensors and actuators. Common services are mainly built themselves
with components, which allows to consider them as managed elements in the managed system. The
main common services that are currently provided by the Selfware infrastructure are:

• The wrapping service, that allows generating the wrappers used to control legacy software.
• The navigation service designed to express queries on the managed system’s architecture.
• The reconfiguration service, used to define consistent reconfiguration on the managed

system’s architecture.
• The resource allocation service, that allows allocating resources (e.g. nodes) for the managed

system as well as for the management system.
• The deployment service, that aims at deploying both the managed system and the management

system on remote nodes.
• The monitoring service used to gather information on the managed system and to aggregate

these information to provide high-level events attached to more semantic.

• The system representation service, used to add reliability to the configuration actions
performed by the Autonomic Managers by replicating the critical components.

• The decision service used to implement the reactive part of autonomic managers.

3 Organization of the document
The rest of the document is organized as follows. Section 4 describe the main services that are
associated with Managed Elements, allowing to either to build, deploy, configure, or monitor them.
Section 5 focuses on the services that are more specifically associated with Autonomic Managers, and
puts an emphasis on the rule decision service. It should be noted that, as an Autonomic Manager is
also considered as a Managed Element, the services associated with Managed Elements also apply for
Autonomic Managers.

7

4 Services associated with managed elements

4.1 Building Managed Elements

4.1.1 Wrapping principles

Component-based management aims at providing a uniform view of an environment composed of
different types of software. Each managed software is encapsulated in a component and the overall
environment is abstracted as a component architecture. Therefore, deploying, configuring and
reconfiguring the environment is achieved by using the services associated with the used component-
based middleware.

The component model we used in Selfware is the Fractal component model [3]. A Fractal
component is a run-time entity that is encapsulated and has one or more interfaces (access points to a
component that supports a finite set of methods). Interfaces can be of two kinds: server interfaces,
which correspond to access points accepting incoming method calls, and client interfaces, which
correspond to access points supporting outgoing method calls. The signatures of both kinds of
interface can be described by a standard Java interface declaration, with an additional role indication
(server or client). Components can be assembled to form a component architecture by binding
components interfaces (different types of bindings exists, including local bindings and distributed
RMI-like bindings). An Architecture Description Language (XML based language) allows describing
an architecture and an ADL interpreter can be used to deploy such an architecture. Finally, Fractal
provides a rich set of control interfaces for introspecting (observing) and reconfiguring a deployed
architecture.

Any software managed with Selfware is wrapped in a Fractal component which interfaces its
administration procedures. Therefore, the Fractal component model is used to implement a
management layer (figure 2) on top of the legacy layer (composed of the actual managed software). In
the management layer, all components provide a management interface for the encapsulated software,
and the corresponding implementation (the wrapper) is specific to each software (e.g. the Apache web
server in the case of J2EE). Fractal's control interfaces allow managing the element’s attributes and
bindings with other components, and the management interface of each component allows controlling
its internal configuration state. Relying on this management layer, sophisticated administration
programs can be implemented, without having to deal with complex, proprietary configuration
interfaces, which are hidden in the wrappers.

figure 2. Management layer

Here, we distinguish two important roles:

1. The role of the management and control interfaces is to provide a means for configuring
components and bindings between components. It includes methods for navigating in the
component-based management layer or modifying it to implement reconfigurations.

Java EE management scenarios

 8

2. The role of the wrappers is to reflect changes in the management layer onto the legacy layer. The
implementation of a wrapper for a specific software may also have to navigate in the component
management layer, to access key attributes of the components and generate legacy software
configuration files. For instance, the configuration of an Apache server requires to know the
location of the Tomcat servers it is bound to.

However wrapping components are difficult to implement. The developer needs to have a good
understanding of the component model we use (Fractal), more precisely the programming interfaces of
the Fractal component model. Moreover, the implementation of a wrapping component is quite
systematic and should be simplified.

Our approach to this problem is to introduce a Wrapping Description Language which is used to
specify the behavior of wrappers. A WDL specification is interpreted by a generic wrapper Fractal
component, the specification and the interpreter implementing the wrapper. Therefore, the
implementation of a wrapping component is much simplified.

4.1.2 Wrapping Description language

A WDL description defines a set of externs which correspond to client interfaces of the wrapper
component, which can be bound with other components.

It also defines a set of methods that can be invoked to configure or reconfigure the wrapped
software. Generally, a WDL specification provides start and stop operations for controlling the
activity of the software, and a configure operation for reflecting the values of the component's
attributes in the configuration files of the software. Other operations can be defined according to the
specific management requirements of the wrapped software. These methods are implemented in Java
and can be reused in many cases.

The attributes of the wrapper component don't have to be declared in the WDL description, since
the generic wrapper provides a generic interface for the management of attributes.

An example of a WDL specification which wraps an Apache server in a J2EE infrastructure is
given hereafter. It defines an extern (workers) which generates the definition of a client interface that
can be used to connect the Apache server with some Tomcat servers.

It defines start and stop methods which can be invoked to launch/stop the deployed Apache
software, a configure_apache method which reflects configuration attributes in the httpd.conf Apache
configuration file, and a configure_workers method which implements the bindings with Tomcat
servers in the workers.properties Apache configuration file. Each method definition specifies the Java
class and method which implements it. The Java implementations of these methods are often generic
(e.g. ConfigurePlainText which managed an <attribute, value> configuration file) and have been used
in the wrapper definitions of many of the software we wrapped (we also had to add an implementation
of a configuration method for XML configuration files). A method definition includes the description
of the parameters that should be passed when the method implementation is invoked. These
parameters may be String constants, attribute values (attributes from the defined wrapper component)
or combinaison of both (String expressions).

In the WDL specification below, the start method takes as parameters the shell command that
launch the server:

o dirLocal is an attribute of the wrapper component and defines the directory where the software
is actually deployed on the target machine

o $dirLocal/bin/httpd is the name of the binary to be launched

o $dirLocal/conf/httpd.conf is the name of the configuration file which is passed to the binary
and which is generated by the configure_apache method of the wrapper

<?xml version='1.0' encoding='ISO-8859-1' ?>
<wrapper name='apache'>
 <extern name="workers"/>

Java EE management scenarios

 9

 <method name="start" key="appli.wrapper.util.Gene ricStart"
 method="start_with_pid_linux" >
 <param value="$dirLocal/bin/httpd -f $dirLocal/co nf/httpd.conf "/>
 </method>
 <method name="configure_apache" key="appli.wrapper .util.ConfigurePlainText"
 method="configure">
 <param value="$dirLocal/conf/httpd.conf"/>
 <param value="ServerRoot:$dirLocal" />
 <param value="Port:$port"/>
 <param value="User:$user"/>
 <param value="Group:$group"/>
 <param value="ServerAdmin:$serverAdmin"/>
 </method>
 <method name="configure_workers" key="appli.wrappe r.util.ConfigureWorkers"
 method="configure">
 <param value="$workers.nodeName"/>
 <param value="$workers.workerPort"/>
 </method>
 <method name="stop" key="appli.wrapper.util.Generi cStop"
 method="stop_with_pid_linux" >
 </method>
</wrapper>

figure 3.A WDL specification

The configure_apache method is implemented by the ConfigurePlainText Java class. This
configuration method generates a configuration file composed of <attribute,value> pairs:

o $dirLocal/conf/httpd.conf is the name of the configuration file to generate

o the attributes and values are separated by a ":" character

The configure_workers method is implemented by the specific ConfigureWorkers Java class. This
configuration method generates a configuration file which describes the bindings between Apache and
Tomcat servers. In this method, it is necessary to navigate in the deployed component architecture to
find the Tomcat servers the Apache software is bound with:

o $workers.nodeName returns the names of the nodes hosting a Tomcat server which the
Apache server is bound to (a list of names separated by commas is returned). workers
corresponds to a Fractal client interface which references the Tomcat servers (their wrappers).
nodeName is an attribute defined in all the wrappers, which gives the machine hosting the
software.

o $workers.workerPort similarly returns the ports on which the Tomcat servers are receiving
requests.

