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1 Introduction 

Autonomic computing, which aims at the construction of self-managing and self-adapting 
computer systems, has emerged as an important goal for many actors in the domain of large scale 
distributed environments and applications. Indeed, such environments and applications are becoming 
increasingly sophisticated, involving numerous complex software developed with heterogeneous 
programming models. The main difficulty raised by this situation concerns the management of the 
environment and its applications (installation, configuration, tuning, repair ...), that often relies on 
several proprietary configuration facilities. 

One approach to autonomic computing, called the control approach, views the functioning of an 
autonomic computing system as a feedback control loop. As presented in the SP1-L1 document, the 
Selfware platform follows this approach, by providing systems and applications with self-management 
capabilities, including self-configuration (automatic configuration according to a specified policy), 
Self-Optimization (continuous performance monitoring), Self-Repair (detecting defects and failures, 
and taking corrective actions), and self-protection (taking preventive measures and defending against 
malicious attacks). 

This platform has been used to manage clustered J2EE application servers, by applying autonomic 
repair and optimization control loops. The objective of this document is to give details on these 
experiences. The following sub-sections firstly recall the main design principles of the Selfware 
platform, and then describe the different control loops implementations in two environments J2EE 1.4 
and Java EE 5. 
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2 Selfware Design Principles 

This section recalls the main design principles of the Selfware platform, based on the notions of 
Managed Elements and Autonomic Managers. 

2.1 Managed Elements and Autonomic Managers 

As detailed in the SP1-L1 document [1], the autonomic regulation provided by the Selfware 
infrastructure on a managed system is based on managed elements (ME) and autonomic managers 
(AM). A system managed with Selfware is more precisely constituted by a collection of managed 
elements, that may consist of a single elementary hardware of software element, or may be a complex 
system in itself, such as a clustered application server. 

A managed element provides sensor and actuator interfaces respectively allowing to observe and 
manipulate it. Sensor and actuator interfaces are used by autonomic managers, that regulate a managed 
system through feedback control loops, as illustrated in Figure 1. An autonomic element is the 
ensemble including a set of managed elements controlled by autonomic managers. 

 
Figure 1. An autonomic element 

A main design choice is to rely on a component model for building both Managed Elements and 
Autonomic Managers. The component model we use is Fractal [2]. A managed element is 
implemented as a Fractal component that encapsulates a controlled legacy entity. In the same way, an 
autonomic manager is a Fractal component that monitors a set of managed elements, analyzes 
notifications coming from managed elements sensors, diagnoses the state of the system, decides on a 
plan of actions and finally, executes the corresponding command plan. 

2.2 Autonomic managers 

Autonomic Managers administer legacy systems encapsulated in Managed Elements. Figure 2 
illustrates the general architecture of the Selfware framework. In accordance with the purpose of this 
document, we recall the main principles of two autonomic managers: the Self-Repair manager and the 
Self-Optimization manager. These managers use some common services provided by the Selfware 
platform, that are detailed in the SP1-L2 document [2], and summarized in the following sub-section. 
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Figure 2.The Selfware global architecture 

2.2.1 Main common Services 

The three main common services used by the Self-Repair and self-optimizer managers are the 
Node Allocation Service, the Deployment Service and the System Representation Service. 

The Node Allocation Service implements cluster resource reservation by allowing to allocate/de-
allocate nodes in a cluster. The Software Installation Service allows to install a software on a node if 
not already existing. This service implements a repository that stores software libraries needed by 
managed legacy systems, but also the libraries of the wrappers associated with these legacy systems. 
This service is implemented using the OSGi technology, and the stored software libraries are OSGi 
bundles (i.e. specific Java libraries, see http://www.osgi.org/ ). 

The Deployment Service allows to create and start Managed Elements (i.e. legacy systems and 
their wrapper components) on the allocated nodes. Moreover, deployment operations may 
automatically induce software installation operations if the necessary software is not already installed. 
Selfware Deployment Service is built on top of Fractal deployment features. Furthermore, it is 
important to notice that the Software Installation Service and Deployment Service are generic and may 
apply to any legacy system. 

Finally, the Selfware System Representation Service provides a checkpoint of the Managed 
Elements. This is mainly used by the Self-Repair autonomic manager upon failures of MEs, while the 
other Selfware services may be used by all Autonomic Managers. 

2.2.2 The Self-Repair autonomic manager 

The Self-Repair Manager deals with fail-stop failures of MEs, e.g. a node hardware failure, or a 
server (i.e. middleware) crash. This manager allows MEs to recover from their failures by periodically 
monitoring their status via heart-beat sensors. When a failure of a ME is detected, the repair algorithm 
consists in first accessing the System Representation Service to retrieve the state of the failed ME prior 
to failure. The System Representation Service is particularly necessary in case the failing ME is a 
node, which results in loosing the wrapper associated with that ME, and thus being unable to 
introspect that wrapper to retrieve the state of the failed ME prior to failure. The state of the failed ME 
retrieved from the System Representation Service is then used to rebuild the failed legacy element as it 
was prior to failure. 
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To this purpose, new nodes are allocated from the Node Reservation Service if necessary, legacy 
software elements are installed if needed using the Software Installation Service, and a new ME is 
redeployed to replace the failing one using the Deployment Service. Furthermore, if the failed ME was 
bound to other MEs, the bindings are recreated with the recovered ME to reflect the same connections. 
And if the failed ME contained sub-MEs (i.e. sub-components), these sub-MEs are recursively 
repaired. 

Furthermore, it is important to notice that the Self-Repair Manager is replicated (see SP2-L1 [3]) 
in order to prevent the manager from being a single point of failure, and thus guarantying fault-
tolerance continuity. 

2.2.3 The Self-Optimization autonomic manager 

The Self-Optimization Managers aim at maximizing application performance while minimizing 
the underlying resource usage (e.g. cluster nodes) through dynamic resource provisioning and dynamic 
load-balancing. This kind of managers target MEs that represent clusters of replicated MEs, e.g. a 
cluster of replicated web servers or a cluster of ejb containers. The cluster ME is periodically 
monitored via load sensors (e.g. CPU load, network activity, memory consumption, or an aggregation 
of sensors). We describe hereinafter the two kinds of Self-Optimization Managers: 

2.2.3.1 Dynamic resource provisioning 

When the load exceeds a given maximum threshold, the cluster ME is resized by dynamically 
adding new replicas as sub-MEs of the cluster ME. This consists in first contacting the Node 
Allocation Service to allocate a new node, then using the Software Installation Service to install legacy 
software elements if necessary, and introspecting one of the sub-MEs of the cluster ME to replicate it 
on the new node as a newly deployed sub-ME. Symmetrically, if the overall load of a cluster ME is 
below a given minimum threshold, that means that the underlying cluster nodes are under-utilized. 
Thus, the cluster ME is dynamically resized by removing one or more of its replicated sub-MEs, and 
de-allocating the underlying nodes if no more used. 

