Selfware : Lessons Learned to Build
Autonomic Systems

Abstract— Autonomic computing[14] aims at en-
abling computing infrastructures to perform admin-
istration tasks without (or with minimal) human
intervention. This paper reports the experience we
gained with the design and the experiments of Self-
ware, an architecture-based autonomic system. The
contribution of this paper is (i) to advocate the
use of a reflexive component-based approach for the
design of autonomic architecture-based management
systems, (ii) to present the design of three autonomic
control loop for self-protection, self-healing, and self-
optimization, and (iii) to report our experience and
lessons learned in their use for autonomic manage-
ment of web servers and message-oriented middle-
ware in cluster environments.

I. INTRODUCTION

The goal of autonomic computing [14] is to auto-
mate the functions related to system administration.
This effort is motivated by the increasing size and
complexity of systems and applications alike, which
has two direct consequences: the administration costs
are an increasing part of the total information system
costs, the difficulty of the administration tasks reach
the limits of what human administrators can handle.
Consequently, autonomic computing advocates self-
management capabilities.

In SELFWARE, we approach self-management
through an architecture-based approach where self-
management is about observing and evolving the
architecture of the managed systems. The role of auto-
nomic managers is to react to observed evolutions of
the managed system, re-architecturing it accordingly.
Our experience is that a reflexive component-oriented
approach is very effective for self-management capa-
bilities. SELFWARE uses components to capture the
traditional concept of managed elements but applies
component modeling to not only managed applica-
tions but also the architecture and behavior of the un-
derlying distributed system hosting these applications.
Legacy systems are wrapped as components to provide
reflexive capabilities over the legacy configurations
and a uniform management interface.

In other words, SELFWARE models and controls the
architecture and behavior of a complete distributed
system through a component-oriented approach.

In particular, SELFWARE also advocates the use
of component reflection as the foundation to support
the introspection and reconfiguration of the managed
distributed system. Through instrospection, autonomic
managers can not only observe the architecture of the
managed distributed system but also its runtime be-
havior, including for instance its dynamic performance
for detecting poor resource utilization or security-
related communication patterns for detecting intru-
sion. Through reconfiguration, autonomic managers
could manipulate the architecture of the managed
distributed system, including for instance the ability to
provide higher availability through replicating compo-
nents across nodes, or changing the overal Quality of
Service (QoS) by replacing certain components with
others that have different QoS characteristics.

SELFWARE advocates a minimal reflection on com-
ponents that offers a small but powerfull management
interface that capture traditional management aspects
such as configuration properties, bindings amongst
components and lifecycle.

We report here about our experience wrapping two
legacy distributed systems: a clustered multi-tiered
web server and a message-oriented middleware using
a snowflake distributed architecture. Wrappers have
been small and easy to write, only wrapping low-
level mechanisms, thereby easily enabling autonomic
managers to control these systems. We have ex-
perimented three managers, providing self-protection,
self-optimization and self-repair capabilities. It is our
experience that the development of such managers is
greatly simplified by not only an architecture-based
approach but also by our reflexive component-oriented
design.

This paper is organized as follows. In Section II,
we present Selfware design. In Section III, IV and
V, we present respectively our self-protection, self-
optimisation and self-repair managers. Section VI
gives feedbacks about our wrapping experiments and
our managers. Section VII present the related works.
In Section VIII, we conclude.

II. SELFWARE DESIGN

The design of SELFWARE follows an architecture-
based approach which enable a good level of gener-



icity. Indeed autonomic managers work on system’s
structure and configuration which are common con-
cepts to all legacy distributed systems. Thus a man-
ager observes and control the hardware and software
architecture of the distributed system it manages. In
other words, it needs to know about the managed
subsystems and the machines hosting them. It also
need to know the communication channels between
subsystems. This is achieved through the use of com-
ponents, in several steps.

First, legacy subsystems are wrapped by thin com-
ponents, called wrappers, that provide the ability to
remotely manage them. For instance, wrappers allow
to start-stop legacy systems individually as well as to
configure the communication channels they use.

Second, we designed SELFWARE itself using the
very same component model that where used for
writing wrappers, opening up the possibility of SELF-
WARE managing SELFWARE. Indeed, SELFWARE
does not only model and manage a distributed system,
it is a distributed system composed of both wrappers
and Selfware components which represent the internals
of SELFWARE. The architecture of both the managed
system and SELFWARE internals are represented in a
managed architecture that captures consistent archi-
tecture state and provides not only a full description
of the overall distributed system but also the ability
to reconfigure it entirely. Using this managed archi-
tecture, autonomic managers of SELFWARE introspect
the managed system, detect abnormal situations, and
correct them through reconfiguring the architecture.

A. Wrapping legacy systems

Wrapping legacy systems is the first step towards
self-management, bridging from the heterogeneous
world of legacy systems to the homogeneous world of
components. Each managed legacy system is wrapped
as one FRACTAL component [5]. Wrappers offer a
small but powerfull set of management operations
that empower SELFWARE to achieve many autonomic
behaviors such as self-protection, self-repair or self-
optimization.

Each wrapper supports both the introspection and
reconfiguration of the configuration it reifies. In partic-
ular, provides control over the lifecycle, the attributes,
and bindings of the legacy subsystem it wraps. The
lifecycle is about starting and stopping a wrapped
legacy system. The attributes capture, as key-value
pairs, the configuration data of the wrapped legacy
system, usually found in configuration files. In other
words, legacy systems are configured through setting
attribute values. Attribute values may be any value that

can be copied and serialized to an external format. At-
tribute values may be also names to outside resources
such as file names, database names, or URLs.

Bindings capture the presence of communication
channels between legacy systems. It is important
to point out that bindings capture the existence of
communication channels but they are not involved in
the actual communication. Wrapped legacy systems
continue to communicate directly as they would have
without being wrapped. Simply put, wrapper compo-
nents and bindings actually show the overall assembly
of legacy systems, as depicted in the bottom two layers
of the Figure 1.

