Distributed Systems

Fundamentals — Part Two

Professor Olivier Gruber

Université Joseph Fourier

Projet SARDES (INRIA et IMAG-LSR)

Olivier.Gruber@inria. fr

Message Fundamentals

« Today's lecture
- What notion of time do we have?

- How do we synchronize activities?

Client waiting
Middleware —\ waiting
Middleware \ processing
Server

service

Olivier. Gruber@inria. fr

Message Fundamentals

« Last lecture
- How do we name the destination?

- How do weroute the message?

Client waiting

Middleware \ waiting i

service

Olivier Gruber@inria fr

Outline

« Discussing time

- Distributed systems have no concept of a global time
« Different protocols exist for syncing clocks
* Good enough for humans, not for synchronization

— There is no escaping the true nature of distributed time
* Impacts our execution models
* Introduces causal order

- Specific techniques
« Logical clocks and totally ordered multicast
* Vector clocks and causally ordered multicast

* Matrix clocks and causal point-to-point messaging
« Discussing synchronization
- Mutual exclusion in distributed systems
- Election in distributed systems

Olivier. Gruber@inria.fr

Discussing Time

Centralized system
- Time is unambiguous
* The hardware keeps track of it, the kernel provides access to it
+ It does not matter it is the correct time, it orders local events
- The concept of time is used in so many places
* As absolute measure, like with the make program

* Between events, like mutual exclusion

Distributed system
- No concept of global time, time becomes ambiguous
* Very much like moving from Newton to Einstein physics

= There no longer a single time, each machine has a notion of time

- Noteverybody agrees about the time of two events or between two events

- Asynchronous communications

+ Communication delays are unbounded and messages may be lost

* How to distinguish a slow message from a lost one?

Physical Clocks

Olivier.Gruber@inria. fr

Real timers
- Ticks a certain number of times per seconds
- Time is the number of ticks since a certain known date

« Like January first, 1970 for most Unix systems

Clock skew
- 60Hz timers do not tick exactly 60 per seconds
* With modern chips, the skew is about 10~
+ Instead of 216,000 ticks per hour
+ We get between 215,998 and 216,002 ticks

Clock synchronization
- Several clocks therefore need to be synchronized

~ It can be done through different protocols

Olivier. Gruber@inria. fr

Example: Make

* Unix Make program

- Relies on time to know what to do

« Example: compile sources into object files and link them into an executable

- Running make and editing on different machines

* They may have different times

* Yielding linking of incoherent object files

Editor timeline

Save bar.c
Real Newtonian timeline
Make timeline 10:35 10:55 10:57
Compile foo.c Compile bar.c Erroncous linking
Notfoo.c

Discussing Time

Olivier Gruber@inria fr

* A bit of history

- 17" Century, time is defined through solar day of 24 hours

- In 1940, scientists established that the earth rotation is slowing down

* Due to tidal friction and atmospheric drag

* About 300 million years ago, a year was about 400 day (shorter days)

- In 1948, we started measuring time with atomic clocks (Cesium 133)

* Several clocks are around the world, averaged in Paris

* Temps Atomic International : averaged Cesium-133 ticks since Jan. 1, 1958

~ Problem: TAIis 3 ms ahead of the solar time (which is still slowing down)

« In 1582, Pope Gregory XIIl decreed that 10 days be omitted from the calendar...

* Social instability and riots followed...
- Introduces Universal Coordinated Time (UTC)
* Bureau International de 'Heure (in Paris)

¢ UTC introduces leap seconds to stay in sync with solar time

* So far, we introduced about 30 leap seconds (when skew is over 800ms)

Olivier. Gruber@inria.fr

Discussing Time

* How do we tell time?
- Most electric companies keep their frequency in sync with UTC
+ So they raise the current frequency for accounting for leap seconds
* Accuracy of 1 second is too crude for computer clocks
- Shortwave radio stations

* Accuracy is about Ims, because of atmospheric fluctuations, rarely better than
10ms

- Geostrationary Satellites
+ Accuracy about 0.5ms, transmission delays have to be taken into account

- Innacurate satellite position, unknown receiver position, clock skew, atmospheric
iti i hpere effects are ch, ing over time), etc.

