
Olivier.Gruber@inria .fr

Distributed Systems

Fundamenta ls � Pa rt Two

Professor Olivie r Gruber

Univers ité Joseph Fourie r

P roje t SARDES (INRIA e t IMAG-LSR)

Olivier.Gruber@inria .fr

Message Fundamentals

� Last lecture

� How do we name the destination?

� How do we route the message?

Middle ware

Middleware

proce s sing

wa iting

Client wa iting

S erver

s ervice

Olivier.Gruber@inria .fr

Message Fundamentals

� Today's lecture

� What notion of time do we have?

� How do we synchronize activities?

Middleware

Middleware

proce ss ing

wa iting

Client wa iting

Server

se rvice

Olivier.Gruber@inria .fr

Outline

� Discussing time

� Distributed systems have no concept of a global time

� Different protocols exist for syncing clocks

� Good enough for humans, not for synchronization

� There is no escaping the true nature of d istributed time

� Impacts our execution models

� Introduces causal order

� Specific techniques

� Logical clocks and totally ordered multicast

� Vector clocks and causally ordered multicast

� Matrix clocks and causal point-to-point messaging

� Discussing synchronization

� Mutual exclusion in d istributed systems

� Election in d istributed systems

Olivier.Gruber@inria .fr

Discussing Time

� Centralized system

� Time is unambiguous

� The hardware keeps track of it, the kernel provides access to it

� It does not matter it is the correct time, it orders local events

� The concept of time is used in so many places

� As absolute measure, like with the make program

� Between events, like mutual exclusion

� Distributed system

� No concept of global time, time becomes ambiguous

� Very much like moving from Newton to Einstein physics

� There no longer a single time, each machine has a notion of time

� Not everybody agrees about the time of two events or between two events

� Asynchronous communications

� Communication delays are unbounded and messages may be lost

� How to d istinguish a slow message from a lost one?
Olivier.Gruber@inria .fr

Example: Make

� Unix Make program

� Relies on time to know what to do

� Example: compile sources into object files and link them into an executable

� Running make and editing on different machines

� They may have d ifferent times

� Yield ing linking of incoherent object files

Editor timeline

Make timeline

Sa ve foo.c

10:30

Compile foo.c

10:35

Sa ve ba r.c

10:40

Compile ba r.c

No t foo .c

10:55

Re al Newtonian timeline

Erroneous linking

10:57

Olivier.Gruber@inria .fr

Physical Clocks

� Real timers

� Ticks a certain number of times per seconds

� Time is the number of ticks since a certain known date

� Like January first, 1970 for most Unix systems

� Clock skew

� 60Hz timers do not tick exactly 60 per seconds

� With modern chips, the skew is about 10-5

� Instead of 216,000 ticks per hour

� We get between 215,998 and 216,002 ticks

� Clock synchronization

� Several clocks therefore need to be synchronized

� It can be done through different protocols

Olivier.Gruber@inria .fr

Discussing Time

� A bit of history

� 17th Century, time is defined through solar day of 24 hours

� In 1940, scientists established that the earth rotation is slowing down

� Due to tidal friction and atmospheric drag

� About 300 million years ago, a year was about 400 day (shorter days)

� In 1948, we started measuring time with atomic clocks (Cesium 133)

� Several clocks are around the world , averaged in Paris

� Temps Atomic International : averaged Cesium-133 ticks since Jan. 1, 1958

� Problem: TAI is 3 ms ahead of the solar time (which is still slowing down)

� In 1582, Pope Gregory XIII decreed that 10 days be omitted from the calendar...

� Social instability and riots followed...

� In troduces Universal Coordinated Time (UTC)

� Bureau International de l'Heure (in Paris)

� UTC introduces leap seconds to stay in sync with solar time

� So far, we introduced about 30 leap seconds (when skew is over 800ms)

Olivier.Gruber@inria .fr

Discussing Time

� How do we tell time?

� Most electric companies keep their frequency in sync with UTC

� So they raise the current frequency for accounting for leap seconds

� Accuracy of 1 second is too crude for computer clocks

� Shortwave radio stations

� Accuracy is about 1ms, because of atmospheric fluctuations, rarely better than

10ms

� Geostrationary Satellites

� Accuracy about 0.5ms, transmission delays have to be taken into account

� Innacurate satellite position, unknown receiver position, clock skew, atmospheric

conditions (ionoshpere effects are changing over time), etc.

