Selfware Deliverable SP2

Lot 2, June 28, 2008

Selfwar e Self-Optimization:
algorithms, ar chitecture and design principles

Authors
Fabienne Boyer (INRIA/Sardes)

Christophe Taton (INRIA/Sardes)
Jeremy Philippe (INRIA/Sardes)
Bruno Dillenseger (France Télécom R&D)

Version 1.0

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

Contents
1 Introduction 3
2 Self-Optimization of Internet Services 4
2.1 Architecture and design PriNCIPIES.ummmriiiiiieie e 4
2.1.1 System observation 4
2.1.2 Self-optimization policy 5
2.1.3 Architectural reconfigurations 6
A2 \V - Vo= To T To N (o= To IRV 7= T =1 o g £ 7
2.3 System oscillation ManagemMENL..............icecceeeiiiieiiiiiii e 9
3 Self-optimization for self-benchmarking 10
3.1 Introduction to benchmarking and optimization r@gmient...............ccccceeeeeeieeeeieeseeesemes 10
3.2 Towards autonomic benchmarking............cooovriiriiiiiiiiiiiiieeeee e 10
3.2.1 Principle 10
3.2.2 Self-regulated load injection 10
3.2.3 Self-optimization 11
3.2.4 Self-benchmarking 11
3.3 The Autobench architeCture........... ... o e 12
3.3.1 Overview 12
3.3.2 Focus on the load injection self-regulation 13
3.3.3 Focus on self-optimization 14
4 Conclusion 15
5 References 16

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

1 Introduction

Autonomic computing, which aims at the constructioh self-managing and self-adapting
computer systems, has emerged as an importantfgoalany actors in the domain of large scale
distributed environments and applications. Thisragph more precisely aims at providing systems
and applications with self-management capabilitiéscluding self-configuration (automatic
configuration according to a specified policy) famdtimization (continuous performance monitoring),
self-healing (detecting defects and failures, akihg corrective actions), and self-protection ifigk
preventive measures and defending against malicitiasks).

Following this approach, the Selfware project amhgroviding an infrastructure for developing
autonomic management software. An important aspechis infrastructure is the adoption of an
architecture-baseaontrol approach as described in the SP1-L1 donynmeeaning that the control
loops that regulate the system have the abilitintmspect the current software architecture of the
managed system, as well as they have the abilityoify (i.e. reconfigure) this architecture.

The objective of this document is to specify theywsalf-optimization features will be actually
provided in the context of this architecture, oa basis of the Selfware framework and tools deedrib
in document SP1-L2. By giving specific design pifes, algorithms and strategies, this document
gives a common basis that practically supportsitif@ementation of Selfware's self management
scenarios (SP3, SP4). Self-optimization featuresfiest presented in the general context of Interne
Services, with details about the key issues thatrhe taken into account (load variation profiles,
stability). Then, another self-optimization arcbitee is described, combined with a self-regulated
load injection system, for the purpose of self-lbenarking.

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

2 Sef-Optimization of Internet Services

This section presents the way Internet servicesselfeoptimized in the Selfware platform. We
first describe the architecture and design priesipf the ISS. Then we detail how the ISS manager
tackles different types of load variation, and hbprevents system oscillations.

2.1 Architectureand design principles

In the Selfware platform, the Internet Service Sgifimization (ISS) Manager is responsible of
applying a given self-optimization policy on an dmiet service. The self-optimization policy
described here is based on dynamic resource poouigj, i.e., on-line addition and removal of
resources to and from an Internet service. It alesethe behavior of a service and triggers resource
provisioning or un-provisioning according to itsselbvations.

This self-optimization management assumes thatriateservices are deployed in the form of
replicated entities, providing both scalability ahajh availability properties. A self-optimization
manager is more precisely associated with eaclofsedplicated entities of an Internet service. For
instance in the case of an e-mail Internet sersceposed of a number of replicated e-mail sengers,
self-optimization manager will be associated with set of replicated e-mail servers. In a partétn
video-on-demand Internet service, a self-optimiaatinanager will be associated with each partition
of the VoD service. As for multi-tier e-commercdeimet services, a self-optimization manager will
be associated with each tier of the multi-tier eanwerce web application.

