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1 Introduction 

Autonomic computing, which aims at the construction of self-managing and self-adapting 
computer systems, has emerged as an important goal for many actors in the domain of large scale 
distributed environments and applications. This approach more precisely aims at providing systems 
and applications with self-management capabilities, including self-configuration (automatic 
configuration according to a specified policy), self-optimization (continuous performance monitoring), 
self-healing (detecting defects and failures, and taking corrective actions), and self-protection (taking 
preventive measures and defending against malicious attacks). 

Following this approach, the Selfware project aims at providing an infrastructure for developing 
autonomic management software. An important aspect of this infrastructure is the adoption of an 
architecture-based control approach as described in the SP1-L1 document, meaning that the control 
loops that regulate the system have the ability to introspect the current software architecture of the 
managed system, as well as they have the ability to modify (i.e. reconfigure) this architecture. 

The objective of this document is to specify the way self-optimization features will be actually 
provided in the context of this architecture, on the basis of the Selfware framework and tools described 
in document SP1-L2. By giving specific design principles, algorithms and strategies, this document 
gives a common basis that practically supports the implementation of Selfware's self management 
scenarios (SP3, SP4). Self-optimization features are first presented in the general context of Internet 
Services, with details about the key issues that must be taken into account (load variation profiles, 
stability). Then, another self-optimization architecture is described, combined with a self-regulated 
load injection system, for the purpose of self-benchmarking. 
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2 Self-Optimization of Internet Services 

This section presents the way Internet services are self-optimized in the Selfware platform. We 
first describe the architecture and design principles of the ISS. Then we detail how the ISS manager 
tackles different types of load variation, and how it prevents system oscillations. 

2.1 Architecture and design principles 

In the Selfware platform, the Internet Service Self-optimization (ISS) Manager is responsible of 
applying a given self-optimization policy on an Internet service. The self-optimization policy 
described here is based on dynamic resource provisioning, i.e., on-line addition and removal of 
resources to and from an Internet service. It observes the behavior of a service and triggers resource 
provisioning or un-provisioning according to its observations. 

This self-optimization management assumes that Internet services are deployed in the form of 
replicated entities, providing both scalability and high availability properties. A self-optimization 
manager is more precisely associated with each set of replicated entities of an Internet service. For 
instance in the case of an e-mail Internet service composed of a number of replicated e-mail servers, a 
self-optimization manager will be associated with the set of replicated e-mail servers. In a partitioned 
video-on-demand Internet service, a self-optimization manager will be associated with each partition 
of the VoD service. As for multi-tier e-commerce Internet services, a self-optimization manager will 
be associated with each tier of the multi-tier e-commerce web application. 

The ISS manager applies a resource usage threshold-based policy to a set of Managed Elements 
(as defined in the SP1-L1 document  [4]) that correspond to the replicated entities. When the resource 
usage of the underlying set of replicated entities reaches a maximum threshold, we consider that the 
system is over-loaded and thus the ISS manager provisions the set of managed entities with additional 
resources. Symmetrically, when the resource usage of the set of managed entities goes below a 
minimum threshold, we consider that the system is under-loaded. In this case, the ISS manager 
removes resources from the set of managed entities. 

The ISS manager is organized as follows. It observes the behavior of a set of replicated entities 
and, based on a particular policy, it triggers resource provisioning or un-provisioning according to its 
observations. It is more precisely organized in three main parts that are described in the following sub-
sections: (i) system observation, (ii) self-optimization policy, and (iii) system reorganization. 

2.1.1 System observation 

The ISS observation part is responsible of observing the behavior of the underlying managed 
system in terms of resource consumption. Resource consumption refers to hardware resources such as 
cpu, memory, disk or network. System observation may have the form of an on-line resource 
monitoring system that performs real-time monitoring of the system through probes, or it may have the 
form of predictions of future resource usage of the system. The former is used to implement reactive 
self-optimization, while the latter applies in this case some form of proactive self-optimization. On-
line resource monitoring consists in resource usage indicators (i.e. sensors or probes), that can be 
provided by the CLIF framework  [1]  [5]. 

