Livrable Selfware SP1

Lot 4, December 1§ 2008

Selfware Common Services for Self-Management, gar2i

Authors
Fabienne Boyer (INRIA/Sardes)
Bruno Dillenseger (France Telecom)
Daniel Hagimont (IRIT/ENSEEIHT)
Mayleen Lacouture (EMN)
Thomas Ledoux (LINA/EMN)
Benoit Pelletier (Bull)

Version 1.3

Contents

1 Introduction
2 Feedback from common services version 1

2.1 Summary of COMmMON SErviCes VErsiON Loceuueeeeeeeeenmnennnnnnnnnnnns
2.2 FEeUDACKoiiiiiiiiii et

2.2.1 Monitoring support
2.2.2 High-level administration tools based on DSLs
2.2.3 Decision support

P T O] o (o1 [0 =T o [P

3 Enhanced monitoring facilities

3.1 Monitoring support with WIldCAT V2 ...

3.1.1 Rationale
3.1.2 Modelling Data
Hierarchical Data Source Organization
The Context interface
3.1.3 Inspecting Data
WildCAT event model
PULL mode (synchronous)
PUSH mode (asynchronous)
3.1.4 WiIildCAT Sensors
The sensors library (as of july 2008)
Extending the sensors library
3.1.5 Distributed Contexts
3.1.6 Conclusion

3.2 Easy JMX MBeans browsing with FPATH-IMX.....ccccceeeeiooiiiieneeen.

3.2.1 Rationale
3.2.2 JMX Overview
3.2.3 FPath-style JIMX Model
3.2.4 Examples
Connection to the MBean Server
Querying queues by their depth
Querying the Virtual Machine
Comparison with IMX Java API
4 Enhanced design and administration facilities

4.1 A generic software engineering approach with TUNE

41.1 Rationale

Component-based management

Motivations
4.1.2 Tune's management interface

A UML profile for deployment schemas

A Wrapping Description Language

A UML profile for (re)configuration procedures
4.1.3 Conclusions

4.2 J2EE tooling with JASMINE DeSIgNcovticeeemreveevvveniiinvinnivennnnnnnnns
4.3 Monitoring support with MbeanCmd and the EventShvitc
4.4 Shelbie and FPath JMXooiiiiiiiiiiimm e eeeeeeeeeeeeeeae e e

5 Conclusion

1 Introduction

Autonomic computing, which aims at the constructioh self-managing and self-adapting
computer systems, has emerged as an importantfgoalany actors in the domain of large scale
distributed environments and applications. Thisragph more precisely aims at providing systems
and applications with self-management capabilitiéscluding self-configuration (automatic
configuration according to a specified policy) famdtimization (continuous performance monitoring),
self-healing (detecting defects and failures, akihg corrective actions), and self-protection ifigk
preventive measures and defending against malicitiasks).

Following this approach, the Selfware project amhgroviding an infrastructure for developing
autonomic management software. An important aspechis infrastructure is the adoption of an
architecture-baseaontrol approach as described in the SP1-L1 donynmeeaning that the control
loops that regulate the system have the abilitintamspect the current software architecture of the
managed system, as well as they have the abilityoiify (i.e. reconfigure) this architecture.

The introspection and reconfiguration capabilitiest can be invoked within control loops mainly
rely on thecommon servicegrovided by the Selfware infrastructure. Theseises act on a managed
system. Examples of these services are a deployseevite, for deploying managed legacy software
in a distributed environment, a monitoring servioe observing a given managed element, or a
scripting language for dynamically exploring thétware architecture of a managed system.

The objective of this document is to give an upd#tehe previous deliverable dedicated to the
common services provided by the Selfware platfoBR1, Lot 2). A short summary of the previous
services is first given as a reminder, and thea,eWolution that has been made as a follow-up to
improve the Selfware platform.

The software parts associated to the present dadumee mainly available on the site
http://wiki.jasmine.objectweb.ordb6ther parts' availability is given inline).

SP1L4 Selfware Common Services version 2

2 Feedback from common services version 1

2.1 Summary of common services version 1

The Selfware common services version 1 are destribedeliverable document SP1L2. They
provide a set of basic capabilities used by autenananagers to perform elementary configuration
management functions, such as installing and degiagomponents on nodes, or communicating with
sensors and actuators. Since common services anéyrailt themselves with components, they may
also be considered as managed elements in the sdhr&ggtem. The common services that are
provided by version 1 of the Selfware infrastruetare:

* The wrapping service, that allows generating thappers used to control legacy software.
« The navigation service designed to express queriédbe managed system’s architecture.

* The reconfiguration service, used to define coesistreconfiguration on the managed
system’s architecture.

» The resource allocation service, that allows atiogaresources (e.g. nodes) for the managed
system as well as for the management system.

» The deployment service, that aims at deploying timthmanaged system and the management
system on remote nodes.

« The monitoring service used to gather informationtloe managed system and to aggregate
these information to provide high-level eventscitad to more semantic.

« The system representation service, used to addbilgly to the configuration actions
performed by the Autonomic Managers by replicathmgycritical components.

* The decision service used to implement the reap@weof autonomic managers.

Next section is focusing on some key services dpgieared to deserve a peculiar attention and
probably some more work.

2.2 Feedback

2.2.1 Monitoring support

Selfware actually handled two monitoring frameworkach of them focused on some issues, and
probably missed some points.

Composite probes (CPs) propose a pure-component-based framework fdtases on the
architectural aspects of probes. CPs define bathirther architecture of probes, identifying and
encapsulating a number of probe sub-functions (oveéas aggregating, filtering, storing), and the
external architecture in terms of probe compositidren, CPs address two key motivations:

« be fully inline with Selfware's component-basedh#tectural approach to autonomic computing.
This results in a better integration to the Selfalatform, since the monitoring service itself can
be considered as a Managed Element, and then bémefi the common services, such as
deployment or self-repair;

» provide an elegant and uniform way of building &dyy combinations of probes through
composite probes, to support any kind of high-lem@nitoring feature (history consulting,
aggregations and filtering of any sort, etc.). Tisisachieved thanks to a particular ability to
compose the same running probes in several asssmitbviding different monitoring features
(either through bindings or containment relations).

On the negative side, CPs don't provide a hightlaia for developers, in order to easily interact
with the monitoring service (interrogate, listent pome triggers on specific events, etc.). Moredte
also misses consideration of the event transpartarms. Events (measures) transport is based on

SP1L4 Selfware Common Services version 2

Fractal bindings, typically using FractalRMI forsttibuted communication. To go further, the CPs
framework should be enhanced with some specialifmsdthat would support typical event
bus/switch features, with some publish/subscribeharism. The seamless integration of a message-
oriented middleware would provide better perforngrefficiency, and practical manageability with
regard to event transport.

WIIdCAT is a monitoring middleware that provides an extdaslava framework to ease the
creation of context-aware applications. WildCAT ydes a simple yet powerful dynamic model to
represent an application’s execution context. Tavgext information can be accessed by application
programmers through two complimentary interfacegnckronous requests (pull mode) and
asynchronous notifications (push mode). On the thagaide, WildCat does not adopt a Fractal
architecture, which both limits the readabilityitsfarchitecture, and its manageability by the \Batée
platform's common services. Moreover, just like @Bs WildCat does not address distribution and
event transport issues in a satisfactory manner.