The ISS manager applies a resource usage threlshsétt policy to a set of Managed Elements
(as defined in the SP1-L1 documé#f) that correspond to the replicated entities.eWlthe resource
usage of the underlying set of replicated entitegches a maximum threshold, we consider that the
system is over-loaded and thus the ISS managerspns the set of managed entities with additional
resources. Symmetrically, when the resource usdgheoset of managed entities goes below a
minimum threshold, we consider that the systemridewloaded. In this case, the ISS manager
removes resources from the set of managed entities.

The ISS manager is organized as follows. It obsethie behavior of a set of replicated entities
and, based on a particular policy, it triggers vese provisioning or un-provisioning according t® i
observations. It is more precisely organized ied¢hmain parts that are described in the following s
sections: (i) system observation, (ii) self-optiatian policy, and (iii) system reorganization.

2.1.1 System observation

The ISS observation part is responsible of obsgriive behavior of the underlying managed
system in terms of resource consumption. Resowgsurnption refers to hardware resources such as
cpu, memory, disk or network. System observatiory rhave the form of an on-line resource
monitoring system that performs real-time monitgraf the system through probes, or it may have the
form of predictions of future resource usage ofdfistem. The former is used to implement reactive
self-optimization, while the latter applies in tluase some form of proactive self-optimization. On-
line resource monitoring consists in resource usagdiators (i.e. sensors or probes), that can be
provided by the CLIF framewoil] [5].

Self-optimization is triggered when a sensor rep@tvalue that violates some minimum or
maximum thresholds. High-level sensors may aggeegadl filter many lower-level sensors to provide
meaningful resource usage indications. Aggregatitbows to consolidate grouped resource usage
information (e.g. partition-wide resource usagsltasnyn infigure 1).

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

Partition wide
sensor

Aggregate

figure 1. Aggregation and filtering of sensors

Aggregation is usually achieved through mathembticenputations such as summing, averaging,
minimum finding, etc; this depends on the naturthefinformation to measure and to report. Filgrin
generally targets the removal of meaningless atsiffor stability purpose through smoothing over
time (e.g. raw average or EWMA), flip-flop filterstc. Filtering effects are illustratedfigure 2.

CPU load without filtering —
100 L CPU load with filtering |
W II | ‘WW
80 | } Y} |
3 il
HINTHAANE 11T
> | | I J‘ | « ,‘\|' |
O 40 | o R | L _ ’ |
f | i ‘ ‘, %‘ I ”M H| Ml
20 - ["l'll F " \ M{ | { i
' [| |
N2 LA B T T

0 100 200 300 400 500 600 700 800 900
Time (s)
figure 2.Filtering of monitoring data

2.1.2 Sdf-optimization policy

The central part of the ISS manager is its pollty.general architecture is briefly described in
figure 3 and its in algorithm ifigure 4. The ISS policy is a control-loop thateesato events received
from the system observation part. Each time an teisemotified, it is analyzed to check if the
underlying managed system is over-loaded or untiézad.

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

Maximum
threshold
exceeded?

Add

ressources
Minimum
threshold

Remove
violated? ressources
Repl|ca Repllca

System
observation

figure 3.Architecture of the ISS manager

If one of the observed resources exceeds its mawitmeshold, that means that the managed
system faces a bottleneck and is over-loaded. itnddise the system is provisioned with additional
nodes. Symmetrically, if all observed resourcesless than their minimum threshold, that means that
the overall system is under-utilized. Thus nodesramoved from the managed system. Addition and
removal of nodes is done through architectural mégaration operations, the third part of the self-
optimization manager. - =z

on Receive(event: MonitoringEvent):
if (event.consumption; > max thresholdj)

or (event.consumption, > max thresholdy)
or...
or (event.consumption, > max threshold;) then

/I System is overloaded and need more
resources

AddResourcesToSystem();

else if (event.consumptiony < min thresholdy)

and (event.consumptiony < min thresholdy)

and . ..
and (event.consumption, < min threshold,) then

/I System is underloaded and wastes resources
RemoveResourcesFromSystem();

end if

figure 4.Algorithm of the ISS manager

2.1.3 Architectural reconfigurations

This latter part of the ISS manager provides opmratthat actually perform the dynamic
provisioning or un-provisioning of nodes to the mged system. Such operations consist in assigning
new free nodes to the managed system, releasirgsrioain the managed system, installing on a new
node the software needed by the managed system mée@ssary, configuring the software and
starting the software.