Self-optimization is triggered when a sensor reports a value that violates some minimum or 
maximum thresholds. High-level sensors may aggregate and filter many lower-level sensors to provide 
meaningful resource usage indications. Aggregation allows to consolidate grouped resource usage 
information (e.g. partition-wide resource usage as shown in  figure 1). 
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figure 1. Aggregation and filtering of sensors 

Aggregation is usually achieved through mathematical computations such as summing, averaging, 
minimum finding, etc; this depends on the nature of the information to measure and to report. Filtering 
generally targets the removal of meaningless artifacts for stability purpose through smoothing over 
time (e.g. raw average or EWMA), flip-flop filters, etc. Filtering effects are illustrated in  figure 2. 

figure 2.Filtering of monitoring data 

2.1.2 Self-optimization policy 

The central part of the ISS manager is its policy. Its general architecture is briefly described in 
 figure 3 and its in algorithm in  figure 4. The ISS policy is a control-loop that reacts to events received 
from the system observation part. Each time an event is notified, it is analyzed to check if the 
underlying managed system is over-loaded or under-utilized. 
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figure 3.Architecture of the ISS manager 

If one of the observed resources exceeds its maximum threshold, that means that the managed 
system faces a bottleneck and is over-loaded. In this case the system is provisioned with additional 
nodes. Symmetrically, if all observed resources use less than their minimum threshold, that means that 
the overall system is under-utilized. Thus nodes are removed from the managed system. Addition and 
removal of nodes is done through architectural reconfiguration operations, the third part of the self-
optimization manager. 

figure 4.Algorithm of the ISS manager 

2.1.3 Architectural reconfigurations 

This latter part of the ISS manager provides operations that actually perform the dynamic 
provisioning or un-provisioning of nodes to the managed system. Such operations consist in assigning 
new free nodes to the managed system, releasing nodes from the managed system, installing on a new 
node the software needed by the managed system when necessary, configuring the software and 
starting the software. 

More generally,  figure 5 depicts a general example of how self-optimization applies in an Internet 
service. An Internet service may be organized as partitioned and pipelined sub-systems, where the 
partitioned and pipelined entities may be sets of replicated entities (S1 to S7 in  figure 5). In this 
context, an ISS manager is associated with each set of replicated entities. It is responsible of 
dynamically provisioning resources to that set of replicated entities. Moreover, the self-optimization 

on Receive(event: MonitoringEvent): 

if (event.consumption1 > max threshold1)  
or (event.consumption2 > max threshold2)  
or . . . 

 or (event.consumptionr > max thresholdr) then  
 
 // System is overloaded and need more 
resources  
 AddResourcesToSystem(); 
  

 else if (event.consumption1 < min threshold1)  

 and (event.consumption2 < min threshold2)  
 and . . . 

  and (event.consumptionr < min thresholdr) then 
  

 // System is underloaded and wastes resources  
 RemoveResourcesFromSystem(); 
 
end if 
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managers of the Internet services co-operate in order to provide a global consistent behaviour (e.g. 
preventing system oscillations as discussed in the following section). 

figure 5.Architecture of self-optimized Internet services 

2.2 Managing load variations 

Load variations may happen following different schemes. A common scenario consists in a 
gradual change of the load which will progressively induce an under-load or an overload in the 
system. Another common scenario often happens at the occasion of big events and consists in sudden 
load variations also commonly referred to as load spikes or flash crowds. 

Whether a load variation is considered as gradual or sudden is related to the relative difference 
between the speed of load variation and the speed of architectural reconfigurations. Gradual load 
variation corresponds to load variation that happens slower than the architectural reconfigurations 
speed (see  figure 6). 

In this case, simple architectural reconfigurations such as single resource addition or removal (i.e. 
at the granularity of one resource at a time) are sufficient to absorb the load variation. On the contrary, 
sudden load variation happens when the load variation is faster than the architectural reconfigurations 
speed (see  figure 7). In this case, fine-grain heuristics are required to determine the optimal capacity 
planning of the system, in order to accelerate the process of architectural reconfigurations towards an 
optimum state. In the case of sudden load variation, it is necessary to determine the amount of 
resources to (un-)provision, before actually performing the (un-)provisioning in a single step. In the 
following, we present two mechanisms to address both types of load variations. 
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figure 6.Gradual load variation 

figure 7.Sudden load variation 

Gradual Load Variations. In a system undergoing gradual load variations, the capacity planning of 
the system can be continuously adjusted through architectural reconfigurations as simple as adding or 
removing resource units one at a time. Indeed, the gradual load variation assumption ensures that the 
system provisioning will be updated promptly enough to absorb and follow the load variation. We 
implemented a self-optimization manager able to handle gradual load variations. The manager relies 
on low-level resource usage system observations (such as cpu, memory, disk or network) and, based 
on these observations, triggers single node addition or removal to the system. We experimented and 
evaluated this manager on a clustered Internet service implementing a multi-tier e-commerce web 
application that was submitted to gradual load variation. The Internet service was able to self-optimize 
its behaviour according to the changing workload. 

