
Olivier.Gruber@inria.fr

1
Distributed Systems

Fundamentals – Part One

Professor Olivier Gruber

Université Joseph Fourier

Projet SARDES (INRIA et IMAG-LSR)

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

2
Outline

● The Message Paradigm
– Architecture

● Applications, middleware and operating systems

● From the ISO stack to the middleware layer

– Naming and routing

● To send a message, one needs to name a destination

● To deliver a message, one needs to find a route to the destination

– Case Study:

● The Internet

– Simple sockets over TCP/IP

– Domain Name Service (DNS)

– Mobile IP

● Peer-to-Peer Overlays

– Structured overlays: Distributed Hash Table (DHT)

– Unstructure overlays: Epidemic-style

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

3
Message Fundamentals

● Communication Architecture
– How do we name the destination of a message?

– How do we route the message to its destination?

Middleware

Middleware

processing

waiting

Client waiting

Server

service

Network

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

4
Modified ISO Model

Physical

Data Link

Network

Transport

Middleware

Application

Physical

Data Link

Network

Transport

Middleware

Application

Layer Protocols

Network

● Modified ISO model
– Shortened stack, using a middleware and application layer

● Replaces traditional session, presentation and application layers

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

5
Layered Protocols

● Physical layer
– Transmits 0s and 1s, standardize hardware characteristics

● Data link layer
– Detects and corrects error, groups the bits into frames, with checksums

● Network Layer
– Essentially about routing of network packets

● No routing within LAN

– Just put the frame on the network, receiver takes it off

● Physical route through LANs to reach the destination

– Essentially about finding the fastest path (not always the shortest)

– Depends on physic laws but also on-going traffic (queued messages)

– Internet Procotol

● Connectionless Internet Protocol (IP) is the de-facto standard

– IP packets are sent without any setup

– IP packets are routed independently from each others

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

6
Layered Protocols

● Transport Protocols
– Provides reliable connection-oriented communications

● Support large messages (splits them in network packets)

● Ordered delivery without loss

– De-facto standards

● Connection-oriented Transmisssion Control Protocol (TCP) over IP

● Connection-less Universal Datagram Protocol (UDP), essentially IP++

● Message-Oriented Middleware (MOM)
– Groups other general-purpose protocols

● File Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP) or email

● Authentication and authorization protocols

● Distributed commit and locking protocols

● Multicast and group management protocols

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

7
Discussion Layers

● Message-Oriented Middleware
– Introduce a stronger separation than usual

● Transient or persistent communications

● Synchronous or asynchronous communications

● Delivery order (total, causal, none)

● Failures (lost or duplicate messages, lossless, FIFO)

– Important to understand the difference between

● The middleware receives a message

● The middleware delivers a message to the application (process)

receive
queue deliver

queue

network

application

middleware

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

8
Discussion Layers

● Socket Example
– An application programming interface (API)

● Asymmetric connection

– A server listens on a port

– A client connects to a server (IP address, port number)

● Symmetric data exchange

– A stream API for both sending and receiving data

– Protocol properties

● UDP: delivered when received, messages may be lost and received out of order

● TCP: FIFO and loss-less, delivered only when correct to do so

bind listen accept read write close

connect write read close

Server

Client

connection

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

9
Discussion Layers

● Transient Communications
– Messages are stored and forwarded

● Delivered only if the recipient is active

● Delivered only if there are no transmission interrupts

– Example

● Sockets over UDP over IP

– Operating systems and network routers store and forward network packets

– Network packets are discarded on failures
● Transmission fails anywhere

● A router or the destination host is down for example
● Or a checksum error happens

● No one listen on the destination port number
● Sockets over TCP over IP

– Chunk messages, FIFO delivery

– Already a stronger distinction than UDP over IP

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

10
Discussion Layers

● Persistent Communications
– Messages are stored by the middleware

● Different policies as to how long a message is stored and delivery is attempted

– Persistence may be a collaboration

● Between different middleware stores on different network nodes

– Example

● The email system

– Use SMTP/POP3 to send or receive emails from the email middleware
● Complex overlay network of email gateways
● Each gateway stores the email as it progresses towards its destination

