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1 Introduction 
This document aims at describing a set of autonomous management scenarios for the Java EE 

cluster. 

This paper is organized as follows. Section 2 reminds a few definitions on the autonomic system. 
Section 3 presents the Java EE context and describes the JOnAS application server and its cluster 
mode. Afterwards, section 4 gives the motivations for applying the control loop in the Java EE field. 
Section 5 proposes the use cases. 
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2 Java EE context 
The cluster Java EE scenarios are implemented through the ObjectWeb's open-source Java EE 

platform JOnAS. 

 

2.1 Java EE standard 

The Sun Java EE specification, together with its related specifications ( EJB, JMS,...), defines an 
architecture and interfaces for developing and deploying distributed Internet Java server applications 
based on a multi-tier architecture. This specification intends to facilitate and standardize the 
development, deployment, and assembling of application components; such components will be 
deployable on Java EE platforms. The resulting applications are typically web-based, transactional, 
database-oriented, multi-user, secured, scalable, and portable. More precisely, this specification 
describes two kinds of information: 

• The first is the runtime environment, called a Java EE server, which provides the 
execution environment and the required system services, such as the transaction service, 
the persistence service, the Java Message Service (JMS), and the security service. 

• The second is programmer and user information explaining how an application 
component should be developed, deployed, and used. 

 

Not only will an application component be independent of the platform and operating system 
(since it is written in Java), it will also be independent of the Java EE platform. 

A typical Java EE application is composed of 1) presentation components, also called "web 
components" (Servlets and JSPs), which define the application Web interface, and 2) enterprise 
components, the "Enterprise JavaBeans" (EJB), which define the application business logic and 
application data. The Java EE server provides containers for hosting web and enterprise components. 
The container provides the component life-cycle management and interfaces the components with the 
services provided by the Java EE server. There are two types of containers; the web container handles 
Servlet and JSP components, while the EJB container handles the Enterprise JavaBeans components. 
A Java EE server can also provide an environment for deploying Java clients (accessing EJBs); it is 
called client container. 

2.2 JOnAS 

JOnAS is an open source application server, developed within the OW2 consortium. 

JOnAS is an enterprise class Java EE application server:  

• Benefiting from a mature code and the J2EE 1.4 Sun certification. Consequently JOnAS is 
largely deployed and is robust. 

• Providing some high level scalability and high availability mechanisms through a set of 
tuning parameters at different levels (threads pools, data or connection caches) and though 
end to end and powerful clustering features 

• Equipped with some advanced administration tools such as the jonasAdmin JMX console, 
the domains management or the shell commands for the production environment 

• Facilitating the Enterprise Information System integration through the JCA connectors, the 
Web services or the LDAP access. 

• Offering some development tools through a set of IDE plugins 

More detailed informationn about JOnAS are given in appendix. 
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3 Rationale 
Java EE clusters are more and more frequently deployed within Enterprise Information Systems, to 
cope with the growing requirements in term of scalability and availability. In many cases the sudden 
expansion of such systems has led to very complex structures which, using conventional methods can 
be only monitored and controlled with difficulty. These distributed architectures raise new 
administration issues, since they cannot be handled reasonably by hand to satisfy the required QoS: 
 

• The N-tiers model (web/business/database tiers), the stack of several pieces of software 
(OS/JVM/Java EE/application) and the distributed aspects of a cluster increase roughly the 
number of indicators to observe for monitoring the system.  

• The configuration and tuning capabilities provided by the middleware components, together with 
the complexity of the Java EE do require the setting of a huge number of parameters. 