+ Claimed accuracy for professional receivers of 20-35 nano-seconds

Olivier.Gruber@inria. fr

Network Time Protocol

« Cristian algorithm (1989)

- Use atime server (with a correct UTC)

- Takes into account message delays

- Principle
« All times Ti are local times
* How do we estimate what T4 should be?
+ We use transmission delays Server 2 3

- §1=(T2-T1) 52=(T4-T3)

+ We assume delays to be roughly constants

- 81=82 Client /'8, 5,
- 5=(31+52)/2) A
« Correction is ©

- T4+0=T3+3

Olivier. Gruber@inria. fr

Discussing Time

« Do we have a solution?
- Geostrationary Satellites:
* Claimed accuracy for professional receivers of 20-35 nano-seconds

- That's pretty good... isn't it?

* Well...it does not solve our problem...
- Notall networks have such receivers
- And even if they would...
* How do we use that time to sync'up others computers?

* Network delays have to be taken into accounts...

Olivier Gruber@inria fr

Network Time Protocol

+ Gradual change
— Correction © can be negative or positive
« Time can't go backward
« Time should avoid leaps
- Clocks are slown down or advanced

* Each interupt is either 9ms or 11 ms instead of 10ms

« Error correction
- What if 81 and 52 differ too much...

Server L T
* Average Os over multiple requests
* Use multiple time servers and average Os
Client 5| 51
T T

Olivier. Gruber@inria.fr

Berkeley Algorithm

* Coordination between nodes
- Nonode has UTC, like in disconnected private networks
- We still want synchronized clocks, even if they are not on UTC

- Sometimes, agreeing on time is just enough

¢ Principle
- A coordinator ask all machines their current time
- It computes what the time should be
« Itaverages received local times, ignoring those with times too far off

- It sends back time corrections

Olivier.Gruber@inria. fr

Discussing Time

¢ Real time
- Is just an illusion...
 Precise enough in some situations, like for humans or for a make program
- But always some marging of error
« It cannot be used to reason about a distributed system

« It cannot be the basis of behavioral proofs

« Example: critical section c
1
We either have —_—
Leave(C2) happens-before Enter(C1) c
2
_

Or

Leave(C1) happens-before Enter(C2)
Without global time, how do we tell?

Olivier Gruber@inria fr

Execution Model

« Process model
— Each process is a local sequence of events
cpiieleled ek
— An eventis a local state change in the process
« Communication model
- Process may exchange messages
- Message delays are unknown, messages may be lost

- Sending or receiving a message is a state change, thus an event

Py !
m;
e, e,? m, e}
P, T T T \
e, e e

Olivier. Gruber@inria. fr

Causal Order

« Lamport (1978)
- Causal order between two events is noted
ce—e'
- Itisdefined as
* ¢ happened-before ¢'
— In our execution model, we have e = e'if
« eand ¢ happens in the same process and ¢ happens before ¢'
« eis the sending of a message m and e' is receiving that message
— The causal relationship is transitive
« Ife—»e“and e“—e'thene »e'
- Causal order is only a partial order

* Not all events may be causally ordered

Olivier. Gruber@inria.fr

Causal Order

¢ Example

- Wehave
e1‘I 211 e1:
celel e} [N T
.el 2 3 1 2 3
e ep e, e e h e,
P, T s T
.e? 2
€ —Ve‘

- Therefore we have
celove)
- But we only have a partial order
« Weneither have e,' = e,/ or e/ = e,/