– Mailboxes store permanently delivered messages

● Senders and receivers

– Senders do not need to wait for delivery

– Receivers do not need to be running for delivery to happen (mailbox)

– Receive an asynchronous notification (email) in case of failed delivery

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

11
Discussing Naming

● IP Naming
– IP addresses are names

● String of bits naming a host machine (192.168.2.100)

– IP addresses are not identities

● A machine may change IP addresses, it may have multiple IP address

● IP addresses may be reused (DCHP on a local network for example)

● IP Routing
– Addresses are special names providing physical access to an entity

– Access protocol using the address is the IP routing protocol

● On LANs:

– Physical layer directly provides this

● On WANs:

– It is a collaborative and distributed protocol

– Routers do exchange their routing tables to build up their routing knowledge

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

12
IP Network

Interconnecting Local Area Networks
... a distributed system

... for building distributed systems

router

router

router

router

Crossnetwork Routes

router

router

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

13
Discussing Names

● More Names
– Addresses are good for machines but difficult for humans

– Layering name services... as we layer distributed systems

● Names over IP addresses (also names)

● DNS (Domain Name Service) over IP network

● Naming Service
– Manage human-friendly names like in DNS

– Manage the mapping from names to addresses

– May be used for identity (unchanging name, changing IP)

● Discussing Middleware
– The naming service is part of the message-oriented middleware

– See how distributed systems are built from distributed systems

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

14
Discussing Names

● Name Service Design
– A centralized approach will not scale

● Number of names

– Millions on the Internet

– A single point of failure

● Wide-area networks

– Unacceptable latencies to always go across the world to resolve a name

– The closer the actual server, the more overloaded the network (routers and bandwith)

– Need a collaborative and distributed approach

● Close to the routing problem

– Given a name, we need to be able to find a route to a server knowing that name

● Distributed design

– Distributed name servers will cooperate in managing name-address pairs

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

15
DNS – Domain Name Service

● Hierarchical Names
– Map hierarchical domain names to IP addresses

● wikipedia.org where wikipedia is subdomain of the org domain

● www.wikipedia.org where www is the host in the wikipedia.org domain

– Top-level domains

● Countries (two-letter codes)

● Domain generic with more than three digits (letters or numbers)

● Introducing DNS zones
– A zone is a part of the name space managed on a separate name server

– Hence, zones distribute name resolution

● Example
– Resolving: ftp.cs.univ-paris8.fr

mailto:Olivier.Gruber@inria.fr
http://www.wikipedia.org/

Olivier.Gruber@inria.fr

16
Name Resolution

● First Approach
– Iterative Name Resolution

● Client hands to one of the root servers the entire name

– DNS has 13 well-known servers

– Resolves as far as it can

– Returns the next name server to contact and the unresolved suffix

● Client repeats on the next server

– With the unresolved suffix of the name

– Example: ftp.cs.univ-paris8.fr

● Resolves one label: fr

● Resolves one label: univ-paris8

● Resolves two labels: cs.ftp
DNS

DNS

DNS

ftp.cs.univ-paris8.fr

ftp.cs.univ-paris8

ftp.cs

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

17
Name Resolution

● Second Approach
– Recursive Name Resolution

● Client hands to one of the root servers the entire name

– DNS has 13 well-known servers

– Resolves as far as it can

● Servers forward the request

– With the unresolved suffix of the name

– Example: ftp.cs.univ-paris8.fr

● Resolves one label: fr

● Resolves also one label: univ-paris8

● Resolves two labels: cs.ftp DNS

DNS

DNS

ftp.cs.univ-paris8.fr

ftp.cs.univ-paris8

ftp.cs

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

18
Discussing Name Resolution

● Iterative Name Resolution
– Simpler protocol, lower load on name servers

– Burden is on client middleware

● Must iterate and manage connections and failures

● Responsible for any caching done

– Without caching, top-level domain servers are overloaded

– Overall performance is dependent on well-behaving clients

● Recursive Name Resolution
– Increased load on name servers

● Manages connections between name servers and therefore eventual failures

– Performs better

● Leverage geographical proximity

– In our example (ftp.cs.univ-paris8.fr), consider clients in the US

– Less communication overheads than the iterative approach

● Caching can be done within servers, at all levels

mailto:Olivier.Gruber@inria.fr
ftp://ftp.cs.univ-paris8.fr/

Olivier.Gruber@inria.fr

19
Other DNS Optimizations

● Name Aliases
– One name may be mapped to several IP addresses

– Different uses

● Used for high availability, loading balancing (round-robin policy)