� Claimed accuracy for professional receivers of 20-35 nano-seconds

Olivier.Gruber@inria .fr

Discussing Time

� Do we have a solution?

� Geostrationary Satellites:

� Claimed accuracy for professional receivers of 20-35 nano-seconds

� That's pretty good... isn't it?

� Well... it d oes not solve our problem...

� Not all networks have such receivers

� And even if they would ...

� How do we use that time to sync'up others computers?

� Network delays have to be taken into accounts...

Olivier.Gruber@inria .fr

Network Time Protocol

� Cristian algorithm (1989)

� Use a time server (with a correct UTC)

� Takes into account message delays

� Principle

� All times Ti are local times

� How do we estimate w hat T4 should be?

� We use transmission delays

� 1=(T2-T1) 2=(T4-T3) � �

� We assume delays to be roughly constants

� �1 2� �

� = (1 + 2)/ 2� � �

� Correction is �

� T4 + = T3 + � �

T
1

T
2

T
3

T
4

Se rve r

Client �
1

�
2

Olivier.Gruber@inria .fr

Network Time Protocol

� Gradual change

� Correction can be negative or positive�

� Time can't go backward

� Time should avoid leaps

� Clocks are slown down or advanced

� Each interupt is either 9ms or 11 ms instead of 10ms

� Error correction

� What if 1 and 2 differ too much...� �

� Average s over multiple requests�

� Use multip le time servers and average s�

T
1

T
2

T
3

T
4

Se rve r

Clie nt �
1

�
2

Olivier.Gruber@inria .fr

Berkeley Algorithm

� Coord ination between nodes

� No node has UTC, like in d isconnected private networks

� We still want synchronized clocks, even if they are not on UTC

� Sometimes, agreeing on time is just enough

� Principle

� A coordinator ask all machines their current time

� It computes what the time should be

� It averages received local times, ignoring those with times too far off

� It sends back time corrections

Olivier.Gruber@inria .fr

Discussing Time

� Real time

� Is just an illu sion...

� Precise enough in some situations, like for humans or for a make program

� But always some marging of error

� It cannot be used to reason about a d istribu ted system

� It cannot be the basis of behavioral proofs

� Example: critical section

We either have

Leave(C2) happens-before Enter(C1)

Or

Leave(C1) happens-before Enter(C2)

Without global time, how do we tell?

C1

C2

Olivier.Gruber@inria .fr

Execution Model

� Process model

� Each process is a local sequence of events

� p
i
 : e

i
1, e

i
2, e

i
3, �, e

i
k, �

� An event is a local state change in the process

� Communication model

� Process may exchange messages

� Message delays are unknown, messages may be lost

� Sending or receiving a message is a state change, thus an event

p1

p2

p3

m2

m3

e1
1 e1

3

e2
1 e2

2

e3
1

e1
2

e2
3

e3
2 e3

3

Olivier.Gruber@inria .fr

Causal Order

� Lamport (1978)

� Causal order between two events is noted

� e � e'

� It is defined as

� e happened-before e'

� In our execution model, we have �e e' if

� e and e' happens in the same process and e happens before e'

� e is the sending of a message m and e' is receiving that message

� The causal relationship is transitive

� If �e e� and �e� e' then �e e'

� Causal order is only a partial order

� Not all events may be causally ordered

Olivier.Gruber@inria .fr

Causal Order

� Example

� We have

� e1
1 � e1

2 � e1
3

� e2
1 � e2

2 � e2
3

� e2
2 � e1

2

� Therefore we have

� e2
2 � e1

3

� But we only have a partial order

� We neither have e1
1 � e2

1 or e1
1 � e2

1

� Noted as e1
1 � e2

1

p1

p2

m1

e1
1 e1

3

e2
1 e2

2

e1
2

e2
3

Olivier.Gruber@inria .fr

Logical Clocks

� Logical Clocks

� Nothing to do with real time

� Logical clock for an event ei
k is noted LC(ei

k)