JMX is a so-called Java eXtension for Management. Asoday, JMX is a well supported
standard in Java technologies, and most of Javéicapipn Servers, such as JOnAS, provide so-called
MBeans servers to provide monitoring and managefaeilities. However, using the JMX APl is a
bit cumbersome and leads to long, poorly readafdehard to maintain pieces of Java code. In a very
similar way that FPath (coming along with FScrig¢e deliverable SP1L2) does for browsing and
searching Fractal components, there is a need tiecharative, expressive way of designating and
looking for MBean objects according to their namaitribute values.

2.2.2 High-level administration tools based on DSLs

The Domain-Specific Languages approach has bearessfolly applied to automate the burden
of writing wrappers to legacy software. The proddeSL gives a declarative support for generating
Fractal wrappers that encapsulate necessary pragitior configuring, instantiating, starting and
stopping legacy software. But it appears that ti8 @pproach could be useful to other Selfware
features. For instance, current Fractal ADL cowdebhanced so that an architecture description can
be defined in an intension rather than extensioy, Wascribing some abstract architectural patterns
rather than one-for-one component description. Aeoexample is about a declarative support for
reconfiguration actions that may be taken by aut@noenanagers.

2.2.3 Decision support

A framework has been proposed to implement higkHleules based on the Event-Condition-
Action model, inherited from the active databasemain. This highly adaptable framework relies on
an advanced and elegant architectural integratfoBQA rules in the form of components, taking
advantage on Fractal's enhanced features (e.g.awitide use of component hierarchy and sharing
support). It exhibits and allows customizing th#l et of policy choices with regard to triggering,
evaluating and executing the rules. However, tlaetpral use of this ECA framework tackles a lack
for some higher-level API and tooling in order tse the definition of rules and execution policies.

2.3 Conclusion

The first generation of Selfware services is tyjycaotivated by software architecture concerns,
with a close relation to the Fractal component rhottee system repository, ECA rules, Fractal
wrappers, composite probes, Fscript and FPathen,Tihappears that these fundamental services laye
provide a basic, kind of low-level component infrasture, but still require higher-level APIs and
tools to be of effective usability by systems amgleations administrators. The requirement is to
simplify the definition and deployment/integratiofispecific rules, policies, monitoring faciliti@s a
particular environment, for particular applicatiomgildCAT was the first illustration of this need.

The next section focuses on the several new fasiladdressing general monitoring needs. Then
the section after gives a twofold description dfi@mced design and management tools, with a generic
software engineering toolbox on the one hand, aitEk-dedicated toolbox on the other hand.

SP1L4 Selfware Common Services version 2

3 Enhanced monitoring facilities

3.1 Monitoring support with WildCAT v2

3.1.1 Rationale

To overcome some limitations of WIldCAT v1, we dib=sd to rewrite the kernel of the framework
to build a new version around an open source CEM{=x Event Processing) engine. WIldCAT v2
is based on a backend called Espkttp(//esper.codehaus.drgThis new version permits the
monitoring of large scale applications by allowidgvelopers to easily organize and access sensors
through a hierarchical organization backed witloagrful SQL-like language to inspect sensors data
and to trigger actions upon particular conditions.

3.1.2 Modelling Data

Hierarchical Data Source Organization

WIIdCAT let developers organize data sources inad€ontext. A WIldCAT context is an
oriented tree structure with two types of nodes:

« Attributes nodes that hold some value. Attributegles are always leaf nodes, and every
attributes has a unique parent node. There existse3 of attributes:

o0 Basic attributes holds static values. Their valude not evolve unless
programmatically modified.

0 Active attributes (sensors)
0 Synthetic attributes are the results of expressionsther attributes

* Resources nodes that can have zero or more chigigiming every child name is unique. A
resource may have more than one parent. Therevargpes of resources:

0 Basic resources.

0 Symbolic links are special resource that alterf pasolution by pointing to another
resource.

The example hierarchy in figure 1 presents threseurces (blue circles) and five attributes (red
squares). Every WIldCAT Context has a unigue eptint: the ROOT resource. Moreover a Context
must never contain a cycle.

When manipulating a WIldCAT context, developerserehce resources and attributes by their
path from the ROOT resource. WildCAT paths arerazeaient way for users to denote resources and
attributes.

SP1L4 Selfware Common Services version 2

sl

cost

fath s .

i mroths wersion uname

pife Wloplo

figure 1. WildCAT Hierarchical Organization

Exception made from the ROOT node, a node may balved through multiple paths: in our
example, both paths "self://consts/maths” and /éekiths" denotes the same resource and the bottom
left attribute may be resolved by "self://#pi", fdémaths#pi" or "self://consts/maths#pi".

Paths ending with "#name" denote attributes. Thrteo name "self" is a reserved name that is an
equivalent of "localhost" in networking".

The Context interface

The Context interface is the one and only entryipfair WildCAT developers to organize, inspect
and register notification handlers on context datavided by sensors. WIldCAT provides two
different ways of instantiating the Context inteda (i) Instantiating the BasicContext class; (ii)
Creating a Context through a ContextFactory. Téugiher, sedttp://wildcat.objectweb.org

A default ContextFactory is accessible in the Cetftactory class, through the static method
get Def aul t Fact ory() . It is the easier way to create a new context.

Context ctx = ContextFactory.getDefaultFactory.crea teContext();
3.1.3 Inspecting Data

WildCAT event model

WIIdCAT permits developers to inspect the contehtadContext by registering queries on the
event generated by the hierarchy. In WIldCAT evewents implements the WEvent interface. It
allows determining for every event, the node intierarchy which emitted the event. There are two
kinds of event emitted by a WildCAT context. Fiystevents emitted by Resources: they instantiate
the WHierarchyEventclass and informs about the operation performedthen structure of the
hierarchy. For example, such an event may indita¢eaddition of a attribute named "fs" to the
resource "self://proc”. Secondly, events emittedAblyibutes instantiate th&/AttributeEventclass
and indicate the modification of that attribute ddds its new value.

SP1L4 Selfware Common Services version 2

PULL mode (synchronous)

In PULL mode, developers programmatically get aedatributes in a synchronous way. The
Context interface provides methods to manipulageVIhIdCAT hierarchy, ie. creating resources and
attributes, getting and setting attribute's vall@s.example:

ctx.createAttribute("self://constants#hello”, "Hell 0");

creates an primitive attribute with initial valuédéllo”. In the path "self://constants#hello”,
"self://" denotes the current context, "constamsa resource mounted at top level, and the "hello”
identifier following the '#' sign, is the name dfet attribute attached to the resource "constants".
Despite the resource "constants" did not existerbéfind, the "createAttribute” method will create
every missing resource along the path as long esniplies with the WildCAT hierarchy constraints
(attributes and resources attached to a given resooust be unique). Once created,

System.out.printin("self://constants#hello =" + ct x.getValue("self://constants#hello™));

would output: "self://constants#hello = Hello". Nolet's change that attribute value:

System.out.printin("self://constants#hello = " + ct x.setValue("self://constants#hello", "Hello
World I"));
System.out.printin("self://constants#hello =" + ct x.getValue("self://constants#hello™));

the first statement has the same output: "selh8tamts#hello = hello". Indeed, the "setValue"
method of the Context interface returns the previealue of the attribute. After executing the
"setValue" method, the second statement outpulfs/!eenstants#hello = Hello World ",

Symbolic links are special resource that holdsfareace to another resource. Symbolic links
transparently alters path resolution by pointingatmther resource. The Context interface allows for
easy creation of symbolik links, the following code

ctx.createSymbolicLink("self://demo/soft/link/toCon stant”, "self://constants");

creates a symbolic link at position "self://dem&/éak/toConstant” pointing to "self://constants".
From now every path resolution entering resouredf:/&lemo/soft/link/toConstant” will be redirected
to "self://constants”.