We decided to use Java, exploiting the distributed
Java incarnation of FRACTAL. Indeed, wrappers are
co-located with their legacy systems since most man-
agement operations are better achieved locally, but this
means that wrappers are distributed across machines
as managed legacy systems are. Therefore, as remote
Java objects, wrappers provide a simple way for
SELFWARE to remotely manage legacy systems.

It is important to point out that wrappers must
adhere to a fail-stop semantic. Such semantic requires
not only wrappers to be fail-stop but also that failing
wrappers actually stop their wrapped legacy system
before they fail. Thus either a wrapper fully applyies
the new configuration to the wrapped legacy or both
are fail-stop. This semantic of the wrappers ensures
that failures during repair attempts do not compro-
mise the consistency between the configuration of the
legacy system and its reification at wrapper level. It
is our experience that such fail-stop assumption is
realistic and an important requirement to build self-
* properties.

Despite distribution, wrappers are simple Java com-
ponents that provides management operations through
a few set of Java interface. The implementations
of the corresponding methods is often reduced to
manipulating configuration files or launching already
existing scripts. For instance, wrapping the Apache
HTTP daemon relies on the start and stop scripts for
implementing the lifecycle operations.

B. Recursive design

A SELFWARE management system consists of
wrappers, autonomic managers and the managed ar-
chitecture.

The managed architecture (depicted in Figure 1)
provides the full description of the hardware and
software architecture of the managed system. In the
bottom two layers, the figure shows the managed dis-
tributed system, including hardware nodes, wrappers,
and bindings between them. At the top, the managed
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architecture captures that complex architecture, using
components. Hardware nodes are represented by node
mirrors. Besides capturing the description and state
of managed hardware nodes, node mirrors capture
the knowledge of the components installed on their
hardware node.

Wrappers are also represented by components,
called wrapper mirrors. The wrapper mirrors are
part of the managed architecture, entirely created
and managed by SELFWARE . The mirrors capture
the complete architectural state of their correspond-
ing wrappers, hence their name. In other words, for
each wrappers co-located with a legacy, one finds
a corresponding wrapper mirror in the architecture.
The architectural state captured by mirrors is directly
related to the management operations provided by
wrappers. It includes the knowledge of the lifecy-
cle status (started or stopped). It also includes the
knowledge of the attributes (key-value pairs). Finally,
it includes the knowledge of the current bindings
between wrappers.

Through mirrors, autonomic managers can both
introspect and reconfigure the architecture. By in-
trospecting, we mean that managers can access the
mirrors and therefore introspect the architectural state
they mirror. For instance, managers can know which
wrappers are deployed where, if they are started, and
what are the bindings that link them. By reconfigure,
we mean that autonomic managers can change any
aspect of the architecture they introspect. For instance,
managers can start-stop wrappers or change attributes.
They can also remove or create bindings between
wrappers. This is simply done through manipulating
the mirrors, using the management operations such

as start()lstop(), bind()/lunbind(), and setAttribute().
Such reconfigurations are done on the managed ar-
chitecture, manipulating components. Internally and
autonomously, SELFWARE will apply the reconfigu-
ration onto wrappers, themselves applying the man-
agement operations on the legacy systems they wrap.
In particular, a manager reconfigures the managed
architecture in an atomic session that it commits; the
actual commit of the session is the responsability of
the SELFWARE runtime. The commit must carry over
the reconfiguration from the managed architecture out
to the concerned remote wrappers. It is important to
point out that, when commiting, the reconfiguration
has already been successful on the managed architec-
ture.

Through node mirrors, managers can also control
the deployment of wrappers. Like any other com-
ponent, a node mirror may have bindings to other
components. For node mirrors, SELFWARE introduces
a deployment binding that carries the semantics of
deployment. Hence, to deploy a wrapper on a hard-
ware node, one only needs to bind a node mirror
to the corresponding wrapper mirror. This binding
tells SELFWARE to deploy the wrapper on the node
and to maintain the association between the deployed
wrapper and the wrapper mirror representing it in the
architecture. SELFWARE uses OSGI as its underlying
infrastructure to deploy Java components. For legacy
systems, SELFWARE provide some support and may
be able to deploy them as well, either through built-in
mechanisms or through standard installers. However,
in complex settings, manual installation is most often
required.

Our design suggests that SELFWARE itself is built
using the very same component model as the one used
to wrap legacy systems. In other words, the internals
of SELFWARE appear to SELFWARE as any other
managed distributed system: composed of components
providing the necessary management operations: life-
cycle, attributes, and bindings. The goal is to use
uniform Architecture-based concepts and API, based
on introspecting and reconfiguring the managed archi-
tecture. In other words, we want to be able to manage
identically either the managed distributed system or
the SELFWARE runtime itself.

Although they use the same component model, it is
important to distinguish between wrappers and SELF-
WARE components. Wrappers are Java components,
co-located with the legacy systems they wrap, but
wrappers are solely about providing remote manage-
ment operations on legacy systems. While SELFWARE
components are also Java components, they are no
longer wrappers of legacy systems but they are fully



functional components used to implement the internals
of SELFWARE . Although the goals and roles of
wrappers and SELFWARE components are different,
SELFWARE components and wrappers provide the
very same management operations, which enables a
uniform management.
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In particular, SELFWARE components are mirrored
in the managed architecture, as depicted in Figure 2.
The recursive nature of our design comes from that
very fact: the managed architecture mirrors itself.
The lower plane shows the managed system that
includes not only the wrappers as before but also the
managers (e.g. the repair manager) and the managed
architecture. The top plane represents the mirrors in
the managed architecture. We find the usual mirrors
for the wrappers. We also find mirrors for the com-
ponents implementing the managers and the managed
architecture itself. The recursion stops as we do not
mirror mirrors, but every component existing in SELF-
WARE has a mirror in the architecture, including the
ones used to implemented the managed architecture.
With this complete managed architecture, the same
repair algorithm can detect and repair failures of the
SELFWARE runtime as this will be explained latter.