« Noted as e/ [[e,

Olivier.Gruber@inria. fr

Logical Clocks

Logical Clocks

LC(e)=1 LCEA"2 1C(e)=3 LC(e/)=6 LC(e,)=7
1 L 1 Il 1

Py
2 5
Example LC(e,)=2 LC(e)=3 LC(e,/)=4 LC(e)=5 LC(es)=6
P, 1 L 1 1
LC(ey)=1 LC(e,)=5 LC(e,)=6
P L L
LC(e)=4

« By definition
- e}—ey implies LC(e!) < LC() Look at LC(e;') < LC(e,’)

* Usage It is a case where (¢! //e,?)
- LC(¢}) < LC(e) implies (e = ef)

- Thatis (ef —e¢/) or (¢} /e)

Olivier. Gruber@inria. fr

Logical Clocks
- Nothing to do with real time
- Logical clock for an event e/ is noted LC(e/)
- Design
* Logical clocks are maintained as local counters

« For each new local event e/: LC(e/)= LC(e}")+ 1

Regarding Messages
- Sending a message M
« This is a new local event ef: LC(ef)= LC(ef")+ 1
* Mis timestamped with LC(e/)
- Receiving at P;a message M(LC(e}))
« Thisis anew event e/

+ LC(e))= max(LC(e/"),LC(e}) + 1

Ordered Multicast

Olivier Gruber@inria fr

Problem

- How do we order multicast messages to a group of processes?

Example — Bank Account Interest
- You deposit 100€ to your account that contains 1000€
- Banker applies your monthly interest 1%
- Bank accounts are replicated in Paris and Berlin
 Same execution order = 1110€

« Different execution orders = 1111€

Example — Deposit and Withdrawal
- Same bank, you deposit 400€ and withdraw 1200€
* Same execution order, accepted on all replicas

* Different execution orders, one replica may reject the withdrawal

Olivier. Gruber@inria.fr

Totally Ordered Multicast

¢ Totally Ordered Multicast

- Using Lamport's logical clocks

* Design
- Between a group of N processes
* They must know each others (concept ofa group)
« Each message from one process is multicasted to the entire group
* We assume FIFO and loss-less communication channels
- Each process:
* Each message carries its normal timestamp (Lamport)
- Build an ordered queue of messages based on the message timestamp
- Acknowledge each message to the group (multicasted ack message)
* Delivers a message only when
— The message has been acknowledged by all other processes in the group
- The message is at the top of the ordered queue

Olivier.Gruber@inria. fr

Totally Ordered Multicast

Reordered queue

Olivier. Gruber@inria. fr

Totally Ordered Multicast

LC=11

M,(10; \

M,(66)
P, USS

LC=67

Olivier Gruber@inria fr

Totally Ordered Multicast

LC=85

Mo n]
[Jos []

P, mm 76-77 85

Pz Uea 74 78

Received all ACKs

Olivier. Gruber@inria.fr

Totally Ordered Multicast

<—_ Same order
in both queues

Olivier.Gruber@inria. fr

Logical Clock Limits

« When should we deliver m,(8) ?

- Do we have to wait for my(5)?

How do we detect missing or delayed events?
- Undistinguishable situation from P, perspective

« Point-to-Point Causality send (m)— send

= deliver,(m) — deliver,(m’

violates
causality
(el &) ana (el € (0= &%) ana (& = &%)
Py
P P,
P P
P, P,

Olivier. Gruber@inria. fr

Totally Ordered Multicast

* Special Corner Case
- Two multicast could have the same logical clock at two processes
- Extends logical clocks with process identifiers,as decimals
* When we had:
- LC(e,#) = 56 and LC(e,/) = 56
* Wenow have
- LC(e,) = 56.32 and LC(e,) = 56.24

Use this extension any time you need a total order on logical clocks

Olivier Gruber@inria fr

Vector Clocks

« Vector Clock (Fidge and Mattern, 1988)
- A vector of logical clocks
« One entry per known process P,
« VC[i] = max value of known LC(P)
- Each event carries a vector clock
« It gives the history at various processes that the event depends on

