Distributed Systems

Fundamentals — Part One

Professor Olivier Gruber
Université Joseph Fourier

Projet SARDES (INRIA et IMAG-LSR)

Olivier.Gruber@inria. fr

Message Fundamentals

« Communication Architecture
- How do we name the destination ofa message?

- How do we route the message to its destination?

Client waiting

Middle ware \ waiting

Network /

Middle ware \ processing
Server
service

Olivier.Gruber@inria. fr

Outline

The Message Paradigm
- Architecture
* Applications, middleware and operating systems
* From the ISO stack to the middleware layer
- Naming and routing
* To send a message, one needs to name a destination
* To deliver a message, one needs to find a route to the destination
- Case Study:
* The Internet
- Simple sockets over TCP/IP
- Domain Name Service (DNS)
- Mobik IP
+ Peer-to-Peer Overlays
- Structured overlays: Distributed Hash Table (DHT)
- Unstructure overlays: Epide mic-style

Olivier.Gruber@inria. fr

Modified ISO Model

Modified ISO model
- Shortened stack, using a middleware and application layer

* Replaces traditional session, presentation and application layers

Layer Protocols

Mddle ware Middleware

Physical

Network

Olivier. Gruber@inria. fr

Layered Protocols

¢ Physical layer

- Transmits Os and 1s, standardize hardware characteristics

¢ Data link layer

- Detects and corrects error, groups the bits into frames, with checksums

¢ Network Layer
- Essentially about routing ofnetwork packets
* No routing within LAN
— Justput the frame on the network, receiver takes it off
* Physicalroute through LANs to reach the destination
~ Essentially about finding the fase st path (notalways the shortest)
- Depends on physic laws but also on-going traffic (queued messages)
- Internet Procotol
* Connectionless Intemet Protocol (IP) is the de-facto standard
- IP packets are sent without any setup
— IP packets are routed independently from each others

Olivier.Gruber@inria. fr

Discussion Layers

* Message-Oriented Middleware
- Introduce a stronger separation than usual

« Transient or persistent communications

. or

« Delivery order (total, causal, none)

« Failures (lost or duplicate messages, lossless, FIFO)
- Important to understand the difference between

+ The middleware receives a message

* The mi e delivers a to the ication (p

middleware

network

Olivier.Gruber@inria.fr

Layered Protocols

¢ Transport Protocols
- Provides reliable connection-oriented communications
* Support large messages (splits them in network packets)
* Ordered delivery withoutloss
- De-facto standards
« Connection-otiented Transmisssion Control Protocol (TCP) over IP

* Connection-less Universal Datagram Protocol (UDP), essentially IP++

¢ Message-Oriented Middleware (MOM)
- Groups other general-purpose protocols
« File Transfer Protocol (FTP), HyperText Trans fer Protocol (HTTP) or email
* Authentication and authorization protocols
* Distributed commit and locking protocols

* Multicast and group management protocols

Olivier.Gruber@inria. fr

Discussion Layers

¢ Socket Example
- An application programming interface (API)
* Asymmetric connection
- Aserver listens on a port
- Aclient connects to a server (IP address, port number)
* Symmetric data exchange
- Astream APIfor both sending and receiving data
- Protocol properties
+ UDP: delivered when received, messages may be lostand received out of order

* TCP: FIFO and loss-less, delivered only when correct to do so

[bind }— Ttisten |—/ accept ——— read |— write |— close]

Server connection

[Cconneet — write ————{ read }— close]
L 1
Client

Olivier.Gruber@inria. fr

Discussion Layers Discussion Layers

9 10
¢ Transient Communications ¢ Persistent Communications
- Messages are stored and forwarded - Messages are stored by the middleware
« Delivered only ifthe recipient is active « Different policies as to how long a message is stored and delivery is attempted
* Delivered only if there are no transmission interrupts - Persistence may be a collaboration
- Example + Between different middleware stores on different network nodes
+ Sockets over UDP over IP - Example

- Operating systems and network routers store and forward network packets + The email system