● Also used for relocation, allowing to leave a forwarding address

● Abstract names for public services such as ftp or Web servers

– www.imag.fr => rillette2.imag.fr

– rillette2.imag.fr => 129.88.34.211

mailto:Olivier.Gruber@inria.fr
http://www.imag.fr/

Olivier.Gruber@inria.fr

20
Other DNS Optimizations

● Replicated Name Servers
– Using name aliasing

● Internally uses round-robin load balancing between replicated servers

– Consistency protocol

● Only one writer

– Updates happen to the primary copy

● Replicas request zone transfers

– Acceptable to return outdated information

– Eventual consistency

● Discussing performance
– Top-level zones are expected to have few and rare updates

– Local updates are often local names only used locally

– So caching and replication are highly effective

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

21
Internet Summary

● IP Addresses
– LANs support physical access

● Minimal access protocol, supported by hardware

– Distributed routing

● Routing across LANs

● Requires to exchange routing tables

● Domain Name System
– Built on IP addresses

● Needs IP routes to DNS servers

– Map hierarchical domain names to IP addresses

● wikipedia.org where wikipedia is subdomain of the org domain

● www.wikipedia.org where www is the host in the wikipedia.org domain

– Optimized distributed system

● Caching, replicated servers

mailto:Olivier.Gruber@inria.fr
http://www.wikipedia.org/

Olivier.Gruber@inria.fr

22
Mobile IP

● The Problem
– Wanting to using IP has identity while allowing mobility

– Difficult since IP is by definition location-dependent

● The Home-based Solution
– When at home, a mobile equipment has

● A home IP address with a home agent on its local network

● Home agent is typically a router

– When not at home, it also has

● A care-of agent on its current local network (also typically a router)

● A local IP address on that same local network

– Principle

● Registration

– The care-of agent will notify the home agent of its own IP address

● Routing

– Home agent will tunnel datagram packets to the care-of agent

– Mobile IP routing shortcuts the home agent for further datagram packet routing

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

23
Mobile IP

Source: http://www.tcpipguide.com

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

24
Discussing Mobile IP

● Drawbacks
– Fixed home location, must exist and be available (the agent)

– May incur around-the-globe communication to find mobile devices

– Does not support well long-term or definitive relocation

● Forwarder Paradigm
– Typical example of a forwarder paradigm

– Only works well:

● For limited and transient mobility

● For persistent long-live homes

– Would require a complex overall solution

● Short-cut forwarders, updating name servers

● Reclaim forwarders, making effectively the changing address the identity

● But requires something like distributed garbage collection

● Quite difficult given that IP addresses and names may be written on a piece of paper...

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

25
Introducing Identity

● Identity
– Refers to one and only one entity

– Each entity has only one identity

– Provides unambiguous addressing

– Easier aliasing through logical names maping to the identity

● Routing Challenge
– Internet names are location-dependent

● IP addresses or hierarchical names

● Even more true for URLs (include a web server address and a resource path)

● Helps routing (because names embed location information)

– Using identity, routing becomes a challenge

● Flat identifier space, no information about location

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

26
Routing with Identity

● A Simple Solution
– Using multicasting or broadcasting on a LAN

– Does not scale well on wide-area networks

● Peer-to-Peer Overlays
– Structured overlays

● We will look at Distributed Hash Tables

● Case study: Chord System

– Unstructured overlays

● We will look at random graphs

● Case study: CYCLON

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

27
Distributed Hash Tables

● Adopting Identity
– Entities are identified by m-bit keys

● The key space is usually 128 or 160 bits

– Entities may be anything

● Host, processes, files, etc.