More generallyfigure 5 depicts a general example of how selfrojzi@tion applies in an Internet
service. An Internet service may be organized atitipaed and pipelined sub-systems, where the
partitioned and pipelined entities may be setseaplicated entities§ to S in figure 5). In this
context, an ISS manager is associated with eaclofseeplicated entities. It is responsible of
dynamically provisioning resources to that setaylicated entities. Moreover, the self-optimization

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

managers of the Internet services co-operate iarda provide a global consistent behaviour (e.g.
preventing system oscillations as discussed irfidlt@ving section).

jﬂ S5 F\B
imi

Self-optimization

Self-optimization

Self-optimization

Self-optimization

8., B

figure 5.Architecture of self-optimized Internet services

2.2 Managing load variations

Load variations may happen following different stles. A common scenario consists in a
gradual change of the load which will progressivelgduce an under-load or an overload in the
system. Another common scenario often happensatdbasion of big events and consists in sudden
load variations also commonly referred to as Iqakes or flash crowds.

Whether a load variation is considered as graduaudden is related to the relative difference
between the speed of load variation and the spéechitectural reconfigurations. Gradual load
variation corresponds to load variation that hagpslower than the architectural reconfigurations
speed (sekgure 6).

In this case, simple architectural reconfiguratisnsh as single resource addition or removal (i.e.
at the granularity of one resource at a time) afficient to absorb the load variation. On the cant,
sudden load variation happens when the load vaniasi faster than the architectural reconfiguragion
speed (seéigure 7). In this case, fine-grain heuristics ezquired to determine the optimal capacity
planning of the system, in order to accelerateptioeess of architectural reconfigurations towamls a
optimum state. In the case of sudden load varigtibis necessary to determine the amount of
resources to (un-)provision, before actually peniog the (un-)provisioning in a single step. In the
following, we present two mechanisms to addresk hgtes of load variations.

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

System available

load
_______ # of resources
i i e — system
< < . availability
Service degraded
or unavailable

Maximum system
reorganization

gradual
load variation
speed

figure 6.Gradual load variation

System available

load

....... # of resources
........... system
availability

Service degraded
or unavailable

sudden
load variation;
speed |

Maximum system
reorganization
speed

figure 7.Sudden load variation

Gradual Load Variationsln a system undergoing gradual load variatidims,capacity planning of
the system can be continuously adjusted throudfitaotural reconfigurations as simple as adding or
removing resource units one at a time. Indeedgthdual load variation assumption ensures that the
system provisioning will be updated promptly enoughabsorb and follow the load variation. We
implemented a self-optimization manager able tadlegradual load variations. The manager relies
on low-level resource usage system observatioreh (88 cpu, memory, disk or network) and, based
on these observations, triggers single node adddioremoval to the system. We experimented and
evaluated this manager on a clustered Interneicgeimplementing a multi-tier e-commerce web
application that was submitted to gradual loadatann. The Internet service was able to self-ozemi
its behaviour according to the changing workload.

Sudden Load Variationgn a system submitted to sudden load variatiopslates to the system
capacity planning may require addition or removaialtiple resources at a time, so as to absorb the
load peaks. In case of sudden load variation, firéserable to factorize and parallelize architeaitu

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

reconfigurations operations, thus increasing therall’speed of system reorganization. The challenge
here is to determine as accurately as possible hany nodes to add or remove in one step. We
implemented a self-optimization manager that capigls sudden load variations. It is based on low-
level resource system observations (cpu, memosk and network) as well as higher application-
level observations (such as the number of concutransactions running in a server). Application-
level observations allow the construction of hdia$sfunctions to determine the optimum capacity
planning of the system. We identified a heuristigaction that calculates the optimum capacity
planning as linearly proportional to concurrenngactions in the system. Based on the result sf thi
function, multiple nodes are assigned or releasgparallel. We implemented this self-optimization
policy and applied it to a cluster of Internet $eeg that implements an e-commerce web application.
In the presence of load spikes, the e-commerceapplication was able to efficiently self-optimize.