4.2 Deploying Managed Elements

This section describes the deployment service provided in Selfware, including the architecture of
the deployment system, the deployment process and the bootstrapping of the platform.

4.2.1 Deployment System Architecture

Deployment in Selfware is architecture-based. It means that given a description of the software
architecture, Selfware is capable to install, instantiate and run software components described by this
architecture. Moreover, the deployment system allows for component versioning and dynamic updates
-- several versions of software components can coexist on Selfware's target nodes, components can
also be replaced with new versions. The following figure presents the general architecture of the
Selfware deployment system which is composed of four principal elements: (1) The configuration and
deployment description, (2) The deployment engine, (3) The targets and (4) The package repository.

Java EE management scenarios

 10

figure 4.The Selfware Deployment System

Several entities of the Selfware deployment system can be mapped, in terms of functionality, to
the abstractions defined by the OMG Deployment and Configuration specification. Below we describe
in more details all of those elements.

4.2.2 Configuration and Deployment Description

Configuration and deployment description is an input for the deployment system. It contains all
the information needed by the deployment system to deploy a given Selfware-enabled application. A
minimum set of such information is the following:

• Architecture of the application to be deployed i.e. components and their relation in terms of
hierarchy and interconnections

• Configuration of the components --- values of their attributes
• Placement information, i.e. on which machine which component is to be deployed, or certain

constraints on component co-location, without explicit information on the target nodes
• Packaging information, i.e. in which software package contains the code and other resources

needed by given component

At present there are three ways to describe a deployment configuration for Selfware --- via the
Architecture Description Language, via BeanShell commands or using FScript.

ADL

Selfware Architecture Description Language (ADL) is an extension of the Fractal ADL. Therefore,
it is XML-based and provides a static description of the system we want to deploy. Below is an
example of a Selfware deployment file:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE definition PUBLIC "-//objectweb.org//DTD Fractal ADL 2.0//EN"
 "classpath://fr/jade/service/deployer/adl/xml/jad e.dtd">

<!-- ================================== -->
<!-- J2EE ARCHITECTURE -->
<!-- ================================== -->
<definition name="J2EE">
 <interface name="service" ole="server" signature= "fr.jade.service…/>

 <!-- START -->
 <component name="start" definition="fr.jade.resou rce.start.StartType">
 <virtual-node name="node1" />
 </component>

 <!-- APACHE -->
 <component name="apache"
 definition="fr.jade.resource.j2ee.apache. ApacheResourceType">
 <attributes

Java EE management scenarios

 11

 signature="fr.jade.fractal.api.control.GenericAtt ributeController">
 <attribute name="resourceName" value="apache" />
 <attribute name="dirLocal" value="/tmp/j2ee" />
 <attribute name="user" value="jlegrand" />
 <attribute name="group" value="jlegrand" />
 <attribute name="port" value="8081" />
 <attribute name="serverAdmin" value="julien.l egrand@inrialpes.fr"/>
 <attribute name="jkMounts" value="servlet" />
 </attributes>
 <virtual-node name="node1" />
 <package name="Apache Wrapper" />
 </component>

 <!-- TOMCAT -->
 <component name="tomcat"
 definition="fr.jade.resource.j2ee.tomcat.Tomcat ResourceType">
 …
 <package name="Tomcat Wrapper" />
 </component>

 <!-- MYSQL -->
 <component name="mysql"
 definition="fr.jade.resource.j2ee.mysql.MysqlRe sourceType">
 …
 </component>

 <!-- BINDING -->
 <binding client="this.service" server="start.serv ice" />
 <binding client="apache.worker" server="tomcat.re source" />
 <binding client="tomcat.jdbc" server="mysql.res ource" />
 <binding client="start.rsrc_mysql" server="mysq l.resource" />
 <binding client="start.rsrc_tomcat" server="tomca t.resource" />
 <binding client="start.rsrc_apache" server="apac he.resource" />
 <virtual-node name="node1" />
</definition>

figure 5.A simple ADL description of a J2EE architect ure

The description above defines a simple 3-tier J2EE architecture, which is built by Apache, Tomcat
and MySQL servers. As specified by the virtual-node tag, each of the tiers should be deployed on a
separate target machine. The virtual-node tag provides only collocation information, i.e. it does not
provide information on the exact name or IP address of the target machine, but only says which
components should be placed together, and which should not.

The only "dynamic" aspect of this description is the order in which the tiers are started. MySQL
needs to be started before Tomcat, which in turn needs to be launched before the Apache server. Since
Fractal by default does not allow to specify the order in which components are started, Selfware uses a
specific component, called start, to achieve this goal. The start component launches all the components
bound to it in an order equal to the one of bindings. Therefore, in the example above, starter will first
launch MySQL, then Tomcat and finally Apache.

Information about component packages is provided through the package XML element. Each
component specifies zero or one package elements, which are String package identifiers. Depending
on the implementation of the package repository from which the packages are obtained, package
identifiers can have different forms. At present we reuse the identifiers from OSGi Bundle Repository
(OBR), as will be explained later in this chapter. The rest of Selfware ADL is the standard elements
found in Fractal ADL.

Scripts

Selfware supports not only ADL-based but also script-based deployment through FScript. Using
scripts and an interactive console is interesting especially when a human administrator needs to
introspect or modify the architecture of a component-based application. ADL-based deployment, on
the other hand, is more adapted for the initial deployment of the system.

Java EE management scenarios

 12

4.2.3 Deployment Engine (Selfware Boot)

The deployment engine is an application which given the deployment description file or FScript
command as an input is capable to install, instantiate, configure and start or update components. In the
current implementation, the deployment engine is a largely modified Fractal ADL factory that consists
of three composite components: (1) loader, (2) compiler and (3) backend each of them containing a set
of primitive components. The loader composite component is responsible for verifying the correctness
of the Selfware deployment file. Compiler component creates tasks that are executed by the backend
component. The compiler component consists of several primitive components, which are executed in
the top-down order, therefore the package compiler for example is executed before the type compiler.