PUSH mode (asynchronous)

In PUSH mode, developers register listeners oniggi@xpressed over the event generated in the
Context. The Context interface provides operatitmsreate queries and to register listeners on
queries. To perform query processing, WIldCAT lien theEsper Complex Event Processing
Engine (http://esper.codehaus.dtg Queries are described in the Event Query Lang@E@.), a
SQL-like language witlSELECT, FROM WHERE GROUP BY HAVING and ORDER BY clauses. Streams
replace tables as the source of data with evepladiag rows as the basic unit of data.

The following code:

Query query = ctx.createQuery("select * from WEvent ");

returns a query reference feelect * from WEvent This query will catch every event traversing
WIIdCAT. WIildCAT automatically starts queries uporeation. In our example, we must now attach a
listener to the newly created query. The Contetdrface provides theegisterListenersnethod that
takes a Query instance and an Array of Updatelésge()/arargs style) to attach. The most convenient
way to use that method is to create an anonymopkeinentation of the UpdateListener interface:

ctx.registerListeners(query, new UpdateListener () {
void update (EventBean[] nevents, EventBean[] o events) {

System.out.printin("Received events");

»

! More precisely, WildCAT 2.0 is based on Esper 1.12

SP1L4 Selfware Common Services version 2

Esper EQL is powerful and we can write complex ameresting queries. For example, the
following query:

select avg(value(‘load’)?) from WAttributeEvent(sou rce="self://proc/cpu#info’).win:length(5s)

is triggered on every WAttributeEvent emitted byriatte "self://proc/cpu#info” and returns the
average value of the property "load" over evenhsexents in the last five seconds.

Another example, the following query:

select * from pattern[every A=WAttributeEvent(sourc e = 'self://date#time’, value(‘'second')? <
30)]

is triggered on every A event (i.e. select onlyilagites with the 'second' property value < 30).

WIIdCAT provides means to create attributes thddsithe result of query. These special attribute
called "query" attributes, are associated with @rguQuery attributes can be used as normal
attributes, i.e. their content can be accessedJil.RAnode, it returns the last result of the quagp
one can reference them in PUSH mode as part ofeayqiResult is dynamically updated. The
following code snippet creates such an attribute:

ctx.createQueryAttribute("self://the/new/query#attr ibute", "select min(value(second)?) from
WAttributeEvent(source="self://date#time").win:leng th(5)");

The new attribute "self://the/new/query#attributell hold the minimum value of the property
"second" of the attribute "self://date#time" ovee tast 5 seconds.

3.1.4 WIildCAT Sensors

The sensors library (as of july 2008)

WIIdCAT team main objective is not to develop sesstut to provide a generic framework to
organize and inspect monitoring sources. Neversseleve distribute along with the WildCAT
framework a sensors library that we extend as weldp new sensors for our own experiment.

* Java related sensors

o0 JavaRuntimeSensor provides information relativethe current JVM (processor,
memory, etc)

0 SystemPropertiesSensor provides a wrapper forSgst@m Properties
o DateTimeSensor provides system current time

0 MBeanCMDSensor allows for gathering of any JMX tethinformation (defined in
synergy with the JASMINe project)

« System related sensors (Linux-only)
o KernelVersionSensor provides system kernel version
0 CPUSensor provides information (model, version), et¢the CPU
0 CPULoadSensor provides instant CPU load

Extending the sensors library

WIIdCAT's sensors must all implements the Attribuméerface and should be attached to a
WIIdCAT's hierarchy using the "attachAttribute" fndhe Context interface:
Context ctx = ContextFactory.getDefaultFactory.crea teContext();
Attribute mySensor = new MySensor();

context.attachAttribute ("self://path/to/my#sensor" , mySensor);

To develop the class MySensor, we have to subttesBOJOAttributeclass, which is the most
common type of attribute and overload the getVébe¢value methods. Implementing this sensor is a
matter of very few lines of code. Neverthelessséhgensors trigger new values only when one inspect
its content. That sensor is said togassive To overcome this limitation, one may create aquical
attribute poller. Indeed, WIldCAT provides meansitmulate aractivesensor based on a passive one

SP1L4 Selfware Common Services version 2

by periodically crafting an event with the curresalue a given attribute. The following code snippet
will create an new event containing current valdieattribute "self://path/to/an#attribute” every 2
seconds:

ctx.createPeriodicAttributePoller("self://path/to/a n#attribute", 2, TimeUnit.Second);

3.1.5 Distributed Contexts

In addition to the hierarchical organization ofadaburce and PUSH/PULL operations, WildCAT
allows for mixing PUSH and PULL and to connect riistted contexts.

The following figure (figure 2) introduces a morengplex usage of WildCAT's contexts. Again,
basic resources are represented by blue circlesegihsiquares marks basic attributes. In additiea, r
triangles indicate special "query" attributes, amdlow polygons represent symbolic links. Finally
groups of nodes bordered in blue represent anttfidCAT instance (possibly on a remote host).

gl

const

rmth :\'llI Vs iﬂl'\ Lnime menm \\CPLI

v f

Pl e Lemike
\

ool l@mdel node? J:;df’ i
logl(pl € , avefr mm/ a’ Lwlmd

Nt | | / \ / |
Ry m‘ﬁ X
"‘i ¥

figure 2. Distributed contexts

WIldCAT permits to connect remotes context usingSIehd RMI technology. While one can
directly inspect a remote context using the PULL Afth an explicit remote path, WildCAT also
permits the creation of symbolic links across ceitstePULL request over symbolic links are carried
through RMI, while PUSH notification are done oJudfS.

Remote contexts are accessed thradighatchers Two alternative dispatchers are provided: one
based on both RMI and JMS (used by default), aradhan fully implemented with JMS. If these
dispatchers have the same implementation of pustentbey differ over the pull mode. Indeed, the
RMI-JMS dispatcher uses RMI through CMI to perfasgmchronous operations, while the full-JMS
dispatcher defines a layer to add synchronism protdMS.

10

SP1L4 Selfware Common Services version 2

3.1.6 Conclusion

Unlike WIldCAT 1.0, WildCAT 2.0 provides (i) a sing support for distribution; (ii) a new event-
based-model and a query language, based on arsopme CEP (Complex Event Processing) engine.
This new version was finished in august 2008 and wméegrated by Bull partner in JASMINe
platform.

We can point out that WIiIACAT 2.0 is embedded ine thgalaxy platform
(http://galaxy.gforge.inria.jt an open SOA platform enabling agility using dymaarchitectures.

3.2 Easy JMX MBeans browsing with FPATH-JMX

3.2.1 Rationale

Despite the advantages offered by the model, Rra&ctaowadays only used in some existing
middleware platforms, while technologies like JMMaya Management Extensions) are more
commonly used in real-life solutions. Such is theecof application servers like JBoss and JOnAS.

The objective of this extension is to offer thegaage support provided by FPath (see previous
Deliverables) in systems already using JMX as memagt platform. In that way, administrators will
be able to navigate through MBean Servers to mothitoapplication's resources.

3.2.2 JMX Overview

JMX (Java Management Extensions) is a Java APl doage and monitor resources such as
applications, devices, services or even the JVMaJértual Machine). Each resource is instrumented
by one or more managed Beans or MBeans, whichtharagelves Java objects, similar to Java Beans
components. MBeans are registered in an MBean rsexéch is a management agent that runs on
any Java enable device.