- Each process P maintains a vector clock VC,

« Maintains the logical clocks that the current state of P depends on

1,00 2,00 330
Py ;

),
P, 01,0 2,2,0 23,0

Local state is now causally
dependent on states (2,0,0)
Olivier. Gruber@inia.f

Vector Clock Management

« For each local event, increment local logical clock

- VC[i]=VC[i]+ 1

¢ Sending messages
- Itisalocal event, so increment local logical clock

- Timestamp messages with its VC,

1,0,0 2,00
Py
P 570 a7
Ps 0,0,1

Olivier.Gruber@inria. fr

Vector Clocks

« Unicast (point-to-point messages)

- Vector clocks are not enough to capture point-to-point causality

send (m, send (m'
= deliver,(m) — deliver,(m')

Py
[200]
P: 555 21,0
0,0,0
P;

violates causality
the vector clock does not carry any
knowledge of late messages

Olivier. Gruber@inria. fr

Vector Clock Management

« For each local event, increment local logical clock
- VC[i]=VC[i]+ 1

« Receiving messages with a vector clock VC |
- VC[k] = max(VC[K]L,VC,[k]) for all k = i

- Increment local logical clock VC[i]

Olivier Gruber@inria fr

Vector Clocks

« Unicast (point-to-point messages)
- Correct execution if P sent the first message to another process than P,

- Non-distinguishable from P perspective

0,00 1,00 2,0,0

Py

P: 555 100 210
0,00

Ps

2,21
no longer violates causality

Olivier. Gruber@inria.fr

Causally-Ordered Multicast Causally-Ordered Multicast

¢ Causally Ordered Multicast * Modified Vector Clock Design
- Vector clocks are not enough to capture point-to-point causality - Sending messages
- But they can be used for causally-ordered multicast * Increment local logical clock only regarding multicasting (no other events)

* Use vector clocks to know how long to delay message delivery + Timestamp messages with its VC,

Causally ordered multicast imposes a weaker order than the totally ordered

- Receiving messages with a vector clock VC
multicasting with logical clocks + VC[K] = max(VC [iL.VC[K]) for all k # i
. i !
Thus, it performs better ! No ACKs * No increment of local logical clock
« Immediate local delivery of a message when multicasting it
local delivery

0,00 10 0/
N
Pz 000 1,00

Ps %00

Olivier.Gruber@inria. fr Olivier Gruber@inria fr

Causally-Ordered Multicast Causally-Ordered Multicast

0,00 0,00 1,00 1,1,0
") \
P: 530 T P Too 0,1,0 11,0 T
[100] [100]
P oo 1,00 o P o0 10 10 10
no local-clock
B / delayed delivery
increment confit no conflict, deliver immediately
Fora mes-sage M,.recelved by Px from P,, with vector clock VCm Notice that
Delay delivery until we avoided all the acknowledgment messages
VC [s]= VC [s}1 of the totally-ordered multicast
n f
VC, k] = VC [k] forallk # s

Olivier. Gruber@inria. fr Olivier. Gruber@inria.fr

Causally-Ordered Multicast

* Example: newgroups

- We want to avoid response posts to appear before the original posts

Py

P T

P o0 000 1,00 11,0
original post delay the response post

response post response post arrives until we got the original post

before the original post

Olivier.Gruber@inria. fr

Causally-Ordered Multicast

* Example - newsgroups
- Notice that we don't know for a fact if the message is a response or original post

- Middleware is blind to application-level semantics

0,0,0

Py

P: 558

P: 550 0,0,0 1,0,0 11,0

delay delivery

Only potential causality...
Blindly enforced by the middleware

Olivier. Gruber@inria. fr

Causally-Ordered Multicast

« Example:newsgroup

- But we don't need to order original posts...