● Distributed Nodes
– Each node is responsible for managing certain keys

● A node store the resources for the keys it manages

– Each node is identified with a key

● From the same m-bit key space as resources

● Example: DNS on DHT
– Instead of using a hierarchy of servers for storing DNS records

– Use a distributed set of nodes and a DHT

– Compute key from the name, the resource is the DNS record

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

28
Distributed Hash Table

● Dynamic Set of Nodes
– Nodes may join or leave the DHT

● No global knowledge, synchronization or management

● No single point of failure

– Fully scalable

● Uniform distribution of resources across nodes

● Case Study: Chord System
– I. Stoica et al (2001)

● Chord, A Scalable Peer-to-Peer Lookup Service for Internet Applications

● IEEE-ACM Trans on Networking

● http://pdos.csail.mit.edu/chord/papers/paper-ton.pdf

mailto:Olivier.Gruber@inria.fr
http://pdos.csail.mit.edu/chord/papers/paper-ton.pdf

Olivier.Gruber@inria.fr

29
Chord - Basics

● Distributing Resources

– A resource with a key K
i
 is managed by a node

with a key N
k
 such as

● N
k
 is the smallest node key such as K

i
 ≤ N

k

● Such a node is called the succ(K
i
)

● Circle Representation
– Organizing keys on a circle

● From 0 to 2m-1

● Clock-wise

– The succ Relationship

● For a key K
i

● It is the next available node

● Clock-wise from key K
i

N1

N32

N14

N8
N56

N38
K24

K30

K10

K54

K38

succ

node with key 56

K38 resource with key 38

N56

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

30
Chord – Simple Lookup

N1

N32

N21

N14

m = 6, 2m = 64

Only 10 nodes and 5 keys in
the hash table

Example: starts in node N8,
looking up key K54.

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

node with key 56

K38 resource with key 38

K38

N56

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

31
Chord – Finger Table Principles

● Basic Idea
– When looking up a key at a node

● Looks for the successor of that key

● It is the node managing that key

– If the node does not know the successor of key

● It may know of one node that is closer on the ring

● That node should know more about the successor of the key

● Finger Tables
– One index of nodes per node

● Of at most m entries (for m-bit key space)

– For a node N
i
, the finger entries are computed as follows:

finger[k] = succ(N
i
 + 2k—1) mod 2m

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

32
Chord – Introducing Finger Tables

N1

N32

N21

N14

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

K38

DHT: m = 6, 2m = 64

Finger table for a node N
i

finger[k] = succ(N
i
 + 2k—1) mod 2m

with 1 ≤ k ≤ m

Finger Table for N8

N8+1 N14
N8+2 N14
N8+4 N14
N8+8 N21
N8+16 N32
N8+32 N42

1
2
3
4
5
6

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

33
Chord – Lookup with Finger Tables

N1

N32

N21

N14

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

K38

DHT: m = 6, 2m = 64

Looking up key 54, from N8

Finger Table for N8

9 N14
10 N14
12 N14
16 N21
24 N32
40 N42

1
2
3
4
5
6key 54

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

34
Chord – Lookup with Finger Tables

N1

N32

N21

N14

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

K38

Finger Table for N42

43 N48
44 N48
46 N48
50 N51
58 N1
10 N14

1
2
3
4
5
6

key 54

Finger Table for N51

52 N56
53 N56
55 N56
59 N1
3 N8
19 N21

1
2
3
4
5
6

key 54

(1) does not know the successor

(2) searches for the node that
immediately precedes
the looked up key

(1) knows the successor

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

35
Chord – Joining or Leaving

● Minimal Invariants
– Each node's successor is correctly maintained

– For every key K
i
, succ(K

i
) manages that key

– For simplicity, all nodes also maintain their predecessors

● Joining the Ring

– For a node with a key N
k

● Find through any node in the ring the succ(N
k
)