Furthermore, if the resized cluster ME consists of stateful replicated MEs with a dynamically 
changing state, replica consistency must be ensured when resizing the cluster ME; this is typically 
based on consistency policies underlying the legacy MEs. Replica consistency is supposed to be 
ensured through the underlying database clustering system. 

2.2.3.2 Dynamic load-balancing 

When a cluster is not fully congested, i.e. if a few nodes are not yet overloaded, load-balancing 
parameters tuning can be a less costly approach to perform optimizations. The purpose of this manager 
is to maximize the use of available resources in a cluster, by adding load-balancers as managed 
elements of client-side. 

Each ME is instrumented (sensors and actuators) and a load-factor is computed for each replicated 
ME. A global load-factor for the cluster ME gives a health indicator for the cluster ME. When the 
system can be optimized without collapsing the cluster, the load-balancer can be tuned for routing the 
requests towards the lowest loaded replicated ME. The load-balancer implements a weighted round 
robin algorithm and provides an interface for setting dynamically new weights for each replica. The 
autonomic manager aims at tuning these parameters according the current load of each replicated ME. 
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3 Autonomic management of a J2EE Application Server 

The Selfware platform has been used to manage the JOnAS J2EE application server in a clustered 
environment. In the following, we first provide background information on this application server and 
motivate its usage as a validation environment, before describing its self-management with Selfware. 

3.1 Background and motivations 

Nowadays, a large portion of web applications follow a multi-tier architecture. Java 2 Platform, 
Enterprise Edition (J2EE) defines the Java standard for developing multi-tier applications [27]. Such 
applications usually start with requests from web clients that flow through an HTTP server front-end 
and provider of static content, then to an enterprise server to execute the business logic of the 
application and generate web pages on-the-fly, and finally to a database that stores non-ephemeral 
data. However, the complexity of multi-tier architectures and their low rate for delivering dynamic 
web documents (often one or two orders of magnitudes slower than static documents) place a 
significant burden on servers [17]. To face high loads and provide higher service scalability, a 
commonly used approach is the replication of servers in clusters. 

Replication-based clustering solutions are responsible of dynamically balancing the load among 
replicas, and managing replica consistency if any (e.g. database replica consistency). Instances of 
J2EE clustering solutions are c-jdbc for a cluster of database servers [11], JOnAS clustering for a 
cluster of JOnAS EJB servers [29], Tomcat clustering for a cluster of Tomcat Servlet servers [28], and 
the L4 switch for a cluster of replicated Apache web servers for example. 

In this context, including autonomic management to clustered multi-tier web systems brings the 
following interesting challenges: 

• The management of a variety of legacy systems in a generic way, since each tier in the multi-tier 
architecture embeds a different piece of software (e.g. a web server, an enterprise server, or a 
database server). 

• The management of distributed systems with complex architectures in a generic way, where in 
addition to the multi-tier organization, each tier is a software stack that may be replicated. 

3.2 Java environments, applications and scenarios 

The Selfware platform supports two Java environments: 

• An environment J2EE 1.4, for Java 2 Platform, Enterprise Edition 

• An environment Java EE 5, for Java Platform, Enterprise Edition 

J2EE and Java EE design two consecutive generations of platform for server programming in the 
Java programming language. The last version number of J2EE is 1.4 and the first one of Java EE is 5. 
These platforms are defined by specifications formalized by two Java Community Processes: JSR 
151for J2EE 1.4 and JSR 244 for Java EE 5. 

Two scenarios use the J2EE 1.4 environment and an other one uses the environment Java EE 5. 
According to the scenarios, different applications have been used. The next sub-sections will describe 
them and will map a Java environment and an application for each scenario. 

3.2.1 The J2EE application Rubis 

We considered a J2EE multi-tier web system consisting of three tiers: a web tier as a front-end, an 
enterprise tier as a middle- tier, and a database tier as a back-end. A first node hosts the Apache web 
server middleware [6], a second node hosts the Tomcat enterprise server middleware [28], and a third 
node hosts the MySQL database server middleware [20]. 
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This multi-tier system runs the Rubis e-commerce application which models an auction site [5]. 
More precisely, Rubis’ web documents are deployed on the Apache web middleware, where they 
represent the application layer of that tier. Rubis’ Java Servlets are deployed on the Tomcat enterprise 
middleware, where they represent the application layer running on that middleware. And Rubis’ 
database tables are deployed on the MySQL database middleware where they represent the application 
layer of that tier. Moreover, each tier is replicated to form a highly scalable system; the PLB system is 
used as the web tier clustering solution [23], the Tomcat clustering system is used to replicate the 
enterprise tier [28], and the c-jdbc database clustering solution is used to replicate the database tier 
[11]. Thus, this system brings together 9 different pieces of legacy software, namely the Apache 
middleware, Tomcat middleware, the MySQL middleware, the Rubis web application, the Rubis 
enterprise application, the Rubis database application, the PLB web clustering system, the Tomcat 
enterprise clustering system, and the c-jdbc database clustering system. 

This system exhibits a complex architecture consisting of a multi-tier system representing a series 
of three clusters; each cluster is a collection of replicated systems; and each replicated system is a 
stack of node/middleware/application. We used Selfware in order to integrate self-management 
properties to such a system. 

To this end, we built a Selfware wrapper for each legacy system, to obtain a total of 6 specific 
legacy Managed Elements corresponding to the six middleware and application elements. 

3.2.2 The J2EE application SOAPSOO 

SOAPSOO is a web application based on J2EE technologies from France Telecom's information 
system. It manages articles of two kinds (hardware and service), associated to catalogs and contracts. 
Through a web interface, users may browse, consult, modify, create or delete articles, catalogs and 
contracts (see Figure 3). 

Figure 3. Data model of the SOAPSOO on-line catalog we b application (simplified view) 

Connection to the application is done through a usual authentication page with a login identifier 
and a password. Authentication is based on an HTTP POST method. Then, further user interactions 
are based on HTTP GET methods only. The presentation tier is implemented on Struts. It uses the 
Axis middleware to call the business logic through the SOAP protocol over HTTP. The persistence 
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tier is achieved on top of a relational database through the Data Access Object standard using the 
Object Relational Mapping (DAO ORM). 

3.2.3 The scenarios 

The used Java environment and application, for each scenario, are given by the Figure 4. 

Scenario Java environment Application 

Self-repair & self-optimization (§3.3) J2EE 1.4 Rubis 

Self-repair with integrity constraints ($3.4) J2EE 1.4 SOAPSOO 

Self-benchmarking & Self-optimization ($3.5) Java EE 5 SOAPSOO 
Figure 4.Java environment and application for each scenario 

The scenarios will be describes in the next sections. 