2.3 System oscillation management

Another issue of self-optimization is that it maytroduce system instabilities during which
sensors may report meaningless information. Thisrgreting these signals is likely to be irrelevan
and leads to erroneous decisions. Indeed, dynassmurce provisioning of an Internet service may
induce multiple concurrent provisioning operatighat are actually not necessary and would, as a
result, hurt the overall Internet service perforsgnFor instance, in a multi-tier Internet service
composed of a front-end web server and a databadednd organized as a pipelined system, the
database back-end might become a bottleneck amndenan underload on the front-end web server
(which then waits for responses from the back-éml. t

In such a situation, the self-optimization coul@der provisioning operations, increasing the
amount of resources on the database back-endntien® hand, while reclaiming unused resources on
the front-end tier. Obviously, the latter un-praetsng on the front-end tier is a consequence ef th
dependency between the front-end web server andatabase back-end that leads to un-necessary
operations, and therefore to system oscillations. pfevent system oscillations, we introduce a
technique that (i) first automatically calculateser-dependencies between sub-parts of the system,
and then (ii) automatically prevents system oddililaoccurrence.

The system oscillation management relies on a igtiser of the system that allows the manager
to determine dependencies between parts of themyd¥ore precisely, the manager is given a
representation of the system in terms of pipelimed partitioned sub-systems. Thanks to this
knowledge, the manager infers a dependency fundiédined as follows: (i) a sub-system Si depends
on a sub-system Sj if Si and Sj are parts of alipipe system, and (ii) a sub-system Si always dépen
on itself. Indeed, a pipeline materializes the delpacy between sub-systems, while a partition
materializes their independency.

Notice that in pipelined sub-systems, the workloadne of the sub-systems may have a side-
effect on another sub-system in pipeline. Thisus t the fact that client request processing raay f
through all or part of the pipelined sub-systemshil&/in case of partitioned sub-systems, the
workload of the different sub-systems are indepehdeom each other; each partition being
responsible of processing requests independertty the other partitions. Thus, based on the inter-
dependency function and on the knowledge of théesysrchitecture, the SSIS manager is able to
automatically identify inter-dependent parts of tmernet service. To prevent oscillations from
occurring, the SSIS manager ensures that durirdf-@stimization operation on a part of the system,
self-optimization is inhibited on any inter-depentipart (during a given delay). Once the inhibition
delay has expired, new self-optimization operatiamsallowed for execution again.

We implemented the system oscillation managementafself-optimized e- commerce web
application hosted by a two-tier Internet servideere each tier of the Internet service was rem@atat
and dynamically provisioned. The two tiers of tmernet service were identified as a pipelined
system. Thus, all system reorganization happenimghe first or the second tier of the system
triggered an inhibition that blocked any new reaigation on the first and on the second tier.

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

3 Sef-optimization for self-benchmarking

The principle of self-benchmarking has been dedadlieeady in previous deliveralig]. We give
here a short reminder in order to introduce theifipaise of self-optimization in this context.

3.1 Introduction to benchmarking and optimization requirement

Benchmarking typically consists in comparing thef@enance of possible alternative computing
elements (software/middleware, hardware). For imtg#ta one may be interested in comparing the
performance of a number of Java Virtual Machinedabases, application servers, etc. To do this, it
typically takes:

« a reference application that uses these alternaterments, in order to have something to

measure (e.g. application response times or congprisources consumption);

e together with a workload specification that definbe flow of requests that the reference

application will be subject to.

For example, in the context of Web applications, Rubis benchmarld] provides a number of
implementations of an on-line auction web applmatithat can be run on a variety of JVMs,
applications servers, databases, etc., togethéramtHTTP traffic generation utility that defines a
special mix of different HTTP requests. By measyrihe performance of this application with
different JVMs (or databases or...), the tester @anpare the performance of these alternatives and
make the best technological choices.

One of the key issues with benchmarking is thatraditives must be tuned, or, in other words,
configured to get their optimal performance, inertb get meaningful, comparable measures. To go
on with the Rubis benchmark example, JVMs, appboat servers, databases, etc. all have specific
parameters whose settings may (or may not) inflee¢he overall application performance. Of course,
the optimal settings of one alternative are tyjycelbsely dependant on the application.

To conclude, the benchmarking activity typicallliee on looping on the following steps:
« finding the performance limits of a tested elemeitlh a given configuration (observation)
e tuning the element configuration for better perfante (feedback)

3.2 Towardsautonomic benchmarking

3.2.1 Principle

Starting from the observation that benchmarkingviigts involves a human feedback loop in a
complex technical infrastructure (tested elememtkiwad generation system, network...), our idea is
to apply Selfware's architectural approach to aatun management of complex systems in the field
of performance benchmarking.