MBeans implement access to resources through ageamnt interface consisting of attributes
that can be written or read; operations, that @mboked; and notifications, which are emittecktoy
MBean when some modification occurs.

3.2.3 FPath-style IMX Model

The JMX model implemented in the solution describet architectures in the terms used by
FPath: axes and nodes. The diagram in figure 3 shtbher JMX elements and their corresponding
relations as instances of FPath's nodes and axes.

11

SP1L4 Selfware Common Services version 2

==Node== ==hode==
HoDomain Notification
-name : String -name : String
-description : String
-notifTypes : String
=Axig=> ==Node==>
mbean << Axig== Operation
=<Node== notification) -name : String
MBean ==Axig=> | description : String
. operation -impact : Operationimpact
-name : String -returnType : String
-ohjectMame : String
-classMame : String A QR
-description ; String ’F'S
attribute ceModess
T Attribute
cefxisns -name : String
reference _t'srpe s S‘tring
==Modes= -value ; OclAny
-readable ; boolean
EIORETty -wirtable : boolean
-name : String -description | String
-value : String -is . boolean

figure 3. JIMX Meta model diagram

The nodes of the IMX model are:
* mbean node, represents the core element of thet@bxiology.

« attribute node, represents the configuration atteib exposed by Mbeans. They have a type, a
name and a value. As MBeans, they have a descrigtid some additional properties to indicate
whether they are readable, writable or a booleanession.

* property node, corresponds to the MBeans' key ptiegdahat identify and classify the MBeans.

» domain node, represents the JMX domains in whiche®8 are registered within the MBean
Server.

» operation node, represents the operations expogeMBeans, which are also part of the
management interface. They have a name and a rétpe also a description and some
information about their impact when invoked, whetlieis an action, action-info, info or
unknown operation.

« notification node, represents the notifications ehhare emitted by MBeans when certain events
occur. In the model, the notification node contathe name, description and type of a
notification object.

The axis connecting these nodes are: mbean axishvallows to select mbean nodes from
domain nodes; attribute, property, notification awgeration, which allow to select, respectively:
attribute, property, notification and operationsl@® from mbean nodes.

Finally, although they do not make part of the nlodself, the JMX extension provides
procedures like new-connection() and domains()ctviallow to connect to the MBean Server and to
obtain the domains registered in that server.

3.2.4 Examples

The test cases presented here where applied a/éOihAS application server.

Connection to the MBean Server

To access the MBean is necessary to create a dmmés the MBean Server in which MBeans
are registered. The procedure new-connection(jaiizie.s the connection to the URL specified as
parameter, all queries in the session will be peréal over that connection.

new-connection("//service:jmx:rmi://host/jndi/rmi:/ /host:1099/jrmpconnector_jonas");

12

SP1L4 Selfware Common Services version 2

Next, it is necessary to execute the domains()tioim¢o obtain the domain beans corresponding
to all domains registered in the MBean server, s then in a new variable d.

d = domains();

If we want to list the domains registered in theveewe execute the query

$d/domain::*
#<domain: jonas>
#<domain: Joram>
#<domain: JMImplementation>
#<domain: connectors>
#<domain: AgentServer>
#<domain: joramClient>

Querying queues by their depth

For this example, we want to know which MBeansrursent message queues with a depth
greater than 5. For that, we execute a query ietteps. The first one corresponds to the sdt of a
domains registered in the server. The second ameaith::;joramClient selects joramClient domain.
And finally, mbean::* takes all MBeans from the ddm Two predicates are applied to filter the
result, [./property::type[value(.)=='queue’]] saeonly MBeans with a property type=queue, and
[/attribute::PendingMessages] selects MBeans anthttribute PendingMessages greater than 5.

$d/domain::;joramClient/mbean::*[./property::type[va lue(.)=="queue]
[/attribute::Pendi ngMessages|value(.) > 5]]

This query can be reduced to:

$d/domain::;joramClient/mbean::*[mbtype(.)=="queue’]
[/@PendingMessages [value(.) > 5]]

using the @ shortcut for the attribute axis, ané fanction mbtype(.), which replaces:
value(./property::type).

Querying the Virtual Machine
With FPath is also possible to query the MBeansititsirument the JVM (Java Virtual Machine).

To connect to the JVM, the URL parameter of funciiew-connection changes to local-vm.

new-connection(“local-vm");

Assume we want to know when the CPU time is grethi@n 100 to perform some action. The
following query is evaluated to true when it retrsome result. That means, when the mbean
instrumenting the value of the ProcessCpuTimebaittei of the operating system MBean, has an
attribute greater than 100.

The first step, selects MBeans whose type propartyals OperatingSystem. Then, the second step
selects the ProcessCpuTime attribute and the tasligate filters the result for a value greatemtha
100.

$d/mbean::*[mbtype(.)=="OperatingSystem'][/@ProcessC puTime[value(.)>100]
Comparison with JIMX Java API

Listing code below (figure 4) shows the Java codgivalent to the second query using
the JMX API. As we can see, FPath has not only eemeadable syntax but it is also more compact
than a general purpose language like Java andPitgMX API here).

13

[T U L I)

[ST % B 6 B L R LX)

-1 @ n

S O Y S T T S e T v O 5

[U S L LI 7 T L S B L R N U ' L S T L R % |

[T e B e

[N Y Sy Y
W L R

oL

1

SP1L4 Selfware Common Services version 2

tryd
String urlString =
"service:jmx:rmi://localhost/jndi/rmi://localhost:109%/jrmpconnector jonas™:
JMXServicelURL url = new JMXServiceURL (urlString):

JMXConnector jmxc = JMXConnectorFactory.connect{url, nall);
MBeanServerConnection mbsc = jmxc.getMBeanServerConnection():

ffS5elects MBeans with domain joramClient and any name
ChjectName objectName = new ObjectName ("joramClient:type=gueue,*");

ff5elects MBeans with attribute PendingMessages greater than 5
QuervExp quervExp = Query.gt(Query.attr("PendingMessages"),uery.valus(S));

[fRBuns the query over the server
Set<ObjectInstancer> objs = mbsc.gqueryMBeans (objectName, dguervE=xp):

/fEvaluates the result
for {(ObjectInstance obj : objs) {
System.out.println ("Object = " + obj.getObjectName()):
H
}catch (Exception ex){
System.out.println {"ODocops!™) ;
ex.printStackTrace () :

figure 4. Sample Java code showing the use of IMX API

14

SP1L4 Selfware Common Services version 2

4 Enhanced design and administration facilities

4.1 A generic software engineering approach with TUNE

In this section, we describe the results from owestigations in designing higher level paradigms
for the specification of autonomic management jedicBy management policies, we mean any input
that has to be defined by an administrator in otdatescribe the legacy software to encapsulage, th
software architecture to deploy and the reconfigjomao perform at runtime.

In a previous deliverable (SP1-L2) we have alre@aulyoduced the design of a Wrapping
Description Language for the encapsulation of lggeaftware in well formed Fractal components.
This work goes a step further and aims at providarguage support for simplifying the different
administration tasks (wrapping, deployment, corniagjon, launching, reconfiguration).

4.1.1 Rationale

Component-based management

The basic idea underlying the Jasmine/Jade aut@nadministration system is to encapsulate the
managed elements (legacy software) in software ocoents and to administrate the environment as a
component architecture. We refer to this approadhe component-based management approach.