3.3 Self-repair and self-optimization of J2EE 1.4 Application Server 

3.3.1 Experimental environment 

The evaluation has been realized with the Rubis multi-tier J2EE application benchmark which 
implements an auction site [5]. Rubis defines several web interactions (e.g. registering new users, 
browsing, buying or selling items); and it provides a benchmarking tool that emulates web client 
behaviours and generates a tuneable workload. Rubis comes with two mixes: a browsing mix in which 
clients execute 100% read-only requests and a bidding mix composed of 85% read-only interactions. 
This benchmarking tool gathers statistics about the application. Rubis was deployed as a cluster-based 
replicated multi-tier system, consisting of a cluster of replicated web/enterprise servers as a front-end, 
and a cluster of replicated database servers as a backend. We used the Rubis 1.4.2 version of the multi-
tier J2EE application running on several middleware platforms: Apache 1.3.29 as a web server [2], 
Jakarta Tomcat 3.3.2 as an enterprise server [28], MySQL 4.0.17 as a database server [20], PLB 0.3 as 
the web server clustering solution [23], Tomcat clustering as the enterprise server clustering solution 
[28], and c-jdbc 2.0.2 as the database server clustering system [11]. Experiments were performed on 
the Linux kernel running x86-compatible machines, with 1GB RAM and 1800MHz, connected via a 
100Mb/s Ethernet LAN to form a cluster. 

3.3.2 Generic Approach 

One of the objectives of the Selfware autonomic management framework is to manage a variety of 
legacy software systems, regardless of their specific interface and underlying implementation. Another 
objective is to deal with different system architectures, as complex as cluster-based multi-tier 
architectures. To this end, the Selfware framework consists of a set of generic common services. In 
addition to these generic services, we built application-specific sub-systems that are needed in a 
particular application domain (e.g. Selfware wrappers for the different legacy Managed Elements 
involved in a multi-tier web system). 
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Figure 5. Code size of Selfware’s generic services a nd specific sub-systems 

Figure 5 gives the code size of Selfware’s generic services and specific sub-systems. It provides a 
rough measure of the code factoring obtained thanks to the generic approach followed in Selfware. 
Indeed, taking into account a new administered legacy system in Selfware would require to implement 
a Selfware wrapper that consists of, in average, 477 lines of Java code and a Fractal configuration file 
of 16 lines (i.e. Fractal ADL). On the other hand, with an ad-hoc (i.e. non-generic approach), taking 
into account a new legacy system would require to re-implement new versions of Autonomic 
Managers for that legacy system, for instance, a new Self-Optimization Manager and a new Self-
Repair Manager (with a total code size around 7 Klines of Java code). 

3.3.3 Self-Repair 

The first Self-Repair experiments were performed on a three-tier auction site consisting of a web 
server, an enterprise server and a database server, with a medium workload of 300 web clients. If no 
Self-Repair underlies the system, when a failure occurs on the web server, the auction site becomes 
unavailable. Thus, all new client requests result in an HTTP error until the end of the experiment. 
While when Selfware is used, the failure is automatically repaired by replacing the failed web server 
by a new one, and thus guarantying service continuity. 

We  run  other  experiments  on  the  multi-tier  auction  site  consisting  of  a  web  server, a 
cluster of two replicated enterprise servers and a database server. Here, a  failure  occurs  on  an  
enterprise  server  at  time  195  seconds  (see  Figure 7).  Without  Selfware,  the  enterprise  server  
clustering  solution  applies  fail-over  techniques  to  provide  global  service  availability.  However, 
this  is  obtained  at  the  expense  of  service  performance, where the load of the failed enterprise 
server is moved to the remaining  replica  (the  CPU  usage  of  the  latter  grows  from  approximately  
25%  to  50%).  While  when  Selfware  is  used,  in  addition  to  service  continuity,  automatic  
recovery  ensures  performance  stability. 

 



Java EE management scenarios 

 11 

 

 

Figure 6.  Web server behavior in presence of failures  

 

 
Figure 7.  Replicated enterprise servers behavior in presence of failures  

 

3.3.4 Self-Optimization 

In order to evaluate the Self-Optimization policy provided by Selfware, we considered a scenario 
where the application workload varies dynamically. At the beginning of the experiment, the web 
application is submitted to a medium workload (80 clients); then the load increases progressively up to 
500 clients; and finally the load decreases symmetrically down to reach 80 clients. 

Initially, the multi-tier auction site is deployed on one enterprise (and web) front-end server and 
one database back-end server. Since CPU is the only bottleneck resource in these experiments, the 
managed system elements (i.e. enterprise tier and database tier) are monitored by sensors that gather 
CPU usage information every second and compute a spatial 1 and temporal 2 average CPU usage 
value. The Self-Optimization manager ensures that the average CPU usage is kept between a 
minimum and a maximum thresholds. In order to prevent oscillations due to parallel reconfigurations 
started on the front-end tier and the back-end tier of the multi- tier managed system, the 
reconfiguration workflow associated with the underlying Multi-Tier Managed Element specifies that a 
reconfiguration started on one of the tiers inhibits any new reconfiguration for a short period. 

Figure 8 shows the variation of the number of replicas, for both the enterprise servers and database 
servers when the application workload varies. As the workload progressively increases, the average 
resource consumption of the cluster of replicated database systems also increases, and this tier 

                                                      
1 Over nodes of replicated elements 
2 Over the last 60 seconds 
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becomes a bottleneck. An allocation of a new database replica is triggered, which results in a clustered 
back-end containing two database systems. The workload continues growing and triggers another node 
allocation for the clustered database. The workload increases further; and this places the bottleneck on 
the front-end tier. An allocation of a new enterprise is triggered, resulting in a system composed of 
two enterprise systems and three database systems. The workload then increases without saturating 
this configuration before it starts decreasing. This workload decrease implies a decrease of the 
resource consumption of the front-end tier which triggers a de-allocation of one its replicas, and then a 
low resource consumption of the clustered database, which triggers a de-allocation of a database 
replica. 

 
Figure 8. Variation of the application workload and  number of replica

These experiments were run, on the one hand, on a system managed with Selfware  and,  on  the  
other  hand,  on  the  same  system  with  no  Self-Optimization.  Figure 9 presents the experimental 
results with the applied thresholds. In fFigure 9 -(a), when  the CPU usage reaches the maximum 
threshold, a new database replica is deployed,  which  implies  a  decrease  of  the  CPU  usage.  
Symmetrically,  when  the  CPU  usage  gets  under  the  minimum  threshold,  a  back-end  replica  is  
removed.  In  contrast,  when  the  system  is  not  self-managed,  as  the  workload  increases,  the  
CPU  usage  eventually  saturates.  This  results  in  a  trashing  of  the  database,  which  stops  when  
the  load  decreases. Figure 9-(b)  presents  similar  results  related  to  the  front-end  tier.  However,  
when  the  system  is  not  self-managed,  its  behavior  should  be  correlated  with  the  trashing  that  
affects  the  database.  Indeed,  since  the  database  is  already  saturated,  the  enterprise  server  
spends  most  of  its  time  waiting  for  the  database responses. This explains why the CPU usage 
measured during high loads  remains  moderate.  Furthermore,  we  notice  that  the  non-self-managed  
enterprise  server generates higher CPU  usage values at  the  end of the  experiment even if  the  load 
decreases. This can be interpreted as a result of the end of the  trashing of the  database,  which  then  
returns results  to  the  front-end  server more promptly. 
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Figure 9.  Behavior upon workload variations  

 

On  the  other  hand,  it  is  important  to  notice  that,  unlike  most  of  the  existing  autonomic 
management proposals [31][12][15], Selfware was able to manage systems with  replicated  static data  
(enterprise  replicas  in  our  experiments)  as  well  as  systems  with replicated dynamically changing 
data (database replicas). Here, replica consistency was based on underlying clustering solutions, e.g. 
enterprise server clustering  and  database server clustering. 