– Insert itself before that node in the ring

– Builds finger table, asking for succ(N
k
+2i-1) with i ∈ [1,m]

● Update other finger tables

– Potentially using background messages

● Transfer keys last

– Avoids not finding keys as long as finger tables are not correct

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

36
Chord – Updating Finger Tables

Updating the ith finger entry for a Node N
p

– If N
p
precedes N

k
by at least 2i-1

– If the current ith finger, N
f
, succeeds N

k

N
x

N
p

N
f

N
k

ith

2i-1

update_others(N
k
)

 for (i=1 to m)
 N

p
 = predecessor(2i-1)

 update_table(N
p
,N

k
,i)

update_table(N
p
, N

k
, i)

 N
f
= N

p
.finger[i]

 if N
k
∈ [N

p
,N

f
[

 N
p
.finger[i] = N

k

 N
p
= predecessor(N

p
)

 update_table(N
p
,N

k
,i)

finger[k] = succ(N
i
 + 2k—1) mod 2m

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

37
Chord Summary

● Distringuishing features
– Simplicity and provable correctness and performance

● Lookup Performance
– With high probability, we have O(log N) messages to lookup a key

● The average is therefore 0.5 log(N) messages (normally distributed keys)

– Finger Tables

● In a m-bit space of keys, traditional size is m entries

● Finger table size could be reduced to O(log N) instead of m

● Dynamic Behavior
– Joining and leaving the overlay ring

● First challenge is maintaining the minimum invariants

● Second challenge is maintaining finger tables

– Need no more than O(log2 N) with high probability

– Harder in the presence of faults

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

38
Unstructured Overlays

● Middleware Platform
– For highly dynamic environments

– Networks with potentially major failures

● Approach
– Based on random graph theory

● Each node maintains a list of neighbors

● Neighbors are randomly chosen

● Neighbor lists are exchanged

– Epidemic broadcast

● To find something, broadcast on the overlay

● With high-probability, it will be found quickly (just a few network hops)

3
0

7

2 9

5

1 6
4

2 knows { }3 1 6 9

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

39
Unstructured Overlays

● Case Study – Basic Shuffling
– Overlay network

● Edge cache of C entries

● Shuffle Length (SL) is smaller than C

– Periodic shuffle algorithm...

3
0

7

2 9

5

1 6
4

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

40
Shuffle Algorithm

● Randomly select SL edges from N
p
cache

– Select a random peer N
q

from this selection

– Replace N
q
 with N

p
in this set

● Exchange neighbors

– N
p
sends this set to N

q

– N
q
updates its cache with received edges

● Using empty slots first

● Re-using non-empty slots second

● N
q

sends back replaced edges to N
p

– N
p
updates its cache

● Discard entries to N
p
 and those already known

● Saves new edges using empty slots first

● Then reuse slots for edges sent to N
q

3
0

7

2 9

5

1 6
4

2 ⇾ 9 : {2,3,6}
2 ⇽ 9 : {0,5,7}

3
0

7

5

1 6 4

2 9

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

41
Unstructured Overlays

● What about Connectivity?
– Without failures, connectivity is always preserved

● No edges are lost, just exchanged

– Intuitively, this preserves connectivity

● Two sets of nodes cannot become disconnected

– Assume that we are down to one link between two sets of nodes (S
1
 and S

2
)

– Shuffling within S
i
 cannot lose this one link, just move it around

– Shuffling between S
1
and S

2
, just merely reverses the edge

– With failures, connectivity may be lost

● But this is true with all approaches in the presence of failures

● For example, a router failure may disconnect two networks

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

42
Unstructured Overlays

● Joining the Overlay
– A node needs just one node in the overlay

● Joining is just building a list of neighbors

● The new node needs to know some neighbor nodes

● Some other nodes in the overlay need to know the new node as neighbor

– Simple find and exchange approach

● Using the known node

● Achieve random walks to N distinct nodes

● For each of them, exchange one of their neighbors with the new node

● Set the new node neighbor list to that set of randomly chosen nodes

● Leaving the Overlay
– Nothing to do, just leave

● Provides high failure resistance

● When failing, a failed node cannot be ask to inform the overlay!

