
Livrable Selware SP4

Lot 3, November 27, 2008, 18:58

Self-Repairing a JMS-based Application with Selfware

version 1.0

F. Boyer (INRIA)
S. Sicard (INRIA)
N. De Palma (INRIA)
A. Freussinet (ScalAgent)

Contents

1 Objectives 3

2 JMS 3

2.1 A JMS Infrastructure Overview . 3
2.2 The Queues . 4
2.3 The Topic . 4
2.4 The Connection Factories . 4
2.5 The JNDI Registry . 5

3 Joram 6

3.1 Joram Infrastructure Overview . 6
3.2 Access Rights on Destinations . 6
3.3 Server Con�guration for a Base Architecture 6
3.4 Use Case Scenario . 8
3.5 Advanced Destinations . 8

4 Autonomic Management of Joram with Selfware 8

4.1 JNDI Registry . 8
4.2 Joram Servers . 9
4.3 Destinations and Users . 12
4.4 Joram Connection Factory and Cluster Connection Factory 13

5 Self-Repairing a Joram Application 13

5.1 The Joram Application . 13
5.2 Self-repairing the Joram Application . 15

6 Conclusion 17

2

1 Objectives

The Selfware project aims at providing an infrastructure for developing autonomic manage-
ment software. An important aspect of this infrastructure is the adoption of an architecture-
based control approach as described in the SP1-L1 document, where autonomic functions
are provided as control loops that regulate the system through introspecting and adapting
its software architecture.

self-repair (also called self-healing) is one of the major autonomic functions as de�ned by
IBM[2], which deals with automatic discovery and correction of faults in software systems.
Hence a self-repair system must be able to detect problems, diagnose them and recover
from faults that might cause some of its parts to malfunction by applying a corrective
action, e.g., �nding an alternate way of using ressources or recon�guring the system to
keep it working.

The design and implementation principles of the Selfware self-repair function have been
described in the SP1-L2 document. The objective of this document is to report on our
experiment in applying the self-repair function on a legacy application that is build on
top of a JMS (Java Messaging Service) standard platform[4]. This application is a Train
Station Application used by a French company. The aim of this application is to allow
human administrators to monitor and to manage remote equipments such as escalators,
fans, sound, telephony, or video surveillance systems.

The following of this document is organized as follow. Section 2 recalls the main
principles of the JMS speci�cation. In our experiment, we used the Joram implementation
of the JMS speci�cation, that is described in section 3. Then, section 4 explains how the
software elements composing a Joram application have been encapsulated within Selfware
manageable components. Based on this encapsulation, we show how a Joram application
can be deployed autonomically with Selfware. Once deployed, a Joram application is
automatically put under the control of the self-repair autonomic manager. Section 5
describes how the self-repair function behaves in the context of this legacy application.

2 JMS

2.1 A JMS Infrastructure Overview

A JMS plateform is formed of one or several interconnected servers (also called JMS
Providers) that can run on remote nodes. A JMS server is a Java process (a JVM) pro-
viding messaging functionnalities and hosting message destinations. A JMS server can
host 2 types of destination: the queues and the topics (detailed below). A JMS client is a
Java process (a JVM) using the messaging functionnalities provided by a server through
JMS interfaces. The client needs to have previously connected to a server to execute these
operations.

The �gure 1 shows a simple JMS architecture. The plateform is constituted of three
servers (Server0, Server1 et Server2) and two clients. One of the clients is connected to
Server0 and the other to Server2. As these servers host destinations, clients are able to
send and receive messages using them. Two types of destinations are provided: the queues
and the topics.

3

Figure 1: JMS architecture example

2.2 The Queues

The queue follows a producer/consumer pattern. Its principle is the following: while a
message has not been withdrawn by a client, it stays in the queue. So, there are no lost
messages. In the same way, if a client tries to get a message on an empty queue, he waits
until one arrives. A queue also has a special attribute, NbMaxMsg, which is the max
number of undelivered messages it can keep. If this limit is reached and more messages
are sent to the queue, these ones are immediately sent to a special destination, the Dead
Message Queue. The most simple use case of this kind of destination is to have one sender
putting messages in the queue and one receiver getting them.