 

 
Figure 10.  Web client response time variation  

 

As  a  result  of  these  experiments,  when  the  auction  site  is  managed  by  Selfware,  the  
number  of  processed  requests  is  more  than  twice  higher  than  the  number  of  processed requests 
by the same system with no self-management features, i.e. 92512  with  Selfware  vs.  41585  without  
Selfware.  Furthermore, Self-Optimization of  the auction  site has a clear impact on web client request 
response times. Figure 10 is a histogram that details the distribution of the response times among all 
the requests that were  issued  during  the  experiments  with  and  without  Selfware.  This  figure  
shows  that  the proportion of the requests that are returned within one second reaches 86.25% when  
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Selfware is  used, whereas without Selfware, this proportion is only 36.17%. Moreover, this  also 
shows that the proportion of the requests that are returned within one and 20  seconds  reaches  only  
13.47%  with  Selfware,  and  48.28%  without  Selfware.  Finally,  while  with  Selfware,  no  requests  
were  returned  in  more  than  40  seconds,  still  5.5%  of  the  requests  processed  by  the  non-self-
managed  system  are  returned  in  more  than  40  seconds. 

 

These first experiments on Self-Optimization only show the behavior of the auction site in case of 
gradual variations of the workload, and not in case of load peaks  which  may  also  happen.  Indeed,  
in  case  of  a  load  peak,  performing successive  reconfigurations to add/remove a single replica 
might result in a long global reconfiguration  before  the  system  stabilizes.  Whereas  in  presence  of  
a  load  peak,  a  unique  reconfiguration operation that adds/removes several replicas at once should 
be more  effective. We thus conducted additional experiments that exhibit the ability of Selfware to  
deal  with  load  peaks.  Here,  the  Self-Optimization  manager uses  an  aggregation  of  sensors  that  
monitor  the  CPU  usage  and  the  number  of  processed  requests  on  replicated  servers.  These  
sensors  are  used  to  predict,  both  the  time  at  which  a  cluster  of  replicated  elements  must  be  
resized,  and  the  number  of  necessary  replicas  to  add/remove  at  once.  Figure 11 gives the  web  
client  request  response  times  variation in presence of a load peak (+1000 clients). Initially, the 
multi-tier auction  site  consists  of  a  single  enterprise  server  and  a  single  database  server.  When  
the  load  peak  occurs,  this  has  a  direct  impact  on  the  CPU  usage  of  the  database  tier  which  
becomes a bottleneck.  Thus,  Selfware automatically provisions additional database replicas to face 
the load increase and keep the application performance stable,  forming  a  system  consisting  of  one  
enterprise  server  and  three  replicated  database servers. Here, the number of additional replicas to 
provision is calculated as a  function  of  the  number  of  concurrent  processed  requests  on  the  
bottleneck  server.  Whereas without Selfware, the application performance simply gets worse, 
resulting in  a  trashing. 

 
Figure 11.   Behavior of the database tier in presence of load  peaks  
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3.3.5 Performance overhead  

In order to measure the possible performance overhead induced by the self-management  
framework,  we  compared  two  executions  of  the  same  multi-tier  system:  when  it  is  run  over 
Selfware and  when  it  is  run without  Selfware. During the  experiments, the  managed  application  
has  been  submitted  to  a  medium  workload  so  that  its  execution  under  the  control  of  Selfware  
induced  no  dynamic  reconfiguration.  The results show no significant overhead in terms of 
application response times and throughput. We can notice a slight memory overhead (20.1% vs. 
17.5%) that can be linked with the creation of internal software components by Selfware.  However,  
Selfware  does  not  induce  a  perceptible  overhead  on  CPU   usage;  this  is  due  to  the  fact  that  
Selfware  does  not  intercept  application  communications  but  only  configuration/management  
operations. 

 

 Throughput(req/s) Resp. time (ms) CPU Usage (%) Memory Usage (%) 

With Selfware 12 89 12.74 20.1 

Without Selfware 12 87 12.42 17.5 

Figure 12. Performance Overhead 

 

3.4 Self-repair of J2EE 1.4 Application Server with integrity constraints 

This scenario is used to repair a transient failure in a JOnAS instance. A transient failure is for 
instance a memory leak or a memory overload, and a common way to repair such a failure is to restart 
the application server. Moreover we demonstrate in this scenario some abilities of the dynamic 
reconfigurations used for system adaptation in the Selfware platform. Actually, it is possible to add 
some integrity constraints on the cluster architecture that must not be violated during reconfigurations. 
Then the reconfiguration service ensures that the reconfigurations used by the autonomic manager to 
repair the system are reliable and conforms to the constraints.  

For this scenario, we use the France Telecom web application SOAPSOO described in the next 
section and we deploy it on a JOnAS 4.8 cluster. 

3.4.1 Additional Services used in the scenario 

To implement the scenario, we use two additional services in the Selfware platform: the Constraint 
Checking Service and the Reconfiguration Service. 

The Constraint Checking Service allows to check that the system architecture conforms to some 
integrity constraints. An integrity constraint is a predicate on assemblies of architectural elements and 
component state (cf. section 2.3.2 of SP2-L1). Therefore, a system is consistent if all integrity 
constraints in the system are satisfied. Constraints are expressed with a navigation and selection 
language used to introspect Fractal system at runtime called FPath. In the Selfware platform, 
constraints can be specified both on the global architecture of the cluster and on given nodes in the 
cluster. Some examples of such constraints are the followings: 

- On the global cluster architecture: 

o Uniqueness of a JOnAS instance name in the domain 

o Uniqueness of a master instance in the domain to manage the cluster 

o Separation between Web and EJB tiers on different nodes 
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- On a local node: 

- System resource availability (memory, CPU) 

- Uniqueness of port between JOnAS instances 

- Restricted number of JOnAS instances on the same node 

The Reconfiguration Service is used to dynamically reconfigure the system with a DSL for 
reconfiguration called FScript. This interpreter is combined to a transactional monitor to ensure ACID 
properties of dynamic reconfigurations. Thus if a reconfiguration violates some constraints in the 
target system, the reconfiguration can be cancelled, which means that the transaction is rollbacked and 
the system is put in its last consistent architectural state before the execution of the reconfiguration by 
undoing all reconfiguration operations. 

