
 1

Livrable Selfware SP4

Lot 1, May 14, 2007

JMS Management Scenarios

 Authors: Roland Balter (ScalAgent D.T.)

 Noël de Palma (INRIA Sardes)

 André Freyssinet (ScalAgent D.T.)

 Daniel Hagimont (IRIT)

 2

Contents

Introduction. 3

1. Overview of JMS and Joram 3

1.1. The JMS Specification 4

1.2. Joram overview 5

Design Choices ...5

Logical Architecture..6

Centralized Architecture ...7

Distributed Architecture..7

JORAM: a Highly Configurable JMS Platform ...8

Clustered queue ..9

Joram High-Availability...10

2. Scenarios 10

2.1. Self-Optimization 10

2.2. Self-Repair 12

3. Conclusion 13

Self-configuration..14

Self-optimization..14

Self-Healing..14

 3

Introduction.

This document aims at describing a first set of autonomous management scenarios
for the Joram JMS infrastructure.

Autonomic systems are inspired by the autonomic nervous system of the human
body. This nervous system controls important bodily functions (e.g. respiration, heart
rate, and blood pressure) without any conscious intervention.

In a self-managing autonomic system, the human operator takes on a new role: he
does not control the system directly. Instead, he defines general policies and rules
that serve as an input for the self-management process. For this process, IBM has
defined the following four functional areas:

• Self-Configuration: Automatic configuration of components;

• Self-Healing: Automatic discovery, and correction of faults;

• Self-Optimization: Automatic monitoring and control of resources to ensure the
optimal functioning with respect to the defined requirements;

• Self-Protection: Proactive identification and protection from arbitrary attacks.

This paper is organized as follows. Section 2 presents the messaging context, it
describes the JMS specification and the Joram implementation. Section 3 gives the
motivations for using autonomous management then describes the two use cases.
Section 4 concludes briefly.

1. Overview of JMS and Joram

Message-Oriented Middleware (MOM) is increasingly being seen as a key to improve
the enterprise productivity and to facilitate the open services market. Today
enterprises are faced with the challenges of time-to-market, data distribution,
application integration and business flexibility in the context of loosely-coupled
distributed systems encountered in multi-organization environments over the Internet:

• Data integration, E-business, EAI and B2B solutions,

• Mobile users and ubiquitous systems,

• Networked devices management solutions: energy, building/home automation,
RFID, etc.

Up to now, the lack of standard has been a strong obstacle to a wide adoption of
asynchronous communication systems as a technical basis for implementing
interoperability. Over the past few years the JMS™ API (Java Messaging System) has
partially filled in this gap and has become a de facto standard for building cooperating
software components over Internet based loosely-coupled distributed environments.

Joram is an open-source implementation of the JMS™ messaging specification.
Joram is fully compliant with JMS 1.1 and is available on a large range of computer
systems, from application servers to internet appliances.

JORAM greatly benefits from the new generation Message Oriented Middleware from
ScalAgent Distributed Technologies, an agent-based truly distributed architecture.
The underlying innovative architecture allows distributed applications to be connected

 4

on a large-scale basis through Internet, enables load balancing and guarantees high
availability and flexibility.

JORAM is available under the LGPL license, it is a software component available from
ObjectWeb (http://joram.objectweb.org).

1.1. The JMS Specification
JMS (Java Messaging Service) is the specification of a messaging service for Java
applications. More precisely JMS describes the API that allows Java programs to
communicate through an asynchronous communication system – i.e. sending and
receiving messages. A detailed description of the JMS API is beyond the scope of this
report, we present here only the JMS elements that are required to the understanding
of architecture issues described later on.

A JMS application consists of the following elements (see Figure 1):

• A JMS platform (usually called JMS provider) that provides the JMS run-time
environment and a set of control and administrative functions.

• The JMS clients are application programs, written in Java, that produce and
consume messages according to the messaging protocols defined in the JMS
API.

• JMS messages are entities that allow information to be conveyed between
JMS clients. Different types of messages are supported in JMS: structured text
(e.g. an XML file), binary data, java objects, etc.