2.3 The Topic

The topic follows a Publish/Subscribe pattern. It corresponds to a destination for which, all
clients that have subscribe at time t, receive messages published after this time. Messages
are not saved and it is also necessary to subscribe to a topic to get its messages. Messaging
with a queue can be considered as a Point-To-Point communication whereas messaging
with a topic corresponds to information di�usion.

2.4 The Connection Factories

In order for client to connect and use destinations, the JMS speci�cation de�nes a set of
connection factories. Indeed, to be able to send or receive through a destination, a client
needs a reference towards this destination and a connection factory. The connection factory
allows him to create a session on the destination and then, to get or send messages if it

4

is authorized to do it. Figure 2 shows how a client can use a destination. To access the
destination, it has �rst to create a connection using the connection factory.

Figure 2: A client using a destination

2.5 The JNDI Registry

A JMS platform is ditributed between computers and in most cases, clients and servers
are on remote nodes. That's why the servers use a registry, often a JNDI registry, to bind
objects (destinations) to names. Thus, a server binds all its destinations and connection
factories in the JNDI registry. Then, a client can look for them and create a connection
on the destination of its choice.

Figure 3: JNDI registry with JMS objects

5

3 Joram

Joram is a 100% Java implementation of JMS (Java Message Service). It provides access
to a MOM (Message Oriented Middleware), built on top of the agents ditributed platform
called ScalAgent (see http://www.scalagent.com). It is an Open Source software published
under LGPL License (Lesser GNU Public License).

3.1 Joram Infrastructure Overview

Joram servers are grouped inside domains in which they can communicate and collaborate
to manage distributed architectures. Domains are transparent for users. They have been
created to gather a set of servers of an architecture that use the same communication
protocol.

3.2 Access Rights on Destinations

To bring security, Joram de�nes the concept of user. It allows only authorized clients to
send/publish or get messages on destinations. Thus, a server de�nes a set of users and the
access rights on destinations are managed according to these users. A user is de�ned by a
login and a password.

There is a special user which represents the administrator. This one has the right
to modify the architecture of the Joram plateform by adding/removing destinations for
example. It is necessary, before calling a function which modi�es the architecture, to
establish an administrator connection to the server.

As access rights to destinations are managed according to users, a client has to specify
a login and a password of a user which has the rigth to access this destination. Moreover,
a destination can be freely readable or writable.

3.3 Server Con�guration for a Base Architecture

Let's consider the example of a Joram server with a minimum con�guration: one queue
and one topic. Figure 4 illustrates this architecture.

Figure 4: A Joram base architecture

6

To deploy and activate this architecture, three steps are needed: de�ne an a3servers.xml

�le that sets up the con�guration of the Joram servers, start the Joram servers, and execute
an administration Java Class.

The a3servers.xml �le describes statically the several domains and their servers. For
each server, a set of services can be de�ned. For example, a connection manager service
that allows an administrator to connect to the server to modify its con�guration or a JNDI
service that speci�es that this server hosts a JNDI registry.

<?xml ve r s i on=" 1 .0 "?>
<conf ig>

<property name="Transact ion " value=" f r . dyade . aaa . u t i l . Nul lTransact ion "/>

<se rv e r id="0" name="S0" hostname=" l o c a l h o s t ">
<s e r v i c e c l a s s="org . objectweb . joram .mom. prox i e s . ConnectionManager"

args=" root root "/>
<s e r v i c e c l a s s="org . objectweb . joram .mom. prox i e s . tcp . TcpProxyService "

args="16010"/>
<s e r v i c e c l a s s=" f r . dyade . aaa . jnd i2 . s e r v e r . JndiServer " args="16400"/>