- Network packets are discarded on failures ~ Use SMTP/POP3 1o send or receive emails fom the email middieware
* Transmission fails anywhere
+ Arouteror the destination host is down for cxample
* Ora checksum crror happens
+ Noone listen on the destination port number
+ Sockets over TCP over IP

* Complex overlay network of email gateways
* Each gateway stores the email as it progresses towards its destination
- Mailboxes store permanently delivered messages
« Senders and receivers

- Chunk messages, FIFO delivery - Senders do not need to wait for delivery

~ Already a stronger distinction than UDP over [P - Receivers do not need to be running for delivery to happen (maibox)
- Receive an asynchronous notification (email) in case of failed delivery

Olivier.Gruber@inria. fr Olivier.Gruber@inria. fr

Discussing Naming IP Network

¢ IP Naming Interconnecting Local Area Networks
... a distributed system
... for building distributed systems

- IP addresses are names

« String of bits naming a host machine (192.168.2.100)
- IP addresses are not identities router
+ Amachine may change IP addresses, it may have multiple IP address router

+ IP addresses may be reused (DCHP on a local network for example)

« IP Routing

- Addresses are special names providing physical access to an entity
router
- Access protocol using the address is the IP routing protocol
* On LANs:
~ Physical layer directly provides this
¢ On WANSs:

router

— lItis a collaborative and distributed protocol

- Routers do exchange their routing tables to build up their routing knowle dge
—— Cross-network Routes

Olivier.Gruber@inria. fr Olivier.Gruber@inria. fr

Discussing Names

More Names
- Addresses are good for machines but difficult for humans
- Layering name services... as we layer distributed systems
« Names over IP addresses (also names)

* DNS (Domain Name Service) over IP network

Naming Service
- Manage human-friendly names like in DNS
- Manage the mapping from names to addresses

- May be used for identity (unchanging name, changing IP)

Discussing Middleware
- The naming service is part of the message-oriented middleware

- See how distributed systems are built from distributed systems

Olivier.Gruber@inria. fr

DNS — Domain Name Service

¢ Hierarchical Names
- Map hierarchical domain names to IP addresses
« wikipedia.org where wikipedia is subdomain of the org domain
« www.wikipedia.org where www is the host in the wikipedia.org domain
- Top-level domains
* Countries (two-letter codes)

* Domain generic with more than three digits (letters or numbers)

¢ Introducing DNS zones
- Azone is a part of the name space managed on a separate name server

- Hence, zones distribute name resoltion

« Example

- Resolving: fip.cs.univ-paris 8.fir

Olivier.Gruber@inria. fr

Discussing Names

¢ Name Service Design
- Acentralized approach will not scale
* Number of names
— Millions on the Internet
- Asingle point of failure
* Wide-area networks
~ Unacceptable latencies to always go across the world to resolve a name
- The closer the actual server, the more overboaded the network (routers and bandwith)
- Need a collaborative and distributed approach
* Close to the routing problem
- Given a name, we need to be able to find a route to a server knowing that name
+ Distributed design

- Distributed name servers will cooperate in managing name-address pairs

Olivier.Gruber@inria. fr

Name Resolution

« First Approach
- Iterative Name Resolution
* Clienthands to one of the rootservers the entire name
— DNS has 13 well-known servers
- Resolves as far as it can
~ Returns the next name server to contact and the unresolved suffix
* Clientrepeats on the next server
~ With the unresolved suffix ofthe name
- Example: fip.cs.univ-paris 8. fir
+ Resolves one label: fi
« Resolves one label: univ-paris8

+ Resolves two labels: cs.fip

fip.cs.univ-paris8.f

fip.cs.univ-paris8

Olivier.Gruber@inria. fr

Name Resolution

¢ Second Approach
- Recursive Name Resolution
* Client hands to one ofthe root servers the entire name
— DNS has 13 welkknown servers
- Resolves as faras itcan
* Servers forward the request
— With the unresolved suffix of the name
- Example: fip.cs.univ-paris 8.fr
« Resolves one label: fi-
+ Resolves also one label: univ-paris8