 
A system tool is required for simplifying the operator job. It relies on advanced management features 
and on autonomous behaviour capabilities to reduce the management costs of such architectures. The 
main benefits are: 

• to reduce the risk of human error in configuration and management operations 
• to improve the response time to eliminate malfunctions occurring in the system 
• to improve the global availability of applications (by minimizing service interruption periods) 
• to optimize global performance 

The self-management is still a challenge. For instance in a multi-tiers architecture, self-recovery 
upon an application server failure does not simply imply restarting the failing server as an independent 
element, but also rebuilding the connections of that server with its front-end (eg. Apache server) and 
back-end servers if any( eg. Database). This requires the knowledge of the global architecture of the 
system in order to perform reconfigurations of several elements of the system; and such an 
architectural view is not provided by distributed systems 
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4 Scenarios 

4.1 Self-management 

4.1.1 Cluster architecture 

The scenarios are implemented with the following architecture: 
• 1 apache server 
• 2 JOnAS application server node (node1-2) corresponding to the Java EE middleware 
• 1 MySQL database 

 
figure 1. Cluster architecture 

 

4.1.2 Node hardware failure or server crash 

This self-healing scenario aims at demonstrating how the autonomic system deals with fail-stop 
failure of the ME1, eg. a node hardware failure or a Java EE middleware crash. 

The autonomic manager allows the ME to recover from their failures by periodically monitoring 
the status of MEs via heart-beat sensors associated with the MEs at different levels (OS, JVM).  

When a failure of a ME is detected, a repair mechanism is thrown. If needed, for instance after a 
hardware failure, a new node can be allocated and the middleware is installed. Afterwards the Java EE 
application server is configured as the failed one. The bindings with the front-end and back-end 
servers are recreated.  

The following figure illustrates the scenario: 

• Step1: nominal mode, the cluster works fine with 2 nodes for the application server tier: 
node1 and node2. An application is deployed across the 2 nodes and the Apache front end 
performs a load-balancing of the user requests. 

• Step2: node1 crashes. The clustering mechanisms (fail-over and session replication) of the 
underlying middleware (JOnAS) ensure the continuity of service and availability of the 
user session.  

• Step3: the autonomic manager detects the failure. A new node (node2) is gotten from the 
server pool. 

• Step4: the autonomic manager deploys the middleware on the new node and configures its 
from its knowledge base. 

                                                        
1 Managed Element defined in the Selfware’s architecture document [3] 
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• Step5: the autonomic manager enables the new node. The links with the other components 
such as Apache at the front-end and MySQL at the back-end are activated. 

 

  
figure 2. Server crash scenario 

4.1.3 Dynamic resource provisioning 

This Self-Optimization scenario aims at maximizing application performance while minimizing 
the underlying resource usage (e.g. cluster nodes) through dynamic resource provisioning.  

The autonomic manager targets MEs that represent a Cluster of replicated MEs2, e.g. a cluster of 
JOnAS application server. The Cluster ME is periodically monitored via load sensors (e.g. CPU load, 
memory consumption, or an aggregation of sensors). When the load exceeds a given maximum 
threshold, the Cluster ME is resized by dynamically adding new replicas as sub-MEs of the Cluster 
ME. 

The cluster resizing consists in first to allocate a new node and to install the Java EE middleware. 
Afterwards, one sub-ME of the cluster is introspected to replicate it on the new node as a newly 
deployed sub-ME.  

Symmetrically, if the overall load of a Cluster ME is below a given minimum threshold that means 
that the underlying cluster nodes are under-utilized. Thus, the Cluster ME is dynamically resized by 
removing one or more of its replicated sub-MEs, and de-allocating the underlying nodes if no more 
used. 

The following figure illustrates the scenario: 
                                                        
2 The ‘cluster ME’ ter mis introduced in the Selfware’s architecture document [3] 
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• Step1: nominal mode, the cluster works fine with 2 nodes for the application server tier: 
node1 and node2. An application is deployed across the 2 nodes and the Apache front end 
performs a load-balancing of the user requests. The cluster load is monitored through 
probes on each ME.  

• Step2: the cluster cpu load reaches the maximum threshold. An event is send to the 
autonomic manager. 

• Step3: the autonomic manager decides to increase the cluster size. A new node (node3) is 
allocated from the server pool. 

• Step4: the middleware is deployed and configured on the new node3. 

• Step5: the cluster of 3 nodes is now operational and the global load in under the limit.  

• Step6: the requests load decreases and thus the global load reaches the minimum 
threshold. An event is notified to the autonomic manager. 

• Step 7: the autonomic managers decides to decrease the cluster size. The node3 is 
removed. Though the clustering mechanisms of the underlying middleware, there is no 
session loss and no interruption of service. 