</server>
</conf ig>

The administration Java class �rst makes a connection to a given server using the static
method connect of the Joram class AdminModule. It takes as parameters the administator
login and password. The connection to AdminModule allows to manage JMS and Joram
objects of the server (queues, topics, user...) and to manage the running Joram plateform
by adding/removing domains and servers.

pub l i c c l a s s ArchiBaseAdmin
{

pub l i c s t a t i c void main (St r ing [] args) throws Exception
{

// Administrator Connection
AdminModule . connect (" root " , " root " , 60) ;

// Des t ina t i ons c r e a t i on
Queue queue = (Queue) Queue . c r e a t e ("queue") ;
Topic top i c = (Topic) Topic . c r ea t e (" top i c ") ;

// Users c r e a t i on (f o r a c c e s s r i g t h s management)
User user = User . c r ea t e ("anonymous" , "anonymous") ;

// Set a c c e s s r i g h t s
queue . setFreeReading () ;
t op i c . setFreeReading () ;
queue . setFreeWrit ing () ;
t op i c . se tFreeWrit ing () ;

// Connection f a c t o r i e s c r e a t i on
javax . jms . ConnectionFactory c f =

TcpConnectionFactory . c r e a t e (" l o c a l h o s t " , 16010) ;
javax . jms . QueueConnectionFactory qc f =

QueueTcpConnectionFactory . c r ea t e (" l o c a l h o s t " , 16010) ;
javax . jms . TopicConnectionFactory t c f =

TopicTcpConnectionFactory . c r e a t e (" l o c a l h o s t " , 16010) ;

// Bindings in JNDI
javax . naming . Context jndiCtx = new javax . naming . I n i t i a lCon t ex t () ;
jndiCtx . bind (" c f " , c f) ;
jndiCtx . bind (" qc f " , qc f) ;
jndiCtx . bind (" t c f " , t c f) ;
jndiCtx . bind ("queue" , queue) ;
jndiCtx . bind (" top i c " , t op i c) ;
jndiCtx . c l o s e () ;

// Administrator d i s connec t i on
AdminModule . d i s connec t () ;

}
}

7

3.4 Use Case Scenario

The work�ow of �gure 5 shows the actions that a JMS client has to do to use a destination.

Figure 5: User wor�ow

First of all, it has to get a reference on the JNDI registry where all the JMS objects
are bound. Then, it can get from this registry the destination and connection factory it
wants to use. After that, it can start a connection, then create a session and �nally send
and receive messages.

3.5 Advanced Destinations

More advanced destination features are provided by Joram, such as hierarchical topics
used for organizing topics into a hierarchical structure, and cluster queues used for high
availability purposes. The description of these features is out of bound of this paper.

4 Autonomic Management of Joram with Selfware

To be managed by Selfware, the software elements of a Joram Application (server, queue,
topic, user, etc.) have �rst to be encapsulated within Selfware manageable components,
in order to provide a uniform management interface. In Selfware, we choose the Fractal
component model [3] to build these components. The following sections describe how the
main Joram software elements (a JNDI element, a Joram server, a Cluster Queue, and
Destination and Users) are encapsulated within fractal components.

4.1 JNDI Registry

A Joram domain, associated to a JNDI server, is represented by a simple Fractal composite
component. All servers and cluster queues components are bound to this JNDI component
because they need a direct access to the registry to bind destinations and connection
factories. The JNDI component is directly bound in the Fractal RMI registry with the
name JndiRegistry. We also suppose that there is only one JNDI registry per Joram

8

JNDI registry Primitif

LCCSCBCNC GAC

NC: Name Controller

GAC: Generic Attribute Controller
BC: Binding Controller

SC: Super Controller
LCC: LifeCycle Controller

jndi

Figure 6: Fractal primitive JNDI registry component

architecture deployed with Jade. The JNDI interface listed below presents methods that
provide the JNDI server host and port.