Component-based management aims at providing @raniView of a software environment
composed of different types of servers. Each mahagever is encapsulated in a component and the
software environment is abstracted as a compomehitecture. Therefore, deploying, configuring and
reconfiguring the software environment is achievsdusing the tools associated with the used
component-based middleware. This solution is foldwby several research projects, including
Jasmine. In the current platform, an administratan wrap legacy software in components
(Jasmine/Jade relies on the Fractal component modiescribe a software environment to deploy
using the component model ADL (Architecture Dedanip Language) and implement reconfiguration
programs (autonomic managers) using the componedéls interfaces (Java interfaces in Fractal).

Any software managed with Jade is wrapped in a t&ramomponent which interfaces its
administration procedures. Therefore, the Frac@minponent model is used to implement a
management layer (figure 5) on top of the legaggridcomposed of the actual managed software). In
the management layer, all components provide a geament interface for the encapsulated software,
and the corresponding implementation (the wrapigespecific to each software (e.g. the Apache web
server in the case of J2EE). Fractal's controlfiates allow managing the element's attributes and
bindings with other elements, and the managem¢ertface of each component allows controlling its
internal configuration state. Relying on this magragnt layer, sophisticated administration programs
can be implemented, without having to deal with ptax, proprietary configuration interfaces, which
are hidden in the wrappers.

15

SP1L4 Selfware Common Services version 2

Management layer

Management
interface T T
Apache Tomcat

-
LS
switch

- - MySQL

Apache Tomcat

¥ X —
AP ach €)g-rmrree @
/ Q \ f \\
.- it NLyS Q)
s'\urcl "

Legacy laver
figure 5. The management layer

Here, we distinguish two important roles:

« the role of the management and control interfacedoi provide a means for configuring
components and bindings between components. ludesl methods for navigating in the
component-based management layer or modifyingithpdement reconfigurations.

« the role of the wrappers is to reflect changeh@rmanagement layer onto the legacy layer. The
implementation of a wrapper for a specific softwaray also have to navigate in the component
management layer, to access key attributes of ¢imeponents and generate legacy software
configuration files. For instance, the configuratiof an Apache server requires to know the
name and location of the Tomcat servers it is baand

Motivations

Component-based autonomic computing has provedeta bvery convenient approach. The
experiments we conducted with Jade for managing=J@d other) infrastructures validated this
design choice. But as Jade was used by externa, wge observed that:

* wrapping components are difficult to implement. THeveloper needs to have a good
understanding of the component model we use (Hjacta

« deployment is not very easy. ADLs are generallyyveerbose and still require a good
understanding of the underlying component modelrédeer, if we consider large scale software
infrastructure such as those deployed over a geg@loying a thousand of servers requires an
ADL deployment description file of several thoussuod lines,

» autonomic managers (reconfiguration policies) afécdlt to implement as they have to be
programmed using the management and control icEsfaf the management layer. This also
required a strong expertise regarding the used onem model.

All these observations led us to the conclusiont thdigher level interface was required for
describing the encapsulation of software in compt®)ghe deployment of a software environment
potentially in large scale and the reconfigurajpaticies to be applied autonomically. We present ou
proposal in the next section.

4.1.2 Tune's management interface

As previously motivated, our goal is to provide ighhlevel interface for the description of the
application to wrap, deploy and reconfigure. This Uis to the following design choices:

* Regarding wrapping, our approach is to introdud&rapping Description Language which is
used to specify the behavior of wrappers. A WDL cdpmtion is interpreted by a generic
wrapper Fractal component, the specification are itfterpreter implementing an equivalent
wrapper. Therefore, an administrator doesn't haverogram any implementation of Fractal
component.

16

SP1L4 Selfware Common Services version 2

* Regarding deployment, our approach is to introdudgML profile for graphically describing
deployment schemas. First, a UML based graphicsdrg#ion of such a schema is much more
intuitive than an ADL specification, as it does®tuire expertise of the underlying component
model. Second, the introduced deployment schenmaoie abstract than the previous ADL
specification, as it describes the general orgéinizeof the deployment (types of software to
deploy, interconnection pattern) in intension, éast of describing in extension all the software
instances that have to be deployed. This is pdatiguinteresting for applications like Diet where
thousands of servers have to be deployed.

« Regarding reconfiguration, our approach is to hiice a UML profile for the description of state
diagrams. These state diagrams are used to defimkflows of operations that have to be
performed for reconfiguring the managed environmé&mne of the main advantage of this
approach, besides simplicity, is that state diagrananipulate the entities described in the
deployment schema and reconfigurations can onlylym® an (concrete) architecture which
conforms with the abstract schema, thus enforacgmnfiguration correctness.

We respectively detail these three aspects.

A UML profile for deployment schemas

The UML profile we introduce for specifying deplognt schemas is illustrated in figure 6 where
a deployment schema is defined for a J2EE orgaoizad deployment schema describes the overall
organization of a software infrastructure to beloggd. At deployment time, the schema is interptete
to deploy a component architecture. Each elembatl{bxes) corresponds to a software which can be
instantiated in several component replicas. A lekween two elements generates bindings between
the components instantiated from these elementsh Binding between two components is bi-
directional (actually implemented by 2 bindingojposite directions), which allows navigation ie th
component architecture. An element includes a Sebwfiguration attributes for the software (all of
type String). Most of these attributes are speddithe software, but few attributes are predefibgd
Tune and used for deployment:

e wrapper is an attribute which gives the name of the WDkaligption of the wrapper,

* legacyFileis an attribute which gives the archive which eamd the legacy software binaries and
configuration files,

» hostFamily is an attribute which gives a hint regarding tlymaimic allocation of the nodes
where the software should be deployed,

« initial is an attribute which gives the number of instanehich should be deployed. The default
value is 1.

The schema in figure 6 describes a J2EE clustetaitong one Apache, two Tomcats, one C-
JDBC and two Mysql that should be deployed. A prabénked with tomcat, which monitors the
server in order to trigger a repair/reconfiguregadure. In this schema, a cardinality is associated
with each link. If A(n) and B(m) are two linked elents in a schema, with an initial attribute (aiti
number of instances) n for A and m for B, the semanf the cardinality is the following. A link ()

t-u B(m) means that each A component should be bound wiBtltomponents and each B component
should be bound with t A components. The cardipatitconstrained by m*t=n*u with m>=u and
n>=t.

17

SP1L4 Selfware Common Services version 2

A e
+wTaEE | SInng = apderhs el
+legacyfie ; 5trng = apache taz
+Lister : Sirreg = B002
+Senveriama : 5tnng = localhost
+IUHET 1 S = LA
+Group ; 5tnng = touleuse
+SanaRool | S = apacks
+hest-farrily ; String = chster

+target { ureque |

1..1040 +iource
LR Al

+wragesr Sining = tomeaton

4 legacyfle : Stnng = Eomcat tox

+ wragget | SEnng = peobeTerncat senl
+ ROl NS = BB 1 1 pE .