JMS

Service

JMS Client

application X
Producer/Consumer

JMS Client

application X
Producer/Consumer

ClientClient ClientClient

ClientClient

JMS

Provider
(proprietary)

JMS Client

application Y
Producer/Consumer

JMS Client

application Y
Producer/Consumer

JMS Client

application Z
Producer/Consumer

JMS Client

application Z
Producer/Consumer

JMS API

JMS API

JMS API

JMS

Message

the standard

JMS

Service

JMS Client

application X
Producer/Consumer

JMS Client

application X
Producer/Consumer

ClientClient ClientClient

ClientClient

JMS

Provider
(proprietary)

JMS Client

application Y
Producer/Consumer

JMS Client

application Y
Producer/Consumer

JMS Client

application Z
Producer/Consumer

JMS Client

application Z
Producer/Consumer

JMS APIJMS API

JMS APIJMS API

JMS APIJMS API

JMS

Message

JMS

Message

the standard

Figure 1 - JMS Application

Two communication models (called Messaging Domains in JMS) are supported:

• Point to Point model, based on message queues. A producer client sends a
message to a message Queue where it is stored temporarily. A consumer
client may then read the message from the Queue to operate on it. A given
message is read only by a single consumer client (this explains the ‘‘point to
point’’ designation). The message stays in the Queue until it is read or the
message time-to-live expires. The message consumption may be synchronous
(explicit call by the consumer client) or asynchronous (call of a pre-defined

 5

watch function to be executed at the consumer site). Message consumption is
then acknowledged either by the system or by the client application.

• Multipoint model, based on the Publish/Subscribe paradigm. A producer
client publishes a message related to a pre-defined Topic. All clients that have
previously subscribed to this topic are notified of the corresponding message.

The latest version of the JMS specification (i.e. JMS 1.1.) unifies the handling of the
two communication models at the client level through the introduction of the
Destination concept to represent a queue or a topic. This simplifies the API (i.e. the
queue and topic functions are syntactically merged) and allows an optimization of
communication resources. This unification does not change the semantics of each of
the communication models that should be taken into account when programming the
JMS client.

The JMS specification is not complete. Some key functions are not described, such as
for example the administration of a JMS platform (i.e. deployment, configuration,
monitoring, etc.) and are thus subject to proprietary implementations. At the opposite,
most of the available products provide additional functions such as load-balancing and
high availability features.

1.2. Joram overview
From the above description JORAM is a messaging component that complies with the
JMS specification. As any other JMS platform JORAM is structured in two parts: the
JORAM server that manages the JMS abstractions (e.g. queues and topics) and the
JORAM client that is bound with the JMS client application.

As we will see later on in the description of the JORAM architecture, the JORAM
server can be implemented as a central service or as a set of cooperating distributed
services. It should be noted here that the ability to deploy a JMS platform as a
distributed system with variable QoS parameters is a key issue when comparing
various JMS platforms.

Communication between a JORAM client and a JORAM server is generally relying on
TCP/IP. Usually, clients and servers run on different machines. However they also
can be hosted on the same machine or share the same process. In this case
communications are optimized.

The sections below detail the key aspects of the JORAM platform architecture.

Design Choices

The main characteristic of JORAM is its distributed configurable architecture. Basically
JORAM has adopted a snowflake architecture - i.e. a JORAM platform is composed
of a set of JORAM servers interconnected by a message bus that offers various
communication protocols. Each server can manage a variable number of JMS clients.

 6

Figure 2 - Joram platform architecture

The geographical location of the servers as well as the distribution of the clients on
the various servers are under the responsibility of the architect and are thus enforced
by the platform administrator. This choice is a first level of configuration. A second
level deals with the location of communication objects (Queues and Topics). Note that
these location parameters have a deep impact on performance figures, scalability and
availability issues. A third level of configuration consists in defining the QoS
parameters (communication protocol, persistency, security, etc.). The choice of a
given mechanism is always a trade-off between the expected QoS level and the cost
of the solution. The overall architecture of a JORAM platform is depicted in Figure 2.

Logical Architecture

This section describes the principles of a communication path between two JMS
clients for both the Point to Point and Publish/Subscribe communication models.
Distribution is not depicted in this functional description (i.e. in a given implementation
the Destination and Proxy objects may run on different servers).