pub l i c i n t e r f a c e Jnd i I n t e r f a c e {
pub l i c S t r ing getHost () ;
pub l i c S t r ing getPort () ;

}

4.2 Joram Servers

A Joram server is represented by a Fractal composite component. Its content controller has
been overridden to add some speci�c treatments when we add or remove a queue, a topic
or a user. For example, if we choose to add a queue, the addFcSubComponent method
starts the queue component and then calls the setProperties method of its queue interface
(this is in the setProperties method that the queue is bound in the JNDI registry). This
composite has a client interface named jndi that is bound to the component wrapping the
JNDI registry. So, the composite keeps a reference to the JNDI and if it has to bind an
object, can do it easily.

If we restart the JNDI server on an other host during execution (in a case of repair),
we just have to update the binding to make the server able to bind objects. With this
solution, the user doesn't need to give the host and port of JNDI server as parameters
when he starts a server. The Selfware command to create a server introspects the Fractal
RMI registry to �nd the object named JndiRegistry and binds the server composite to it.
Moreover, this composite life cycle has been overridden to link the Fractal and legacy life
cycles. So, starting the component at Fractal level leads to starting the Joram server.

In addition, starting a Joram server requires speci�c actions. There must be, in the

9

Joram Server Composite

JS LCCBC SC JS CCNC GAC

NC: Name Controller

GAC: Generic Attribute Controller

JS CC: Joram Server Content Controller

SC: Super Controller

BC: Binding Controller

JS LCC: Joram Server LifeCycle Controller

jndi

Figure 7: Fractal composite Joram server

classpath, an a3servers.xml �le describing the static architecture of the servers we want
to deploy. This �le and its particular structure is mandatory to start a server. It's only
when this �le is well written that a server can know its con�guration and can start. As we
can't know, at the begining, which architecture will be deployed, the con�guration �le is
dynamically updated during execution.

If we want to deploy more than one server, it becomes mandatory to create a domain.
It is done by using a connection to the AdminModule of the server previously created,
and by calling the addDomain method. This call updates the Joram architecture con�g-
uration with the domain description. Then, the speci�c life cycle controller updates the
a3servers.xml �le by overwritting it with the AdminModule con�guration updated with
the new domain.

It's nearly the same if we want to add a new server to the domain. We have to connect
to the platform AdminModule and call the addServer method. This call doesn't start the
new server, but updates the AdminModule con�guration with the new server con�guration.
The new server is thus able to know its own and other servers con�guration. Then, the
speci�c life cycle controller updates the a3servers.xml �le and the new server can start (at
Joram level).

Two cases must be distinguished when creating a server: is the server is the �rst of the
domain or is it is just a new server in the domain?. According to that, the server start is
di�erent. In the �rst case, we have to:

• Create the Selfware component representing the server.

10

• Create a well-known a3servers.xml �le with the �rst server description updated with
its own parameters. This �le doesn't declare any domain.

• Start the Joram server.

• If the server is part of a domain, update the AdminModule con�guration to create a
domain.

• Update the a3servers.xml �le with the AdminModule con�guration.

If we just add a server to an existing domain containing other servers, we have to:

• Create the Selfware component representing the server.

• Find a existing server part of the domain that the new server want to join. Connect
to its AdminModule and call the addServer method.

• Update the a3servers.xml �le with the AdminModule con�guration.

• Start the Joram server.

In the server life cycle controller, the distinction between the �rst server and the others
is made by instrospection. When a server component is created, the Fractal architecture
is introspected to �nd if there is already one server component. According to that, the
component can specify its start actions.

So, if the server to create is the �rst server, the life cycle will follow these steps:

• Introspect the Fractal architecture to �nd other servers.

• Create a weel-known a3servers.xml �le with the �rst server description updated with
its own parameters. This �le doesn't declare any domain.

• Start the Joram server.

• If a domain name attribute exists, connect to the AdminModule and call the AddDo-
main method.