• Step 8: the cluster is come  back to the initial size with 2 nodes.. 
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figure 3. Self-sizing scenario 

4.1.4 Others scenarios 

These scenarios are given for information and won’t be implemented in the Selfware context. 

Dynamic load-balancing 

This Self-Optimization scenario aims at maximizing application performance by optimizing the 
underlying resource usage (ie. cluster nodes) through dynamic load-balancing tuning. 

The autonomic manager targets MEs that belong to a Cluster of replicated MEs, ie. a cluster of 
JOnAS application server. Each ME is periodically monitored via load sensors (e.g. CPU load, 
memory consumption). When the load exceeds a given maximum threshold for a node while still 
being below for another node of the same Cluster ME, the load-balancing factors of each cluster node 
is adjusted for sending less requests to the overloaded node and more to the others. 

Dynamic deployment 

This Self-Optimization scenario aims at maximizing application performance by optimizing the 
deployment over a JOnAS cluster. The deployment optimization algorithm manipulates the application 
(Java EE module) and thus is finer grain that the ‘Dynamic resource provisioning’ scenario which 
relies on the more efficient JOnAS instances number for getting the better performance with the 
minimum of resources. 

The autonomic manager targets MEs that belong to a Cluster of replicated MEs, ie. a cluster of 
JOnAS application server. Each ME is periodically monitored via load sensors (e.g. CPU load, 
memory consumption, Java EE application load). When the cpu load and the application load exceeds 
a given maximum threshold for a node while still  being below for another node which doesn’t host 
the same application the deployment topology is revisited. The number of nodes hosting the 
overloaded application is increased. Symmetrically, the number of nodes hosting the others application 
may be reduced. 

Dynamic Selection of Component Implementations 

This Self-Optimization scenario aims at maximizing application performance or improving QoS 
attributes by selecting the best Java EE component implementation at runtime. 

Each component has multiple implementations, each one optimized for a certain execution context 
(IT resources, requests load, requests type, security, …). 
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4.2 Self-benchmarking 

4.2.1 Introduction 

About benchmarking 

The context of the scenarios proposed hereafter is that of load testing campaigns. Load testing 
campaigns consist in generating a flow of client requests on a system under test in order to assess its 
performance and sustainable throughput. As shown by figure 4, a load testing infrastructure is 
typically composed of: 

• one or several load injectors sending requests to a system under test (SUT) and waiting for 
responses to measure the corresponding response times; 

• probes measuring the usage of computing resources, at the SUT side, to help detecting 
performance problems, as well as at the load injection side, in order to check that it is performing 
as expected; 

• a supervision user interface to deploy, control and monitor the distributed set of load injectors 
and probes; 

• a storage space to gather all measures (e.g. as a set of log files or a database); 
• tools for post-mortem analysis and report generation. 

figure 4. Big picture of a typical load testing infrastructure. 

The traffic generated by the load injectors are commonly modeled through the definition of virtual 
users, i.e. programs that emulate the behavior of real users, through successions of requests and think 
times (time spent by a user between 2 consecutive requests). For a given SUT, there are often a 
number of different typical usages, thus resulting in defining a number of different virtual users 
exhibiting different behaviors. In the case of web applications, some users may just consult available 
information, while others will strongly interact and trigger complex processes, resulting in different 
usage of computing resources and thus different impact on performance. For instance, some behaviors 
induce database write operations while others don't. 

Performance benchmarking aims at comparing and ranking a variety of options such as 
configuration parameters or alternative implementations of hardware or software implementations, 
from a performance point of view. Benchmarking relies on load testing campaigns where the SUT 
must be tuned for optimal performance in order to obtain a meaningful ranking, since comparing 
results from an optimally configured SUT with results from a badly configured alternative would 
make no sense. 