3.4.2 Scenario implementation 

We choose to repair a memory overload in a JOnAS instance which can leads to a JVM crash by 
rebooting the server (i.e. the JVM) locally. We put a local constraint on each node of the cluster 
related to the minimum quantity of available memory which is needed when restarting a server on the 
node. 

The main autonomic control loop (cf. Figure 13) used to repair the transient failure is composed of 
the following elements: 

• Sensors: the MBeanCmd tool provided by JASMINe is used to monitor JOnAS instances in 
the cluster and allows to catch OutOfMemoryException thrown by failed JVMs. 

• Controller: the Reboot Manager subscribes to JMX events thrown by MBeanCmd and when it is 
notified of a memory overload, it decides to reboot the failed application server. 

• Actuators: the Reconfiguration Service reboots the failed JOnAS instance on the same machine 
with respect to the integrity constraints. It kills the application server and restarts it. The 
Constraint Checking Service checks that the available memory on the node is above the 
threshold given by the node constraint, if not the Reconfiguration Service cancels the repair 
action and notifies the controller and the administrator of the constraint violation. 
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Figure 13.Architecture of the Self-repair managemen t with constraints 

A possible extension of this scenario is to react to the constraint violation by building a new repair 
plan. For instance, the controller can try to reinstanciate the failed server on another node where more 
memory is available. 

3.5 Self-optimization of Java EE 5 Application Server 

On this platform we mainly focus on self-benchmarking of Java EE application server and self-
optimization of load-balancers. The reason to change of environment was motivated by the recent 
availability of new versions of load-balancers (at web and ejb levels), much more dynamic. JOnAS 5, 
by supporting these new load-balancers, eases their optimization by the autonomic manager. 

3.5.1 Introduction 

In a multi-tiers application, two levels of configuration can be considered to enhance its 
performance (i.e. throughput-latency ratio) [34]: 

1. Architectural configuration by adding/removing replicas 

By replicating application servers, the load can be balanced on each replica. So by adding 
replicas, more clients can be satisfied and the throughput will be increased. If each level is 
independent and its replication can be managed separately, it is important to notice that the load 
can spread to other tiers. So if a bottleneck exists at the back-end of the architecture (e.g. a 
database), this approach can congest the entire cluster and decrease the latency. Figure 14 
illustrates such not scalable architectural configuration. The queue symbolizes the pool of 
connections and the grey squares represent the busy connections. In a bottleneck, no more free 
connections are available, and many incoming connection requests are waiting. 
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Figure 14. Bottleneck introduced by a bad architect ural configuration 

2. Local configuration by tuning a replica 

By increasing the multi-programming level (MPL) of a local node, this one can accept requests 
of more clients and increase the throughput. Unfortunately, making pseudo-parallelism introduced 
a cost due to context switches and can flood the CPU to finally increase the latency. Figure 15 
gives the performance result according to the MPL setting. The global performance of the database 
tier can be, for example, improved by setting the optimal MPL (edge of parabola). 

 
Figure 15. Influence of parallelism on performances  

Self-benchmarking can help us to determine the best configurations to get the best performances. 
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This scenario aims at proposing an auto-optimization in two steps:  

• At first, the best MPL configuration is determined through self-benchmarking 

• At runtime, the load-balancer parameters are adjusted according to the current load and the 
optimal performance indicators identified during the first step. Indeed, by knowing capabilities 
of replicates, we can improve the use of free resources. 

3.5.2 Experimental environment 

3.5.2.1 The managed Java EE application server JOnAS 5 

The SOAPSOO application (cf. section 3.2.2) is deployed on JOnAS 5, the last version of the Java 
EE application server from OW2. Completely rewritten to be based on OSGi™ modules, JOnAS 5 
implements a service-oriented architecture in the application server itself, enabling the server and its 
services to be dynamically adapted and extended depending on users’ needs and the constraints of 
their environment. The resulting architecture is as in the Figure 16. 

 
Figure 16. JOnAS 5 architecture 

The main benefits of such architecture for an application server are: 

• Dynamic configuration and re-configuration of servers 
o Services can be stopped, reconfigured, and started at runtime 

o On demand incremental services delivery: services can be started when required by other 
services or applications 

• Modularity 
o Services are delivered in « bundles » 

o Code readability 

o Reduced system footprint by starting only the strictly required services and by stopping the 
no more required ones 

o Explicit dependencies are clearly defined between services 
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• OSGi other add-ons 
o Remote management 

o Services lifecycle management (incl. versions) 

o Services dependencies management (OBR: OSGi Bundles Repository) 

o Dynamic class loading (flat class loaders) 

o OSGi world accessibility (RFID, probes …) 

3.5.2.2 Wildcat 

Wildcat is a generic framework for context aware applications [36]. It provides a simple and 
dynamic data-model to represent the execution context of the application, and offers a simple API for 
the programmers to access this information both synchronously and asynchronously (pull and push). 
Wildcat allows to scale numerous data-sources and events: 

• Firstly, it hierarchically organizes data-sources (as depicted on figure 20): each data-
source is attached to a leaf in a tree structure. Operations on hierarchy are similar to file 
system usages: data sources are mount/unmount, data sources are denoted by their path in 
the hierarchy… 

 
Figure 17.Hierarchical classification of event prod ucers 

• Secondly it embeds a CEP engine (for Complex Event Processing [35]) that can process 
large volumes of events. 

 It features a query language that allows to specify sliding windows to group, aggregate, sort, filter 
and merge event streams. Thus one can easily express synthetic data and event patterns upon which to 
trigger a reconfiguration. 

Instances of Wildcat can communicate through RMI for pulling events, and through JMS for 
pushing them. Hence, one can easily examine execution contexts of distributed applications. 

3.5.2.3 Self-benchmarking with Clif 

Here, we try to get optimal JOnAS configuration parameters for the SOAPSOO web application 
through an autonomic benchmarking campaign, before actually deploying the application. As a matter 
of fact, although Selfware is aiming at providing self-optimizing systems once deployed, deploying a 
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badly configured web application, hoping it will quickly and accurately self-optimize is certainly not a 
good idea for quality of user experience reasons, or even for the mere stability of the application. 
Thus, the idea is to deploy a pre-optimized application, and more precisely a self-optimized 
application, thanks to the Selfware-based Autobench architecture, as described in [4]. 

So, we apply to the SOAPSOO web application the Autobench architecture, strategies and 
algorithm described in SP2-L2 for self-benchmarking (see Figure 18). As presented in section 3.5.1 
and Figure 15, we will try to self-optimize the maximum number of threads used by JOnAS to process 
the incoming request (MPL parameter). 