Sudden Load Variations. In a system submitted to sudden load variations, updates to the system 
capacity planning may require addition or removal of multiple resources at a time, so as to absorb the 
load peaks. In case of sudden load variation, it is preferable to factorize and parallelize architectural 
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reconfigurations operations, thus increasing the overall speed of system reorganization. The challenge 
here is to determine as accurately as possible how many nodes to add or remove in one step. We 
implemented a self-optimization manager that copes with sudden load variations. It is based on low-
level resource system observations (cpu, memory, disk and network) as well as higher application- 
level observations (such as the number of concurrent transactions running in a server). Application-
level observations allow the construction of heuristics functions to determine the optimum capacity 
planning of the system. We identified a heuristics function that calculates the optimum capacity 
planning as linearly proportional to concurrent transactions in the system. Based on the result of this 
function, multiple nodes are assigned or released in parallel. We implemented this self-optimization 
policy and applied it to a cluster of Internet services that implements an e-commerce web application. 
In the presence of load spikes, the e-commerce web application was able to efficiently self-optimize. 

2.3 System oscillation management 

Another issue of self-optimization is that it may introduce system instabilities during which 
sensors may report meaningless information. Thus, interpreting these signals is likely to be irrelevant 
and leads to erroneous decisions. Indeed, dynamic resource provisioning of an Internet service may 
induce multiple concurrent provisioning operations that are actually not necessary and would, as a 
result, hurt the overall Internet service performance. For instance, in a multi-tier Internet service 
composed of a front-end web server and a database back-end organized as a pipelined system, the 
database back-end might become a bottleneck and induce an underload on the front-end web server 
(which then waits for responses from the back-end tier).  

In such a situation, the self-optimization could trigger provisioning operations, increasing the 
amount of resources on the database back-end tier on one hand, while reclaiming unused resources on 
the front-end tier. Obviously, the latter un-provisioning on the front-end tier is a consequence of the 
dependency between the front-end web server and the database back-end that leads to un-necessary 
operations, and therefore to system oscillations. To prevent system oscillations, we introduce a 
technique that (i) first automatically calculates inter-dependencies between sub-parts of the system, 
and then (ii) automatically prevents system oscillation occurrence. 

The system oscillation management relies on a description of the system that allows the manager 
to determine dependencies between parts of the system. More precisely, the manager is given a 
representation of the system in terms of pipelined and partitioned sub-systems. Thanks to this 
knowledge, the manager infers a dependency function defined as follows: (i) a sub-system Si depends 
on a sub-system Sj if Si and Sj are parts of a pipelined system, and (ii) a sub-system Si always depends 
on itself. Indeed, a pipeline materializes the dependency between sub-systems, while a partition 
materializes their independency. 

Notice that in pipelined sub-systems, the workload of one of the sub-systems may have a side-
effect on another sub-system in pipeline. This is due to the fact that client request processing may flow 
through all or part of the pipelined sub-systems. While in case of partitioned sub-systems, the 
workload of the different sub-systems are independent from each other; each partition being 
responsible of processing requests independently from the other partitions. Thus, based on the inter-
dependency function and on the knowledge of the system architecture, the SSIS manager is able to 
automatically identify inter-dependent parts of the Internet service. To prevent oscillations from 
occurring, the SSIS manager ensures that during a self-optimization operation on a part of the system, 
self-optimization is inhibited on any inter-dependent part (during a given delay). Once the inhibition 
delay has expired, new self-optimization operations are allowed for execution again. 

We implemented the system oscillation management for a self-optimized e- commerce web 
application hosted by a two-tier Internet service where each tier of the Internet service was replicated 
and dynamically provisioned. The two tiers of the Internet service were identified as a pipelined 
system. Thus, all system reorganization happening on the first or the second tier of the system 
triggered an inhibition that blocked any new reorganization on the first and on the second tier. 
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3 Self-optimization for self-benchmarking 

The principle of self-benchmarking has been detailed already in previous deliverable  [6]. We give 
here a short reminder in order to introduce the specific use of self-optimization in this context. 