Self-benchmarking 

It typically takes a lot of manpower, skills and time to carry a load test campaign out. The test 
infrastructure is a complex combination of the load injection system, probe system, and SUT involving 
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a tremendous number of parameters that are likely to strongly interact with each other (e.g. size of 
buffers, pools of database connections, size and policy of caches, network configuration, multi-
threading policy...). Testers must be experts in every element of the global system (hardware, 
software, operating system, middleware, network equipments and protocols...) in order to handle 
troubleshooting and performance optimization. In an empirical and iterative process, tests are repeated 
again and again with different parameters arrangements and different configurations until sufficient 
confidence and satisfaction about results are met. Then, we see that testers behave like a 
feedback/control loop, observing the SUT and the load injection system on the one hand, and 
modifying the SUT and load injection configuration on the other hand as a reaction to observations. 

Self-benchmarking and the scenarios detailed hereafter consist in considering that the tremendous 
complexity of the whole computing system used in a benchmarking campaign justifies an autonomic 
computing approach, that is: try to use computing power to autonomously deal with the computing 
system complexity. In other words, self-benchmarking shall carry out test campaigns by autonomously 
controlling the load injection system and the SUT configurations, with the objective of maximizing 
performance3. Self-optimization and self-configuration features are typically involved in this process. 

4.2.2 Step one – autonomous search of saturation point 

The first step in benchmarking generally consists in searching the approximate performance limit 
of the SUT in a given configuration. For example, in the context of application servers; the tester 
would typically try to find out the maximum number of users that the SUT may sustain with regard to 
given saturation criteria. Common criteria are expressed in terms of response time, request rejection, 
error occurrence, or computing resource shortage. A common way of looking for the saturation limit is 
to run a variable (generally growing) number of virtual users and look for the saturation point. Another 
way of varying the load injection is to change the proportion between the different virtual user families 
(i.e. of different behaviors). During this experimental search, the tester plays an empirical feedback 
role on the load injection system: according to the distance between the observation and the given 
saturation criteria, the tester more or less increases (or possibly decreases) the load. 

Our first scenario is about defining, implementing and experimenting a load testing infrastructure 
featuring autonomous search of saturation point. As shown by figure 5, this infrastructure is composed 
of: 

• the system under test, which will actually be a multi-tiers web application; 
• the load injection system, made of one or several HTTP traffic generators depending on the 

required load level; 
• probes measuring computing resources usage at the SUT, including for instance typical system 

probes (CPU, memory, network...) as well as possibly probes related to specific software 
elements involved in the multi-tiers environment (HTTP front-end, servlet server, EJB container, 
EJBs, database...); 

• a load injection controller, replacing the {user interface, tester} pair by autonomously controlling 
the traffic level (number of virtual users) and/or contents (virtual user behavior), observing the 
overall system (load injection and SUT) through measures produced by probes (resource usage) 
and injectors (response times, errors, throughput), and controlling the load injection. 

Then, it appears clearly that our load injection system involves a control loop, in conformance 
with Selfware's architectural approach to autonomic systems. Since the concept of saturation may be 
practically characterized in a number of ways, the architecture of our self-regulated injection system 
also exhibits a component dedicated to provide and isolate the saturation criteria and feedback (load 
injection) policy. 

                                                        
3 Of course, the concept of performance may be practically mapped to a variety of criteria, such as request 
throughput, rejection or error rate, response times, number of users, etc. 
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figure 5. Self-regulated load injection for autonomic search of system performance saturation 

4.2.3 Step 2 – self-optimization of the system under test 

This scenario is dedicated to the self-optimization of the tested system. As a matter of fact, the 
ultimate goal of benchmarking is to qualify the optimal performance of a system and to compare it to 
other similar but different (in configuration or implementation) system. Therefore, finding the optimal 
settings of the tested system, in other words optimize it, is key to the autonomic benchmarking 
principle. 

This second step includes step one since benchmarking requires to reach the maximum 
performance (i.e. the saturation limit). For instance, the result of step one could be the conclusion that 
the SUT in a given configuration sustains a number of active virtual users representing a given mix of 
a number of behaviors. Then, the question is: is that result the best the SUT can deliver, or is it 
improvable by tuning the SUT? In other words, the tester will try to optimize the SUT and rerun the 
load test until s/he has the conviction that the maximum performance has been reached. This is, of 
course, a matter of estimation, whose accuracy depends on the skill and experience of the tester, since 
the combinatory of tuning parameters, and the complexity of interactions between them are so huge 
that a full exploration of the solution space is not humanly feasible. 