+legacyFle ; Sinng = resize-proke oz Apache
RERTL M 4tpfget Faourphindial :irCeger = 2
+Ibfactor : integer = 100 i = z

4 hant-tarrily : 5¥nng = chagter
+ kezpt-fardly | SEnng = chayler 1 .
+intial : rEager s 2 o -

probes Tosm: at

e ""'-.
1,155 | +source { unsgss } —_".._‘—\—\._ ;"‘_‘—-\.__H
+larget - I S— e
e - \.L._ ,.-"J "
+wrapper ; Sirma = cidbeaml -"'FF--__.‘__'_"‘-\. ."'-\. _I,.-' ———— —_——

" b = : ’ - i
i SRR TN, A S BrebeToment
+ host-faridy | Stress = b gkl ".\,L J.-"

+ port ; BEing = 23322 L

1 | #source ,-""d_r_q_h"‘x
I Cinac .__,l
e
1188 | $igraai { wrsgus } ™
sl -~ i
+wraeer | SInng = gl o .,
4 legacyrln : 5inng = rmyeglinzr ﬁ__....'_

4-‘.
+ et it = ¥97 il g z""'-'_'_-.___\-\""‘
+uneimama ; Strng = mysal MySaL (\,‘____jiq_"_'_'_'_‘)
+pagword S = passwerd

4+ Fest-Tamily ; 5inng = claster
+LHAF ! S = U
#inkigl ;rfpger= 2

figure 6. Deployment schema for a J2EE architecture
A Wrapping Description Language

Upon deployment, the above schema is parsed anddoh element, a number of Fractal
components are created. These Fractal componeplsntant the wrappers for the deployed software,
which provide control over the software. Each weaplpractal component is an instance of a generic
wrapper which is actually an interpreter of a Wplesification.

A WDL description defines a set of methods that lbarinvoked to configure or reconfigure the
wrapped software. The workflow of methods that h&webe invoked in order to configure and
reconfigure the overall software environment isirtsd thanks to an interface introduced in the next
section.

Generally, a WDL specification provides start atmpsoperations for controlling the activity of
the software, and a configure operation to reftbet values of the attributes (defined in the UML
deployment schema) in the configuration files & software. Notice that the values of these attebu
can be modified dynamically. Other operations cardéfined according to the specific management
requirements of the wrapped software, these metheitg implemented in Java.

The main motivations for the introduction of WDLear
* to hide the complexity of the underlying componeidel (Fractal),

« That most of the needs should be met with a fisétieof generic methods (that can be therefore
reused).

18

SP1L4

<txml version='1.0" enc
nper name='apache's
<method nqm~:" start' key="extension.Ge

<wr

<param v
<param v

</method>

Selfware Common Services version 2

odLng='IS0

ericStart" method="start_with_pid_linux" =
1 start' />

ralue="$dirLocal/a
/alue="LD) LIBRARY P&

<method name="configure" key="extension.GenericConfigurePlainText" method="configure"s

<param va
value=" /s

<param
<param ¥
<param v
<param v
<param ¥

<param value="ServerRoo
</method>

<method name="addworkers® k

<param value="$d1rloca
<param va
<param va a]
value="host: qt mc«t no \ Name" />

<param

lue="¢d1rLocal /apache/conf/httpd.conf" /=

value="Us
value="Gr D' />
value="L1sten:$Listen" />
value= riame : erhame" /=

dirLocal/$Serverroot" />

AddTomcatWorker" method="addwWorkers's
kers.properties' /=

="extensio

Lue="name:
alue=

<param valus="port:$tomcat.ajpPort" /
<param faluez“lhfactor:$tomcat.lbfactor“ />
</methods

<method name="stop" key="extension.Generics tdlt" method="start_with_pid_linux" =
<param value="$d1rLocs stop" />
<param value="LD_LIBRARY_PA
thod=

</Wrapper=

figure 7. Apache WDL specification

The XML file in figure 7 shows an example of WDL espfication which wraps an Apache
computing server in a J2EE architecture. It defistast and stop methods which can be invoked to
launch/stop the deployed Apache server, andoafigure method which reflects configuration
attributes in the configuration file of the Apacberver, and aaddWorkeranethod that adds the list
of Tomcats to the Apache workers file. The Javalementations of these methods are generic and
have been used in the wrappers of most of the aoftwve wrapped (currently we have 2
implementations: one for XML configuration filekéi Tomcat configuration file, and another for
plain text files like Apache configuration file). Aethod definition includes the description of the
parameters that should be passed when the methoodked. These parameters may be String
constants, attribute values or combination of §8thing expressions). All the attributes definedtia
deployment schema can be used to pass the comfiqitebutes as parameters of the method
invocations. However, some additional attributesartomatically added and managed by Tune:

« dirLocal is the directory where the software is actuallgldged on the target machine,

» srNameis a unique name associated with the deployed coerg instance.

In figure 7, thestart method takes as parameters the shell commanththath the server, and the
environment variables that should be set:

« “$dirLocal/apache/bin/apachectl start” is the slkelinmand that launches the server,

» “LD_LIBRARY_PATH=$dirLocal” is an environment varide to pass to the binary.

The configure method is implemented by th&enericConfigurePlainTextlava class. This
configuration method generates a configurationddmposed of <attribute,value> pairs:

* “$dirLocal/apache/conf/httpd.conf” is the name foé tonfiguration file to generate,

« “ " s the separator between each attribute amageya

 and the attributes and value are separated bychdracter.

It is sometimes necessary to navigate in the deplogomponent architecture to access key

attributes of the components in order to configines software. For instance, the configuration of an
apache server requires knowing the name and locafithe tomcat servers it is bound to. Therefore,

19

SP1L4 Selfware Common Services version 2

in the Apache wrapper (figure 7), we need to actesscats parameters in order to set these hosts and
ports variables. Since in the deployment schemeetiea link between the Apache and Tomcat
elements, there are bindings between the Apacheltendomcats servers at the component level.
These bindings allow navigating in the managemayerl “$tomcat.srname” returns the list of the
names of the Tomcats the Apache is bound with.

A UML profile for (re)configuration procedures

Reconfigurations are triggered by events. An ewam be generated by a specific monitoring
component (e.g. probes in the deployment schemay & wrapped legacy software which already
includes its own monitoring functions.

Whenever a wrapper component is instantiated, amortation pipe is created (typically a
UNIX pipe) that can be used by the wrapped legaafiwsre to generate an event, following a
specified syntax which allows for parameter pasdifice that the use of pipes allows any software
(implemented in any language environment such &s &a C++) to generate events. An event
generated in the pipe associated with the wrapgpéniansmitted to the administration node where it
can trigger the execution of reconfiguration progsa(in our current prototype, the administration
code, which initiates deployment and reconfigurgtis executed on one administration node, while
the administrated software is managed on distribhtests). An event is defined as an event type, the
name of the component which generated the evengagmtually an argument (all of type String).

For the definition of reactions to events, we idtroed a UML profile which allows specifying
reconfiguration as state diagrams. Such a statgatiadefines the workflow of operations that must
be applied in reaction to an event.

An operation in a state diagram can assign arbateior a set of attributes of components, or
invokes a method or a set of methods of compondidsdesignate the components on which the
operations should be performed, the syntax of gregadions in the state diagrams allows navigation i
the component architecture, similarly to the wraggdanguage.

figure 8. State diagram for repair

For example, let's consider the diagram in figusehich is the reaction to a Tomcat failure. The
event (fixTomcat) is generated by a probeTomcatpmrant instance; therefore the variable “this” is
the name of this probeTomcat component instancenTh

« this.stopwill invoke the stop method on the probing compun@o prevent the generation of
multiple events),

« arg.startwill invoke the start method on the Tomcat compurestance which is linked with the
probe. This is the actual repair of the faultingrbat server,

« this.startwill restart the probe associated with the Tomcat.

Notice that state diagram's operations are expilassiag the elements defined in the deployment
schema, and are applied on the actually deployegbonent architecture.

A similar diagram is used to start the deployedBEl2fuster, as illustrated in figure 9. In this
diagram, when an expression starts with the nanasm @lement in the deployment schema (apache or
tomcat ...), the semantic is to consider all ttetances of the element, which may result in mtipl
method invocations. The starting diagram ensuras(ft) configuration files must be generated, and
then (2) the servers must be started followingottoker.