Parsing of the ADL or the interpretation of the FScript commands is performed on a single
machine, called Selfware Boot. This is because it does not seem interesting to have a distributed
application for this task. However, once the deployment information has been parsed, the rest of the
deployment process is distributed -- the communication between Selfware Boot and target machines
(called Selfware Nodes) is performed over a specific, component based implementation of RMI, called
the FractalRMI.

4.2.4 Targets (Selfware Nodes)

Targets, also called Selfware Nodes, are machines on which the components can be deployed.
Every Selfware Node contains a Fractal factory which is remotely used by Selfware Boot to instantiate
components. The most important functionality provided by the targets is support for component
installation, instantiation, versioning, updates and removal.

To provide this functionality in the current implementation of the Selfware deployment system,
target nodes use OSGi. OSGi provides a layer between a Java Virtual Machine (JVM) and a Java-
based application. This layer manages how software modules (called bundles) are installed in the file
system and how they are loaded by Java class loaders. In our work OSGi [10] provides the
functionality that we require in terms of component versioning and dynamic updates. It also gives us a
standard packaging format and a simple package repository, in which component packages are stored,
from which they are downloaded in order to be installed on Selfware Nodes, and where inter-package
dependencies are resolved. OSGi packages, called bundles are jar files with a specific manifest files,
which allows bundles to specify import/export dependencies. Those dependencies exist when two
bundles need to use same classes. Since each bundle has its own class loader, without import/export
declarations ClassCastExceptions would occur anytime one bundle would try to use code from another
bundle.

Selfware currently uses Felix as an implementation of the OSGi specification. Felix implements
the OSGi R4 specification, thus the most recent one at the time of writing of this document.

4.2.5 Deployment

Once the Selfware Boot is given a description of the application to be deployed, it starts parsing it.
First it verifies that the description is correct in terms of, for example, compatibility of component
interfaces. It also verifies that there is sufficient amount of Selfware Nodes available for allocation. If
any of these verifications fail, the whole deployment process fails.

If the verification is correct, Selfware Boot creates tasks, responsible for the allocation of nodes,
installation of software packages, creation of the type of components, instantiation of components,
binding them etc. Clearly those tasks have dependencies in terms of order of execution --- nodes need
to be allocated before software packages can be installed, installation has to be performed before
component types can be created etc.

Once the tasks have been created and scheduled, they are executed. Here is a description of some
of the tasks, in their order of precedence.

• Virtual Node Creation Task: creates a virtual node.
• Install Package Task: installs a given software package on a given virtual node.

Java EE management scenarios

 13

• Create Component Task: creates a Fractal component on a given target machine, once the code
needed to do it was installed.

4.2.6 Component Updates and Undeployment

Updates and undeployment of application components are important mechanisms that the targets
have to provide to application managers. Components may need to be updated because they are buggy,
their performance is insufficient or simply a new version of the component's code was released.
Similarly, components may need to be undeployed because they are no longer needed or because the
system adapts itself to a decreased load. These operations need to be performed "cleanly", namely the
undeployed component should be completely removed from the target machine.

To describe how Selfware handles component updates, we assume that the management software
initiates the reconfiguration. We assume that a manager has a reference to a component that it wants to
redeploy. Moreover, the manager knows about the new package containing this component code. For
example, it received a notification about the new version of this package available in the package
repository. Consider a composite component C1 composed of two primitives C2 and C3, both bound
at runtime. The reconfiguration steps are as follows:

• The manager calls the Component update(ComponentDescription newComponentDesc,
PackageId newPackageId) method on the C3 component, passing the component description
and the new component package ID as an argument. The ComponentDescription in our
Fractal-based implementation is the Fractal component type and the name of the component
implementation class.

• This results in C3 contacting the Generic Factory that created it and calling this
factory.update(ComponentId self, PackageId newCodePackage) method.

• The Generic Factory deploys the new component, generates a componentId, and returns it to
the manager.

• The manager unbinds the old component from the other components and removes it by
invoking the remove(componentId) method on C1, the composite. C1 forwards this method
call to the Generic Factory that created it.

• The Generic Factory maintains a mapping between each componentId and its packageId.
Every component maps to exactly one package. The Generic Factory obtains the component
old packageId to remove it and invokes the markUnused(packageId) method on the Installer
component.

• The manager now adds the new component C3 (with the new implementation) to the C1
composite, binding the new version of C3 to other components and managing its life cycle.

4.3 Allocation of nodes to Managed Elements

Deploying a component implies the allocation of a node satisfying the component’s constraints in
terms of resources requirements. The allocation service may take into account several kinds of
properties like the memory size of the hosting node, its CPU speed, etc. Locality constraints between
different nodes may also be taken into account in order to place some components close to each other.
In the current Selfware infrastructure, the Allocation service only takes into account closeness
constraints. It is based on the virtual-node property described in the ADL file of the application to
manage.

The Allocation Service has the knowledge, at any instant, of the nodes that are used (i.e., that are
hosting some part of either the managed application or the managed system itself) or free. When a new
component has to be deployed on a given virtual node that is not already associated to a real node, the
Allocation service searches for a free node, and then registers the association between the virtual node
and the real node. A node may return to the free state when no more management or application’s part
is running on it.

Any node may join the Selfware infrastructure at any time, by getting the location of the Selfware
Boot node, and then calling a registration method on this node. In contrast, a node is not supposed to

Java EE management scenarios

 14

leave the Selfware infrastructure at any time, but only when it is in the free state. Finally,
unanticipated leavings of nodes are managed as hardware faults, by the Repair service.

4.4 Navigation and Configuration of Managed Elements

4.4.1 Objectives

Selfware's targeted applications include legacy systems, which by definition present a large variety
of forms and functionalities. In order to keep the core of the Selfware platform independent of specific
technologies, the managed elements themselves all present the same uniform interface to the platform.
Concretely, Fractal wrappers are built using the techniques presented in the previous section. These
wrappers expose the architecture and reconfiguration capabilities of the legacy systems in terms of the
Fractal component model, providing a powerful and uniform management interface to be uses by the
rest of the platform.

For example, an Apache HTTP server, although implemented in C and configured using text files,
is seen by the Selfware platform as a normal Fractal component, exposing its lifecycle and
configuration attributes through Fractal's standard interfaces (lifecycle and attribute controllers in this
case).

Once this wrapping is done, the Selfware platform can manipulate the managed elements using the
standard Fractal API. However, the relatively low-level nature of these APIs make it complex to write
reconfigurations: the resulting code is often very verbose and mixes high-level concerns with lower,
language-level « plumbing »1, making it difficult to write and to understand. Because even simple
reconfigurations can be so cumbersome to write, it is even more difficult to write reliable
reconfigurations, which handle appropriately all the corner cases and deal with unexpected errors. In
our context, the reliability of the reconfigurations is primordial, as they will be initiated automatically
by the platform, without human supervision. For administrators to leave the control of their
applications to an automated system, they must have the assurance that whatever it does it will not
"break" the managed system by putting it in an unusable state.