– Non-responding neighbors are just forgotten by the overlay

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

43
Unstructured Overlays

● Broadcast Routing
– Routing is done through broadcasting on the overlay

– Is it efficient?

● One may be afraid of very long paths

● Kevin Bacon Truth
– Kevin Bacon: a somewhat known movie actor

– Anyone in the world would have a link to him in at most six hops!

● Unstructured Overlays do Better
– Stable overlay

● Average distance around 3 and 4 hops

– Convergence in the presence of updates

● Converges on WANs between 7 to 14 minutes

● For overlays of 100,000 nodes

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

44
CYCLON

● Enhanced Shuffling
– Introducing the age of edges in the overlay network

– Enhanced Algorithm (done at N
p
)

● Increase ages by one of all neighbors when shuffling

● Create a set of SL edges from N
p
cache

– Select the oldest edge (refers to N
q
) from N

p
cache

– Random select SL-1 neighbors from N
p
cache

– Replace N
q
 edge with N

p
edge (with age zero) in this edge set

– Exchange neighbors

● Same as before

● N
q
does not adjust ages within its cache

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

45
CYCLON – Connectivity Study

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

Experiment: 100,000 nodes, cache sizes=20, 50, 100

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

46
CYCLON – Connectivity Tolerance

● Tolerance to Node Removals
– 100,000 nodes

– Search minimum number of removals to cause partitioning

● Discussion
– Above cache size 100

● Overlay is totally robust

– Above cache size 20

● Above 80% of removals

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

47
CYCLON – Dynamic Behavior

● Dangling Links
– Because node may fail or leave

● No special message when a node leaves

– Optimized dangling link removal (age of edges)

● Experiment
– 100,000 nodes

– 50,000 nodes removed at once

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

48
CYCLON – Path Length

● Path Length
– Average shortest path

● The average number of edges between any two nodes

● Represent the overall efficiency of the overlay

– Number of network hops to reach a node from another node

– Directly related to the cost of disseminating information or searching for information

– Gives an idea for setting communication timeouts

– Experiment

● 100,000 nodes, shuffle period T

– Typical shuffling period should be larger than twice the average network latency

– Over wide area networks, period of 10s is good

● During a period, all nodes have shuffled exactly once

– Questions:

● What will be the average shortest path?

● How long will it take to converge to that value?

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

49
CYCLON – Path Length Convergence

● Small Shortest Average Path
– From an initial chain topology (linked list)

– Converges to an average around 3 and 4

– Equivalent to random graphs (the reference)

● Fast Convergence
– Within 40 to 80 periods

– Between 7 and 14 mn (WAN)

periods

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

50
CYCLON – Convergence and Shuffle

● Initial Topologies
– Chain: linked nodes

– Star: one central hub

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

51
CYCLON – Path Length

● Path Length and Cache Sizes

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

52
CYCLON – Connectivity

● Degrees
– Out-Degree

● Number of outgoing edges

– In-Degree

● Number of incoming edges

● Importance
– Failure robustness

● Appearance of massively connected hubs versus somewhat isolated nodes

– Indication of epidemic spread

● Variations in degree induce irregular epidemic spread

– Load balancing

● Both regarding CPU and bandwith

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

53
CYCLON – Connectivity

● Cyclon Degrees
– Out: fixed, this is the cache size

– In: variable

● Discussion
– Same number as random

– Smaller deviation

– Better design

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

54
CYCLON - Bandwith

● Bandwith Considerations
– Bandwith needed for gossip messages

– Related to both the shuffle period and the size of the gossip information

● Fine Tuning
– Gossip message

● Per entry (10bytes): One IP address, a port number, an age

● Message size = 10 * ShuffleLength

– Shuffle Period

● During each period, each node initiates a shuffle exactly once

– Choice

● ShuffleLength = 8

● ShufflePeriod = 10s

– Bandwith per node

● Extremely low: 32 bytes per second (256bps)

● Practival even over traditional modems (56kbps)

mailto:Olivier.Gruber@inria.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