Similar diagrams can be drawn to define the actimnsnethods that should be invoked while
upsizing or downsizing a component in reactionvengs of load peak.

20

SP1L4 Selfware Common Services version 2

!

v

apache configure

mysql.start tomcat.configure

cidbc.configure

apache.addworkers
cidbc.start
apache.start
tomcat.start

probeTomcat start

figure 9. State diagram for start

4.1.3 Conclusions

As computing environments are becoming increasiagphisticated, there is a need for advanced
system services to keep these platforms maintanabl providing tools that ease the deploymedt an
administration of these distributed systems. Witlmd, we propose a higher level interface for
describing the encapsulation of software in comptsehe deployment of a software environment
and the reconfiguration policies to be applied aatoically. This management interface is mainly
based on UML profiles for the description of depimnt schemas and the description of
reconfiguration state diagrams. A tool for the diggion of wrapper is also introduced to hide the
details of the underlying component model.

4.2 J2EE tooling with JASMINe Design

JASMINe Design aims at providing a high level ifdee for describing graphically a distributed
middleware configuration. In a first time, the J(8ig Java EE middleware configuration is addressed.
Typically you may define a JOnAS cluster configimatwith an Apache frontal, some web level
instances, some ejb level instances and a database.

."r node 1 q\l. 'f node 3_\'

15 npache] |\3#§5§_ '| ‘ ? ‘J P T

L

JASMINe Design relies on a Eclipse EMF/GMF graphicterface. The GUI provides all JOnAS
cluster elements as graphical icons that the wsedrag and drop to design a configuration, as show
in the screen shot below.

21

SP1L4

Selfware Common Services version 2

Fle Edit Diagram Validation Connection Window Help

Jasmine Application

x|

9 B 5= Biv o8- B~ -
Nodes Explorer 52 |) RuleView: = 0| @ filey P4]
a - Palette
fdg . 10nAS Application Server

< W file:syhome/guillaume/default20 jasminem:
< 3 Domain
~ @& Apache HTT Pd Apache HTTPd Serv.
17} Mod JK Module Mod Jk

<ionas,jonas>

eeeeee

[E|MS Service
% Tomcat Web Container

Iy select

+, Zoom

= Note

(= Middlewares +
£ |0nAS 4

tocols % Apachi
< /® On AS4 JOnAS Application Server JRMP. = pra(:S
3 %, |Boss
A% Tomcat Tomcat Web Container s CMI protocol [Bras s
: Web Connectors
JRMP JRMP ap (= Components
% CMI CMi protocol BrrPs (= Group Con... #

Apache HTTPd Server

[Jms Service JMS Service) Wodie @ HTTP Replica... &2 cMI_Groups
@, Discovery Service Discovery Sen| | ¥ Mod Jk ZHA_GVWPs
5 AP AP 10nAS Application Server RMI_Groups
5 <ionas,jonas=> & HTTP_Rep_Gr...
(¥ HTTPS HTTPS TP & |Boss HA Group
7 (#)0n AS4 JOnAS Application Server 4 Discovery Service (& Clusters
EIMS Service
A% Tomcat Tomcat Web Container % Tomcat Web Container LV Connectors #
i JRMP JRMP I+ Protocols K Modjk_link
| D] P JRMP 2 cMI_link
= - & CMI protocol 3 HTTP_Rep_link
= outli 3 =8 g i
« @ it
Bap @ RMI_link
(HTTPS 2y 0B_link
(= PEtALS
o [=] % ©)Error Log| & Progress| [£ Problems B| S
Property Value

The tool provides a system for validating the maédeire configuration before deployment. It
enables to detect some misses in the configuralgscription but also some incompatibilities. For
example, if a mandatory parameter is not set byitiee, the validation system will notify the operat
through an error message and/or an error hightighin the graphic element. Regarding the
incompatibilities, the tool is able to detect sameonsistent links between middleware elements such
as a connection between an Apache front end witkX container. The checking is implemented
through a set of OCL constraints applied to the Eftbdel and a set of rules implemented with the
Drools rules engine. The user may extend the buittiles for adding its own validation rules. For
example, each enterprise can define its own valb®ath for a middleware parameter with a
customized rule for controlling that.

\OnA“S 0

=|onas, |onas=

@ Palatte
Ry Salect

sralldation x|

: Services

4, Discovery Service

= [MS Service

A% Tomcat Web Container

rablam with &

The reguired fasiurs esTinshicos’ of

P HTTF Feallca.|

Protocols

s IRMP 1

Web Connectors

- oM protoco

C = [s

B [—
R

By the way, JASMINe Design provides a wizard fornaging automatic configuration rules,
Drools rules engine based as well. Indeed, eachnaration has its owns administration policy that
defines how the middleware must be installed anafigored. A such wizard enforces the policy
adoption by delegating a part of the middlewaré&rggto the tool. Human error are reduced and the
maintenance is easier since the different configpuma are homogeneous within the company. A first
example of rule is the port numbers allocation s€rthe infrastructure. The operator can specify a
port range for each network interface and the teoyetting in when configuring a middleware
element. Another example is the JOnAS instance nauiiding which may be relevant to automate
for ensuring the adoption of the rules naming itite enterprise. And one may have the same
requirement for defining the middleware's homedaoey path name.

22

SP1L4 Selfware Common Services version 2

Nodes Explorer | {J b = (=]
JOnASName

priority : 0 [Give JOnAS Name | configure

|onASPortsRule

ity : 0 rmi ports
EHOTY, o g Configure Rules

priority : 0[] ajp ports

Configuration x

UsualRuleSet “lonASPortsRule” rule set parameters

priority : 0[] Instance Name Variables

priority : 0[] JONAS_ROOT ge| | ,5rtpmiend |4 |:-

priority : 0[] JONAS_BASE ge|
priority ; 0[] http port generd portajpERd |0 "‘
priority : 0[] AJP Port generat] -~
priority : 0[] RMI Port generaf Rules priority
priority : 0 B JMS!JORAM port G }0 ‘.I
priority 1 0[] Service discover]
—— | ajpports |0 E
= ip p o 3
valid ‘

Once the user has finished to describe the middewanfiguration, he can use the Jade
framework for deploying it over the infrastructure.

e -
- (“node1) [node
e PR

Deployment with Jade

T} U
CHICH

- JASMINe Design

Thanks to the graphical interface and the Modev@riConfiguration principle, the distributed
middleware configuration is simpler and quicker fbe user who may devote more time to the
architecture design. The validation and automaiitfiguration features do reduce the risk of erairs
the deployment time and promote the middlewareedigsation within the enterprise.

4.3 Monitoring support with MbeanCmd and the EventShvitc

JASMINe monitoring provides an infrastructure foupervizing a middleware distributed
configuration. It aims at offering two main featsirgoerformance tracking and error detection. The
infrastructure is composed of:

* An EventSwitch element based on the Mule's lighgweiESB in charge of routing the
monitoring events from the events producer (prolékjcat) towards the events consumers
(persistent storage, console, rules engine).ThentSwdtch ensures the extensibility of the
architecture, any additional producer or consumay be plugged without a big impact.

« A set of JMX probes, namelliBeanCmd for collecting monitoring data through a JMX
interface. Some built-in options are provided fattipg some well-known application server
indicators such as the transaction throughput@icthrent HTTP session number. An embedded
deployment mode into the EventSwitch coupled withMiX connection pool does ensure the
scalability when monitoring a whole Java EE cluster

* An optional distributed events mediation infrastawme, named Wildcat, enabling to collect,
gather, aggregate, filter the monitoring events pogsed of. Wildcat is described in detail in a
dedicated section of this document.