4.4.2 Manipulating Fractal Components using FPath and FScript

To overcome the difficulty of writing reliable Fractal reconfigurations, Selfware uses a Domain-
Specific Language (DSL) named FScript [5]. By focusing on a limited domain (introspection and
reconfiguration of Fractal architectures), FScript can provide better language-level support for Fractal-
specific concepts. In addition, we control the language's power of expression, semantics and
implementation, which make it possible to provide strong guarantees on the reliability of the
reconfigurations. Concretely, FScript is made of two parts:

• FPath, a DSL [9] for querying Fractal architectures. Its domain is restricted to the
introspection of architectures, navigating inside them to locate elements of interest by their
properties or location in the architecture. This focused domain allows FPath to offer a concise yet
powerful and readable syntax inspired by XPath [15]. FPath sees a Fractal architecture as a
directed graph. Nodes in the graph represent components, interfaces and attributes. Directed arcs
connect these nodes and indicate the relationship between the corresponding elements in the
architecture. For example, a node representing a composite component will be connected in the
graph by an arc named “child” to the nodes representing its direct sub-component (and vice-versa
with an arc named “parent”). Given this representation, an FPath query “walks” in the graph along
the relations represented by the named arcs to select the appropriate architectural elements. FPath
can be used by itself, without the rest of FScript, as a general navigation and query language for
Fractal.

1 The Fractal model introduces new concepts like components and interfaces, but most actual
implementations, including all the ones in Java, do not extend the host language with appropriate constructs. The
typical Java code using the raw Fractal APIs is full of downcasts and low-level objects and arrays manipulations.

Java EE management scenarios

 15

• FScript itself allows for the definition of complex reconfigurations of Fractal architectures.
FScript integrates FPath seamlessly in its syntax, FPath queries being used to select the elements
to reconfigure. By design, FScript is restricted to manipulating the architecture of Fractal systems
(structure, state and configuration), and nothing else. For example it has no support for invoking
the service interfaces of components (although these are visible). This restricted power ensures
that FScript programs can not execute ``dangerous'' and difficult to control code constructs
(infinite loops, I/O, etc.) as would be the case in a general-purpose scripting language like
BeanShell for example. One of the main contributions of FScript is to guarantee the reliability of
dynamic, distributed and concurrent reconfigurations in Fractal.To do this, FScript considers
complex reconfigurations as transactions. The FScript interpreter integrates with a transactional
monitor which gives a transactional semantics to the reconfigurations, following the standard
ACID properties (Atomicity, Consistency, Isolation and Durability). Indeed, reconfigurations may
be invalid and leave a system in an inconsistent state, i.e. no more available/usable from a
functional point of view. The execution backend automatically and transparently detects and
corrects errors to make the system fault-tolerant during reconfigurations. The ACID properties are
unifying concepts of transactions for distributed computation used for supporting concurrency,
recovery, and guaranteeing system consistency. To benefit from these properties, each top-level
FScript action and function is executed as a separated transaction which can be rolled back in case
of failure so that the system comes back in a consistent state.

4.4.3 Integration in the Selfware platform

FPath and FScript are used in the following ways in the Selfware platform (more specifically in
Jade).

FPath is used through its Java API in the implementation of the Jade platform itself and in the
JORAM wrapper components. Both the Jade platform and the Fractal components wrapping JORAM
make heavy use of Fractal's introspection features. Writing the required queries directly in Java can
result in complicated and sometimes brittle code, which can often be replaced by a single, one-line
FPath query (which is both more readable and robust). Before FPath was used, the original Java code
sometimes published directly in a shared registry the references to some components to avoid writing
the code required to find them again at some other point. Using FPath made is possible to remove
these references (basically global variables), keeping the global registry cleaner. For example, here is
the original code that finds all the JORAM servers deployed, written in pure Java:

private LinkedList<Component> getAllServers(){
 LinkedList<Component> res = new LinkedList<Compon ent>();
 NamingService ns= Registry.getRegistry(System.get Property("registry.host"),

 Integer.parseInt(System.getProperty("registry.por t")),
 this.getClass().getClassLoa der());
 for (String ref : ns.list()) {
 if(ref.startsWith("JoramServer_")) {
 Component server = ns.lookup(ref);
 try {
 server.getFcInterface("JoramServer-controll er");
 res.add(server);
 } catch (NoSuchInterfaceException ignored) { /* Not a server */ }
 }
 }
 return res;
}

This code assumes that all the servers are published in the Fractal RMI registry, under a name
which matches their Fractal name. The same code rewritten to use FPath looks like this:

// Custom FPath function defined in a separate file
function is-joram-server(c) {
 return starts-with(name($c),
 "JoramServer_") && $c/interface::JoramSer ver-controller];
}

Java EE management scenarios

 16

// Java code
private LinkedList<Component> getAllServers() {
 LinkedList<Component> res = new LinkedList<Compon ent>();
 Node start = fscript.createComponentNode(myself);
 String query = "./parent::*/sibling-or-self::*[is -joram-server(.)]";
 for (Node node : (Set<Node>) fscript.evaluateFrom (query, start)) {
 res.add(((NodeImpl) node).getComponent());
 }
 return res;
}

The resulting code is shorter, more readable, and does not rely on Fractal RMI to find the
components.

FScript is used to program reconfigurations of the architecture, including the deployment of
components in Jade Nodes, in place of ad-hoc BeanShell scripts used earlier. Once a Jade instance is
running (a JadeBoot and several JadeNodes), the interactive FScript console can be used to interact
with the remote components using Fractal RMI. The console can then be used to navigate inside the
platform and managed elements (using FPath queries), and to invoke programmed reconfigurations of
their architectures (using FScript scripts). The same FScript scripts can also be invoked automatically
as part of an autonomic response of the Selfware platform. Previously, Jade used BeanShell2 scripts
for this. Although BeanShell is more lightweight and dynamic than Java, it is still a general purpose
language, with no direct support for Fractal-specific concepts, and none of the guarantees offered by
FScript regarding the reliability of the reconfigurations. Because both BeanShell and FScript interact
with the platform through Fractal RMI, they can be used at the same time, which is especially
important to provide an incremental migration path while BeanShell scripts are converted into FScript.

Other possible uses which are being investigated include writing the autonomic repair algorithm
which is integrated in Jade using FScript instead of Java. It is not yet clear whether FScript's power of
expression is sufficient to express the algorithm. Also, the interactions between the transactional
semantics offered by FScript and the repair feature must be investigated further: both features' goal is
to ensure the continuity of service of the managed application(s), but they are triggered by different
kinds of errors and use different (but related) techniques.

4.5 Monitoring Managed Elements

4.5.1 Monitoring objectives

With regard to the control loop principle the Selfware architecture is based on, the monitoring
service is in charge of getting data from ad hoc sensors associated to the Managed Elements, and to
make these data available for the decision function, namely the Autonomic Managers. These data
typically describe the dynamic state of the managed element rather than its static constitution (e.g. for
a computer, number of processors or memory size). However, changes may occur even to something
that would look like a "static constitution". For instance, some advanced computers may have a
varying number of processors and memory size. Such changes may be of interest for the autonomic
management features, and shall be taken into account by the monitoring service. There are actually
two kinds of data:

• plain measures of resource consumption (e.g. CPU time, free memory, database connection
pool usage, request queue size in an arbitrary middleware...);

• alarms that notify the occurrence of an event that is not necessarily measurable (e.g. a garbage
collector occurrence in a JVM, a node failure, etc.).