Roughly speaking, it consists in supporting bothltokup of saturation step and the performance
optimization step as autonomic processes. The diegp typically relies on a self-regulated load
injection system, autonomously adapting the workleael to the observed performance of the target
element. This step must finally provide a perforoemetric for the tested configuration. The second
step consists in changing the tested element'sgtmation in order to improve its performance. We
develop these two steps in the following two sexdio

3.2.2 Sdf-regulated load injection

The self-regulated injection aims at looking thausation limits of the tested element in terms of
performance. The concepts of performance and satreust be resolved into measurable metrics
and Service Level Objectives that are meaningfuthi® tester. As a matter of fact, testers may
consider different metrics and SLOs. Let's mentannstance:

10

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

* metrics: response times experienced from the usiat pf view, request processing time in
the system, system load (processor, memory, digisfer... or an arbitrary combination), network
bandwidth usage, request rejection or error rate...

e SLOs: acceptable values of these metrics, in t@fnaerage, maximum, standard deviation,
distribution...

The self-regulated load injection system can beesgmted as an autonomic system with the
Selfware approach, with a control loop:

e measures (observation),

e SLO check (decision),

e adapt the workload level (reaction).

3.2.3 Sdf-optimization

Self-optimization consists in generating possitefigurations (basically in terms of parameter
settings) of a tested element in a way that immadt® performance within the current benchmark
(reference application and workload). This prodsdsased on the performance observation resulting
from the self-regulated load injection process.ffeereconfiguration decision is made and applied t
the tested element. Here again, Selfware's cdopltbased autonomic architecture applies.

Self-optimization relies on a classical generatahgate process which is supposed to explore a
multi-dimensional space of solutions. Roughly sjregkthe tested elements can be configured by
setting a number of parameters, with a range ddiplesvalues. A number of issues arise then:

* some parameter values may be incompatible with etr;

e some parameters may be correlated,;

* the number of parameter values combinations magat®mo huge to be able to explore them

all.

Factor analysis statistical techniques may be irsedder to identify and eliminate parameters that
don't influence performance. Heuristics may alsinb®duced in order to guide the exploration in an
efficient way. Finally, a sufficiently good confitation, albeit not the best configuration, shall be
found.

3.24 Sdf-benchmarking

Finally, self-benchmarking combines both self-reged load injection and self-optimization. This
combination requires an upper-level control in orde drive the load injection and the self-
optimization processes in a consistent manner neghrd to the benchmarking motivations:

e getting a final metric that rates the performanica given configuration,

e getting a final conclusion about the best confitjora

Generally speaking, there are two main approacbegombining the load injection-based
performance evaluation process and the self-opditioiz process.
1. We could dynamically change the configuration wialgiven workload is being applied to the
system under test in order to see if performaneagbs (e.g. response time or resource consumption
evolution). This approach requires being able tange a configuration while the system is running,
very quickly in order to avoid disturbing measufesn the load injectors and probes. This is almost
impossible with the kind of computing systems thgg in the scope of Selfware. Most of the time,
reconfiguring will require to stop and restart threconfigured element. Should dynamic
reconfiguration be possible, it would take a sigaifit piece of time anyway. So, in any case, it is
necessary to stop the load injection and to igmeeasures from probes (or even possibly stop some
probes if they are bound to the reconfigured eldnevhile the reconfiguration takes place.
Furthermore, the load injection should be starteth van initial ramp-up workload so that the
reference workload for performance comparison tsapplied at once: it is very likely that eitheeth
load injection system or the tested system wouldtmatand it. Finally, another important drawback
lies in the issue of defining the reference worllldar performance evaluation: if it is not heavy
enough, it might be impossible to significantly qmare the performance of the different

11

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

configurations. But, if the workload is too heaupe tested system might saturate and become
unstable. Getting a tested system out of contralktsally a risk in the self-benchmarking approach
because it makes it harder to drive the autonoriclmarking campaign. So, it ends that the only
practically possible option is the following.

2. We'd better go through well-separated reconfigoraierformance evaluation steps. Instead of
evaluating performance for a given reference wattjove will take advantage on the self-regulated
load injection in order to measure the maximum Waé the tested system can stand with regard to
specific SLO. For each configuration of the tesgdtem, the self-regulated load injection will star
with a minimal workload, and will progressively nease the workload to reach the limit of the SLO
satisfaction. The workload may also be decreast#iSLO is violated, and so on. Stability is ofie 0
the key issues.