+ Resolves two labels: cs.fip fip.cs univ-paris$.fr

fip.cs.univ-paris8
-‘ﬁ/-

p.cs

Olivier.Gruber@inria. fr

Other DNS Optimizations

Discussing Name Resolution

¢ Name Aliases
- One name may be mapped to several IP addresses
- Different uses
+ Used for high availabilty, loading balancing (round-robin policy)
+ Also used for relocation, allowing to leave a forwarding address
* Abstractnames for public services such as fip or Web servers

- www.imag fr => rilke tte2 imag. fr
- rilletie 2.imag.fr => 129.88.34.211

Olivier.Gruber@inria. fr

¢ Iterative Name Resolution
- Simpler protocol, lower load on name servers
- Burden is on client middleware
* Must iterate and manage connections and failures
+ Responsible forany caching done
~ Without caching, top-level domain servers are overloaded
~ Overall performance is dependent on welkbehaving clients
¢ Recursive Name Resolution
- Increased load on name servers
* Manages connections between name servers and therefore eventual failures
- Performs better
« Leverage geographical proximity
- In our example (fip.cs univ-paris8.f), consider clients in the US

- Less communication overheads than the iterative approach

* Caching can be done within servers, atalllevels

Olivier.Gruber@inria. fr

Other DNS Optimizations

¢ Replicated Name Servers
- Using name aliasing
+ Interally uses round-robin load balancing between replicated servers
- Consistency protocol
* Only one writer
~ Updates happen to the primary copy
* Replicas request zone transfers
~ Acceptable to return outdated information
~ Eventualconsistency
¢ Discussing performance
- Top-level zones are expected to have few and rare updates
- Localupdates are often local names only used locally

- So caching and replication are highly effective

Olivier.Gruber@inria. fr

Internet Summary

¢ IP Addresses
- LANSs support physical access
* Minimalaccess protocol, supported by hardware
- Distributed routing
* Routing across LANs

* Requires to exchange routing tables

¢ Domain Name System
- Built on IP addresses
* Needs IP routes to DNS servers
- Map hierarchical domain names to IP addresses
« wikipedia.org where wikipedia is subdomain of the org domain
* www.wikipedia.org where www is the host in the wikipedia.org domain
- Optimized distributed system

+ Caching, replicated servers

Olivier.Gruber@inria. fr

Mobile IP

e

Mokile Node Mobile Node
Home Location Foreign Location
Home Address 71.1.204.20 Care-0f Aadress 210.4.79.2
Home Network (London) Foreign Network (Tokyo)
71.13.204.0124 210.4.79.0/24

Source: hitp://www.tcpipguide.com

Olivier.Gruber@inria. fr

Mobile IP

¢ The Problem
- Wanting to using IP has identity while allowing mobility
- Difficult since IP is by defmition location-dependent

¢ The Home-based Solution
- When at home, a mobile equipment has
* Ahome IP address with a home agent on its local network
* Home agent is typically a router
-~ When not at home, it also has
* Acare-ofagenton its current localnetwork (also typically a router)
* Alocal IP address on that same local network
- Principle
* Registration
~ The care-ofagent will notify the home agent ofits own IP address
* Routing
~ Home agent will tunnel datagram packets to the care-ofagent

~ Mobik IP routing shortcuts the home agent for further datagram packet routing

Olivier.Gruber@inria. fr

Discussing Mobile IP

¢ Drawbacks
- Fixed home location, must exist and be available (the agent)

- May incur a: d-the-globe ication to find mobile devices

- Does not support well long-term or definitive relocation

¢ Forwarder Paradigm

- Typical example ofa forwarder paradigm

- Only works well:
* For limited and transient mobility
* For persistent long-live homes

- Would require a complex overall solution
* Short-cut forwarders, updating name servers.
+ Rechim forwarders, making e ffectively the changing address the identity
+ Butrequires something like distributed garbage collection

+ Quite difficult given that IP addresses and names may be written on a piece of paper...