� Design

� Logical clocks are maintained as local counters

� For each new local event ei
k : LC(ei

k)= LC(ei
k-1)

+ 1

� Regarding Messages

� Sending a message M

� This is a new local event ei
k : LC(ei

k)= LC(ei
k-1)

+ 1

� M is timestamped with LC(ei
k)

� Receiving at P j a message M(LC(ei
k))

� This is a new event ej
r

� LC(ej
r)= max(LC(ej

r-1),LC(ei
k))

+ 1

Olivier.Gruber@inria .fr

Logical Clocks

� By definition

� ei
k � ej

r implies LC(e
i
k) < LC(e

j
r)

� Usage

� LC(ei
k) < LC(ej

r) implies �(ej
r � ei

k)

� That is (ei
k � ej

r) or (ei
k � ej

r)

Example

LC(e1
1)=1

3

2 5

p1

p2

p3

LC(e1
2)=2 LC(e1

3)=3 LC(e1
4)=6 LC(e1

5)=7

LC(e2
2)=2 LC(e2

3)=3 LC(e2
4)=4 LC(e2

5)=5 LC(e2
6)=6

LC(e3
1)=1

LC(e3
2)=4

LC(e3
3)=5 LC(e3

4)=6

Look at LC(e3
1) < LC(e2

3)

It is a case where (e3
1 � e2

3)

Olivier.Gruber@inria .fr

Ordered Multicast

� Problem

� How do we order multicast messages to a group of processes?

� Example � Bank Account Interest

� You deposit 100� to your account that contains 1000�

� Banker applies your monthly in terest 1%

� Bank accou nts are replicated in Paris and Berlin

� Same execution order = 1110�

� Different execution orders = 1111�

� Example � Deposit and Withdrawal

� Same bank, you deposit 400� and withdraw 1200�

� Same execution order, accepted on all replicas

� Different execution orders, one replica may reject the withdrawal

Olivier.Gruber@inria .fr

Totally Ordered Multicast

� Totally Ordered Multicast

� Using Lamport's logical clocks

� Design

� Between a group of N processes

� They must know each others (concept of a group)

� Each message from one process is multicasted to the entire group

� We assume FIFO and loss-less communication channels

� Each process:

� Each message carries its normal timestamp (Lamport)

� Build an ordered queue of messages based on the message timestamp

� Acknowledge each message to the group (multicasted ack message)

� Delivers a message only when

� The message has been acknowledged by all other processes in the group

� The message is at the top of the ordered queue

Olivier.Gruber@inria .fr

Totally Ordered Multicast

p1

p2

M
1
(10)

M
2
(66)

11-12

10 M
1 n

67-68

66 M
2 n

LC=67

LC=11

ACKs

Olivier.Gruber@inria .fr

Totally Ordered Multicast

p1

p2

M
1
(10)

M
2
(66)

11-12

10 M
1 n

67-68

66 M
2 n

LC=67

LC=11

76-77

74

66

n

 M
2

 M
1

n

10

LC=74

10 M
1 n

66 M
2 n

LC=76

10

n

 M
1

 M
2

n

66

LC=78
Reordered queue

X

Olivier.Gruber@inria .fr

Totally Ordered Multicast

p1

p2

M
1
(10)

M
2
(66)

11-12

67-68

76-77

74

10 M
1

n

66 M
2

y

LC=85

10

n

 M
1

 M
2

y

66

LC=78

78

85

Received all ACKs

Olivier.Gruber@inria .fr

Totally Ordered Multicast

p1

p2

M
1
(10)

M
2
(66)

11-12

67-68

76-77

74

10 M
1 y

66 M
2 y

LC=92

10

y

 M
1

 M
2

y

66

LC=97

78

85

97

92

Same order

in both queues

Olivier.Gruber@inria .fr

Totally Ordered Multicast

� Special Corner Case

� Two multicast cou ld have the same logical clock at two processes

� Extends logical clocks with process identifiers,as decimals

� When we had:

� LC(e32
k) = 56 and LC(e24

k) = 56

� We now have

� LC(e32
k) = 56.32 and LC(e24

k) = 56.24

� Use this extension any time you need a total order on logical clocks

Olivier.Gruber@inria .fr

Logical Clock Limits

� When should we deliver m4(8) ?