• Update the a3servers.xml �le using the AdminModule.

If the server to create is only one server to add to an already existing domain that
already has servers, the life cycle will follow these steps:

• Introspect the Fractal architecture to �nd other servers.

• Connect to the AdminModule and call the addServer method to update the platform
con�guration.

• Update the a3servers.xml �le using the AdminModule.

• Start the Joram server.

Note: According to Joram speci�cation, we deploy only one unique Joram server per
Java Virtual Machine. It is also impossible to start two servers in one Java process. That's
why we advise to use one Jade node for each server to deploy.

11

4.3 Destinations and Users

Queues, topics and users are modelized as Fractal primitive components. They have a
speci�c functional interface that re�ects their business interface, allowing to manipulate
them through the Joram API.

User Primitif

LCCSCBCNC GAC

user

Queue Primitif

LCCSCBCNC GAC

queue
Topic Primitif

LCCSCBCNC GAC

topic parent

NC: Name Controller

GAC: Generic Attribute Controller
BC: Binding Controller

SC: Super Controller
LCC: LifeCycle Controller

Figure 8: Fractal model for Joram elements

They are contained in the composite representing the Joram server. Moreover, topics
and queues can be shared between servers and so, surrounded by the composite represent-
ing a server.

package org . ow2 . jasmine . jade . r e s ou r c e s . joram ;

import org . objectweb . jasmine . jade . u t i l . JadeException ;
import org . objectweb . joram . c l i e n t . jms . Queue ;

pub l i c i n t e r f a c e QueueInter face {
pub l i c Queue getQueue () ;
pub l i c void s e tP r op e r t i e s () throws JadeException ;
pub l i c S t r ing getMyServerSID () ;

}

package org . ow2 . jasmine . jade . r e s ou r c e s . joram ;

import org . objectweb . jasmine . jade . u t i l . JadeException ;
import org . objectweb . joram . c l i e n t . jms . Topic ;

pub l i c i n t e r f a c e Top i c In t e r f a c e {
pub l i c Topic getTopic () ;
pub l i c void s e tP r op e r t i e s () throws JadeException ;
pub l i c void unsetParent () ;
pub l i c void se tCh i ld InHie ra rchy (St r ing topicName , Top i c In t e r f a c e t i) ;
pub l i c void unsetChi ldInHierarchy (St r ing topicName) ;

}

package org . ow2 . jasmine . jade . r e s ou r c e s . joram ;

12

import org . objectweb . joram . c l i e n t . jms . admin . User ;

pub l i c i n t e r f a c e Use r In t e r f a c e {
pub l i c User getUser () ;

}

4.4 Joram Connection Factory and Cluster Connection Factory

In addition to cluster queue, Joram introduces the concept of cluster connection factory. A
cluster connection factory is composed of a set of connection factories. Like a cluster queue,
a client who wants to create a connection, just needs to get the cluster connection factory.
He is then route on a particular connection factory, thanks to optimization criteria. Cluster
connection factories are represented in Selfware by composites Fractal components and
connection factories by primitives one, shared by servers and cluster connection factories
components.

5 Self-Repairing a Joram Application

Today JORAM is deployed in numerous operational environments where it may be used
in several complementary ways. In the following, we report on an experiment of the self-
repair function applied on a Joram application, where Joram is used as an independent
messaging system between application sub-parts running in a Java environment on a large
scale network. Section 5.1 describes the Joram Application, and its autonomic repair is
presented in section 5.2. A quantitative evaluation of the self-repair function applied on
this kind of applications is given in this section.

5.1 The Joram Application

The self-repair scenario applies on an Train Station Application used by a French public
transport company. In its train stations, this company has several equipments installed,
which have to be monitored and managed. Some main examples of these equipments are
the following.

• Some mechanical devices such as escalators, fans.

• Some sound, telephony or video surveillance systems.

• Some display or printing devices.