Olivier.Gruber@inria. fr

Introducing Identity

¢ Identity
- Refers to one and only one entity
- Each entity has only one identity
- Provides unambiguous addressing

- Easieraliasing through logical names maping to the identity

¢ Routing Challenge
- Internet names are location-dependent
« IP addresses or hierarchical names
« Even more true for URLs (include a web server address and a resource path)
* Helps routing (because names embed location information)
- Using identity, routing becomes a challenge

+ Flat identifier space, no information about location

Olivier.Gruber@inria. fr

Distributed Hash Tables

* Adopting Identity
- Entities are identified by m-bit keys
« The key space is usually 128 or 160 bits
- Entities may be anything
* Host, processes, files, etc.
¢ Distributed Nodes
- Each node is responsible for managing certain keys
+ Anode store the resources for the keys it manages
- Each node is identified with a key

+ From the same m-bit key space as resources

¢ Example: DNS on DHT
- Instead ofusing a hierarchy of servers for storing DNS records
- Use a distributed set of nodes and a DHT

- Compute key from the name, the resource is the DNS record

Olivier.Gruber@inria. fr

Routing with Identity

¢ ASimple Solution
- Using multicasting or broadcasting on a LAN

- Does notscale well on wide-area networks

¢ Peer-to-Peer Overlays
- Structured overlays
* We willlook at Distributed Hash Tables
* Case study: Chord System
- Unstructured overlays
+ We will look at random graphs
* Case study: CYCLON

Olivier.Gruber@inria. fr

Distributed Hash Table

¢ Dynamic Set of Nodes
- Nodes may join or leave the DHT
* No globalknowledge, synchronization or management
+ No single point of failure
- Fully scalable

* Uniform dis tribution ofresources across nodes

¢ Case Study: Chord System
- L Stoica et al(2001)
« Chord, A Scalable Peer-to-Peer Lookup Service for Internet Applications
« IEEE-ACM Trans on Networking
« http://pdos.csailmit.edu/chord/papers/paper-ton.pdf

Olivier.Gruber@inria. fr

Chord - Basics

¢ Distributing Resources
N56 @ node with key 56
- Aresource with a key K, is managed by a node

with a key N, such as resource with key 38
« N _is the smallest node key such as K, = N,
+ Such a node is called the suce(K,)

¢ Circle Representation
- Organizing keys on a circle
* From 0 to 2™-1
* Clock-wise
- The succ Relationship
« ForakeyK,
« Itis the nextavailable node

+ Clock-wise fom key K,

Olivier.Gruber@inria. fr

Chord — Finger Table Principles

¢ Basic Idea
-~ When looking up a key at a node
+ Looks for the successor of that key
* Itis the node managing that key
- Ifthe node does not know the successor ofkey
« It may know of one node thatis closer on the ring

* Thatnode should know more about the successor ofthe key
¢ Finger Tables
- One index ofnodes per node
* Ofatmostm entries (for m-bit key space)

- Foranode N, the finger entries are computed as follows:

finger[k] = succ(N, + 2+—") mod 2

Olivier.Gruber@inria. fr

Chord — Simple Lookup

m=6,2"=64

Only 10 nodes and 5 keys in
the hash table

Example: starts in node N8,
looking up key K54.

N56 @ node with key 56

resource with key 38

Olivier.Gruber@inria. fr

Chord — Introducing Finger Tables

DHT: m=6,2" =64
Finger table for a node N,
N1
finger[k] = succ(N, + 2+—') mod 2™

with1<sksm

1|N8+1 | N14
2|N8+2 | N14
3|N8+4 | N14
4| N8+8 | N21
5|N8+16 | N32
6| N8+32| N42

Finger Table for N8

Olivier.Gruber@inria. fr

Chord — Lookup with Finger Tables . Chord — Lookup with Finger Tables

(1) does not know the successor

T~
DHT: m=6, 2" =64

(2) searches for the node that 1]43 | N48
immediately precedes 2|44 | N48
the looked up key 3046 | N4