The monitoring feature shall be able to use both a push and pull model. The pull model is useful to
measure resource consumption at an arbitrary rate while the push model enables quickly delivering
alarms. Care should be taken not to overload the transport layer towards the decision function, or

2 BeanShell is a general-purpose scripting language for Java. It is very close to Java, but supports a more
interactive and dynamic usage.

Java EE management scenarios

 17

overwhelm the decision function itself, by a huge flow of measures and alarms. For this reason, the
monitoring service shall be able to provide statistically condensed measures. However, the decision
function may be interested in getting detailed information and accessing to all measures in a given
time frame or from a given starting date. So, the monitoring service shall also provide a dynamically
enabled or disabled memory. Since the monitoring service is supposed to be on during all the lifetime
of the autonomic system, this memory feature shall be enabled in a reasonable way so that the
corresponding amount of storing space does not endlessly grow.

The monitoring service relies on components that observe a given resource, namely probes. In the
following, we describe the architectural description of these probes in two steps:

• basic probes that provide the monitoring service;
• an extension of the basic probes to introduce probe sharing and aggregation through a

composite probe architecture.

4.5.2 Probe components

Basically, a probe is a component with an autonomous activity for observing and getting measures
from the resource it observes. This activity is controlled accordingly to the lifecycle specification
depicted in figure 6.

figure 6. Lifecycle of probe components

A probe component first exists in the deployed state. It is typically initialized and started, and then
possibly suspended and resumed. The end of activity is depicted as a pseudo state that actually
represents three states:
• aborted means something did wrong and the probe could not achieve what it was supposed to do

(i.e. either its computation or a lifecycle transition request);
• completed means the probe normally terminated its activity;
• stopped means that the blade did not reach the end of its activity, but simply conformed to the stop

lifecycle transition request.

Once the end of activity has been reached, the blade activity may be rerun after an initialization
step. Suspend and resume requests may be useful when some faults have been detected or some
reconfiguration is under way, in order to avoid getting meaningless measures and possibly bursty
generations of alarms. Suspending a probe is also a way to check the disturbance caused by its
activity.

We now go into the details of the basic probe component architecture using the Fractal model.
This architecture comes from the CLIF [7] load testing framework's so-called blade architecture,
hence the frequent use of "blade" in the terminology. As shown by 0, the probe component type
consists of three mandatory server interfaces (namely Data_collector_administration,

aborted

initialized

runningsuspended

stoppedcompleted

deployed

successful init()

stop()init() failure

successful start()

stop()

successful suspend()

successful resume()resume() failure

start() failure

stop()

stop()

completionfailure

init() failure successful init()

Java EE management scenarios

 18

Storage_proxy_administration and Blade_control) and one mandatory client interface
(Supervisor_information).

figure 7. Fractal-based architecture of basic probe s. The probe's activity consists in getting informa tion
from the resource it is observing.

Interfaces Blade_control and Supervisor_information are tightly coupled because most of probe
activity control operations (init, start, stop, suspend...) are asynchronous: the call returns as soon as the
operation processing starts. Once the operation is terminated, a call-back operation from interface
Supervisor_information is used to inform the supervisor component about the actual probe state. The
reason for asynchronous operations in probe activity control is that we consider scalability issues. A
typical usage of activity control operations is to simultaneously initialize, start, suspend, etc. a whole
set of probes. We could implement asynchrony at the supervisor's side, simply by using parallel
threads calling activity control operations and waiting for operation return. But, first, this could
introduce a possible high overload on the supervisor if you consider large scale systems (hundreds of
probes or more). Second, we still need a call-back operation to give feedback about the probe state at
least for states aborted and completed. As a result, we'd rather introduce asynchronous operations and
a unified way of providing the supervisor with feedback information about probes states. At last,
interface Supervisor_information provides an operation to notify arbitrary alarm events to the
Supervisor. Interface Blade_control offers two extra operations, respectively to consult and modify
specific properties. These properties include the activation or deactivation of the memory of the
various events (measures, lifecycle, alarms) it generates.

Interface Data_collector_administration provides statistical data about the probe – typically about
the measures obtained from the resource it observes. These data are represented as an array of integer
values. It may look like an arbitrary limitation not to be able to deliver other data types, but it is
actually a pragmatic choice that is directly inspired by the LeWYS project [4]. This choice seems
particularly relevant to monitor such things like CPU usage percentage, free memory, average
throughputs and response times, etc. In a general way, we consider that for other needs than numerical
monitoring resource usage, alarms are a good way of notifying probe events holding data of arbitrary
type. For instance, a node failure would be typically notified through an alarm.

Interface Storage_proxy_administration is bound to the storage proxy role played by the probe, to
enable possible buffering and final collection of probe events. This interface provides methods to
possibly allocate a buffer for a new run, and to collect events.

4.5.3 Composite probes

The basic probes described above are primarily designed to be used in a single level, as a flat
layer: each probe is managed one by one and monitors one resource. For both scalability and
convenience reasons, it appears useful to be able to compose these basic probes into composite probes
whose data don't come from a resource observation, but from a set of other probes, whatever they are
basic or composite (see figure 8). Here, the idea is to take advantage on the Fractal model's support for
component hierarchy and sharing to be able to:

• obtain as many measures as possible from a minimal set of basic probes, with an adaptable
level of details and different aggregated values;

• transparently manage a whole hierarchy of probes through a single composite probe.

Blade control

Data collector administration

Storage proxy administration

Supervisor information

Activity control
(init, start, stop, suspend...)

"Progress" statistical data for
monitoring purpose

Management of local events
buffering and collection feedback information about

blade status (initialized,
running, suspended...) and
alarms

activity

mandatory server interfaces

mandatory client interface

Java EE management scenarios

 19

figure 8. General view of a composite probe hierarc hy.

Let's take the use case of monitoring the system load of a clustered computing system (see
 figure 9). For each cluster node, a basic probe is necessary to observe the CPU load and the memory
usage. Other system resources could be added to this use case: network bandwidth, disk transfer rate,
etc. Now, getting all the measures from all these basic probes, as well as managing all these probes, is
quite cumbersome. Conversely, composite probes enable getting a global system load indicator for the
cluster obtained through a single probe that transparently handles control operations for the underlying
sub-probes. Then, the global system load probe may be based on individual system load probes that
aggregate measures from basic probes (CPU, memory). Finally, component/probe sharing enables an
arbitrary number of different aggregations, such as the global cluster CPU load indicator provided by
the cluster_CPU composite probe.

figure 9. Sample composite probes hierarchy for moni toring a clustered system

4.5.4 Integration to the Selfware platform

First, these probes are Fractal components, which is key to an easy integration to the Selfware
platform. They will straightforwardly benefit from the deployment service. Then, they shall be slightly
extended to become Managed Elements, in order to benefit from the Selfware autonomic features,

B1

C2 C1

C3 C4

B2 B3 B4

Managed System

C

B Basic Probe

Composite Probe

Monitored Resource

Data Flow

Control Flow

client

client

cluster

system2 system1

%CPU

%CPU user

%CPU kernel

% used ram

used ram [MB]

cached [MB]

buffers [MB]

% used swap

used swap [MB]

%CPU
%used RAM

cpu2 memory2 cpu1 memory1

cluster_CPU

%CPU

%used RAM

%CPU
%used RAM

%CPU

Java EE management scenarios

 20

such as self-repair (replace a faulty probe) or self-configuration (e.g. increase or decrease the sampling
rate or measurements).