Connection, Session and Sender (respectively Receiver) are temporary JMS
objects created by a JORAM client when a connection is established with the server.

On the server each JMS client is represented by a persistent Proxy object that is
created by the server whenever a new client connects. A proxy object implements
basically two functions:

Communications management between the server and the client.

Message delivery to (resp. message retrieval from) the destination.

Point-To-Point model

The communication between a producer client and a consumer client is achieved
through the following steps (described in Erreur ! Source du renvoi introuvable. by
the red arrows).

When a Send operation is executed on the producer client site, a JMS message is
sent to the corresponding Proxy object within the server. The Proxy object
encapsulates the JMS message into a reliable MOM message to be transported by

Q1

Ta

Q2

Tb

Q3
M
O

M

MOM

M
O

M
Distributed MOM

TCP/IP

JORAM Server
JORAM Server

JORAM Server

Q

T

Queue

Topic

JMS
Client

JMS
Client

JMS
Client

JORAM
Client

JMS
Client

JORAM
Client

JORAM
Client

JORAM
CLient

JMS
Client

JORAM
Client

JMS
Client

JORAM
Client

 7

the MOM to the target destination. An acknowledgment is returned to the JMS client.
As seen from the producer client the Send operation is over and the client may
continue its execution asynchronously while the message is actually delivered.

The MOM message is delivered to the Queue object. This may require a
communication between servers if the Proxy and the Queue Objects are not handled
by the same server.

When a Receive operation is executed at the consumer client site a control message
is sent to its corresponding proxy object in the server which forwards it to the Queue
object. The message is then retrieved from the Queue object and sent to the Proxy
object which, in turn, extracts the JMS message from its envelope and returns it to the
consumer client.

An acknowledgment is returned by the JORAM client to the Queue object in order to
free the resources on the server that manages the Queue object. The
acknowledgment may be performed explicitly by the JMS client or generated by the
JORAM client.

Publish/Subscribe Model

The sending mechanism is similar with that of the point to point communication model.
The topic stores the identity of the proxy object for each client that has subscribed.
When the MOM message is delivered to the Topic object, it is forwarded directly to the
whole set of consumer proxy objects where it is stored. This is a key difference with
the prior schema as the Topic object is not a final destination but merely a
switch/router towards the set of consumer proxy objects.

The consumer operation is implemented by a simple exchange between the client and
its Proxy object. By comparison with the preceding schema it can be noted that the
consuming dialog is restricted to exchanges between the client and its proxy object.
No dialog occurs with the Topic object itself. This usually leads to shorter interactions
and better performance from the consumer point of view.

The next two following sections describe how this logical schema is implemented in a
centralized architecture (i.e. a single JORAM server) in a first step, and in a distributed
architecture in a further step.

Centralized Architecture

In this configuration, all JMS clients are connected to a single JORAM server that
manages all destination and proxy objects. The communication protocol is simplified
as all communicating objects are located on the same server. Administration and
operation are also greatly simplified.

This centralized solution has two major drawbacks: lack of availability and lack of
scalability. The server is a single-point of failure that prevents the whole system to run
if a failure occurs on the server side. On the other hand, computing and storage
resources being concentrated on a single machine, this may result in serious
performance bottlenecks when the load increases (e.g. number of clients, number and
size of messages, etc.).

Distributed Architecture

In a distributed architecture approach, several instances of the JORAM server
cooperate, each of them being in charge of a set of JMS clients. This architecture is

 8

illustrated in Figure 3 for a scenario composed of three physical servers (to simplify
the figure, only one JMS client has been represented at each location).

The physical communication between servers is achieved by the underlying
distributed MOM that guarantees the delivery of messages at the MOM level despite
transient network and server failures.

Figure 3 - Distributed architecture

A distributed JORAM platform involves several JORAM servers. To interoperate,
these servers must belong to a given administration domain and the following JORAM
services have to be available on the servers:

• A connection manager to manage the connections with the clients connected
to that server using a set of user proxies.

• A user proxy for each client allowing the interaction with the platform.

• A set of destinations, Queue and/or Topic.