III. SELF-PROTECTION

In the mid 90s, self-protection was approach as a
computer immune system, inspired by natural immune
systems that protect beings from foreign pathogens.
An immune system relies on a sense of self, that is,
the ability to detect the intrusion of foreign elements
through the distinction of self from non-self. Once an
intruder is detected, counter measures can be put in
place to destroy it or at least contain progression and
the damages it creates.

Our focus is on the needed low-level mechanisms
for a global autonomic self-protection in a cluster
environment and not on the development of new spe-
cific techniques for access control, intrusion detection,
or backtracking. In particular, we focus on generic
mechanisms that not only can recognize known and
unknown attacks but also are independent from any
specifics of wrapped legacy systems. Furthermore,
our mechanisms must ensure zero false positives as
counter measures are triggered autonomously.

We report here our work on detecting illegal com-
munication channels. Our approach uses the knowl-
edge of the application architecture as the deci-
sion knowledge for self-protection, detecting illegal
communication patterns and isolating compromised
components. This manager shows the interest of an
architecture-based approach for self-protection and
handles well the recursive challenge of self-protection:
the immune system protecting a computer system
may itself become the target of attacks. Since our
immune system is a SELFWARE manager, designed
using components, it can self protect through the same
approach.

A. Self-knowledge

In SELFWARE , self-knowledge is defined in
a legacy independent way since it is entirely
architecture-based. Focusing on illegal communication
channels, we need to have the knowledge of legal
components and legal communication channels be-
tween these components. The Managed Architecture
captures the necessary information. Remember that
Node Mirrors allow to discover which softwares are
running on cluster’s nodes and how these softwares
are interconnected. The bindings reify the TCP/IP
parameters involved by the communications. It is easy
to infer from the managed architecture which commu-
nication channels are legal between each nodes.

Indeed, any communication through a network con-
nection that does not corresponds to an existing bind-
ing between known components in the architecture is
considered an attack and must be blocked. This ap-
proach has no false positives if we assume an accurate
architecture, which SELFWARE provides if we assume
that only legal architecture manipulations are allowed.
To ensure this, all reconfiguration requests are au-
thenticated through asymmetric cryptography, making
sure only official autonomic managers are allowed to
reconfigure the architecture of the managed system
through the managed architecture. This prevents a
compromised component to manipulate the architec-
ture and breaking the invariant of our approach. From



this knowledge, attacks can be detected, as explained
below.

B. Protection mechanism

Our protection mechanism relies on managed fire-
walls, one such firewall running on each node of the
cluster. In our prototype, we used the netfilter firewall
that we wrapped so that it can be managed like any
other SELFWARE component. Firewalls are config-
ured automatically from the self-knowledge available
in managed architecture. Everytime this architecture
evolves, firewall configurations are updated accord-
ingly. This is done by the self-protection manager that
watch the Selfware architecture reconfiguration and
maintain the firewall configurations in sync using the
binding knowledge of the communication ports and
IP addresses of established communication channels
between managed components on the cluster.

When detected, illegal communications between
nodes are prevented by firewalls and the self-
protection manager is notified. Different policies may
be implemented; in our prototype, we chose to con-
sider the node from which the illegal communica-
tion originates as compromised. The rationale is that
only a compromised node in a SELFWARE -managed
cluster can attempt an illegal communication. The
self-protection manager will therefore reconfigure the
architecture in order to isolate the compromised node.

Figure 3 depicts such isolation of a compromised
node in the context of a multi-tiered application server.
The firewall on node 4 detects an illegal commu-
nication originating from node 5. It prevents it and
notifies the self-protection manager that reconfigures
the architecture in order to isolate node 5.

IV. SELF-OPTIMIZATION

In this section, we discuss the means of implement-
ing self-optimization in replicated cluster-based sys-
tems. Optimization is defined using two main criteria:
performance, as perceived by the clients (e.g. response
time) or by the application’s provider (e.g. global
throughput); and resource usage (e.g. processor oc-
cupation). One may then define an “optimal” region
using a combination of these criteria. Providing self-
optimization for a system consists in maintaining
the system in the optimal region, in the presence
of dynamic changes, e.g. widely varying workload.
Here, we consider implementing self-optimization us-
ing resizing techniques, i.e. dynamically increasing
or decreasing the number of nodes allocated to the
application.

A classical pattern for implementing scalable clus-
tered servers is the load balancer. In this pattern,

the server is statically replicated on start-up and a
load balancer is placed in front of the servers. The
load balancer aims at sharing the load between each
servers. A request can be handled indifferently by one
of the server. On a new request, one server run the
required service, ensures the consistency of its state
with the others servers and return the response to the
client.

Selfware aims at autonomously increas-
ing/decreasing the number of replicated servers
when the load varies. This has the effect of efficiently
maximizing servers utilization (i.e. no resource
overbooking) to ensure end user needs with no
human intervention required.

All start by a manager which detects the overload
or the underload of the clustered server and then
reconfigures the wrapper mirrors corresponding to
the legacy server replicas and the load-balancer. In
particular, the control loop has the following sensors
and actuators.

The sensor periodically measure the chosen perfor-
mance (or QoS) criteria, i.e. a combination of CPU
usage and user-perceived response time. A probe is
therefore deployed on each node to know the load of
each server. Each probe computes a moving average
of the collected data in order to remove artifacts char-
acterizing the CPU consumption. The sensor finally
computes an average load across all involved nodes
from probe’s reports, so as to observe a general load
indication of the whole replicated server.