3.1 Introduction to benchmarking and optimization requirement 

Benchmarking typically consists in comparing the performance of possible alternative computing 
elements (software/middleware, hardware). For instance, one may be interested in comparing the 
performance of a number of Java Virtual Machines, databases, application servers, etc. To do this, it 
typically takes: 

• a reference application that uses these alternative elements, in order to have something to 
measure (e.g. application response times or computing resources consumption); 
• together with a workload specification that defines the flow of requests that the reference 
application will be subject to. 

For example, in the context of Web applications, the Rubis benchmark  [1] provides a number of 
implementations of an on-line auction web application that can be run on a variety of JVMs, 
applications servers, databases, etc., together with an HTTP traffic generation utility that defines a 
special mix of different HTTP requests. By measuring the performance of this application with 
different JVMs (or databases or...), the tester can compare the performance of these alternatives and 
make the best technological choices. 

One of the key issues with benchmarking is that alternatives must be tuned, or, in other words, 
configured to get their optimal performance, in order to get meaningful, comparable measures. To go 
on with the Rubis benchmark example, JVMs, applications servers, databases, etc. all have specific 
parameters whose settings may (or may not) influence the overall application performance. Of course, 
the optimal settings of one alternative are typically closely dependant on the application. 

To conclude, the benchmarking activity typically relies on looping on the following steps: 
• finding the performance limits of a tested element with a given configuration (observation) 
• tuning the element configuration for better performance (feedback) 

3.2 Towards autonomic benchmarking 

3.2.1 Principle 

Starting from the observation that benchmarking activities involves a human feedback loop in a 
complex technical infrastructure (tested element, workload generation system, network...), our idea is 
to apply Selfware's architectural approach to autonomic management of complex systems in the field 
of performance benchmarking. 

Roughly speaking, it consists in supporting both the lookup of saturation step and the performance 
optimization step as autonomic processes. The first step typically relies on a self-regulated load 
injection system, autonomously adapting the workload level to the observed performance of the target 
element. This step must finally provide a performance metric for the tested configuration. The second 
step consists in changing the tested element's configuration in order to improve its performance. We 
develop these two steps in the following two sections. 

3.2.2 Self-regulated load injection 

The self-regulated injection aims at looking the saturation limits of the tested element in terms of 
performance. The concepts of performance and saturation must be resolved into measurable metrics 
and Service Level Objectives that are meaningful to the tester. As a matter of fact, testers may 
consider different metrics and SLOs. Let's mention for instance: 
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• metrics: response times experienced from the user point of view, request processing time in 
the system, system load (processor, memory, disk transfer... or an arbitrary combination), network 
bandwidth usage, request rejection or error rate... 
• SLOs: acceptable values of these metrics, in terms of average, maximum, standard deviation, 
distribution... 

The self-regulated load injection system can be represented as an autonomic system with the 
Selfware approach, with a control loop: 

• measures (observation), 
• SLO check (decision), 
• adapt the workload level (reaction). 

3.2.3 Self-optimization 

Self-optimization consists in generating possible configurations (basically in terms of parameter 
settings) of a tested element in a way that improves its performance within the current benchmark 
(reference application and workload). This process is based on the performance observation resulting 
from the self-regulated load injection process. Then, a reconfiguration decision is made and applied to 
the tested element. Here again, Selfware's control loop-based autonomic architecture applies. 

Self-optimization relies on a classical generate-evaluate process which is supposed to explore a 
multi-dimensional space of solutions. Roughly speaking, the tested elements can be configured by 
setting a number of parameters, with a range of possible values. A number of issues arise then: 

• some parameter values may be incompatible with each other; 
• some parameters may be correlated; 
• the number of parameter values combinations may be far too huge to be able to explore them 
all. 

Factor analysis statistical techniques may be used in order to identify and eliminate parameters that 
don't influence performance. Heuristics may also be introduced in order to guide the exploration in an 
efficient way. Finally, a sufficiently good configuration, albeit not the best configuration, shall be 
found. 

3.2.4 Self-benchmarking 

Finally, self-benchmarking combines both self-regulated load injection and self-optimization. This 
combination requires an upper-level control in order to drive the load injection and the self-
optimization processes in a consistent manner with regard to the benchmarking motivations: 

• getting a final metric that rates the performance of a given configuration, 
• getting a final conclusion about the best configuration. 