� Do we have to wait for m3(5)?

� How do we de tect miss ing or de layed events?

� Undis tinguisha ble s itua tion from P
1
 perspective

� Point-to-Point Causality

e

e'

e"

p1

p2

p3

p4

m3(5)m2(3)

m4(8)

violates

causality

e
e"

e'

p1

p2

p3

p4

m2(3)

m4(8)

m3(5)

 (e2 � e�3) and (e�3 � e'4)
 (e2 � e�3) a nd (e�3 � e'4)

send (m) � send (m')

� deliveri (m) � deliveri (m')

Olivier.Gruber@inria .fr

Vector Clocks

� Vector Clock (Fidge and Mattern, 1988)

� A vector of logical clocks

� One entry per known process P
i

� VC[i] = max value of known LC(P
i
)

� Each event carries a vector clock

� It gives the history at various processes that the event depends on

� Each process P
i
 maintains a vector clock VC

i

� Maintains the logical clocks that the current state of P
i
depends on

p1

p2 2,2,0

2,3,0
2,0,0

1,0,0

0,1,0

2,0,0

2,3,0

3,3,0

Local state is now causally

dependent on states (2,0,0)

Olivier.Gruber@inria .fr

Vector Clock Management

� For each local event, increment local logical clock

� VC
i
[i] = VC

i
[i] + 1

� Sending messages

� It is a local event, so increment local logical clock

� Timestamp messages with its VC
i

p1

p2

p3

2,0,0

1,0,0

0,1,0

2,0,0

0,0,1

2,4,1

2,4,1

Olivier.Gruber@inria .fr

Vector Clock Management

� For each local event, increment local logical clock

� VC
i
[i] = VC

i
[i] + 1

� Receiving messages with a vector clock VC
m

� VC
i
[k] = max(VC

i
[k],VC

m
[k]) for all k � i

� Increment local logical clock VC
i
[i]

p1

p2

p3

2,2,0 2,3,1

2,4,1
2,0,0

1,0,0

0,1,0

2,0,0

0,0,1

2,4,1

0,0,1

3,4,1

Olivier.Gruber@inria .fr

Vector Clocks

� Unicast (point-to-point messages)

� Vector clocks are not enough to capture point-to-point causality

p1

p2

p3

violates causality

the vector clock does not carry any

knowledge of late messages

2,0,0

0,0,0

0,0,0

0,0,0

1,0,0 2,0,0

1,0,0

2,1,0 2,2,0

2,2,0

2,2,1 2,2,2

send (m) � send (m')

� deliveri (m) � deliveri (m')

Olivier.Gruber@inria .fr

Vector Clocks

� Unicast (point-to-point messages)

� Correct execution if P
1
sent the first message to another process than P

3

� Non-distinguishable from P
3
perspective

p1

p2

p3

no longer violates causality

2,0,0

0,0,0

0,0,0

0,0,0

1,0,0 2,0,0

2,1,0 2,2,0

2,2,0

2,2,1

1,0,0

Olivier.Gruber@inria .fr

Causally-Ordered Multicast

� Causally Ordered Multicast

� Vector clocks are not enough to capture point-to-point causality

� But they can be used for causally-ordered multicast

� Use vector clocks to know how long to delay message delivery

� Causally ordered multicast imposes a weaker order than the totally ordered

multicasting with logical clocks

� Thus, it performs better ! No ACKs

� Immediate local delivery of a message w hen multicast ing it

p1

p2

p3 0,0,0

1,0,0

1,0,0

1,0,0

1,0,0

0,0,0

0,0,0 1,0,0

local delivery

Olivier.Gruber@inria .fr

Causally-Ordered Multicast

� Modified Vector Clock Design

� Sending messages

� Increment local logical clock only regarding multicasting (no other events)