Thanks to the uniform management interface pro-
vided by Selfware, the actuators are generic, since
increasing or decreasing the number of replicas which
belong to the replicated server is implemented as
adding or removing wrapper mirrors in the managed
architecture and binding/unbinding them from their
load-balancer.

In our experiments, the decision logic is based on
thresholds on loads provided by sensors. When more
replicas are required, the manager allocates an empty
node mirror, adds a new server mirror (The required
wrapper is therefore created on the corresponding
node) and integrates the new server with the load
balancer. Similarly, if the replicated server is under-
utilized, the main operations performed by the man-
ager on the managed architecture are to stop these
replicas, unbind them from the load balancer, and
release the nodes hosting these replicas if no longer
used.

It is important to point out that replicated server
may contain a state which must be consistent be-
tween each replicas. Applying a load balancing policy
without a mechanism to synchronize the state of the
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servers may lead to inconsistencies. In the case of
self-optimization, if the server part does not contain
a state, the sizing of the replicated server does not
induce any problem. In the case where the replicated
server maintains a state, it is the responsability of the
wrappers to drive the state synchronization between
replicas. In our experiments, this was very simple
because the legacy servers provide mechanisms to
synchronize the replicated servers between each other.
It is our experience that modern legacy servers that
conform to the loadbalancing pattern described above
provide such mechanisms. In particular this is the case
of replicated servlet containers, replicated JMS servers
and replicated database servers, where load balancers
(e.g. C-JDBC) play also the role of replication con-
sistency manager [7].

The self-optimization manager we have described
here can be used with any legacy server that conforms
to the given loadbalancing pattern. Indeed we reuse
the very same manager to control a cluster of database
and a cluster of tomcat servers. Whereas we do not
have experimented self-self-optimization on Selfware
itself, we could reuse the same manager for the
self-self optimization of a cluster of Selfivare. This
latter case requires Selfware internals to be replicated
following the same loadbalancing pattern. Instead we
choose to illustrate the self-self capabilities in the case
of the repair algorithm presented in the next section.

V. SELF-REPAIR

Self-repair is certainly one of our most advanced
autonomic manager in SELFWARE . It shows the
interest of our architectural concepts and recursive
design to provide self-self-repair. In other word, it

ensures not only the autonomic self-repair behavior
of managed applications but also it ensures the same
self-repair property for itself using the very same
algorithm.

A. Architecture-based self-repair

Our self-repair advocates an architectural recovery
process that, after a failure, re-establishes a valid
software architecture of the managed system.

Our current failure model is fail-stop model for
nodes. When one or more failures are detected, the
self-repair manager analyzes the failures by introspect-
ing the managed architecture and repairs these failures
by reconfiguring the architecture.

Remember that introspection and reconfiguration
happen in one session on the managed architecture
only capturing consistent architectural state atomi-
cally. At any time up to the final commit of the
session, the self-repair manager can abort the session.

During the analyzis step, the repair manager iden-
tifies the impacts of the detected failures, determining
the set of failed components that were lost due to the
node failures. Indeed, a single node may host many
components. This requires introspecting the managed
architecture in order to discover all the components
that were deployed on the nodes that failed.

Using the managed architecture, the self-repair
manager can not only know which wrappers have been
lost to the detected failures but also their complete
architectural state.

The repair policy ensured by our repair manager
is to substitute failed nodes by new ones from a
pool of available hardware nodes, reconfiguring these



new nodes exactly as the lost ones were configured.
This includes not only deploying wrappers and their
wrapped legacy systems but also reconfiguring wrap-
pers once deployed.

One important point is that the new node must be
chosen in a way that allows re-deployed legacy sys-
tems to still access their persistent states. The specifics
here are highly dependent on the kind of wrapped
legacy systems but remote database connections or
distributed file systems are possible examples of
mechanisms used to achieve this. In the architecture,
the necessary knowledge is captured through compat-
ibility tables between hardware nodes and wrapped
legacy systems. Choosing a node where to recreate
a component is therefore as simple as choosing a
compatible and available node in the compatibility
tables. Creating compatible nodes is pre-required work
from human administrators.

Recreating and reconfiguring lost wrappers is only
one half of the repair reconfiguration; the other half is
about cleaning up stale bindings before creating cor-
rect ones. This requires to compute the set of impacted
components. These impacted components are all the
components currently bound to a failed component.
The knowledge of impacted components enables the
self-repair manager to cleanup stale bindings leading
to failed components.

This cleaning up of stale bindings is simply done
by unbinding them in the managed architecture. When
applying these unbind operations, SELFWARE will
forward the unbind operations to the wrappers of
impacted components and they will request their
wrapped legacy to close stale communication chan-
nels. The creation of new bindings is also simply done
on the managed architecture. When applying these
bind operations, SELFWARE will forward these bind
operations to the wrappers of impacted components,
allowing wrappers to inform their legacy of the new
communication channels to use.

B. Recursive self-repair

Self-repair suggests a recursive design that exploits
the overall recursive design of SELFWARE , based
on components. The self-repair manager watches over
managed components and repairs them when a failure
is detected; but the self-repair manager itself needs to
be watched and repaired in case a failure affects its
operation. We term this the self-self-repair.

For self-self-repair, we need to add fault-tolerance
to both the self-repair process itself and the managed
architecture that is used by the self-repair process.

Indeed, SELFWARE can provide no continuous
self-repair and certainly no self-self-repair if SELF-

WARE fails. A recursive design alone does not prevent
SELFWARE from failing, it opens the possibility to re-
pair a failed SELFWARE runtime using the repair tech-
nics implemented by SELFWARE . This suggests our
solution: replicate SELFWARE to let valid replicas of
SELFWARE repair the failed replicas of SELFWARE .
The repair of SELFWARE is made easier because both
the managed architecture and the self-repair manager
are both developed as SELFWARE components.