These equipments can be distinguished not only by their main function but also by the
protocol used to manage them: ModBus, SNMP, etc. Each equipment has a functional
interface, independent of its protocol. This interface speci�es the commands that can be
triggered on the equipment and the several data that can be monitored on it: running
state, alarm, etc. The aim of the Train Station Application is to remotely monitor and
to manage these equipments in response to human orders. To do that, the application is
divided in two parts, that both use the equipments functional interfaces:

13

• One, relocated, that provides equipments awareness to local sta�. Its aim is to allow
the Train Station sta� to be aware of the state of operational readiness of equipments
and to allow the sta� members to manage equipments accordingly.

• The other, centralized, used by the maintenance service, that collects the state of all
equipments.

The Train Station Application is also divided in two parts, as presented in the picture
above. We can distinguish the server that monitors the equipments, from the client, con-
nected to a server, providing the equipments awareness through a graphical interface. The
architecture of this client/server application is presented in the �gure 9.

Figure 9: User wor�ow

Figure 10: Architecture of the Train Station Application

The implementation architecture of the Train Station Application is presented in the
�gure 9. In this architecture, the Business Object is an equipment speci�c object that
allows manipulating the equipment through a JMS interface. It implements the equipment
functional interface. This object is part of the server application. The proxy object is a
client-side object that provides a remote access through JMS to the business object, and
so, to the equipment functional interface. This object is invoked by the client graphical
application.

The functional (i.e., business) interface of the Train Station Application de�nes two
ways to manage the equipment. A synchronous way (Request / Response) that allows the
proxy manipulating the business object, and an asynchronous way (Publish / Subscribe)
that allows the business object to publish its running state.

The synchronous interactions are implemented through JMS queues on which, requests
and responses are sent. The asynchronous interactions are implemented through a JMS

14

topic on which, proxy objects subscribe and business objects publish their running state
and data.

Figure 11: User wor�ow

Figure 12: JMS-based Architecture of the Train Station Application

5.2 Self-repairing the Joram Application

To be managed by the Selfware platform, the Train Station Application objects are encap-
sulated within Selfware manageable components. The queues and the topics used at the
server side, as well as the Joram server, are encapsulated following the explanations given
previously in this paper.

Once encapsulated, the global architecture of the application, expressed in terms of
components, nodes and bindings, is given in order for the application to be automatically
deployed by Selfware. Once deployed, the running application is automatically put under
the control of the Selfware autonomic managers. Indeed, all the components described
in the global architecture are monitored and automatically repaired in case of failures.
The current version of the Selfware platform only manage hardware failures of nodes and
heisenbugs[1], where failures detectors are based on heartbeat techniques. When one or
more failures are detected, the self-repair manager determine the set of failed components
through introspecting the global architecture to discover all the components that were
deployed on the node that failed. As JMS based applications are loosely-coupled, they
tolerate partial failures and allow the lost subsystems to be repaired and reinserted with-
out requiring a global shutdown of the distributed system. In the present case, a failure
impacting the queues or the topics does not imply the client part to be restarted.

In the following of this section, we evaluate our approach, discussing the illustrative
JMS context in which Selfware can bring full autonomic self-repair. This evaluation has
two purposes. On the one hand, it gives the opportunity to discuss concrete use cases of
the Selfware technology, in particular discussing how di�cult writing wrappers happens to

15

be. On the other hand, this evaluation allows us to discuss performance. Our goal with
Selfware is not essentially performance-oriented as we aim to replace a human adminis-
trator whose e�ciency to diagnose a failure and repair a complex distributed system is
inherently low. Nevertheless, we felt that a raw evaluation was necessary for a complex
middleware such as Selfware. The numbers con�rm it, the ability of Selfware to repair a
complex distributed system is almost instantaneous from a human perspective. From a
machine perspective, we are in the ballpark of other standard recovery techniques such as
the inet daemon, something in use everyday.