Figure 18. The Autobench architecture applied to th e SOAPSOO application over Jonas 

To do this, we require these specific elements: 

• a JOnAS wrapper that enables setting the MPL. This wrapper uses JMX to change JOnAS' 
maxThreads parameter. A stop()/start() cycle must be applied to JOnAS' HTTP connector (also 
via JMX) in order to take into account the new setting; 

• a CLIF probe for JOnAS, giving load metrics to the Load Injection AM, in order to regulate the 
autonomous load injection. This probe gets the average request processing time and throughput 
from JOnAS via JMX3; 

• a CLIF Http Injector to generate HTTP request on SOAPSOO. This is already available in the 
ISAC scenario module for CLIF; 

• a definition of a virtual user behavior for CLIF's ISAC scenario module. This behavior defines 
typical user requests and think times for the SOAPSOO application. The Load Injection AM will 
autonomously adapt the number of active virtual users according to the observed load. 

                                                      
3 An alternative is to rely on the load injectors which deliver similar metrics but also complementary metrics, 
from the client perspective (i.e. including the network latency). For instance, load injectors give the minimum, 
maximum, standard deviation and average value for the response times. But these measures are likely to be 
polluted by garbage collector occurrences in the load injector JVM. So, we have to experiment both ways: more 
metrics or more accuracy. 

Optimization AM 

Load Injection AM/ME 

Supervisor ME HTTP Injectors 

Jonas probe: gives request processing time and 

throughput 

Jonas wrapper: gives control over the maximum number 
of threads 

HTTP requests 

Self 

optimization 

Self 
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The Optimization AM generates possible values for the maxThreads parameter, trying to 
maximize the throughput/latency metric. This metric must be computed and delivered by the Load 
Injection AM. 

3.5.2.4 The managed load-balancers Apache/JK and CMI 

JK load-balancer element is plugged in the Apache element. It is localized at server side 
(Figure 19). 

CMI load-balancer element is embedded in the EJB API and this localized at the client side 
(Figure 20). 

Load-balancer of web accesses (Apache/JK) 

Client-side Server-side: web tiers

Apache/JK

Web server

Web server

 
Figure 19. Load-balancer of web accesses 

The Selfware system provides a self-optimization manager supporting some dynamic 
optimizations of JK plug-in web load-balancer. The manager is able to perform a self adjustment of 
the load-balancing factors (weights) for each ME. Sensors get different indicators for each ME: 
memory, CPU, bandwidth, and many other application server metrics, such as pool size, thread 
number, etc. The autonomic manager collects these monitoring data and aggregates the load indicators 
(e.g. throughput/latency). Finally, when a load indicator raises a given limit, the autonomic manager 
determines the new load-balancer factors for each ME and set them through the actuator. 

Load-balancer of EJB accesses (CMI) 
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Figure 20. Load-balancer of EJB accesses 

The Selfware system provides a self-optimization manager supporting some dynamic 
optimizations of the EJB/CMI load-balancer. Its capabilities are: 

• Self optimization of load-balancer factors: just as JK, the manager is able to determine and set 
the best load-balancing factors for ME according the current load of each ME. 

• Self evicting: when the load of a ME becomes critical, the autonomic manager is able to disable 
temporary this one in order to refuse connections. Existing connections are still served. When 
the load of an evicting ME decreases under a threshold, this ME is again enabled. 

The next section describes the implementation of this self-optimization manager. 

3.5.2.5 Implementation details of the self-optimization manager for load-balancers 

 
Figure 21. Implementation of a manager for self-opt imization of load-balancers 

Figure 21 describes the main parts of the manager: 
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• Sensors 

Measures are collected by using Wildcat. This one acts as a higher layer of sensor which is in 
charge of performing a first treatment of measures. Measures are extracted from the following 
sources: 

o Clif and LeWYS probes (e.g. CPU, network, memory) whatever the operating system. 

o JMX probes, exposed by the application server, provide some useful indicators (e.g. pool 
size, thread number). The MPL can be computed from these (from the throughput-latency 
ratio). 

• Controller 

It is implemented by using the rules engine Drools. This one allows dynamically adding or 
removing bundles defining rules and actuators for given load-balancers. 

o Detection 

Since inserted events are facts, the Drools engine uses events as input. Detection is 
performed, on these events, by using the LHS of rules. LHS (for left-hand side) is the 
conditional parts of a rule. 

o Reaction 

The RHS (for right-hand side) of rules implement reactions and invoke actuators. RHS is 
basically a block that allows dialect specific semantic code to be executed. 

• Actuators 

Reconfiguration of legacies is performed by using their wrapper components. According to the 
load-balancers, these wrappers uses: 

o A MBean to reconfigure CMI 

o An Ant task to reconfigure JK. 

3.5.2.6 Scalability of the autonomic manager 

The autonomic manager is designed to be scalable by combining an event-driven architecture 
(distributed) with a business rule management system (cf. Figure 22): 
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Figure 22. An event-driven architecture 

WildCAT assumes the role of event generator and event channel. Routing and mediation is 
performed by EventSwitch. Complex event processing is supported by WildCAT. Finally a 
business rule management can be one kind of event consumer (cf. Figure 23). 

 
Figure 23.Using a BRMS as event consumer 

 

3.5.2.7 Deployment architecture 

The following figure gives an example of deployment for self-managing a cluster of two 
JOnAS nodes: 

• One machine for hosting the load-balancer (managed element) 

• Two machines for hosting the J2EE server nodes (managed element) 

• One mchine for hosting the autonomic manager 
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Figure 24.Deployment architecture 

 

3.5.3 Approach for self-optimization 

The scenario can be divided in two successive steps. Firstly, an optimal configuration of MPL is 
computed by self-benchmarking. Secondly, load-balancers are dynamically tuned in order to respect 
the performance of each replicate. 

3.5.3.1 Looking for an optimal configuration by self-benchmarking 

As explained in section 3.5.2.3, our goal is to get the Autobench architecture autonomously find 
the best setting for JOnAS maxThreads parameter (MPL), i.e. the maximum number or parallel 
request executions in JOnAS. We define the best setting as the value that results in the maximum 
throughput/latency metric. 

Because of the specificity of this parameter, a dichotomic search based on an a priori minimum 
value and maximum value is not directly applicable. First, there is no intrinsic maximum possible 
value; second, even though we could think of a few thousands threads as a practical limit, it could be 
dangerous for the system stability to start with so many threads, or even half of them. Remember that 
we want to avoid any crash of the System Under Test in order (1) to implement simpler Load Injection 
and Optimization AMs and (2) to go quicker in the self-benchmarking campaign4. 

Then, we can think of an algorithm that roughly gives the necessary bounds, before actually 
applying the dichotomic search. The lower bound is not really a problem, since we can at least choose 
one (single-threaded server). The upper bound needs more attention, because we have to find a 
maximum MPL limit that is actually greater than the optimal MPL value, but also not too far from the 
optimal value to avoid instability problems. Moreover, we want to be more efficient (quick) than 
successively trying all possible values, incrementing the MPL step by step from one until the 
performance metric (throughput/latency) starts to decrease. 