Therefore using component-level replication, we
can replicate all SELFWARE components as depicted
in Figure 4.
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It is important to point out that replication only
concerns SELFWARE components; as aforementioned,
these SELFWARE components are the internals of
the managed architecture and autonomic managers.
Therefore, we neither replicate legacy systems nor
their wrappers. SELFWARE components are deter-
ministic and can therefore be transparently replicated
using an active replication scheme.

By being a replicated component, the self-repair
manager can self-repair itself. First, the self-repair
manager detects failures of replicas of itself. Second,
it is able to re-create failed replicas, like any other
component lost due to a failure. In doing so, the self-
repair manager maintains the cardinality of its own
replication, without human intervention.

Remember that the semantics of the wrappers en-
sures that failures during repair attempts do not com-
promise the consistency between the configuration
of the legacy system and its reification at wrapper
level. Being a replicated component, the managed
architecture is also guaranteed to resist node failures.
We also know that the managed architecture only cap-
tures consistent architecture state since it is updated
atomically.



The operating principle to gain self-self-repair ca-
pability can be summarized as follows. First, there
is one self-repair manager that uses one managed
architecture. Second, both are implemented as SELF-
WARE components that are transparently replicated by
SELFWARE . Replication provides a first step towards
self-self-repair; the second step is provided through
the ability of the self-repair manager to maintain
the replication cardinality. Third and final step, the
consistency of the whole architecture is ensured by
the atomicity of architecture reconfigurations.

VI. EVALUATION

We report here our experience in wrapping a multi-
tier application server and a Message-Oriented Mid-
dleware then we evaluate the intrusivity induced by the
Selfware management system as well as the efficiency
of the self-optimization and the self-repair managers.
These managers has been evaluated with the Rubis
application benchmark which implements an auction
site [1]. We used the Rubis 1.4.2 version of the multi-
tier J2EE application running on several middleware
platforms: Apache 1.3.29 as a web server [19], Jakarta
Tomcat 3.3.2 as an enterprise server [23], MySQL
4.0.17 as a database server [15], Tomcat clustering as
the enterprise server clustering solution [23], and c-
jdbc 2.0.2 as the database server clustering system [7].
Experiments were performed on the Linux kernel
running x86-compatible machines, with 1GB RAM
and 1800MHz, connected via a 100Mb/s Ethernet
LAN to form a cluster.

A. Wrapping

we give below the details of two real wrapping
experiences: a J2EE clustered Web Application Server
and an advanced JMS provider using a snowflake
distributed design.

1) Multi-tier Application Server : A multi-tiered
architecture is classically divided in three tiers: the
HTTP daemon (Apache), the application server (Tom-
cat), and the database tier (MySQL for e.g.). This
multi-tiers infratructure is managed through a set of
interconnected components that wrap the tiered legacy
system. Each wrapper provides the management op-
erations defined by SELFWARE .

Attribute management is used to expose and change
configuration attributes of the different tiers. For the
web tier, it wraps the configuration file of the Apache
HTTPD server. Hence, a modification of the port
attribute of the Apache component is reflected in the
httpd.conf file in which the port attribute is defined.

Binding management is used to reflect and ma-
nipulate connections between tiers. For instance, the

Apache HTTPD server needs to be connected to the
Tomcat Servlet engine. The implementation of this
bind method is reflected at the legacy layer in the
worker.properties file used to configure the connec-
tions between Apache and Tomcat servers. A bind
operation will create that connection where an unbind
operation removes that connection.

Lifecycle management are used to start and stop
tiers. For instance, the web and presentation tiers
can be started or stopped through the execution of
shell scripts to start/stop the Apache HTTPD server
or Tomcat Servlet engine.

To achieve higher availability, each tier can be
replicated using the load balancing pattern presented
section IV. In this case each load balancer is also
wrapped as a component with bindings that capture
its connections to the different servers it balance.

2) Message-Oriented  Middleware: ~ Message-
Oriented Middlewares (MOMs) are distributed
platforms that enable a message-based integration of
loosely-coupled heterogeneous distributed systems.
We wrapped the MOM called JORAM (Java
Open Reliable Asynchronous Messaging) that
provides a fully compliant implementation of the
JMS specification. JMS applications cooperate
through messages, using either message queues for
point-to-point communications or topics for a publish-
subscribe paradigm. In this context, architecture-based
management is two-fold. On the one hand, one needs
to manage message queues and topics. On the
other hand, one needs to manage the distributed
snowflake architecture of the JORAM middleware
itself. The JORAM snowflake architecture is a
distributed middleware that sets up a routing overlay
for delivering queue and topic messages efficiently
and reliably. In SELFWARE , JORAM servers, topics
and queues are wrapped as components. Modeling
message queues and topics as components allows
for JMS administrative tasks to be done through
Selfware. For example, one can create message
queues or topics on certain JORAM servers. Again
attributes reify the configuration of a JORAM server,
a Queue or a Topic. Bindings between servers reify
the routing overlay set up by the servers while a
binding between a server and a queue (or a topic)
reifyies the fact that the queue (resp. the topic) is
locally created on the server.

JORAM supports replicated topics that can easily
be modeled and managed through SELFWARE like
we already discussed for replicated multi-tiered web
servers. The same would be true of the JORAM
advanced support for message queues with load-
balancing capabilities. Going further, Selfware opens



the path for more autonomic management functions
such as autonomic load balancing for both message
queues and replicated topics.

The table I presents the code size of wrappers
we talked about for the legacy systems and their
ADL' description. Even for quite complex legacy
systems, most wrappers where extremely simple and
very similars to regular administration scripts.