In order to deploy the architecture described above we have to describe each server
with its own services.

JORAM: a Highly Configurable JMS Platform

Building a JMS platform tailored for a given application context is a difficult task as the
resulting architecture is based on complex tradeoffs between numerous evaluation
criteria such as: performance, availability, scalability, flexibility and evolution, security,
development and operation costs, etc.

Therefore the role of the architect is crucial. Based on a set of application
requirements he has to take into account the evaluation criteria mentioned above and
to give them a specific weight in order to design the architecture that better fits the
requirements. This work is achievable if and only if the messaging system provides
the configuration capabilities that enable such a design process. JORAM answers this
need through a combination of configuration and tuning capabilities available at
various levels:

• Overall organization of JMS servers and clients. As depicted in Figure 2 a
JORAM platform is structured according to a “snowflake” architecture. This
approach gives to the application architect the freedom to settle servers where

Client-1

JORAM

Client

Client-3

JORAM

Client

Px1 Px3

Distributed MOM

Q1

Q3

Client-2

JORAM

Client

Px2

Q2

Send Receive

MOM
Message

MOM
Message

MOM
Message

JMS
Message

JMS
Message Send Receive

S1 S2 S3

JORAM Server JORAM Server JORAM Server

 9

they are needed – e.g. to locally serve a set of geographically distributed JMS
clients (edge computing), or to answer security constraints, or any other
relevant criteria.

• Positioning of JMS objects. The location of JMS communication objects (i.e.
queues and topics) is a key issue as it has a strong impact on the overall
performance as well as on client availability.

• Server sizing (computing power, storage, communication facilities). The
JORAM Web Site provides some benchmarking figures that can help
application designers to anticipate the sizing of the various JORAM servers to
support the load generated by their local clients.

• System extension to support scalability. This parameter refers to the ability for
a JORAM platform to grow dynamically to answer evolving application
requirements (e.g. new messaging server, increasing load, etc.). Management
facilities are provided to remotely add and remove JORAM servers
dynamically through the Administration API of JORAM.

• Communication protocols. Various communication protocols are available
between clients and their server as well as between two servers: TCP/IP,
HTTP, SSL, SOAP, etc.

• QoS parameters (e.g. persistency, security). Message transfer reliability (i.e.
guarantee of message delivery) and security (message confidentiality) have a
cost and the application designer can select the right option for his application.

• Level of availability through clustering and replication. JORAM answers the
needs of mission critical applications with the ability to design clustered
destinations and to deploy highly available JORAM servers. Theses features
are briefly introduced in the next section.

Today very few platforms provide a level of flexibility comparable to that of JORAM.
This is obviously a major advantage compared to concurrent products, but a factor of
complexity. The SelfWare autonomic platform should allow the Joram platform to be
automatically and dynamically adapted based on actual application needs.

Clustered queue

The clustered queue feature provides a load balancing mechanism; this mechanism is
the basis of the first demonstration scenario. A clustered queue is a cluster of queues
(a given number of queue destinations, knowing each other), exchanging messages
depending on their load.

Each queue of a cluster periodically re-evaluates its load factor and sends the result
to the other queues within the cluster. When a queue hosts more messages than it is
authorized to do, and according to the load factors of the cluster, it distributes the
extra messages to the other queues. When a queue is asked for messages but is
empty, it requests messages from the other queues within the cluster. This
mechanism guarantees that no queue is over-active while some others are lazy, and
leads to distribute the workload among the servers involved in the cluster.

For example let’s consider a cluster made of two queues, named queue0 and queue1.
A heavy producer sends messages to its local queue (queue0). Queue0 is also
accessed by a consumer that is requesting few messages while Queue1 is accessed
by another consumer. Queue0 quickly becomes loaded and decides to forward
messages to the companion queue (queue1) of its cluster, which is not under heavy

 10

load. The result of this adaptation policy is that the consumer on queue1 also gets
messages, and queue0 is no longer overloaded.

Joram High-Availability

Reliability here refers mainly to the guarantee of end-to-end message delivery
between a producer and a consumer despite network and server failures. Reliability in
JORAM is achieved by a combination of several mechanisms briefly introduced
below:

• An acknowledge message between a client and its proxy object allows the
communication between a client and the server to be secured.