Looking up key 54, from N8 N1 key 54— 450 | N51
558 | N1
6|10 | N14

Finger Table for N42

119 N14 (1) knows the successor
2|10 | N14 a
3112 | N14 key 54— 1|52 | N56
4116 | N21 2|53 N56
5|24 | N32 3|55 N56

key 54— 6|40 | N42 4159 N1

" 5(3 N8
Finger Table for N8 6119 N21
Finger Table for N51

Olivier.Gruber@inria. fr Olivier.Gruber@inria. fr

Chord — Joining or Leaving . Chord — Updating Finger Tables

* Minimal Invariants Updating the i* finger entry for a Node N,
- IfN precedes N by at least 2+!
» &
- Ifthe current i" finger, Nf succeeds N,

- Each node's successor is correctly maintained
- Foreverykey K, succ(K) manages thatkey

- For simplicity, allnodes also maintain their predecessors finger[k] = succ(N, + 2+—') mod 2™
¢ Joining the Ring
- Foranode with a key N, update_others(N,)
for (i=1 to m)
N, = predecessor(2+)
update_table(V.N,,i)

« Find through any node in the ring the succ(N,)
- Insertitself before that node in the ring
- Builds finger table, asking for succ(N,+2"') with i € [1,m]
* Update other finger tables updaleimble(Np,N., i)
N= N, fingerf]
if N, € [N_N,[
Nn.ﬁnger[i] =N,
N = predecessor(N,)
updaleimble(Np,Nk,i)

- Potentially using background messages
+ Transfer keys last

- Avoids not finding keys as long as finger tables are not correct

Olivier.Gruber@inria. fr Olivier.Gruber@inria. fr

Chord Summary

Unstructured Overlays

Distringuishing features

- Simplicity and provable correctness and performance

Lookup Performance
- With high probability, we have O(log N) messages to lookup a key

* The average is therefore 0.5 log(N) messages (normally distributed keys)

- Finger Tables
« Ina m-bit space ofkeys, traditionalsize is m entries

+ Fingertable size could be reduced to O(log N) instead of m

Dynamic Behavior
- Joining and leaving the overlay ring
« Firstchallenge is maintaining the minimum invariants
« Second challenge is maintaining finger tables
~ Need no more than O(log? N) with high probability
- Harder in the presence of faults

Olivier.Gruber@inria. fr

39
¢ Case Study — Basic Shuffling
- Overlay network O] Q @
« Edge cache of C entries
+ Shuffle Length (SL) is smaller than C @ O]
Periodic s huffle algorithm 6]

+ Randomly select SL edges from N, cache
- Selecta random peer Nq from this selection

- Replace Nq with Np in this set

+ Exchange neighbors

- Npsends this set to Nq

- N.updates its cache with received edges
* Using empty slots first
* Re-using non-empty slots second
+ N, sends back replaced edges o N,

- N, updates its cache

« Discard entries to Np and those already known

* Saves new edges using empty shts first
« Then reuse slots for cdges sent o N,

© 6] @

2-9:{2,3,6}
2¢9:{0,57}

Olivier.Gruber@inria. fr

Unstructured Overlays

Middleware Platform

- Design assumptions

+ For highly dynamic environments

* Networks with potentially major failures

- Approach

+ Based on random graph theory

- Each node maintains a list of neighbors

@ kows (DD ® @}

- Neighbors are randomly chosen

- Neighbor lists are exchanged

+ Epidemic broadcast

- To find something, broadcast on the overhy
- With high-probability, it will be found quickly (usta few network hops)

Unstructured Overlays

Olivier.Gruber@inria. fr

- Without failures, connectivity is always preserved

‘What about Connectivity?