* An events persistent storage system with an EJB3ferface and an event database.
* A Web 2.0 console (named EoS console) enablingatyae the performance into graphics.

» A rules engine providing to the user the capadityrtplement its own policy administration rules
for detecting errors. Any kind of action may be lempented in Java language for notifying the
operator when an error occurs (mail sending, logsage, and so on).

23

SP1L4 Selfware Common Services version 2

P
'pode 1) node 3 A
ﬂh?“ ?5& /‘ @ ‘/ DB “
\\"/‘ { node2 g Eode4N vy Ny
R 0/\

L Java EE Cluster J

JMS M

¢“/A'

mule EventSwitch

A

)

A
L

-«

o
Sy
Ve

4/\1 JASMINe monitoring

g S 4

MBeanCmd tool allows to very easily get informatimom available Mbeans. This tool is
available as a Java command (mbean.jar), thus iagabtripting, it relies on the JMX Remote
interface and provides the capability to get antdgean attributes, to invoke MBean methods. It is
used for very easily probing the most relevant JOnAdicators like transactions, data sources, http
connectors, threads pools, jms statistics, etc. Mddans can be polled as well for getting the aurre
cpu load or the memory usage. MBeanCmd can behattdn a standalone mode or embedded in the
EventSwitch. In a standalone mode, it allows firage (CSV), provides a replay mode and a graphic
swing console.

EoS console (Eye of SOA) enables to track the roang events into graphics. Input events can
be listened from the EventSwitch through a IMSdapiretrieved from the events database. Several
graphics can be configured at the same time witbrdint curves and scales. The interface is dynamic
(module loaded on demand, self-sizing windows) amtitive (adjustable zoom , automatic
rescaling). An export function on the graphs iR&G pictures enables to put the results into artepo

24

SP1L4 Selfware Common Services version 2

Conteel [Jmxtrapoal BE| [mx1 patasource waiters [T

The Drools rules engine enables to implement sagte Iavel error detection rules. For example,
the user can define a threshold and a notificafiction when an indicator reaches the threshold.
Actions are written in Java and can use the Javadeices of the underlying application server (mai
Web Service invocation, database access) as JAShigtoring is a Java EE application. Below, a
message is printed in the console when the cpurkeches 80%.

rule "Your First Rule"
when
$event : JasmineEventEB(

probe == "cpu:load",
$value : value,
Integer.parselnt((String) value)) > 80)

then
#actions
System.out.printin("Cpu load reaches a threshold");
retract ($event);

end

JASMINe monitoring improves the reactivity whenemor occurs and thus contributes to reduce
the administration costs and the continuity of ervJASMINe monitoring is an element of the SOA
governance and gives to the operator an overvigteofystem behavior, health, and efficiency.

4.4 Shelbie and FPath IMX

Shelbie is a dynamic, modular and extensible condhlare application written in Java and
embeds in the JOnAS 5 application server but wirialy be used in others context as well. It provides
features close to those provided by the BASH imetgp.

For users, Shelbie is an easy to use commandriteeface which provides useful features like
command completion or history. Shelbie enables tesevrite scripts for automating complex tasks
and is remotely accessible thanks to an embeddeds&&er.

For developers, Shelbie is an easy to extend 8iinéth provides facilities to develop commands.
One goal of Shelbie is to help developer to focnsapplication logic and not in painful issues like
command option processing. Shelbie offers toolsustomize command rendering including text
coloration and decoration.

More than a simple command line application, Sleetfzin be considered as a framework which
helps building rich command line application. Skelts portable and works in commons operating
system (Linux, MacOSX, Windows).

25

SP1L4 Selfware Common Services version 2

Main features are:

* Rich line editing including tab-completion, persist history and user input masking (Jline
[http://jline.sourceforge.ngj/

« Remote access using embedded SSH2 server (Jardhtilgoywww.lag.net/jaramikd/
» Annotation-based command line parsing (Argsd{)ds://args4j.dev.java.ngt/

« Scripting support using the powerful Groowytp://groovy.codehaus.oidanguage

» Support ANSI text coloration and decoration

« Dynamic module discovery using OSGhttp://www.osgi.org/Main/HomePapeand iPOJO
[http://felix.apache.org/site/ipojo.html

« Detailed help on command

Three sets of commands have been delivered istaséirsion as shown in the figure:
‘ GUI ‘ ‘ GLl ‘

Remote

Shelbie

Pt 1

OSGicmd JMX emd ‘JOnAS cmd‘

!

* a set of OSGi commands for controlling the Felanfework (bundle install, start, stop)
« A set of JOnAS commands for controlling the appiaaserver (start, stop, list of INDI entries,
application deployment, ...)

* a set of IMX commands relying on the FPath/JMX #&ark. The FPath/JMX project is
detailed in another section of this document. @iviles a domain specific language (DSL) for
navigating in the MBeans structure and retrieving or several MBeans attributes.

Example of syntax for a JMX command on top of FRAEX:

/lget a list of the JORAM queues
joramClient/mbean::*[mbtype(.)=="queue’]

/Iget the number of messages in the queue 'sampleQu eue'
joramClient/mbean::*[mbname(.)=="'sampleQueue'] /@PendingMessages

26

SP1L4 Selfware Common Services version 2

5 Conclusion

The second release of the Selfware platform's sesvprovides higher-level tools and APIs,
mostly based on the underlying Fractal componesétarchitecture. Monitoring concerns and Java
technologies have been mainly addressed with Wilt2A JASMINe Design, Shelbie, FPathJMX
and MBeanCmd. TUNE is different in that it takepware software engineering approach, and is
finally independent from the target programmingglaages and models.

We notice that some distance with the Fractal g¥chire is now provided, in order to support
new facilities that are not going to be handled-bgctal-aware operators, administrators or autoaomi
policies designers. Moreover, some of these taolsto be independent from Fractal, and may apply
to less specific environments, mostly (but not pdgva-based. This observation is just illustratirey
incremental way of building the Selfware platforfinst focusing on a sound architectural substrate
supporting a well-controlled runtime management] #men going towards supporting third party
actors that will finally need to use and custonazeigher-level framework to design and administrate

autonomic systems.
Possible further work about the Selfware serviteaikl address the following issues:

* monitoring requirements have resulted in a greatber of tools, and some of them should be
unified, in order to grant both the component-baaechitectural approach (as provided by
Composite Probes) and friendly high-level APIsgesvided by WildCAT).

« decision making is the other hot topic that deses@me extra work. Here again, unifying the
architectural approach (as provided by the ECAsrditamework) with user-friendly high-level
policy tools (such as Drools rule engine used WAISMINe) would enable a better integration
and manageability within the Selfware platform.

< an overall review of the Selfware services shoukb ebe carried out with respect to its
applicability to typical real systems, with regdodscalability and complexity. One of the key
issues is how to deal with heterogeneous contagdofor example, a self-optimization control
loop may have to be conciliated with a self-pratecioop, or a performance self-optimization
loop may have to be conciliated with an electrigpalver self-optimization loop. Then, simple
rule-based decision making might not be practicaffgctive, and more advanced reasoning or
learning mechanisms may be necessary. Of course,sthlability issue also tackles the
monitoring service, since a huge number of evergdabe generated, transported and queried in

a widely distributed system.

27