Considering the Train Station Application, once the Business objects mapped on equip-
ments and the server application have been wrapped in Selfware components, the self-repair
policy can be applied on them. The graphical Client application hasn't been wrapped be-
cause it is used at the client side (i.e., the client being a human Train Station administrator
in this case) to be aware of the state of the equipments. In case of a failure occuring at
the client side, the client will restart its graphical application.

Failures occuring at the server side may impact the business objects or the Joram
servers of the Train Station Application. They normally require the intervention of a hu-
man, who has to detect and understand them. Assuming a software failure, he will reboot
locally the failed business objects or server application. Assuming a hardware failure, he
will have to setup another machine, con�guring and starting these failed elements. Besides
the error-prone process, the lower bound of the mean time to repair is dependent on the
time necessary for a human to react and recon�gure the failed system.

With Selfware, the detection and recovery is automated. The self-repair manager au-
tomatically repair either business objects or the server application in case of a failure. It
restarts the failed elements on an available host. The Mean-Time-To-Repair (MTTR) is
more preciselly dominated by the time to detect the failure, the time to redeploy the nec-
essary software on the newly allocated node, and �nally to restart legacy systems.

To experiment this, we provoked failures on either the Joram server or the business ob-
jects. The self-repair manager detects and repairs these failures within 10 seconds. These
numbers include the time for the failure detector to trigger and the time for downloading
and installating the necessary software (Joram) on a new node. They include the installa-
tion of the Java wrappers and the apply of the overall management operations, including
the writing of the con�guration �les from attributes. Ultimately, they also include the time
it takes for Joram to initialize and start. While these numbers could be considered large,
they are orders of magnitude better than any manual repair time, even by skilled operators.

From the clients of the Train Station Application (the administrators of the Train Sta-
tion), the failures can be visible during the MTTR. They can see the occurrence of failures
at the level of their graphical tool, that transcripts the state of the server application. As
soon as the repair is processed by the self-repair manager, the tool returns to a normal
state without having to be restarted.

16

Finally, we experimented with the self-self-repair behavior of the Self-Repair itself and
its overhead on the ability of the Self-Repair to repair managed legacy systems. We forced
a failure of one of the Self-Repair replica (including both a replica of the repair manager
and the managed architecture as described in the SP1-L2 document). These failures are
detected and handled in this experiment in one repair session. Hence, there is work to do
for repairing the lost replicas of the repair manager and the managed architecture. The
most important point is that the Self-Repair remains 100% available even facing partial
failures of its replicas. A repair of a failed replica of either the managed architecture or
the repair manager is done entirely in the background and introduces no disruption in the
ability of selfware to repair any managed system.

6 Conclusion

We presented in this paper the autonomic repair capabilities of Selfware, an architecture-
based management system for loosely-coupled distributed systems assembled from legacy
systems. We believe that most distributed systems that are candidate to dynamic fault
detection and repair are loosely-coupled, as are JMS legacy systems considered in this
paper; they tolerate partial failures and allow the lost subsystems to be repaired and
reinserted without requiring a global shutdown of the distributed system. In this context,
Selfware provides a fully autonomic repair solution, a capability that we termed self-self
repair.

Through the management of such loosely-coupled systems, our prototype has shown
that the overhead of Selfware was negligeable. The achieved MTTR is largely dominated
by the time required to detect a failure and the time to re-create and restart failed legacy
systems. Selfware therefore delivers on its promise: remove the human administrator delays
and potential errors out of repairing complex distributed systems. Using the very same
management capabilities as a human administrator would use, Selfware delivers an MTTR
that is very close to optimal.

References

[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 01(1):11�33, 2004.

[2] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE Computer

Magazine, 36(1), 2003.

[3] Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani. DREAM: a Compo-
nent Framework for the Construction of Resource-Aware, Con�gurable MOMs. IEEE
Distributed Systems Online, 6(9), September 2005.

[4] Sun Microsystems. JSR 914: JavaTM Message Service (JMS).
http://java.sun.com/jms/.

17