* No edges are lost, just exchanged

- Intuitively, this preserves connectivity

* Two sets ofnodes cannot become disconnected

- Assume that we are down to one link between two sets ofnodes (S, and S,)

~ Shuffling within S cannot lose this one link, just move it around

- Shuffling between S and S,, just merely reverses the edge

- With failures, connectivity may be lost

+ But this is true with all approaches in the presence of failures

* Forexample, a router failure may disconnect two networks

Olivier.Gruber@inria. fr

Unstructured Overlays

Joining the Overlay
- Anode needs just one node in the overlay
« Joining is just building a list of neighbors
* The new node needs to know some neighbor nodes
+ Some othernodes in the overlay need to know the new node as neighbor
- Simple find and exchange approach
+ Using the known node
* Achieve random walks to N distinct nodes
* Foreach of them, exchange one oftheir neighbors with the new node

+ Set the new node neighbor list to that set of randomly chosen nodes

Leaving the Overlay
- Nothing to do, just leave
* Provides high failure resistance
* When failing, a failed node cannot be ask to inform the overlay!

- Non-responding neighbors are just forgotten by the overlay

Olivier.Gruber@inria. fr

CYCLON

Enhanced Shuffling
- Introducing the age of edges in the overlay network
- Enhanced Algorithm (done at NP)

« Increase ages by one ofall neighbors when shuffling
« Create a setof SLedges from Npcache

- Seclectthe oldestedge (refers to N)) fom N cache

- Random sclect SL-/ neighbors fom N cache

- Replace N edge with N edge (with age zero) in this edge set
« Exchange neighbors

- Same as before
- ButN_does notadjustages within its cache

Olivier.Gruber@inria. fr

Unstructured Overlays

¢ Broadcast Routing
- Routing is done through broadcasting on the overlay
- Is it efficient?

+ One may be affaid of very long paths

¢ Kevin Bacon Truth
- Kevin Bacon: a somewhat known movie actor

- Anyone in the world would have a link to him in at most six hops!

¢ Unstructured Overlays do Better
- Stable overlay
+ Average distance around 3 and 4 hops
- Convergence in the presence of updates

* Converges on WANs between 7 to 14 minutes
* Foroverlays 0f100,000 nodes

Olivier.Gruber@inria. fr

CYCLON — Connectivity Study

Experiment: 100,000 nodes, cache sizes=20, 50, 100

1400

1200 Lo

1000

a0 120

00

400 ; i

e eenrected o lhe arges] duster flog!

200 4 /

/ : H
0 e ! El L . .
6 65 % wo 3 € 65 Y0 75 8 85 @ 95 100
(b)

Fig. 7. () Number of disjoint ¢lusters, as a result of removing a large pereentage of nodes, Shows
that the overlay does not break into two or more disjoint clusters, unless a major percentage of the
nodes are removed. (b) Number of nodes not belonging (o the largest cluster. Shows that in the lirst
Sl parated from the main cluster. which siill connects the

s of clustering only a few nodes are

grand majority of the nod

Source: Voulgaris etal
CYCLON, i i for P2P overlays, 2005

Olivier.Gruber@inria. fr

CYCLON — Connectivity Tolerance

4s
¢ Tolerance to Node Removals
- 100,000 nodes
- Search minimum number of removals to cause partitioning
« Discussion
- Above cache size 100
+ Overlay is totally robust g 100
. 2 w0
- Above cache size 20 £
g 80
+ Above 80% ofremovals 2 g
g
o 80
£ 50
H
g aw
g
g %
3
2 2
5
=10
I
0 20 40 60 80 100

cache size.

Souree: Voulgaris etal
CYCLON, Inexpensive Membe rship Management for unstructured P2P overlays, 2005
Olivier.Gruber@inria. fr

CYCLON — Path Length

¢ Path Length
- Average shortest path
* The average number of edges between any two nodes
* Represent the overallefficiency of the overlay
~ Number of network hops to reach a node from another node
— Directly related to the cost of disseminating information or searching for information
— Gives an idea for setting communication time outs
- Experiment
+ 100,000 nodes, shuffle period T
~ Typical shuffling period should be larger than twice the average network latency
- Over wide area networks, period of 10s is good
« During a period, allnodes have shuffied exactly once
* Questions:
- What will be the average shortest path?
~ How long willit take to converge to that value?