� Timestamp messages with its VC
i

� Receiving messages with a vector clock VC

� VC
i
[k] = max(VC

i
[i],VC[k]) for all k � i

� No increment of local logical clock

Olivier.Gruber@inria .fr

Causally-Ordered Multicast

p1

p2

p3

delayed delivery

0,0,0

1,0,0 1,1,0

1,1,0
1,0,0

1,1,0

0,0,0 1,0,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

conflit

For a message M, rece ived by P
r
 from P

s
, with vector clock VC

m

Delay de live ry until

VC
m
[s] = VC

r
[s]+1

VC
m
[k] � VC

r
[k] for a ll k � s

no local-clock

increment

Olivier.Gruber@inria .fr

Causally-Ordered Multicast

p1

p2

p3
0,0,0

0,1,0 1,1,0

0,1,0
1,0,0

1,1,0

0,1,0 1,1,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

no conflict, deliver immediately

Notice that

we avoided all the acknowledgment mes s ag es

of the totally-ordere d multicas t

Olivier.Gruber@inria .fr

Causally-Ordered Multicast

� Example: newgroups

� We want to avoid response posts to appear before the original posts

p1

p2

p3
0,0,0

1,0,0 1,1,0

1,1,0
1,0,0

1,1,0

0,0,0 1,0,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

original post

response post response post arrives

before the original post

delay the response post

until we got the original post

Olivier.Gruber@inria .fr

Causally-Ordered Multicast

� Example: newsgroup

� But we don't need to order original posts...

p1

p2

p3
0,0,0

0,1,0 1,1,0

0,1,0
1,0,0

1,1,0

0,1,0 1,1,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

two independent posts, they don't have any order

Olivier.Gruber@inria .fr

Causally-Ordered Multicast

� Example - newsgroups

� Notice that we don't know for a fact if the message is a response or original post

� Middleware is blind to application-level semantics

p1

p2

p3
0,0,0

1,0,0 1,1,0

1,1,0
1,0,0

1,1,0

0,0,0 1,0,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

Only potential causality...

Blindly enforced by the middleware

delay delivery

Olivier.Gruber@inria .fr

Causally Ordered Multicast

p1

p2

p3

delayed delivery

0,0,0

1,0,0 1,2,0

1,2,0 1,0,0

1,2,0

0,0,0 1,0,0

1,0,0

1,2,0

0,0,0

0,0,0

1,2,0

1,0,0

For a message M
Received by P

r
 from P

s
with vector clock VC

Delay delive ry until

VC[s] = VC
r
[s]+1

VC[k] � VC
r
[k] for a ll k � s

1,1,0

1,1,0

1,1,0

0,0,0

1,1,0

1,1,0

Olivier.Gruber@inria .fr

Matrix Clocks

� Towards more complete history

� Logical Clocks

� LCi = what P i knows is just a number, used in a global order

� Vector Clocks

� VCi[j] = what Pi knows about Pj

� Matrix Clocks

� MCi[j, k] = w hat P i knows about what Pj knows about Pk

Olivier.Gruber@inria .fr

Matrix Clocks

� Within a group of n process

� Each process Pi maintains a matrix clock MCi[n,n]

� Each event ei
k is timestamped with the matrix MCi

� Each message is timestamped with the matrix MC i

� Matrix definition

� MCi[j,k] = number of messages sent by Pj to Pk that Pi causally knows about

� A column k represents what a process Pk has received from other processes Pj that Pi

knows about

� MCi[i,i] = local events (local logical clock)

 123

1 000

2 000

3 000

MCi[2,3]

MCi[3,1]

Olivier.Gruber@inria .fr

Matrix Clocks

� Matrix definition

� MC i[j,k] = number of messages sent by Pj to Pk that Pi causally knows about

� MC i[i,i] = local events (local logical clock)

p1

p2

p3

000

000

000

000

000

000

000

000

000

101

000

000

211

000

000

211

010

000

101

000

001

211

021

000

211

021

002

 123

1 000

2 000

3 000

MCi[2,3]

MCi[3,1]

Olivier.Gruber@inria .fr

Matrix Clocks � Rules

� Local Event:

� MCi[i,i] = MCi[i,i] + 1

� Sending a message from Pi towards Pk

� MCi[i,k] = MC i[i,k] + 1

� MCi[i,i] = MCi[i,i] + 1

p1

p2

p3

000

000

000

000

000

000

000

000

000

101

000

000

211

000

000

101

000

000

211

000

000

Olivier.Gruber@inria .fr

Matrix Clocks � Rules

� Delivery condition at Pk of a message from P i timestamped with MCm

� � p � i and p � k Mcm[p ,k] == Mck[p,k]