3.3 TheAutobench architecture

3.3.1 Overview

The Autobench architecture is based on Fractal ooenuts bound together to implement both
control loops. In the Selfware architecture terrtogy, we have two control loops, with two
Autonomic Managers (AM), one of them being con&dlby the other one (ségure 8):

Optimization AM Wrapper to the System Under Test

Self
optimization

> i

Loadlnjection AM/IME

Self /I' .

evaluation

a~>
N\ LSupervisor ME

Probes System Under Test

Load Injectors

requests

figure 8. Overview of the Autobench architecture for self-benchmarking

Theload injection AMimplements the decision logic for the self-regedhload injection system.
The Managed Element for this AM is the CLIF Supsovicomponent that is actually a front-end for
controlling an arbitrary number of load injectomgmonents from the CLIF load injection framework
[1]. Through the TestControl interface, the AM aamtrol the activity of all the load injectors (dta
stop, suspend, resume, etc.) and dynamically athjastumber of virtual users for each load injector
Moreover, this interface also gives access to mani statistics about load injector components
(response times, throughput, error rate...) andgommmponents from the monitoring service (&g
These probes may deliver consumption measures abbittary resources: system load, CPU load,
memory usage, disk transfer rate, network bandwigihge, or any other resource usage measured
through JMX or SNMP standards, or in an ad hoc reafeg. parsing some log files or interrogating
some system tables in a database).

The optimization AMthat generates configurations for the system umely and controls the
activity of the load injection AM in order to evalie these configurations. To enable this evaluation

12

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

and finally compare different configurations, tlead injection AM provides the optimization AM
with a performance metric. As a result, the logddtion AM is also a ME for the optimization AM,
since it is set up and monitored by the optimiza#d/.

3.3.2 Focuson theload injection self-regulation

The generated workload is based on the definitioa artual user behavior, using CLIF's ISAC
scenario tool (Isac is a Scenario Architecture @tif). This behavior is supposed to represent the
typical behavior of a user of the tested elemerieléver necessary, Isac's probabilistic branching
statement shall be used in this behavior to reptesgiven mix of users with different behaviorbeT
initial, minimal workload for each configurationauation consists in activating a single virtuadmus
Then, the number of virtual users is successivatyeiased (or decreased), typically depending on the
distance between current performance measureshartdrget SLO satisfaction limit. For instance, if
the SLO is defined by a system load less than 80& workload increment may be higher if the
system load measure is 20% than if it is 60%. Crawlg, if the system load measure becomes greater
than 80%, the workload must be decremented.

In control theory terms, we will use a linear feadb loop with stability guardrails, as shown in
the algorithm depicted bfygure 9. This algorithm applies to a metric thaehrly evolves in a non-
saturated situation. Stability guardrails limit tfeedback level in order not to go brutally inte th
saturation zone, while still keeping a chance aivenging toward — but always below — the saturation
limit. We typically want to avoid two difficult siiations:

e persistent instability with a succession of bigddacrements and decrements that never

converges to a stable load;

e true saturation which would make the system unesrtiecome unstable or merely crash. By

unstable we mean a non deterministic behaviontioatd make the metric irrelevant.

metricna iS given as a input parameter
vusers = 1 // initial number of virtual users
loop
wait for stability (e.g. constant delay)
get metric
delta = (metric - metricya)/Mmetric,a // relative distance to the target metric
increment = vusers * delta // linear feedback (simple rule of three)
I since the system under test is non-linear when approaching
I the saturation limit, we truncate the increment through 3 rules:
I rule 1) try to consume just half of the apparently available power
increment = increment / 2
I rule 2) never do more than double the load
if increment > vusers then increment = vusers
I rule 3) never remove more than half of the load
if increment < -vusers / 2 then increment = -vusers / 2
vusers = vusers + increment
apply the new load with vusers virtual users

figure 9. linear feedback algorithm with stability guardrails for self-regulated load injection