Generally speaking, there are two main approaches to combining the load injection-based 
performance evaluation process and the self-optimization process. 
1. We could dynamically change the configuration while a given workload is being applied to the 
system under test in order to see if performance changes (e.g. response time or resource consumption 
evolution). This approach requires being able to change a configuration while the system is running, 
very quickly in order to avoid disturbing measures from the load injectors and probes. This is almost 
impossible with the kind of computing systems that are in the scope of Selfware. Most of the time, 
reconfiguring will require to stop and restart the reconfigured element. Should dynamic 
reconfiguration be possible, it would take a significant piece of time anyway. So, in any case, it is 
necessary to stop the load injection and to ignore measures from probes (or even possibly stop some 
probes if they are bound to the reconfigured element) while the reconfiguration takes place. 
Furthermore, the load injection should be started with an initial ramp-up workload so that the 
reference workload for performance comparison is not applied at once: it is very likely that either the 
load injection system or the tested system would not to stand it. Finally, another important drawback 
lies in the issue of defining the reference workload for performance evaluation: if it is not heavy 
enough, it might be impossible to significantly compare the performance of the different 
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configurations. But, if the workload is too heavy, the tested system might saturate and become 
unstable. Getting a tested system out of control is actually a risk in the self-benchmarking approach 
because it makes it harder to drive the autonomic benchmarking campaign. So, it ends that the only 
practically possible option is the following. 
2. We'd better go through well-separated reconfiguration-performance evaluation steps. Instead of 
evaluating performance for a given reference workload, we will take advantage on the self-regulated 
load injection in order to measure the maximum workload the tested system can stand with regard to 
specific SLO. For each configuration of the tested system, the self-regulated load injection will start 
with a minimal workload, and will progressively increase the workload to reach the limit of the SLO 
satisfaction. The workload may also be decreased if the SLO is violated, and so on. Stability is one of 
the key issues. 

3.3 The Autobench architecture 

3.3.1 Overview 

The Autobench architecture is based on Fractal components bound together to implement both 
control loops. In the Selfware architecture terminology, we have two control loops, with two 
Autonomic Managers (AM), one of them being controlled by the other one (see  figure 8): 

figure 8. Overview of the Autobench architecture for self-benchmarking 

The load injection AM implements the decision logic for the self-regulated load injection system. 
The Managed Element for this AM is the CLIF Supervisor component that is actually a front-end for 
controlling an arbitrary number of load injector components from the CLIF load injection framework 
 [1]. Through the TestControl interface, the AM can control the activity of all the load injectors (start, 
stop, suspend, resume, etc.) and dynamically adjust the number of virtual users for each load injector. 
Moreover, this interface also gives access to monitoring statistics about load injector components 
(response times, throughput, error rate...) and probe components from the monitoring service (see  [5]). 
These probes may deliver consumption measures about arbitrary resources: system load, CPU load, 
memory usage, disk transfer rate, network bandwidth usage, or any other resource usage measured 
through JMX or SNMP standards, or in an ad hoc manner (e.g. parsing some log files or interrogating 
some system tables in a database). 

The optimization AM that generates configurations for the system under test, and controls the 
activity of the load injection AM in order to evaluate these configurations. To enable this evaluation 

 
 
 

System Under Test 

Optimization AM 

LoadInjection AM/ME 

Supervisor ME Load Injectors 

Probes 

Wrapper to the System Under Test 

requests 

Self 
optimization 

Self 

evaluation 



Selfware Deliverable SP2 Lot 2 Self-optimization algorithms, architecture and design principles 

 13 

and finally compare different configurations, the load injection AM provides the optimization AM 
with a performance metric. As a result, the load injection AM is also a ME for the optimization AM, 
since it is set up and monitored by the optimization AM. 

3.3.2 Focus on the load injection self-regulation 

The generated workload is based on the definition of a virtual user behavior, using CLIF's ISAC 
scenario tool (Isac is a Scenario Architecture for Clif). This behavior is supposed to represent the 
typical behavior of a user of the tested element. Whenever necessary, Isac's probabilistic branching 
statement shall be used in this behavior to represent a given mix of users with different behaviors. The 
initial, minimal workload for each configuration evaluation consists in activating a single virtual user. 
Then, the number of virtual users is successively increased (or decreased), typically depending on the 
distance between current performance measures and the target SLO satisfaction limit. For instance, if 
the SLO is defined by a system load less than 80%, the workload increment may be higher if the 
system load measure is 20% than if it is 60%. Conversely, if the system load measure becomes greater 
than 80%, the workload must be decremented. 