0,00 1,00 1,1,0
p‘
P: 5oo 0,1,0 11,0 T
Ps 0,00 , 01,0 11,0 11,0

two independent posts, they don't have any order

Olivier Gruber@inria fr

Causally Ordered Multicast

000 000 000 100 1,10 120

delayed delivery

Fora message M
Received by P from P with vector clock VC

Delay delivery until
VC[s]=VC [s}+1
VC[k] = VC [k] for allk # s

Olivier. Gruber@inria.fr

Matrix Clocks

Matrix Clocks

¢ Towards more complete history
- Logical Clocks
* LC,=what P knows is just a number, used in a global order
- Vector Clocks
« VC[j]=what P, knows about P,
- Matrix Clocks
* MC|[j, k] = what P, knows about what P, knows about P,

Olivier.Gruber@inria. fr

« Within a group of n process

123
- Each process P,maintains a matrix clock MC;[n,n] 1[000
2/000
- Each event e}is timestamped with the matrix MC; 3iQe0
MC[2,3]
- Each message is timestamped with the matrix MC,;
MC[3,1]

* Matrix definition
- MC[jk]=number of messages sent by P, to P, that P;causally knows about
+ A column k represents what a process P, has received from other processes P;that P;
knows about

- MC|[i,i] = local events (local logical clock)

Olivier Gruber@inria fr

Matrix Clocks

* Matrix definition
- MC|[jk] = number of messages sent by P; to P, that P,causally knows about

- MC[i,i] = local events (local logical clock) 2
1[000
IO
\ MC[2,3]
MC[3,1]
000 101 211

000 000 000
000 000 000

Py
000 21 211
000 010 021
000 000 000
P
000 101 211
000 000 021
000 001 002
Ps

Olivier. Gruber@inria. fr

Matrix Clocks — Rules

* Local Event:
- MC[[ii] = MC[i,i] + 1

« Sending a message from P,towards P,
- MC[ik] = MC[ik]+1
- MC{[i,i] = MC|[i,i] + 1

000 101 211

000 000 000

Py
000
000
000
P,
101
000 000
000 j\Poo
000
P =

Olivier. Gruber@inria.fr

Matrix Clocks — Rules Matrix Clock

« Delivery condition at P, of a message from P, timestamped with MC « Point-to-Point causality

- Vp#iand p#k Mc,[pk]==Mc[pk]

- M, [ik]

Mg, [i,k]+1 (FIFO order on channel from P;to P,)

000 101 211
« Delivering a message timestamped with MC, from P, at P, 000 000 000

p, 20 o0 oo
- MC,[p.q] = max(MC,[p.q].MC, [p.q]) with p # k (P, knows best what it received) !

- MC,[kk] =MC,[kk]+ 1 (increment local clock) Missing message...

P,
000
000
P 000 000 000_ 101 _ 211
000 000 000= 000 = 021
000 000 000 001 002
Ps
P,
delayed delivery...
P;

Olivier.Gruber@inria. fr Olivier Gruber@inria fr

Mutual Exclusion Mutual Exclusion

« Critical Section

« Centralized approach
- Leave(C2) happens-before Enter(C1)

c, - Simulate what happens in one-processor system
- Leave(Cl) happens-before Enter(C2) —— « Elect one process as a coordinator
- Without global time, how do we tell? c - Principle

+ Can we do it know? e

* The coordinator grants the critical section if available
- We will look at a centralized version

* When not available, it queues the requesting processes
- Then a distributed one using logical clocks * When critical section is freed, it schedules the first process in the queue
- Finally, one using a token

O] &) ©® o ®

request || OK request release OK

coordinator I

queue queue queue

Olivier. Gruber@inria. fr Olivier. Gruber@inria.fr

Mutual Exclusion

Ricart and Agrawala (1981)