#Java | # ADL
lines lines
Rubis app. - Web 150 11
Rubis app. - Servlets 150 11
Rubis app. - Database 150 11
8 | Total 450 33
3 Apache Web server 800 16
3 Tomcat Servlet container 550 12
.‘E: MySQL SGBD 760 40
3 Total 2110 68
& joram server 368 51
., | indi 134 12
£ | jms Queue 253 16
jms topic 297 16
Total 1052 95

TABLE I: Wrapper code

table

Regarding these experiments, we feel confident
that a reflexive component-oriented approach to
architecture-based management provides a good level
of abstraction to wrap different kind of legacy systems.

B. Intrusivity

We evaluated the intrusivity induced by the Self-
ware management system. The intrusivity has been
measured by comparing two executions of the Rubis
application: when it is run and managed by Selfware
and when it is run by hand, without Selfware. During
this evaluation, the J2EE application has been submit-
ted to a medium workload so that its execution under
the control of Selfware didn’t induce any dynamic
reconfiguration. This intrusivity is quantified in terms
of average throughput, response time and memory
usage of the J2EE application in Table II.

During our experiments, we simulated about 300
web clients generating a medium workload. With-
out failures, any difference in performance would
be representative of the overhead of SELFWARE. As
the following table shows, our measures show no
significant overhead in terms of application response
times and throughput.

We can notice a slight memory overhead (20.1%
vs. 17.5%) that can be linked with the creation of in-
ternal software components by SELFWARE. However,

! Architecture Description Langage (ADL) is the declarative
language used to describe component’s bindings and attributes

[ without Selfware. | with Selfware. |

Throughput 12 req./s 12 req./s
Resp. time 87 ms 89 ms
Mem. usage | 17.5 % 20.1 %

TABLE II: Rubis experiments, with and without Self-
ware.
table

SELFWARE does not induce a perceptible overhead
on throughput; this is due to the fact that SELFWARE
does not intercept application communications but
only configuration/management operations.

C. Self-optimization

In order to evaluate the self-optimization policy
provided by Selfware, we considered a scenario where
the application workload varies dynamically. At the
beginning of the experiment, the web application is
submitted to a medium workload (80 clients); then
the load increases progressively up to 500 clients; and
finally the load decreases symmetrically down to reach
80 clients.

Initially, the multi-tier auction site is deployed on
one enterprise (and web) front-end server and one
database back-end server. Since CPU is the only
bottleneck resource in these experiments, the managed
system elements (i.e. enterprise tier and database tier)
are monitored by sensors that gather CPU usage
information every second and compute a spatial 2
and temporal > average CPU usage value *. The self-
optimization manager ensures that the average CPU
usage is kept between a minimum and a maximum
threshold. In order to prevent oscillations due to par-
allel reconfigurations started on the front-end tier and
the back-end tier of the multi-tier managed system,
the manager associated with the underlying Muti-
Tier Managed Element specifies that a reconfiguration
started on one of the tiers inhibits any new reconfig-
uration for a short period.

Figure 5 shows the variation of the number of
replicas, for both the enterprise servers and database
servers when the application workload varies. As the
workload progressively increases, the average resource
consumption of the cluster of replicated database sys-
tems also increases, and this tier becomes a bottleneck.
An allocation of a new database replica is triggered,
which results in a clustered back-end containing two

20ver nodes of replicated elements.

30ver the last 60 seconds.

4However, if CPU is not the only bottleneck resource, more
sophisticated sensors consisting of an aggregation of single
resource sensors might be used.
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database systems. The workload continues growing
and triggers another node allocation for the clustered
database. The workload increases further; and this
places the bottleneck on the front-end tier. An allo-
cation of a new enterprise is triggered, resulting in
a system composed of two enterprise systems and
three database systems. The workload then increases
without saturating this configuration before it starts
decreasing. This workload decrease implies a decrease
of the resource consumption of the front-end tier
which triggers a de-allocation of one of its replicas,
and then a low resource consumption of the clustered
database, which triggers a de-allocation of a database
replica. Figure 6 shows the response time variation
as perceived by client with SELFWARE and without
SELFWARE . The overall point here is that SELF-
WARE improves the overall response time by manag-

ing dynamically the number of required replicas. Also
this illustrates well the interest of self-optimization
based on architectural knowledge and reconfiguration
to optimize various replicated legacy servers (e.g. a
cluster of enterprise servers and a cluster of database
in this experiment).

D. Self-repair

In this scenario, we consider the autonomic man-
agement of a Web application server.

Assuming a hardware failure, he will have to setup
another machine, configuring and starting Apache and
Tomcat. Besides the error-prone process, the lower
bound of the mean time to repair is dependent on the
time necessary for a human to react and reconfigure
the failed system. With SELFWARE , the detection and
recovery is automated.

The Mean-Time-To-Repair (MTTR) is dominated
by the time to detect the failure, the time to redeploy
the necessary software on the newly allocated node,
and finally to restart legacy systems. To illustrate this,
we manage a multi-tiered J2EE server running the
RUBIS benchmark, using the Apache HTTP daemon
and the Tomcat servlet engine. We provoked failures
on either Apache or Tomcat, as depicted in Figure ??
and Figure ??. SELFWARE detects and repairs the
Apache daemon failure within 12 seconds and the
Tomcat failure within less than 50 seconds. These
numbers include the time for the failure detector to
trigger and the time for downloading and installating
the necessary software (Rubis, Apache daemon, and
Tomcat). They include the installation of the Java
wrappers and the apply of the overall management
operations, including the writing of the configuration
files from attributes. Ultimately, they also include the
time it takes for Apache or Tomcat to start. While
Apache is a fast starter, Tomcat is rather slow. While
these numbers could be considered large, they are
orders of magnitude better than any manual repair
time, even by skilled operators.