This second scenario also consists in replacing the tester by a second control loop introducing a 
self-optimization of the SUT. Synchronization must be achieved between self-optimization and self-
regulated load injection processes in order to alternate in a consistent way optimization phases and 
saturation search phases. The resulting architecture (see figure 6) adds a configuration controller, 
observing the maximum system performance (i.e. achieved at the saturation limit) reached for current 
configuration, and generating new possible system configurations. SUT-specific configuration rules 
must be provided in order to identify possible tunable parameters and their possible values. A general 
controller component orchestrates the configuration controller and the load injection controller. 
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figure 6. Autonomic benchmarking: self-optimization of a system under test and autonomic search of 
performance saturation 
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5 Appendix 

5.1 JOnAS, the Objectweb’s application server 

JOnAS is an open source application server, developed within the ObjectWeb consortium. 

 
 

5.1.1 JOnAS Features 

JOnAS is a pure Java, open source, application server. Its high modularity allows to it to be used 
as : 

• a Java EE server, for deploying and running EAR applications (i.e. applications composed of 
both web and ejb components), 

• an EJB container, for deploying and running EJB components (e.g. for applications without web 
interfaces or when using JSP/Servlet engines that are not integrated as a JOnAS container), 

• a Web container, for deploying and running JSPs and Servlets (e.g. for applications without EJB 
components). 

System Requirements 

JOnAS is available for JDK 1.4 and JDK 5. It has been used on many operating systems (Linux, 
AIX, Windows, Solaris, HP-UX, etc.), and with different Databases (Oracle, PostgreSQL, MySQL, 
SQL server, Access, DB2, Versant, Informix, Interbase, etc.). 

Java Standard Conformance 

JOnAS supports the deployment of applications conforming to Java EE 1.4 specification. Its 
current integration of Tomcat or Jetty as a Web container ensures conformity to Servlet 2.4 and JSP 
2.0 specifications. The JOnAS server relies on or implements the following Java APIs: EJB 2.1, 
JTATM 1.0.1, JDBC 3.0, Java EE CA 1.5, JMX 1.2, JNDI 1.2.1, JMS 1.1, JavaMail 1.3, Servlet 2.4, 
JSP 2.0, JAAS 1.0, JACC 1.0, Web Services 1.1, JAX-RPC 1.1, SAAJ 1.2, JAXR 1.0, Java EE 
Management 1.0, JAF 1.0, JAXP 1.2 specifications. JOnAS is architectured in terms of services. 
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Key Features 

JOnAS provides the following important advanced features: 

 
• Management: JOnAS server management uses JMX and provides a JSP/Struts-based 

management console. It provides high level functionalities for monitoring and managing clusters 
of JOnAS servers. 

• Services: JOnAS's service-based architecture provides for high modularity and configurability of 
the server. It allows the developer to apply a component-model approach at the middleware 
level, and makes the integration of new modules easy (e.g. for open source contributors). It also 
provides a way to start only the services needed by a particular application, thus saving valuable 
system resources. JOnAS services are manageable through JMX. 

• Scalability: JOnAS integrates several optimization mechanisms for increasing server scalability. 
This includes a pool of stateless session beans, a pool of message-driven beans, a pool of 
threads, a cache of entity beans, activation/passivation of entity beans, a pool of connections (for 
JDBC, JMS, Java EE CA), storage access optimizations (shared flag, isModified). 

• Clustering: JOnAS clustering solutions, both at the WEB and EJB levels, provide load 
balancing, high availability, and failover support. 

• Distribution: JOnAS works with several distributed processing environments, due to the 
integration of the CAROL (Common Architecture for RMI ObjectWeb Layer) ObjectWeb 
project, which allows simultaneous support of several communication protocols: 
• RMI using the Sun proprietary protocol JRMP 
• RMI on IIOP 
• CMI, the "Cluster aware" distribution protocol of JOnAS 
• IRMI, an open source RMI protocol implementation 
• JOnAS benefits from transparent local RMI call optimization. 