The link between Autonomic Managers and probes can be either direct, through plain Fractal RMI
bindings, or indirect through some communication element dedicated to the transport of measures and
commands. The main reason for using an intermediate element is both for fault tolerance and
scalability issues:

• a node that is becoming unreachable must not result in a global freeze of every communication
between AMs and probes;
• a large-scale system results in a huge number of probes that requires a special communication
hierarchy (that can be addressed also by the composite probe architecture presented above).

This element could be introduced through a plain communication component, or through specific
Fractal bindings. This point will be refined in the second version of Selfware's architecture, once we
get feedback from experiences with the first version.

4.6 Checkpointing Managed Elements

4.6.1 Objectives

The main objective of the SR (System Representation) Service is to maintain a causally connected
representation of the overall Selfware management system, including both its autonomic managers and
its managed elements. The term causal connection means that relevant changes occurring in the
management system are mirrored in the system representation and, conversely, that any changes in the
system representation are reflected in the actual evolution of the management system.

The overall Selfware management system is built with Fractal components. In the case of the
management of legacy software, the managed elements are components wrapping the management
interface of the legacy into a uniform management interface defined by Selfware, as described in the
SP1-L1 document. The System Representation is also composed of Fractal components, that exhibit a
configuration state isomorphic with the configuration state of the actual management system. The
notion of configuration state more precisely includes the components name, attributes, bindings,
compositions, and lifecycle states.

All these aspects are isomorphic in the component-graph provided by the System Representation
and in the component-graph corresponding to the Selfware management system, resulting in a dual
architecture as illustrated by the following Figure.

figure 10. Duality between the Management Layer and the System Representation

The causal connection between the Selfware management system and the SR (System
Representation) is managed on a per-component basis. Any SR-component (meaning a component
belonging to the System Representation) is causally connected to a component belonging to the
Selfware management system and reversely. We say that such components are duals of each other.

Java EE management scenarios

 21

Being given a component c belonging to the Selfware management system, and its dual in the System
Representation c’, the following properties are ensured by the SR service.

The causal connection is maintained as follows:
• On bootstrap of the Selfware management system, the System Representation contains an

architecture description of the system after initialization (including nodes that run the
management system with the components they contain).

• Any update of the configuration state of the Selfware management system (e.g., adding a new
node, deploying a new software element on a given node) is reported at the level of the System
representation, and reversely.

4.6.2 Design Principles

As said in [3], a Fractal component is a runtime entity that has one or more business interfaces, as
well as a predefined and extensible set of control interfaces. The control interfaces provide a meta-
level access to a component internals allowing for component introspection and intercession. These
interfaces are implemented by a set of extensible controllers. The main predefined Fractal controllers
are those dealing with the configuration state of a component:

• The Name controller allows setting and getting the Fractal name of a component.
• The Attribute controller allows setting and getting the exported attributes of a component.
• The Binding controller mainly allows binding and unbinding the client interfaces of a

component.
• The Content controller mainly allows adding and removing sub-components in a composite

component.
• The Life-cycle controller mainly allows starting and stopping the threads of execution in a

component.

The main design principles of the SR service are (1) to define an additional controller in charge of
managing the bijection between a component and its dual, and (2) to modify the existing controllers in
order to ensure that any configuration action performed on a component is reported on its dual.
Following these design principles, the business part of a Fractal component stays untouched by the SR
service that only deals with the control part (interface and implementation) of a component.

The modification of the pre-defined controllers is performed at two levels. First, the interfaces
provided by the controllers have been extended in order to support a notification protocol. For
instance, when a configuration action such as bind(..) is invoked on a component c, a corresponding
action bindNotify(..) is invoked on c’s dual component.

Second, the implementation of the controllers interfaces have been specialized in order to manage
the causal connection with the dual components. More precisely, each time a configuration action is
performed on a component, the controller performing this action has to perform an additional step that

Java EE management scenarios

 22

consist in notifying its “dual” controller. These design principles are illustrated in figure 11 and in
 figure 13.

figure 11. Controllers associated to the components managed b y the SR service

The specialization of the controllers implementation relies on the mixins technique used for
implementing Fractal controllers in an efficient and extensible way [14]. This technique allows adding
actions to be executed on behalf of a given control interface, in a very easy and incremental manner.

4.6.3 Component creation

In order to create components associated with a dual representation, a specific Fractal factory
component is provided by the SR service. This factory is called “Reflexive Bootstrap Component”,
and is itself a Fractal component associated with a dual representation that is called dual factory. Any
creation of a component c performed by such a factory is notified at the dual factory, that consequently
creates the dual component of c.

ReflexiveBootstrapComponent.newFcInstance(..):
 c = factory.newInstance();
 dualFactory = factory.getDual();
 dualc = dualFactory.newFcInstanceNotification(..);
 c.setDual(dualc);
 dualc.setDual(c);

figure 12. Actions performed at component creation time

More precisely, the reflexive bootstrap component performs the actions listed above when it is
asked for a component creation. It starts by creating a first component instance, and then it asks its
associated dual factory to create the component’s dual instance. Finally, it updates the dual references
of the created components.

Java EE management scenarios

 23

figure 13. Execution of a control method on a compon ent managed by the System representation

Java EE management scenarios

 24

5 Decision support for autonomic managers

5.1 Introduction

In the Selfware architecture, the Autonomic Manager is in charge of reacting when a defect is
detected in the Managed Elements it is responsible for. It actually implements the logic the self-*
features. The autonomic control loop starts with the monitoring function described in section 4.5, and
ends by acting on the Fractal system through reconfiguration actions that would be typically supported
as shown in section 4.4. In between, the decision making function may be integrated in a variety of
ways (see discussion in section 4.5.4), and may be based on a variety of decision subsystems, ranging
from basic algorithms hard-coded in a Java component, to a variety of artificial intelligence
techniques: rule engines, Bayesian networks, constraints solving, neural networks or genetic
algorithms.

Some existing works address various approaches for implementing decision module. Each solution
is effective for solving specific types of problems. Traditional solutions based on heuristics [11], [16]
aims to provides fast solutions for specific problems. Those fast solutions provide good result but have
a limited scope. Extends a heuristic is not obvious and could dramatically decrease 1/ its performance
2/its quality.