                                                      
4 We could insert a self-repair manager here, in order to recover from a SUT crash. However, this would add a 
third AM in the architecture, with an extra control loop. Coping with these loops would require a more complex 
orchestration. It would also significantly slow the self-benchmarking process since restarting a faulty node takes 
a significant piece of time. Nevertheless, autonomic management of several, heterogeneous autonomic managers 
is an interesting topic for future work directions. 
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To go quick without making any assumption about the order of magnitude of maximum MPL 
value, a possible principle is to successfully double the MPL value, make an experiment with this new 
value, and to check if the performance metric is lower than the previous experiment. This is a way to 
go quick for linear systems (although the algorithm would never end), but we know that our metric 
will reach a maximum and then decrease, possibly (but not necessarily nor strictly) following a 
parabolic curve (see Figure 15). In other words, we can assume that the performance metric will 
increase more and more slowly, and then decrease faster and faster while the MPL grows. In order not 
to go far beyond the optimal MPL value, and possibly beyond the system operating limit, we must 
temper the arithmetic progression of the MPL values by a tempering factor, e.g. based on the evolution 
of the curve slope between two consecutive points. 

More formally, let mi be the measured metric for experiment number i, and let MPLi be the 
maxThreads value for this experiment. The curve slope Si+1 from point (MPLi, mi) to point (MPLi+1, 
mi+1) equals (mi+1-mi)/( MPLi+1- MPLi). To temper the arithmetic progression, the MPL increment is 
the latest MPL value multiplied by the tempering factor (Si+1/Si): MPLi+2 = MPLi+1 x (1 + (Si+1/Si)). 
For linear systems, this factor is constant and equals to one, so we keep doubling the MPL values from 
one experiment to the following. For the kind of system we are testing, this factor may be very close to 
one during the first experiments (low MPL values), and then progressively decrease, playing the 
wanted tempering role. Assuming function f / mi=f(MPLi) is close to a parabolic function, we can 
make the tempering factor more efficient by using its square value. Finally, we get the algorithm given 
by Figure 25 and illustrated by Figure 26. 

 

 
Figure 25. Tempered arithmetic search algorithm for  the MPL bounds 

As a side result, if max is the index of the MPL maximum bound found by the algorithm, we also 
get MPLmax-2 as a good minimum bound (MPLmin), in the sense that it is closer to the optimal MPL 
value than all other values MPLi with 0<i< max-2. Note that nothing can be said about MPLmax-1. 
These results are valid for any function whose derivative is monotonic. 

// let mi be the performance metric from experiment  number i 
// let MPLi be JOnAS' maxThreads value for experime nt number i 
// the MPL values for the first three iterations ar e manually set 
// because the tempering factor is undefined 
MPL1 = 1 
MPL2 = 2 
MPL3 = 4 
m1 = experimental_evaluation(MPL 1) 
m2 = experimental_evaluation(MPL 2) 
S2 = (m 2- m 1)/(MPL 2- MPL 1) 
m3 = experimental_evaluation(MPL 3) 
S3 = (m 3- m 2)/(MPL 3- MPL 2) 
i = 3 
while m i  > m i-1  
 MPL i+1  = MPL i  x (1 + (S i /S i-1 ) 2) // tempered arithmetic increment 
 m i+1  = experimental_evaluation(MPL i+1 ) 
 S i+1  = (m i+1- m i)/(MPL i+1 - MPL i ) 
 i = i + 1 
// the maximum bound is MPLi 
// finally, we also get MPLi-2 as a good minimum bo und 
// then, we can perform a dichotomic search within this range 
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Figure 26. Illustration of the bounds search algori thm 

3.5.3.2 Dynamic reconfiguration of the load-balancing algorithm based on the current 
activity of cluster nodes 

To launch a reconfiguration, the optimization manager needs to detect some abnormal 
performances of replicated MEs. By breaking performances of a particular replicated ME, we can 
cause a dynamic reconfiguration of the load-balancing algorithm in order to lighten the request 
throughput toward this. Three reasons (non-exclusive) can be considered for differences of 
performance between replicated MEs: 

• Replicated MEs are heterogeneous. 

This case correspond to a local weakness of a replicated ME. Heterogeneity appears in the 
following cases: 

o When hardware are different. 

o When a replicated ME is not dedicated to the application (for example the same machine 
hosts some batch applications) 

o When the configuration is not optimal. 

An example (Figure 27) is when a replicated ME accept few connection requests (e.g. due to a 
not efficient configuration). Its latency is of course minimal, but its MPL setting is needlessly low. 
Consequently its request throughput is limited that breaks the performances of this replicated ME. 

performance metric 

(throughput/latency) 

Multi Programming Level MPLmax MPLmax-2 

(= MPLmin) 

MPL1 

MPL2 

MPL3 

assumption: the function 
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m1 

m2 

m3 

the metric decreases => STOP 
the metric grows 
along with MPL 

range for dichotomic search 
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Figure 27. Overload caused by a weaker replicated M E (numbers are weights) 

• Load-balancing is not fair, i.e. the incoming requests are not equitably distributed. 

The performances of a replicated ME can be broken by an imbalance (e.g. by adding some 
clients that bypasses the load-balancer as in Figure 28). 

 
Figure 28. Overload caused by an imbalance of the l oad distribution 

• A replicated ME is linked to another overloaded tiers 

The latency can be increased if the replicated ME is linked to an overloaded tier (for example a 
LDAP as in Figure 29). 
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Figure 29. Overload caused by the link to an overlo aded LDAP 

After having detected an abnormal state (coming from any of three reasons), the autonomic 
manager will readjust the load-balancer (Figure 30). 

Web tierClient-side

Apache/JK

100

50

 
Figure 30. Reconfiguration of the load-balancer due  to the heterogeneity of MEs 

We dispose of two kinds of indicators in input of the analyser (rules engine), which detects 
abnormal performances: 

o Material resources (CPU, memory, network) 

o Software resources (OS, JVM, application server) 

Self-benchmarking gives an initial base of optimal indicators for software resources. In this 
scenario the base won't be updated and the computed optimal MPL, which belongs to the base, is 
an input of the analyzer (as a reference value). 
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4 Conclusion 

Nowadays J2EE servers are widespread in the information system of the enterprise and more and 
more critical applications are deployed on top of such middlewares. The J2EE clustering mode 
provides a solution for scalability and high availability but increases highly the complexity of the 
administration.  

Self-management addresses this problem and provides some autonomic behaviour such as self-
healing and self-optimization. 

This document has described the three scenarios that were experimented in the Selfware project 
regarding autonomic management of J2EE application servers. The first scenario presents a set of 
autonomic managers performing both the self-repair and the self-optimization. The second scenario 
focuses on an autonomic manager making repairs according to some given integrity constraints. The 
third scenario focuses on a joint use of self-benchmarking and self-optimization of load-balancers. 

These experiments do validate the interests for self-* in the J2EE server management. When 
combined with the clustering mechanism, self-managed applications have a better quality of service in 
terms of performance and availability. 