•  Support of "Web Services:" Due to the integration of AXIS, JOnAS allows Java EE components 
to access "Web services" (i.e., to be "Web Services" clients), and allows Java EE components to 
be deployed as "Web Services" endpoints. Standard Web Services clients and endpoints 
deployment, as specified in Java EE 1.4, is supported. 

•  Support of JDO: By integrating the ObjectWeb implementation of JDO, SPEEDO, and its 
associated Java EE CA Resource Adapter, JOnAS provides the capability of using JDO within 
Java EE components. 

•  Early support of EJB3: Even before the EJB3 specification (part of Java EE 5, the new Java EE 
specification) is finalized, JOnAS already provides an EJB3 container. This one is available as a 
Java EE CA Resource Adapter, which may be deployed on JOnAS 4. It is developed as a 
standalone ObjectWeb project, named EasyBeans. This container makes EJB development far 
more easy. 

Three critical Java EE aspects were implemented early in the JOnAS server: 

 
• Java EECA: Enterprise Information Systems (EIS) can be easily accessed from JOnAS 

applications. By supporting the Java Connector Architecture, JOnAS allows deployment of any 
Java EE CA-compliant Resource Adapter (connector), which makes the corresponding EIS 
available from the Java EE application components. For example, Bull GCOS mainframes can 
be accessed from JOnAS using their associated HooX connectors. Moreover, with Java EE 1.4, 
resource adapters are now the "standard" way to plug JDBC drivers and JMS implementation, to 
Java EE platforms. A JDBC Resource Adapter is available with JOnAS, which provides JDBC 
PreparedStatement pooling and can be used in place of the JOnAS DBM service. A JORAM 
JMS Resource Adapter is also available. The JOnAS EJB3 early container is also available as a 
Resource Adapter. 

•  JMS: JMS implementations can be easily plugged into JOnAS. They run as a JOnAS service or 
through a resource adapter in the same JVM (Java Virtual Machine) or in a separate JVM. 
JOnAS provides administration facilities that hide the JMS proprietary administration APIs. 
Currently, two JMS implementations can be used: the JORAM open source JMS implementation 
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from Objectweb, and Websphere MQ. JORAM management is particularly strongly integrated 
within the JOnAS management console. Clustering configurations involving load balacing and 
high availability at the JMS level are also available thanks to JORAM HA features. 

•  JTA: The JOnAS platform supports distributed transactions that involve multiple components 
and transactional resources. The JTA transactions support is provided through JOTM, a 
Transaction Monitor that has been developed on an implementation of the CORBA Transaction 
Service (OTS). Originally this transaction monitor was JOnAS internal; it has been extracted to 
be available as a standalone project, JOTM. 

 

5.1.2 JOnAS Architecture 

JOnAS is designed with services in mind. A service typically provides system resources to 
containers. Most of the components of the JOnAS application server are pre-defined JOnAS services. 
However, it is possible and easy for an advanced JOnAS user to define a service and to integrate it into 
JOnAS. Because Java EE applications do not necessarily need all services, it is possible to define, at 
JOnAS server configuration time, the set of services that are to be launched at server start. 

The JOnAS architecture is illustrated in the following figure, showing WEB and EJB containers 
relying on JOnAS services (this figure only misses the HA service). Two thin clients are also shown in 
this figure, one of which is the JOnAS administration console (called JonasAdmin). 

 

 

5.1.3 JOnAS clustering 

 
The Java EE clusters aim at providing scalability and high availability to the applications. It relies on: 
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• A load balancing mechanism for distributing the requests over multiple servers and thus increase 
the processing capacities 

• A replication mechanism of the essential data between the servers 
• A transparent fail-over mechanism enabling to switch another server without service disruption, 

thus ensuring continuity of service. 

To achieve these objectives, JOnAS provides a global solution for the clustering as illustrated in 
the following figure. 

 

 

HTTP session load balancing 

In a JOnAS cluster, load balancing at this level is achieved by dispatching HTTP requests from 
APACHE server(s) over a set of available JOnAS Web Containers (TOMCAT). As a result, more 
requests can be processed concurrently. 