� Mcm[i,k] == Mck[i,k]+1 (FIFO order on channel from Pi to Pk)

� Delivering a message timestamped with MCm from Pi at Pk

� MCk[p ,q] = max(MCk[p ,q],MCm[p ,q]) with p � k (Pk knows best what it received)

� MCk[k,k] = MCk[k,k] + 1 (increment local clock)

p1

p2

p3

000

000

000

000

000

000

000

000

000

101

000

000

211

000

000

211

010

000

101

000

001

�

�

101

000

000

211

000

000

Olivier.Gruber@inria .fr

Matrix Clock

� Point-to-Point causality

p1

p2

p3

000

000

000

000

000

000

000

000

000

101

000

000

211

000

000

211

021

000

211

021

002

send (m) � send (m')

� deliveri (m) � deliveri (m')

000

000

000

211

010

000

�

211

000

000

000

000

000

101

000

001

�

101

000

000

211

021

000 000

000

000

�

Missing message...

delayed delivery...

211

021

000

Olivier.Gruber@inria .fr

Mutual Exclusion

� Critica l Section

� Leave(C2) happens-before Ente r(C1)

� Leave(C1) happens -before Enter(C2)

� Without global time , how do we te ll?

� Can we do it know?

� We will look a t a centralized vers ion

� Then a dis tributed one using logica l clocks

� Finally, one using a token

C1

C2

Olivier.Gruber@inria .fr

Mutual Exclusion

� Centralized approach

� Simulate what happens in one-processor system

� Elect one process as a coord inator

� Principle

� The coord inator grants the critical section if available

� When not available, it queues the requesting processes

� When critical section is freed , it schedules the first process in the queue

0 1 2

3

re que st OK

0 1 2

3

re que st

2

0 1 2

3

re lea se OK

coordinator

queue queue queue

Olivier.Gruber@inria .fr

Mutual Exclusion

� Ricart and Agrawala (1981)

� N processes

� Interconnected with reliable FIFO channels

� Requires a total ordering of all events

� We use extend ed logical clock

� When we had:

� LC(e
32

k) = 56 and LC(e
24

k) = 56

� We now have

� LC(e
32

k) = 56.32 and LC(e
24

k) = 56.24

� Basic idea

� Each access request to a resource has a logical timestamp

� Processes are granted access in the order of the logical timestamps of their requests

� Real close to the principle of the totally-ordered multicast

Olivier.Gruber@inria .fr

Mutual Exclusion

� Principle

� Each process multicast its requests to all other processes

� Waits for granted access from all processes

� When it has granted access from all, it has access to the resource

� Upon receiving a request

� If the request receiver is not accessing the resource

� It grants access

� If the request receiver has already exclusive access to the resource

� It queues the request with no reply

� Upon release

� The owner will grant all pending requests

Olivier.Gruber@inria .fr

Mutual Exclusion

p1

p2

p3 1

3

3

3
2

3

7 8 9

2

2

1

1

4

ok

5 6

ok

5 6

ok

22 (ok,? ,?) 2 (ok,ok,?)

3

2 (ok,ok,?) (ok,ok,ok)

3

3 (? ,? ,ok) 2

(? ,ok,ok)3
3 (? ,ok,ok)

10 34

ok

3

35

re le as e

re ques t

re ques t

Olivier.Gruber@inria .fr

Mutual Exclusion

� Token-based approach

� Overlay ring, no matters what the real network topology is

� There is only one token, going around the ring

� The token represents the granted access to a shared resource

� Principle

� A site enters the critical section

� Waits for the token to arrive (granted access)

� Accesses the resource

� When done, releases the token onto the ring (next process)

Olivier.Gruber@inria .fr

Mutual Exclusion

� Token-based approach

� Starvation must be avoided

� Temptation

� Allow local reuse of the token if the critical section is locally requested upon its

release...