At the end of this self-regulated load injectiongess, we must get a single metric evaluating the
performance of one configuration. But, with regizdhe instability issue, when can we consider the
experiment is finished? In other words, when candeeide that the overall autonomic system (load
injection + tested system) is in a (sufficientlygtde situation? As a matter of fact, basic expents
with actually used technologies (see for instaj8}g have shown that the concept stability is not
straightforward to characterize. A simple and pecatly efficient stability definition consists in
defining a sufficiently long time frame, long entugith regard to the tested system activity. Then,
the performance metric that may be defined is th&l humber of requests actually served (possibly
with a maximum response time) during the experiment

13

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

3.3.3 Focuson self-optimization

Key issues about self-optimization have been sketckiready in sectionSrreur ! Source du
renvoi introuvable. and3.2.3. In the context of Selfware, we don't plarptoduce contributions in
the field of operational research or artificialdligence, since we focus on developing and ilatsig
an architectural approach and a framework for aartea computing. Thus, we don't go into complex
illustrations which would combine several configion parameters of a variety of types. We will
typically consider a single numeric parameter aedgom a dichotomic search within a given range.
For a given system under test, we will choose dedyperformance metric, tuning parameter} that
makes sense, i.e. where the tuning parameter Bcinflences the performance metric.

14

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

4 Conclusion

This document has described the solutions that vesgeerimented in the Selfware project
regarding self-optimization purposes.

The first self-optimization manager has more pedgisfocused on self-optimizing Internet
services. The proposed approach, based on resosage observations and on simple architectural
reconfigurations, is attractive thanks to its siigipl. Its basic design confers a generic behawidhe
self-optimization manager, allowing its appliancenany different Internet services with minimal
effort. Of course, genericity is reduced when selfimization makes use of application-level
heuristics, like it was the case for tackling suddead variations (such observations being
application-dependent). A major open issue of tigk concerns tuning and configuring the self-
optimization manager itself. Indeed, configuratjperameters may have the form of min and max
thresholds used to guide dynamic resource provigiprinhibition delays used to prevent system
oscillation. Configuring these parameters mustdreied carefully since it conditions the efficienafy
the self-optimization manager. In our experimemts, manually tuned these parameters of the self-
optimization manager, based on an observationeobéavior of the underlying Internet service.

The second self-optimization manager is dedicabedetf-benchmarking activities. The idea of
self-benchmarking is to introduce autonomy in peniance evaluation, as well as in optimization. A
full architecture has been described: it combiwasl linjection and probe components from the open
source CLIF load injection framework with two maeeg the load injection manager that looks for
the saturation limits of the system, and the sptfroization component that generates possible
configurations. This results in combining two automnc control loops, which is a very challenging
issue in the general case. So, we proposed simplaritams through a simple hierarchical
organization of both loops. The motivations forfbeinchmarking in the Selfware context is to deploy
pre-optimized services platforms and applicationstead of taking the risk of deploying badly
configured systems with poor performance. Of cautde does not alleviate the need for runtime-self
optimization capabilities, since the runtime woddois subject to possibly dramatic changes.
Actually, self-benchmarking could also be useddsist, and possibly automate, the configuration of
the parameters of the first self-optimization mamagp make the usage of self-optimization easidr a
more efficient.

15

Selfware Deliverable SP2 Lot 2 Self-optimizatiogaithms, architecture and design principles

5 References

[1]

[2]
[3]

[4]
[5]
[6]
[7]

Emmanuel Cecchet, Anupam Chanda, Sameh Elnikeliz Marguerite, Willy Zwaenepoel,
"Performance Comparison of Middleware Architectures Generating Dynamic Web
Content", 4th ACM/IFIP/USENIX International Middlewe Conference, Rio de Janeiro,
Brazil, June 16-20, 2003.

Dillenseger (B.), Flexible, easy and powerful laajgction with CLIF version 1.1. Fifth Annual
ObjectWeb Conference, Paris La Défense, Januar§. 200

Harbaoui H., Dillenseger B., Vincent JM, "Performarcharacterization of black boxes with
self-controlled load injection for simulation-basgiding". 6éme Conférence Francaise sur les
Systémes d'ExploitatipRribourg, 11-13 February 2008.

Selfware Architecture, Livrable SP1-Lot1, May 2007.

Selfware Architecture, Livrable SP1-Lot2, NovemBén?7.

Selfware Java EE management scenarios, Deliveg&elot1, August 2007.

Jing Xu; Sumalatha Adabala; Fortes, J.A.B, ICAC208econd International Conference on
Autonomic Computing.

16