We know that SELFWARE can be applied to a
clustered J2EE where Apache can be used with the
modJK plugin that can load balance requests on mul-
tiple remote Tomcats. This provides high-availability
with respect to Tomcat failures. SELFWARE can repair
failed Tomcat instances while maintaining the high
availability of the Web server. This is true because
wrappers may actually delay and re-order manage-
ment operations within the commit of a repair session.
For instance, the Apache daemon is kept running
throughout the commit of the repair session, that is,
while we repair the failed Tomcat. It is only stopped
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and restarted by its wrapper at the very last moment—
upon receiving the end-commit. The interruption of
service will be down to the time it takes to restart
the Apache HTTP daemon. This restart is required
by the modJK plugin that requires to be stopped to
be reconfigured. For high-end availability, a modified
plugin is something that can be done. The overall point
is that SELFWARE provides safe and automated repair
without hindering the legacy system performance,
being compatible with clustered legacy systems tuned
for high availability.

Finally, we experimented with the self-self-repair
behavior of Selfware itself and its overhead on the
ability of SELFWARE to repair managed legacy sys-
tems. We kept the above failure of a Tomcat but forced
a simultaneous failure of one of the SELFWARE repli-
cas (including both a replica of the repair manager
and the managed architecture). These three failures are

detected and handled in this experiment in one repair
session. Hence, there is more work to do for repairing
not only the lost Tomcat but also the lost replicas of
the repair manager and the managed architecture. As
above, the repair of Tomcat and of SELFWARE can
be done without impacting the availability of the Web
server (but for the short restart of the Apache daemon
if we use an unmodified modJK). The most important
point is that SELFWARE remains 100% available
even facing partial failures of SELFWARE replicas.
A repair of a failed replica of either the managed
architecture or the repair manager is done entirely in
the background and introduces no disruption in the
ability of SELFWARE to repair any managed system.

VII. RELATED WORK

In section A, we consider autonomic management
systems that deal with legacy applications. Section B
and C focus on architecture-based management frame-
works, that mostly rely on a formal or semi-formal
description of the managed system structure typi-
cally expressed in terms of components and bindings
using an Architecture Description Language (ADL).
In section B, we present architecture-based manage-
ment frameworks based on nun-reflective components
models. Such frameworks have to ensure the causal
consistency between the description of the system
architecture and the effective structure of the system
at runtime. Finally, section C describes architecture-
based management frameworks based on reflective
component model.

A. Legacy management framework

Many autonomic management frameworks for
legacy systems are based on ad-hoc solutions that are
tied to particular context. This reduces the reusability
of the management services and policies, that need to
be reimplemented each time a new legacy system is
introduced in the system. This trend is well illustrated
in the context of Internet Services where a lot of
projects provides ad-hoc solutions for self-healing or
self-optimization concerns.

For instance, [24], [2], and [16] have considered
the management of a dynamically extensible set of
resources in the context of Internet services. In [21],
[22], the authors propose a self-optimized dynamic
provisioning algorithm that specifically targets a clus-
ter of databases. [18] describes a solution to provide
adaptation to changing workloads specifically for Web
servers. In the same way, the JAGR project [6] pro-
vides a solution for self-recoverability in the context
of Enterprise Jave Beans running into the JBoss Ap-
plication Server.



Apart from the previous frameworks, other systems
like Rainbow [8] and KX [17] propose a solution
that can be used to manage different legacy systems
by retrofitting autonomic computing onto such sys-
tems without modifying the legacy code. KX runs
as a decentralized set of loosely coupled components
communicating via a publish/subscribe mechanism.
These components correspond to sensors (watching
the system), gauges (aggregating the sensor data),
controllers (making decision) and effectors (reconfig-
uring the system). Whereas gauges and controllers are
generic components that can be reused over a range
of systems, sensors and effectors are, as in Selfware,
wrappers components tightly coupled to the target
system.

B. Framework based on nun-reflective component
models

Rainbow [8], [11] and Darwin [12] are well
representative of frameworks based on nun-reflective
component models.

Rainbow [8] is an architecture-based management
framework that supports self-adaptation of software
systems. It uses an abstract architectural model to
monitor an executing system’s runtime properties,
evaluates the model for constraints violations, and
if a problem occurs, performs global adaptations of
the running system. One main objectif of Rainbow is
to favorize the reusability of their framework from
one system to another, by dividing the framework
into a generic system layer composed of probes and
effectors, and a specific architecture layer defining
the constraints, rules and strategies for adaptation. A
translation service is used to manage the mapping
between the system layer to the architecture layer and
vice versa.

In Selfware, we only consider one layer of man-
agement, that is composed of reflective components
representing the managed elements and providing,
by reification, an architectural model of the runtime
system. Selfware is moreover inherently distributed,
while the Rainbow framework is based on a cen-
tralised design. Finally, Rainbow concentrates on the
system adaptation in terms of autonomic policies and
event processing - it does not address the deployment
issues and the self-management of the management
system (self-self management).

[11] proposes a framework for creating architecture-
based autonomic systems. Event-based software ar-
chitectures are targeted, because the managed soft-
ware elements are loosely coupled (an element can
be replaced without impacting the other elements).
The architecture of a managed system is represented

in XADL, an extensible, XML-based ADL. Changes
to software architectures, such as an architectural
repair, are represented as architectural differences,
also expressed in a subset of the xADL langage.
The framework is composed of a specific component,
called an architecture evolution manager, that can
instanciate and update a running system whenever its
architectural description change. This component is
thus responsible for managing the mapping between
the running system and its architectural description.
As in [8], this approach requires a mapping between
the architectural description and the running system,
which is automatic with Selfware. Futhermore, the
aspects related to the reliability of the components
are presented as a future work, and the self-self-
management has not been taken into account.