The MOD_JK plug-in provides communication between APACHE and TOMCAT servers. 

HTTP session replication 

In a general matter, HTTP session replication ensures service availability and continuity of service 
at the SERVLET or JSP level. 

Session replication implies that the current service state - any data inside the HTTP session - is 
replicated across multiple application instances. 

It is the responsibility of the application to choose which data to store inside the session to ensure 
that a failover happens transparently without a disruption of the entire solution. 

In a JONAS cluster, the session replication, called all-to-all replication, happens inside the Web 
Containers (TOMCAT) that use a proprietary TCP based protocol. 
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JNDI clustering 

The CMI protocol provided with JOnAS, embeds its own replicated registry. The fat clients can 
use a servers list in the lookup requests ensuring both the load-balancing and the high availability of 
the JNDI accesses. 

EJB load balancing 

In a general matter, load balancing at this level is achieved by dispatching EJB invocations from 
the clients over a set of available EJB Containers. As a result, more requests can be processed 
concurrently. 

For a Stateless Session Bean (SSB), the load balancing takes place for either the home or the 
business methods (remote interface). For a State Full Session Bean  (SFSB), the load balancing takes 
place only for the home interface. 

In a JOnAS cluster environment, the cluster has knowledge, through the JGroups protocol, of the 
distribution of the EJBs. 

The CMI protocol, implemented on top of RMI, supports EJB invocations for fat Java clients or 
Web applications running within the Web containers. 

An answer to a lookup (or create for the SSB) is a special stub containing stubs to each instance 
known in the cluster. The stub can issue each method call on the home (remote for SSB) of the EJB to 
a new instance and uses a weighted round robin algorithm for distributing the load. 

Session Full EJB replication 

This solution enables failover at EJB level. 

This means state replication for State Full Session Beans (SFSB). 

Only the state of the EJB is replicated, not the bean itself. The "state" contains enough information 
for the nodes to be able to re-create the bean. 

An Entity Bean (EB) cannot be replicated. However, the state of an SFSB can contain a reference 
to an Entity Bean (EB). 

JMS clustering 

Through JORAM, the JMS provider integrated with JOnAS, and its distributed architecture, the 
JMS objects requests can be balanced among several JORAM servers. Furthermore, fail-over is 
provided with the JORAM HA relying on one master/N slaves architecture 

JDBC clustering 

Through the Sequoia project (formet ObjectWeb C_JDBC project) the writing JDBC requests are 
multicasted to several database nodes ensuring high availability and the reading JDBC requests are 
load-balanced. Furthermore, an extra cache layer (C-JDBC controller) increases the reading 
performances. 

Clustering management 

The jonasAdmin console enables to perform cluster operations such as deployment or monitoring 
from a management dedicated node called the master node.  

Clustering architecture example 

An example of a typical JOnAS cluster architecture is given in the following figure. 
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• master node : management node enabling to administrate the cluster from a centralized console 
• db node : database node, here it’s is a HSQL instance embedded into a JOnAS 
• cd : cluster daemon, bootstrap of a JOnAS node for the remote control 
• apache/mod_jk : HTTP server with the plugin enabling the load balancing of the HTTP flow 
• node1-2 : JOnAS nodes of the web level 
• node3-4 : JOnAS nodes of the ejb level 
• myCluster : logical cluster gathering the 4 JOnAS nodes, described in domain.xml 
• sampleCluster2Domain : domain name of the configuration 
• java client : fat client 
• CMI : RMI protocol for the cluster mode ensuring the JNDI replication and the EJB clustering 
• HA : SFSB replication 
• HTTP session : HTTP session replication 

 



Java EE management scenarios 

 22 

6 References 

1 Ada Diaconescu, Automatic Performance Optimisation of Component-Based Enterprise 
Systems via Redundancy, 2006 

2 Sara Bouchenak, Fabienne Boyer, Noel De Palma, Daniel Hagimont, Sylvain Sicard, and 
Christophe Taton, JADE: A Framework for Autonomic Management of Legacy Systems, 
2006 

3 Selfware Architecture, 2007 
 

 

 