� Rationale: avoids potentially going around the ring for nothing

� Danger

� Potentially leads to starvation

� Possible solution

� Limit the re-use of the token locally

Olivier.Gruber@inria .fr

Mutual Exclusion

Algorithm Messages per

entry/exit
Delay before entry Problems

Centralized

Distributed

Token ring

3 messages

2(n-1)

messages

From one to

unbound ed

2 messages

2(n-1)

messages

From 0 to n-1

Coord inator crash

Crash of any node

Lost token

no one wants the CS

token goes around and around

but just waste a little bandwid th...

Slower, more expensive, more fragile... why bother?

Shows it is possible to approach it as a d istributed design

It is still open research to d o better...

Olivier.Gruber@inria .fr

Discussing Failures

� Examples of failures

� Messages may be lost or delayed enormously

� Machines or processes may fail

� Impossible to detect the d ifference in practice

� Difficult problem

� None of the above algorithms resist failures

� Messages must be delivered in bounded time

� Processes and machines must not fail

� In practice, the centralized approach is the more robust

� Simple failure detector based on the heart-beart technique

� Re-elect a coordinator if a failure is detected

Olivier.Gruber@inria .fr

The Election Challenge

� Context

� A distributed system with N processes

� Processes know each others

� The knowled ge of the static group

� A process does not know which process is running or down or failed

� No knowled ge of the dynamic group (currently correct processes)

� Synchronous network (bounded delivery)

� Elect cooperatively one process to perform a certain task

� One process needs to be selected and only one

� All processes need to agree on which process is elected

� Necessary in many circumstances

� Mutual exclusion coord inator (centralized algorithm)

� Transaction commit (coord inator)

� Data replication

Olivier.Gruber@inria .fr

Election Algorithms

� Bully algorithm

� Processes are all uniquely identified

� There is a total order on process identifier

� For example, machine IP and local creation time

� Simple design

� Any process may initiate the election at any time

� A process P sends an ELECTION message to all p rocesses with higher identifiers

� If no one responds, P wins the ELECTION

� Notify all p rocesses of the new elected coordinator (process P)

� If one of the process responds, it takes over the election process

� Upon receiving an ELECTION message

� Returns an OK message to ind icate that it is alive and takes over the election

� If it is already hold ing an election process, just keep going

� If it is not already hold ing an election process, apply the algorithm above

Olivier.Gruber@inria .fr

Bully Algorithm

1

43

6 2

7 5

1

43

6 2

7 5

ok

1

43

6 2

7 5

ok

1

43

6 2

7 5

1

43

6 2

7 5

e le cted

Olivier.Gruber@inria .fr

Election Algorithms

� A ring algorithm

� N processes are organized as a ring overlay

� Synchronous network, loss-less and FIFO

1

43

6 2

7 5

Olivier.Gruber@inria .fr

Election Algorithms

� A ring algorithm

� Any process needing a coordinator

� Creates an ELECTION message w ith its own identity

� Sends a ELECTION message to the next node on the ring

� Loops on the overlay until it finds one successor alive

� If none are alive, it self-elects as a coordinator

� Any process receiving an ELECTION message

� Add its own identity to the message

� Forwards the message to the next node on the ring

� Loops on the overlay until it finds one successor alive

� First loop is d one

� The ELECTION message comes back to the originator

� Elects the process with the highest id entifier as the coord inator

� Circulate the COORDINATOR message notifying

� Who the coord inator is

� Who is in the overlay (removing failed processes)

Olivier.Gruber@inria .fr

Ring Algorithm

1

43

6 2

7 5

4

4

2

4

2

5

4

3

5

2

4

3

5

2

1
1

43

6 2

7 5

4

3

5

2

1

sta rt

e lection

Olivier.Gruber@inria .fr

Discussing Failures

� Messages may be lost or delayed enormously

� Impossible to detect the d ifference in practice

� Processes may fail

� Fail-stop

� Works correctly or not at all

� How do we d ifferentiate between lost or delayed messages and failed process?

� Partially fail (algorithm failure, boundary condition, etc.)

� May accept message and make erroneous answers

� Requirements for previous algorithms

� Messages must be delivered in bounded time (no loss)

� Processes may only fail-stop