The selfware approach, based on an external control loop, is not intrusive and can be applied to 
third party products. For example, it has permitted to implement easily the third scenario with two 
different load-balancers Cmi and Jk without any changes in the managed element. Adding another 
load-balancer would be simple as well. 

In Selfware the scenarios are focuses to the J2EE layer and deal with the J2EE server at a coarse 
grain. Possible further works could address: 

- The whole system for managing both the OS virtualization layer and the Java EE layer. 

- The J2EE server at a finer grain, new generation of application servers, OSGi based, are 
becoming highly modular and dynamic what add a degree of complexity in the monitoring and 
reconfiguration operations. 



Java EE management scenarios 

 32 

5 References 
[1] Selfware RNTL Project, Livrable SP1-Lot1, sardes.inrialpes.fr/~selfware, August 2007 
[2] Selfware RNTL Project, Livrable SP1-Lot2, sardes.inrialpes.fr/~selfware, November 2007 
[3] Selfware RNTL Project, Livrable SP2-Lot1, sardes.inrialpes.fr/~selfware, November 2007 
[4] Selfware RNTL Project, Livrable SP2-Lot2, sardes.inrialpes.fr/~selfware, June 2008 
[5] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Ra- jamani, and 

W. Zwaenepoel. Specification and Implementation of Dynamic Web Site Benchmarks. In IEEE 
5th Annual Workshop on Workload Characterization (WWC- 5), Austin, TX, November 2002.  

[6] Apache - HTTP Server Project. Apache. http://httpd.apache.org/.  
[7] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and M. Kalantar. Oceano - SLA based 

management of a computing utility. In 7th IFIP/IEEE International Sympo- sium on Integrated 
Network Management, Seattle, WA, May 2001.  

[8] M. Aron, P. Druschel, , and W. Zwaenepoel. Cluster Reserves: a mechanism for resource 
management in cluster-based network servers. In International Conference on Measurement 
and Modeling of Computer Systems (ACM SIGMETRICS-2000), Sant Clara, CA, June 2000.  

[9] B. Burke and S. Labourey. Clustering With JBoss 3.0. October 2002. 
http://www.onjava.com/pub/a/onjava/2002/07/10/jboss.html.  

[10] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. A Microrebootable Sys- tem: 
Design, Implementation, and Evaluation. In 6th Symposium on Operating Sys- tems Design and 
Implementation (OSDI-2004), San Francisco, CA, December 2004.  

[11] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible Database Clus- tering 
Middleware. In USENIX Annual Technical Conference, Freenix track, Boston, MA, June 2004. 
http://c-jdbc.objectweb.org/.  

[12] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing Energy and Server 
Resources in Hosting Centers. In 18th Symposium on Operating Systems Principles (SOSP-
2001), Chateau Lake Louise, Ban , Canada, October 2001. 

[13] Y. Chawathe and E. A. Brewer. System Support for Scalable and Fault-Tolerant Internet 
Services. In Distributed System Engineering. The British Computer Society, 1999. 

[14] S. W. Chen, A. C. Huang, D. Garlan, B. Schmerl, and P. Steenkiste. An Architecture for 
Coordinating Multiple Self-Management Systems. In 4th Working IEEE/IFIP Conference on 
Software Architecture (WICSA-4), Oslo, Norway, June 2004.  

[15] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-Based Resource Provi- sioning in a 
Web Service Utility. In 4th USENIX Symposium on Internet Technologies and Systems (USITS-
2003), Seattle, WA, March 2003.  

[16] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste. Rainbow: Architecture-
based self adaptation with reusable. IEEE Computer, 37(10), October 2004.  

[17] X. He and O. Yang. Performance Evaluation of Distributed Web Servers under Com- mercial 
Workload. In Embedded Internet Conference 2000, San Jose, CA, September 2000.  

[18] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE Com- puter 
Magazine, 36(1), 2003.  

[19] M.Y. Luo and C. S. Yang. Constructing Zero-Loss Web Services. In 20th Annual Joint 
Conference of the IEEE Computer and Communications Societies (INFOCOM-2001), 
Anchorage, AL, April 2001.  

[20] MySQL. MySQL Web Site. http://www.mysql.com/.  
[21] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen. Under- standing and 

Dealing with Operator Mistakes in Internet Services. In 6th Symposium on Operating System 
Design and Implementation (OSDI-2004), San Francisco, CA, December 2004.  

[22] J. Norris, K. Coleman, A. Fox, and G. Candea. OnCall: Defeating Spikes with a Free- Market 
Application Cluster. In 1st International Conference on Autonomic Comput- ing (ICAC-2004), 
May 2004. 

[23] PLB. PLB - A free high-performance load balancer for Unix. http://plb.sunsite.dk/.  



Java EE management scenarios 

 33 

[24] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-Driven Server Migration for Internet Data 
Centers. In 10th International Workshop on Quality of Service (IWQoS 2002), Miami Beach, 
FL, May 2002. 

[25] Y. Saito, B.N. Bershad, and H.M. Levy. Manageability, Availability and Performance in 
Porcupine: A Highly Scalable, Cluster-Based Mail Service. ACM Transactions on Computer 
Systems, 18(3), August 2000.  

[26] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource management for cluster- based 
internet services. In 5th USENIX Symposium on Operating System Design and Implementation 
(OSDI-2002), December 2002.  

[27] Sun Microsystems. Java 2 Platform Enterprise Edition (J2EE). http://java.sun.com/j2ee/.  
[28] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/.  
[29] Java Open Application Server (JOnAS ), http://jonas.objectweb.org. 
[30] B. Urgaonkar and P. Shenoy. Cataclysm: Handling Extreme Overloads in Internet Services. 

Technical report, Department of Computer Science, University of Massa- chusetts, November 
2004. 

[31] B. Urgaonkar and P. Shenoy. Sharc: Managing CPU and network bandwidth in shared clusters. 
IEEE Transactions on Parallel and Distributed Systems, 15(1), 2004.  

[32] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic Provisioning of Multi- Tier 
Internet Applications. In 2nd International Conference on Autonomic Computing (ICAC-2005), 
Seattle, WA, June 2005. 

[33] H. Zhu, H. Ti, and Y. Yang. Demand-driven service differentiation in cluster-based network 
servers. In 20th Annual Joint Conference of the IEEE Computer and Communication Societies 
(INFOCOM-2001), Anchorage, AL, April 2001. 

[34] Jean Arnaud, Sara Bouchenak. Gestion de ressources dans les services Internet. Conférence 
Française en Systèmes d'Exploitation (CFSE'6), Fribourg, Suisse, Février 2008. 

[35] David Luckham. The Power of Events: An Introduction to Complex Event Processing in 
Distributed Enterprise Systems. Addison-Wesley Professional, May 2002. 

[36] Wildcat: a toolkit for context-aware applications, http://wildcat.ow2.org. 