• The Store and Forward function achieved by the client proxy allows the
message to be saved before being forwarded to the destination server in a
distributed configuration.

• Finally the underlying MOM guarantees the delivery of the message between
two servers.

The High Availability feature of Joram is targeted at mission critical applications. This
feature is achieved through an active replication mechanism. Queue and Topic
objects are replicated on two JORAM servers running on two distinct machines. One
of the servers (the master) executes client requests and propagates the operations to
the slave server. If the master server crashes, the client automatically establishes a
new connection with the slave server and continues to proceed without any delay.
This configuration enables non-stop processing.

2. Scenarios

Today JORAM is deployed in numerous operational environments where it is used in
two complementary ways:

• As an independent messaging system between applications running in a Java
environment (J2EE to J2ME) on large scale network,

• As an asynchronous communication component integrated within a J2EE
application server eventually in a clustered context. Following this schema
JORAM is a key building block of the JOnAS application server also available
at ObjectWeb - http://jonas.objectweb.org -.

• In addition Joram provides complementary functions for load-balancing and
high availability features.

The mechanisms available in the SelfWare platform will allow extending these
features. Intended extensions are described in the two scenarios below.

2.1. Self-Optimization
Joram is a highly configurable MOM. For each client application there is an optimal
Joram architecture: number of deployed servers, location of servers related to clients
location, location of user proxies and destinations.

Some applications are also very dynamic as the number of clients, their location and
activity may evolve quickly in a non-predictable way. The proposed scenario defines a

 11

self-optimization algorithm to dynamically adapt the MOM infrastructure to the
application activity. This mechanism is based on a distributed Joram architecture
deployed on a cluster of computers. The application is made up of two types of
components: message producers and message consumers.

The aim of this mechanism is to balance the load due to the interaction of the multiple
clients on the different servers. The use of distributed destinations (ClusteredQueue)
is expected to solve this issue transparently. The efficiency of this mechanism
depends primarily on the distribution of client connections to the servers that manage
an instance of the clustered queue. We describe below a solution that intends to
optimize the distribution of client connections to the clustered queue.

Server #1

Client 1

Px1

Queue1

cnxcnxcnxcnx

LBCFLBCFLBCFLBCF

Client 2

cnxcnxcnxcnx

LBCFLBCFLBCFLBCF

Client NClient N

cnxcnxcnxcnx

LBCFLBCFLBCFLBCF

Server #2

Px2

Queue2

JadeJadeJadeJade

Figure 4

The optimization involves two steps: (i) optimal load-balancing for a clustered queue,
and (ii) dynamic provisioning of queues within a clustered queue. The first part allows
the overall improvement of the clustered queue performance while the second part
optimizes the queue resources usage within the clustered queue. To summarize, the
idea is then to create an autonomic system that:

• fairly distributes client connections to the pool of servers within the distributed
configuration,

• dynamically adds, configures and removes queues in the system depending
on the load. In fact, this would allow to adjust the number of queues at any
time.

Implementing a self-managed queue cluster using the autonomic computing design
principles requires the following capabilities:

• to know the current number of message producers and consumers, as well as
the actual load for each of them,

• to know where the servers are, where the queues are deployed and what is
their configuration,

• to route a new client connection to the best queue to reach the optimal,

• to detect the overload or the underload of a clustered queue,

• to allocate a new server to create a new instance of the queue,

 12

• to add and remove a queue within a server.

Without modification, the underlying JMS middleware does not provide facilities such
as session migration that would allow client connections to be moved from one queue
to another.

We make here the assumption that each client is able to provide its profile (i.e.
producer or consumer, number of messages per seconds, etc.). Assuming this, the
mechanism is achieved by wrapping the standard JMS ConnectionFactory by a
”LBConnectionFactory” (where LB stands for Load Balancing).

As the client gets the connection factory through JNDI, it gets the
LBConnectionFactory instead (see Figure 4). This is the main non-functional hook in
the system that allows the control of producers and consumers distribution among
servers. This component provides the following methods:

• createConnection(...) takes the client’s profile as a parameter to create the
connection with the best server. It requests a component called
“ClusterManager” which manages the cluster and elects a server according to
the current state of the system (the servers, the load of each queue in terms of
producers and consumers).