By the usage of policies or rules, it is possible to implement more flexible decision modules. Such
systems extends Policies Base Management Systems (PBMS) or Expert Systems. In the context of
Autonomic Computing, such approaches use Event-Condition-Action (ECA) solutions [1]. In this
situation, the decision module is composed by a set of rules. Each rule describes an action to execute
when certain events occurred on certain conditions. Those approaches are more declarative than
heuristics-bases solutions as they often use a specific domain language to writes the rules. However,
those approaches have some limitations in certain environments. Some conflicts between rules could
occur when there is a certain overlapping in the source, or the target. Those limitations could be
minimized statically by providing some mechanisms in the languages or dynamically by observing
results after the execution of a rule. The inclusion of meta-heuristics or priority between rules is
another solution.

Last, approaches using Constraints Programming [trends, handbook] (CP) propose a more safe and
flexible approach. A constraint solver aims to find solutions to a problem that satisfy a set of
constraints. Those constraints are written by users. CP, by using propagation and pruning aims to solve
better solutions. However, considering the size of the search-tree, these solutions could not be as fast
as heuristic-based approach or PBMS.

Our goal is not to make a prescription on whether one technique is better than another one.
Although giving a classification of the best approach with regard to categories of autonomic features
and systems would be of major interest, we think that it is definitely out of reach for the Selfware
project, and probably for today's autonomic computing community. Our pragmatic goal consists in
beginning by trying a couple of decision-making techniques and to see how it can be integrated in an
AM of our architecture. This section will be extended in a second version, featuring in more details
other ways of supporting decision making.

5.2 Decision making with active rules (ECA rules)

Selfware deliverable SP1-L1 introduces the rationale and the main constituents of an active rule
service that allows for the use of active rules as a basic decision making mechanism in component-
based autonomic systems. SP1-L1 mentions major points that deserve a special attention: the design of
the rule model (both rule definition model and rule execution model) and its architectural integration.

Java EE management scenarios

 25

This section of SP1-L2 gives a more detailed view of the rule model and its architectural integration in
the form of an active rule service.

5.2.1 Overview

Reactive behaviour, the ability to (r)eact automatically to take corrective actions in response to the
occurrence of situations of interest (events) is a key feature in autonomic computing. In active
database systems, this behaviour is typically incorporated by Event-Condition-Action (ECA or active)
rules (when a specified event occurs, evaluate a condition predicate, and if true execute some action
operations).

The approach we propose consists in defining a mechanism for the integration of these rules in
component-based systems to augment them with autonomic properties. The contribution is twofold.

• First, the proposal of a rule model, i.e. a rule definition model together with a rule execution
model, that can be coherently integrated into a component model.

• Second, the proposal of a graceful architecture for the integration of active rules into
component-based systems in which the rules as well as their semantics (execution model,
behaviour) are represented/implemented as components, which permits i) to construct
personalized rule-based systems and ii) to modify dynamically the rules and their semantics in
the same manner as the underlying component-based system by means of configuration and
reconfiguration.

These foundations form the basis of a framework/toolkit which can be seen as a library of
components to construct events, conditions, actions, rules and policies (and their execution sub-
components). The framework implementation is extensible: additional components can be added at
will to the library to render more elaborate and more specific semantics according to certain
applicative requirements.

5.2.2 Rule Definition Model

The rule definition model specifies what are the form of events, conditions and actions considered
and manipulated by the active rule service.

Event

An event is a happening of interest at a given point in time. It is characterized by an event type,
i.e., an expression describing a class of significant occurrences of interest. The active rule service
considers the following event types: i) applicative which corresponds to inter-component interactions,
ii) structural which represents modifications (reconfigurations) of the structure (topology) of the
system, like adding or removing a component, or destroying or creating bindings between
components, iii) system-level which characterises events coming from the external or underlying
environment or context of execution (e.g. JVM and OS events).

In Selfware architecture, events (probes) are detected and notified by the monitoring service to the
rule service.

Condition

Conditions are optional and express additional constraints on the state of the system that must be
satisfied for the action part to be executed. Condition expressions (e.g. whether an attribute's value is
bigger than a particular value or not) are boolean expressions built using logical operators.

More complex expressions can be formed based on queries on the structure of the (component-
based) system as well as on its behaviour. A query that selects the various components linked to a
particular one is one such example. In case of a complex query that does not return a boolean result,
the condition is considered to be true if the query returns a non-empty result.

In Selfware architecture, such conditions are expressed as FPath expressions and evaluated by the
FPath engine which is part of the Selfware navigation service.

Java EE management scenarios

 26

Action

The corrective (re)actions that the target system can be subjected to are expressed in the action part
of the rule. The event and condition parts of the rule serve to analyse the symptoms affecting the
system.

To rectify the anomalies, the action can range from simple parameterizations of component
attributes, for example, an increase in the size of a cache or pool, to complex structural reconfiguration
operations, which can include addition removal or replacement of one or several components. Other
types of actions can be envisaged, like external notifications, for example, an email or SMS
notification to an administrator. In Selfware architecture complex reconfiguration action plans are
expressed as FScript expressions and executed by the FScript (transactional) engine which is part of
the Selfware navigation service.

5.2.3 Rule Execution Model

Rule Execution Cycle

The entire execution of a single rule is comprised of the following phases and various states:
• Triggering and Event Processing Phase {R(E)}: this phase begins with the notification of the

event(s) that triggers ("wakes up") the rule. The notification is performed by the entity on
which the event occurs. It consists in processing the event(s) based on the various rule
execution parameters. The rule goes from the triggerable state to the triggered state.

• Condition Evaluation Phase {R(C)}: the second phase of the execution evaluates the condition
expression. If the condition is satisfied then the rule transits from the evaluable state to
evaluated state.

• Action Execution Phase {R(A)}: the last phase of the rule execution corresponds to the
execution of the action part of the rule. It takes the rule from the executable state to the final
state of executed state (generally confounded with the initial triggerable state), thus inducing a
positive feedback change in the system behaviour.

Execution units and execution points in component-b ased execution models

If active rules have an execution model (behaviour) of their own (cf. previous and following
paragraphs), the introduction of active rules in a system (be it a database or a component-based
system) has a non negligible impact on the behaviour of that system. Indeed, there exists a dependency
between the execution of the system and the execution of rules, for it is the former that triggers the
latter and also the two executions are interwoven/intertwined together.

A key difference between active database systems, where active rules have been extensively
studied, and active component-based systems, where we want to apply active rules, is that execution
models in active database systems are based on the central concept, that of transaction, which is
(generally) inexistent in component-based systems.

Transaction is a core and foundational concept of active database systems because, thanks to
transaction demarcations (start, commit, abort/rollback), they provide a natural and convenient
execution unit} for the execution of active rules. An execution unit specifies an interval (between two
execution points in a sequential flow or basically between two points in time) during which events can
be detected/notified to interested rules and rules can be evaluated and executed. On the one hand,
component-based systems generally do not consider transactions. On the other hand, the behaviour of
a component-based system generally refers to interaction through interfaces only, thanks to operation
invocation. Hence, we define the execution unit in component-based systems as delimited by the
interval between two execution points: the reception of an operation invocation on a server interface
and the emission of a response onto a client interface.