Olivier.Gruber@inria. fr

CYCLON — Dynamic Behavior

¢ Dangling Links
- Because node may fail or leave
+ No special message when a node leaves

- Optimized dangling link removal (age of edges)

¢ Experiment

- 100,000 nodes
50000
- 50,000 nodes removed at once

Snnenced shuffing. €50 "

£500T
£2000
35000
30000

Uffing

25003
23000
15000
19006

50 100 150 200 250 300 360 400
Gyales sincs 50,000 nodes dissonresote:

Source: Voulgaris etal

CYCLON, i

for P2P overlays, 2005 Olivier.Gruber@inria. fr

CYCLON — Path Length Convergence

48
¢ Small Shortest Average Path
- From an initial chain topology (linked list)
- Converges to an average around 3 and 4
- Equivalent to random graphs (the reference)
¢ FastConvergence
- Within 40 to 80 periods 100000 = "
G250 s
- Between 7 and 14 mn (WAN) 10000 4 nd: g::g:: s i
i

g
g

=
8

a

average path length from fixed node (log}

0 20 40 60 80 100 120 140
periods

Source: Voulgaris etal
CYCLON, i i for P2P overlays, 2005

Olivier.Gruber@inria. fr

CYCLON — Convergence and Shuffle

49
¢ Initial Topologies
- Chain: linked nodes
- Star: one central hub
03 800
crain, enharced suifing, c=30 = Chain, enfanced shulfing. c=30 —+
star, enharced siling. =20« 200 |2 star, enFanced shuling =30 »
25)
. L, o p
§ oo & so0lx
11 \ T sw
§ €
£ : P
ESRIN . s T
P § 200 | &,
[R, e i
. R S 100 | ey capasnoas "
Sokeend QA 5 S TP
] 0
0 2 4 & 8 1 12 14 16 1B 2 0 5 0 15 2 25 a0 36 40 45 %0
seufle lengih suffle lergih

Fig. 5. Effect of shutfle length on convergence speed. N = 100,000,

Souree: Voulgaris etal
CYCLON, Inexpensive Membe rship Management for unstructured P2P overlays, 2005
Olivier.Gruber@inria. fr

CYCLON — Connectivity

¢ Degrees
- Out-Degree
« Number ofoutgoing edges
- In-Degree
+ Number ofincoming edges
« Importance
- Failure robustness

. of massively d hubs versus somewhatisolated nodes

- Indication of epidemic spread

« Variations in degree induce irregular epidemic spread
- Load balancing

+ Both regarding CPU and bandwith

Olivier.Gruber@inria. fr

CYCLON — Path Length

¢ Path Length and Cache Sizes

average pach length (linear)

5L
1000 2000 5300 10000 2C00Q
nurrber of nodes (log)

Source: Voulgaris etal
CYCLON, i

for P2P overlays, 2005

CYCLON — Connectivity

50000 100000

Olivier.Gruber@inria. fr

¢ Cyclon Degrees
- Out: fixed, this is the cache size

basc shullling, 6=20
enhanced shuffiing, ¢-20 -
random graph, ¢=20 ——

- In: variable
. . 40000 . '
¢ Discussion
35000
- Same number as random
. 20000
- Smaller deviation 2
) 3 25000
- Better design 2
5 20000
5
£ 15
£ 15000
2
10000
5000
0
0 5
Source: Voulgaris etal
CYCLON, i i for P2P overtays, 2005

3B

in-degree

Olivier.Gruber@inria. fr

CYCLON - Bandwith

* Bandwith Considerations
- Bandwith needed for gossip messages

- Related to both the shuffle period and the size of the gossip information

¢ Fine Tuning
- Gossip message
« Perentry (10bytes): One IP address, a port number, an age
* Message size = 10 *ShuffleLength
- Shuffle Period
+ During each period, each node initiates a shuffle exactly once
- Choice
+ ShuffleLength = 8
* ShufflePeriod = 10s
- Bandwith per node
« Extremely low: 32 bytes per second (256bps)

+ Practival even over traditional modems (56kbps)

Olivier.Gruber@inria. fr