• closeConnection(...)closes the connection to the server and notifies the
ClusterManager so it can update the state of the cluster.

It should be noted that all interactions between the client and the MOM conform to the
JMS behaviour.

In a second step the load-balancing algorithm should be more dynamic with probes
deployed on each server. The load balancer will then select the physical server using
the real load of each server. To do this we can either use the existing Joram’s
monitoring1, or use specific one:

• System probes about CPU, network or disk.

• Joram’s extended probes: number of forwarded messages, size of internals
message queues…

• The server state can be also checked by sending periodic requests; depending
of the period of time needed for the reply the server load can be evaluated.

2.2. Self-Repair
Joram provides a high-availability functioning mode. An HA server is actually a group
of servers –replica-, one of which is the master server that coordinates the other slave
servers. Only the master server is accessible by the JMS clients, while the replicated
servers maintain their state through an active duplication mechanism.

When the master server fails, one of the replica is chosen to replace it, it becomes the
master. The HA Joram client owns the list of the replicas. When it detects that the

1
 Number of waiting messages in queue for example.

 13

connection has failed it tries to reconnect. The new connection will be handled by the
new master server and the client’s exchange can go on.

The availability level of the HA logical server depends on the number of the active
replicas. Each time a replica fails, the administrator must start a new one to ensure
the availability. This scenario (Figure 5) proposes a self-repair mechanism allowing
the detection of a replica failure, and then the deployment and starting of a new
replica if the availability level has decreased under a predefined limit.

HA Server #0

Server #1

Client 1

Px1

cnxcnxcnxcnx

JadeJadeJadeJade

Client 2

cnxcnxcnxcnx

Server #2

Px2

Figure 5

Implementing a self-repair HA Joram using the autonomic computing design principles
requires the following capabilities:

• to detect the failure of a replica,

• to know the current number of replicas,

• to add and remove a replica within a HA configuration,

• to allocate a new server and to start a new replica.

This auto-repair feature can be implemented easily as the underlying Joram
middleware provides facilities such as state replication that would allow a new replica
to be created from a running one.

3. Conclusion

These two scenarios demonstrate the capabilities of the SelfWare platform to
enhance the Joram messaging middleware. They need some additional functions in
two domains:

• Monitoring: generic functions as ping or heartbeat, or Joram’s specific
functions in term of number of clients, number of waiting messages, etc.

• Configuration and deployment: creation of a server in the configuration,
creation (resp. removal) of a destination, etc.

 14

Their implementation should lead to a best comprehension of the capabilities of
autonomous management and should allow the definition of other interesting
scenarios. We describe below advanced scenario for Joram in three areas of the
autonomous computing.

Self-configuration

Some Joram configuration includes thousands of nodes over a large and complex
network. Building such Joram platform is difficult, time-consuming and error-prone
even for experts. The resulting architecture is a trade-off between numerous criteria
and constraints.

Using SelfWare, Joram will configure itself automatically in accordance with high level
rules. Each new server will incorporate the configuration depending of its role and
location; the network links between servers will be setup depending of the underlying
network architecture. The overall platform will take in account its capabilities and other
servers will adapt to its presence.

Self-optimization

As any complex middleware, Joram have hundreds of tunable parameters that must
be set correctly for an optimal behaviour. Setting a parameter on a specific node can
have unanticipated effects on the entire system; moreover the usage of the system
evolves during the time.

Using SelfWare, a Joram’s configuration will continually seek ways to improve its
functioning. It will monitor constantly the performance and QOS indicators, experiment
with parameters and tune them depending of the monitoring results.

Self-Healing

Determining the root cause of malfunctioning in operational Joram’s configuration can
be difficult. Identifying the issue can take time and the problem can disappears without
any real diagnosis.

Using SelfWare, Joram will automatically detect problems and apply actions
depending of the known policies:

• repair of bypass the issue,

• request additional information from the logging system,

• alert a human operator if needed.

For example, on a server failure, the system can either start a new one, or redeployed
the server’s functions on other existing servers.