For method invocations on a component's functional interfaces (which produce applicative events),
and operations that modify the structure of the system (which produce structural events), we may

Java EE management scenarios

 27

signal two events: begin and end. Other forms of events (e.g. system events) can be integrated in the
model by considering that their begin and end events are merged (i.e. they both represent the same
execution point or point in time).

Rule Execution Dimensions

Based on these definitions of execution units and execution points, adapted from those in active
database systems, the approach for defining a rule execution model for autonomic component-based
systems consists in defining a set of dimensions with their possible values; together with a specific
(deterministic) behaviour/semantics to all combinations of dimensions and values. Indeed, the
condition of a triggered rule is not always evaluated immediately (hence the two separate states
triggered and evaluable; and a triggered rule with a satisfied condition is not always executed
immediately (hence the two separate states evaluated and executable.

When and how (e.g. immediately or later, in then same activity/thread that the operation that
generated the event or a new one, etc.) a rule is processed depends on the various dimensions of the
rule execution model (behaviour model). Of course, when multiple rules are concerned, which is the
case in real autonomic systems, an execution model also specifies when and how rules triggered
simultaneously (by same or different events). This is handled by rule execution strategies or policies
which basically specify the scheduling of rules (e.g. depth-first order, width-first order, flat order, by
cycles in sequential or parallel settings).

We do not detail these aspects here (interested readers may refer to N. Jayaprakash PhD thesis).
Roughly, the dimensions and values currently handled by the active rule service are the following:
execution mode: [immediate, delayed]; activity mode: [same, separate]; event processing mode:
[instance, set]; local execution strategy: [mixed sequential order and parallel]; Global execution
strategy: [flat, depth-first, width-first].

5.2.4 Architectural Integration

The architecture of an autonomic infrastructure based on active rules is inspired from the
fundamental management notion of domain [13] which consists in grouping the components on which
the various reactive operations can be carried out. A domain is:

• a unit of composition that enables logical structural partitioning of components in a system,
and

• a unit of control that defines the type of (reflexive) control performed onto these components.

The similarities between a Fractal component and the concept of domain suggest that a domain
can be aptly modelled as a Fractal component. To incorporate reactive behaviour, several types of
domains have been defined, each with a particular type of control unit applied onto its composition
unit. They are each represented by a Fractal component, known as active domain. The autonomic
infrastructure is formed by an assembly of such reactive domains - superimposed on the target system.

Architectural Design

The set of domains that form our autonomic infrastructure are listed below and their relationships
illustrated by figure 13.

• An Event (E) domain contains software entities where events of interest need to be detected
(generally applicative components). Its control unit is responsible for identifying the software
entities (components) that would belong to the content, instrumenting them appropriately and
processing the events on their occurrences.

• A Condition (C) domain contains software entities that represent the scope of the queries that
are to be evaluated. The functions of its control unit includes identifying the components that
would be in its jurisdiction, and evaluating queries on them.

• A Action (A) domain encapsulates software entities on which actions are to be executed. The
type of control enforced involves identifying the constituents of the domain's content and
executing the corrective operations on request.

Java EE management scenarios

 28

• A Rule (R) domain comprises of exactly one instance of the above 3 subdomains, i.e., Event,
Condition (optional) and Action. R's control unit is responsible for coordinating the execution
of its subdomains.

• The content part of Policy (P)domain is composed of Rule domains, and its control unit
possesses the rights to their execution.

• The entire control space is a single Policy Manager (PM) domain that contains all the Policy
domains with the sole functionality of coordinating the execution of individual rules.

figure 14. Hierarchical Domains

The detailed design and implementation of active domains cannot be detailed here (cf. N.
Jayaprakash PhD thesis work, [8]). It involved especially of careful design of components membranes
of active domains where some of them are 'classical' controllers (plain Java) when others are
themselves implemented as Fractal components where fine-grained reconfigurations are needed.
Active domains together with their sub-domains and components and controllers used in their
membranes form a modular and extensible framework/toolkit for the construction of ECA rule-based
autonomic architectures which is part of the Selfware decision service.

Java EE management scenarios

 29

6 References
[1] K. Appleby and S. Fakhouri and L. Fong and G. Goldszmidt

and M. Kalantar and S. Krishnakumar and D.P. Pazel and J. Pershing and
B. Rochwerger, Oceano-SLA based management of a computing utility, Proceedings of the
Integrated Network Management International Symposium, 2001

[2] Sara Bouchenak, Fabienne Boyer, Noel De Palma, Daniel Hagimont, Sylvain Sicard, and
Christophe Taton, JADE: A Framework for Autonomic Management of Legacy Systems, 2006

[3] E. Bruneton, T. Coupaye, J.B. Stefani. Recursive and Dynamic Software Composition with
Sharing. In International Workshop on Component-Oriented Programming (WCOP-02),
Malaga, Spain, June 02. http://fractal.objectweb.org

[4] CECCHET (E.) et al, Implementing Probes for J2EE Cluster Monitoring. Studia Informatica,
4(1), 2005.

[5] P.C.David, T. Ledoux, Safe Dynamic Reconfigurations of Fractal Architectures with FScript,
Proceedings of the 5th Fractal Workshop at ECOOP, Nantes, France, 2006

[6] Ada Diaconescu, Automatic Performance Optimisation of Component-Based Enterprise
Systems via Redundancy, in Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), Long Beach, California, USA, November 7-11,
2005

[7] Dillenseger (B.), Flexible, easy and powerful load injection with CLIF version 1.1. Fifth Annual
ObjectWeb Conference, Paris La Défense, January 2006.

[8] Jayaprakash, T. Coupaye, C. Collet (LIG), P.C. David (INRIA). Flexible Reactive Capa-.
bilities in Component-Based Autonomic Systems, International Conference on Autonomic
Computing and Communication Systems (Autonomics 2007)

[9] M. Marjan, H. Jan, S. Anthony, When and how to develop domain-specific languages, ACM
Computing Surveys, 2005

[10] OSGI Alliance. The OSGI Service Platform – Dynamic Services for networked devices.
http://www.osgi.org

[11] Ruth, P. and Rhee, Junghwan and Xu, Dongyan and Kennell, R.
and Goasguen, S., Autonomic Live Adaptation of Virtual Computational
Environments in a Multi-Domain Infrastructure, ICAC '06. IEEE International Conference on
Autonomic Computing

[12] Selfware Architecture, Livrable SP1-Lot1, August 2007
[13] Sloman M, Twidle K., Domains: A Framework for Structuring Management Policy, Chapter 16

of Nerwork and Distributed System Management, Addison Wesley, 433-453.
[14] Gary T. Leavens, Murali Sitaraman, Foundations of Component Based Systems, Cambridge

University Press, 2000
[15] World Wide Web Consortium, XML Path Language (XPath) Version 1.0, W3C

Recommendation, 1999
[16] Jing Xu; Sumalatha Adabala; Fortes, J.A.B, ICAC 2005..Second International Conference on

Autonomic Computing,