Darwin [12] proposes a component model based on
an explicit architectural specification expressed in the
alloy langage [13]. Components are associated with
constraints that define their behavior according to the
architectural evolution of the global system. These
constraints drive the autonomic behavior of compo-
nents, providing them with self-organising properties
and self-configuring bindings. At runtime, each com-
ponent contains an implementation, a manager and
a configuration view. This view can be seen as a
checkpoint of the current architectural state of the
global system. A component manager maintains the
consistency of its configuration view through the use
of a group protocol, which tolerates the failure of
individual components. It also adjust the component’s
configuration in accordance with the configuration
view.

The component model proposed by [12] targets
more specifically self-organising systems that allow
components to control their configuration in a decen-
tralized manner. This motivates the use of a glob-
ally replicated architectural view, that could become
an issue when the number of managed components
becomes high. While the self-organising properties
of this component model are interesting for getting
autonomic capabilities, it could not be directly used
as a base for a management framework as Selfware,
because it would imply to provide a decentralized
design of the autonomic managers, in order to embed
a copy of them within each component. Supporting
such a design without involving a strong coordina-
tion between the managers is a big challenge as
our autonomic managers often take global decisions
concerning more than individual components.



C. Reflexive component framework

With reflective component models, managed sys-
tems are implemented as a collection of intercon-
nected components enhanced with a meta-level pro-
viding introspection and reconfiguration capabilities
on the components structure. The meta-level directly
provides a causally connected representation of the
component structure, mainly by ensuring that any
changes performed on the component structure at the
meta-level are reported at the base-level.

[4] considers the use of reflective middleware to de-
velop self-managing systems as a challenging research
direction. Our work on Selfware falls in this category
of systems, as other projects such as OpenORB [10],
Plastik [3].

OpenORB [10] is a middleware platform built
around a well-founded reflective lightweight compo-
nent model, called OpenCOM. Like the Fractal reflec-
tive component model used in Selfware, the Open-
COM runtime provides support for a specializable
and extensible meta-level providing introspection and
reconfiguration operations on components. By manag-
ing the adaptability of a distributed architecture at the
level of the component model, the OpenORB platform
aims to provide a built-in support for building highly
flexible distributed architectures ensuring reconfigu-
ration integrity. Compared to our work, authors of
OpenORB state that one needs a reflective component
based middleware to build autonomic management
system on top of it, but they do not further investigate
the mechanisms and policies in such an autonomic
system and do not adress the self-self-management
of the plateform despite the capabilities provided by
reflective components.

The reflective OpenORB platform is used in the
Plastik infrastructure [3], that follows an architecture-
based management approach relying on the reified
architecture provided by OpenORB. Plastik focus on
constraints and general invariants that can be as-
sociated to the specification of a component-based
system, through the notion of architectural styles. Any
component reconfiguration is accepted as long as the
invariants defined in its associated architectural style
are not violated. This approach, as well as those used
in [9], conforms to a design pattern proposed by [20],
which exposes architectural style requirements for
building self-managed systems.

In Selfware, we did not consider the notion of
architectural styles because a main motivation of our
work was to provide a way to build generic autonomic
managers, able to manage any kind of managed ele-
ment independantly of its architectural style.

It is important to point out that this genericity

aspect is a strong base for the recursive design of
Selfware. Indeed, it provides Selfware with self-self-
management capabilities by allowing the Selfware
components to be managed as any other managed
components. Neither Plastik nor FORMAware con-
sider the issue of the infrastructure self-management.

However, our experience gained through the experi-
mentations described in this paper has shown that the
management task may be simplified by allowing to
define semantically higher level reconfigution oper-
ations. In other words, architectural styles could be
used complementary to the generic low-level man-
agement functions of Selfware, as a way of (1) con-
straining the dynamic evolution of an architecture; and
(2) providing higher level management functions. We
believe that a powerful approach would indeed consist
in combining generic autonomic managers dealing
with basic management functions (e.g., deployment,
repair) with more specific ones that take into account
both the functionnal and nun-functionnal specificities
of the managed elements.

VIII. CONCLUSION

This paper describes SELFWARE , a reflexive
component-oriented framework for building auto-
nomic managers in the architecture-based paradigm.
We report here our experience in building autonomic
managers for self-protection, self-optimization, and
self-repair.

At the heart of the SELFWARE framework is the
reflexive architecture that is captured by meta-level
controllers. Only five such controllers are defined
by SELFWARE thereby defining a small and uniform
management interface for developing autonomic man-
agers. The advocated programming model for auto-
nomic managers is centered on observing the archi-
tecture and atomically reconfiguring it. The reflexive
architecture captures relevant aspects of the managed
distributed system, not only the managed elements
of applications but also the hardware and software
elements of the underlying distributed systems hosting
these applications.

We adopted a recursive design for SELFWARE ,
meaning that autonomic managers and all SELF-
WARE middleware components are designed as SELF-
WARE components. This is a very important design de-
cision since it allows SELFWARE to self manage itself.
The importance of this design decision shows through
both self-protection and self-repair that are both recur-
sive concerns. Indeed, a self-protection manager may
be itself the target of attacks and therefore needs to
self protect. The same is true for a self-repair man-
ager that may experience failures impacting its own



functioning and therefore needs to self repair. Both de-
signs were greatly simplified by SELFWARE recursive
design. We therefore argue that a reflexive component-
oriented framework, combined with both atomic re-
configuration and transparent component replication,
is a promising direction for building future autonomic
systems.

SELFWARE allows to build such autonomic systems
either from scratch with new component technologies
or leveraging wrapped legacy systems. Regarding the
wrapping of legacy systems, our experience is also
a positive one. Our approach allows most of the
complex management tasks to be achieved in very
generic ways, mostly independent of any specifics
of legacy systems. More work is needed to assess
the appropriateness of new component technologies to
autonomic architecture-based management. Capturing
the entire architecture sometimes proves difficult and
dynamic reconfigurations are often a challenge for
most component-oriented runtime.
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