In control theory terms, we will use a linear feedback loop with stability guardrails, as shown in 
the algorithm depicted by  figure 9. This algorithm applies to a metric that linearly evolves in a non-
saturated situation. Stability guardrails limit the feedback level in order not to go brutally into the 
saturation zone, while still keeping a chance of converging toward – but always below – the saturation 
limit. We typically want to avoid two difficult situations: 

• persistent instability with a succession of big load increments and decrements that never 
converges to a stable load; 
• true saturation which would make the system under test become unstable or merely crash. By 
unstable we mean a non deterministic behavior that would make the metric irrelevant. 

figure 9. linear feedback algorithm with stability guardrails for self-regulated load injection 

At the end of this self-regulated load injection process, we must get a single metric evaluating the 
performance of one configuration. But, with regard to the instability issue, when can we consider the 
experiment is finished? In other words, when can we decide that the overall autonomic system (load 
injection + tested system) is in a (sufficiently) stable situation? As a matter of fact, basic experiments 
with actually used technologies (see for instance  [3]) have shown that the concept stability is not 
straightforward to characterize. A simple and practically efficient stability definition consists in 
defining a sufficiently long time frame, long enough with regard to the tested system activity. Then, 
the performance metric that may be defined is the total number of requests actually served (possibly 
with a maximum response time) during the experiment. 

metricmax is given as a input parameter 
vusers = 1 // initial number of virtual users 
loop 
 wait for stability (e.g. constant delay) 
 get metric 
 delta = (metric - metricmax)/metricmax // relative distance to the target metric 
 increment = vusers * delta // linear feedback (simple rule of three) 
 // since the system under test is non-linear when approaching 
 // the saturation limit, we truncate the increment through 3 rules: 
 // rule 1) try to consume just half of the apparently available power 
 increment = increment / 2 
 // rule 2) never do more than double the load 
 if increment > vusers then increment = vusers 
 // rule 3) never remove more than half of the load 
 if increment < -vusers / 2 then increment = -vusers / 2 
 vusers = vusers + increment 
 apply the new load with vusers virtual users 
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3.3.3 Focus on self-optimization 

Key issues about self-optimization have been sketched already in sections Erreur ! Source du 
renvoi introuvable. and  3.2.3. In the context of Selfware, we don't plan to produce contributions in 
the field of operational research or artificial intelligence, since we focus on developing and illustrating 
an architectural approach and a framework for autonomic computing. Thus, we don't go into complex 
illustrations which would combine several configuration parameters of a variety of types. We will 
typically consider a single numeric parameter and perform a dichotomic search within a given range. 
For a given system under test, we will choose a duplet {performance metric, tuning parameter} that 
makes sense, i.e. where the tuning parameter actually influences the performance metric. 
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4 Conclusion 

This document has described the solutions that were experimented in the Selfware project 
regarding self-optimization purposes. 

The first self-optimization manager has more precisely focused on self-optimizing Internet 
services. The proposed approach, based on resource usage observations and on simple architectural 
reconfigurations, is attractive thanks to its simplicity. Its basic design confers a generic behavior to the 
self-optimization manager, allowing its appliance to many different Internet services with minimal 
effort. Of course, genericity is reduced when self-optimization makes use of application-level 
heuristics, like it was the case for tackling sudden load variations (such observations being 
application-dependent). A major open issue of this work concerns tuning and configuring the self-
optimization manager itself. Indeed, configuration parameters may have the form of min and max 
thresholds used to guide dynamic resource provisioning, inhibition delays used to prevent system 
oscillation. Configuring these parameters must be carried carefully since it conditions the efficiency of 
the self-optimization manager. In our experiments, we manually tuned these parameters of the self-
optimization manager, based on an observation of the behavior of the underlying Internet service. 

The second self-optimization manager is dedicated to self-benchmarking activities. The idea of 
self-benchmarking is to introduce autonomy in performance evaluation, as well as in optimization. A 
full architecture has been described: it combines load injection and probe components from the open 
source CLIF load injection framework with two managers: the load injection manager that looks for 
the saturation limits of the system, and the self-optimization component that generates possible 
configurations. This results in combining two autonomic control loops, which is a very challenging 
issue in the general case. So, we proposed simple algorithms through a simple hierarchical 
organization of both loops. The motivations for self-benchmarking in the Selfware context is to deploy 
pre-optimized services platforms and applications, instead of taking the risk of deploying badly 
configured systems with poor performance. Of course, this does not alleviate the need for runtime self-
optimization capabilities, since the runtime workload is subject to possibly dramatic changes. 
Actually, self-benchmarking could also be used to assist, and possibly automate, the configuration of 
the parameters of the first self-optimization manager, to make the usage of self-optimization easier and 
more efficient. 
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