- N processes
* Interconnected with reliable FIFO channels

- Requires a total ordering of all events
* We use extended logical clock

- When we had:
« LC(e,}) = 56 and LC(e,) = 56

- Wenow have
« LC(e,}) = 5632 and LC(e, /) = 56.24

- Basicidea
+ Each access request to a resource has a logical timestamp

+ Real close to the principle of the totally-ordered multicast

* Processes are granted access in the order of the logical timestamps of their requests

Olivier.Gruber@inria. fr

Mutual Exclusion

[2Jok.2.2) [2]ok.0k.2)

(ok.ok.0k)

release

p 1 2 5 6 10
"

request f
ok |ok

/

I

P = 34 56 T
|

reauest ok /

L 5 7 3

[3]2.0k.0k)

2.2.0k)

Olivier. Gruber@inria. fr

Mutual Exclusion

« Principle
- Each process multicast its requests to all other processes

* Waits for granted access from all processes
* When it has granted access from all, it has access to the resource

- Upon receiving a request
« Ifthe request receiver is not accessing the resource

- It grants access
« Ifthe request receiver has already exclusive access to the resource

- It queues the request with no reply

= Upon release
« The owner will grant all pending requests

Olivier Gruber@inria fr

Mutual Exclusion

* Token-based approach
- Overlay ring, no matters what the real network topology is
— There is only one token, going around the ring

— The token represents the granted access to a shared resource

« Principle
- A site enters the critical section
« Waits for the token to arrive (granted access)

- Accesses the resource
* When done, releases the token onto the ring (next process)

Olivier. Gruber@inria.fr

Mutual Exclusion Mutual Exclusion

« Token-based approach

- Starvation must be avoided Algorithm Messages per Delay before entry Problems
- Temptation entry/exit
. L. Lo B C lized 3 2 Coordinator crash
+ Allow local reuse of the token if the critical section is locally requested upon its
release... Distributed | 2-1) 2n-1) Crash of any node
+ Rationale: avoids potentially going around the ring for nothing messages messages
- Danger Token rin,
g & From one to From 0o n-1 Lost token
* Potentially leads to starvation unbounded ~

- Possible solution

no one wants the CS

token goes around and around
but just waste a little bandwidth...

+ Limit the re-use of the token locally

Slower, more expensive, more fragile... why bother?
Shows it is possible to approach it as a distributed design
It is still open research to do better...

Olivier.Gruber@inria. fr Olivier Gruber@inria fr

Discussing Failures The Election Challenge

« Examples of failures « Context

- Messages may be lost or delayed enormously - A distributed system with N processes

- Machines or processes may fail * Processes know each others

- Impossible to detect the difference in practice - The knowledge of the static group
* A process does not know which process is running or down or failed

* Difficult problem - No knowledge of the dynamic group (currently correct processes)

- None of the above algorithms resist failures * Synchronous network (bounded delivery)

+ Messages must be delivered in bounded time — Elect cooperatively one process to perform a certain task

+ Processes and machines must not fail * One process needs to be selected and only one

- In practice, the centralized approach is the more robust « All processes need to agree on which process is elected

« Simple failure detector based on the heart-beart technique - Necessary in many circumstances

* Re-elect a coordinator if a failure is detected * Mutual exclusion coordinator (centralized algorithm)

« Transaction commit (coordinator)
« Data replication

Olivier. Gruber@inria. fr Olivier. Gruber@inria.fr

Election Algorithms

¢ Bully algorithm
- Processes are all uniquely identified
— There is a total order on process identifier

- For example, machine IP and local creation time

« Simple design

- Any process may initiate the election at any time
* A process P sends an ELECTION message to all processes with higher identifiers
+ Ifno one responds, P wins the ELECTION
+ Notify all processes of the new elected coordinator (process P)
« Ifone of the process responds, it takes over the election process

- Upon receiving an ELECTION message
* Returns an OK message to indicate that it is alive and takes over the election
« Ifitis already holding an election process, just keep going
+ Ifitis not already holding an election process, apply the algorithm above

Olivier.Gruber@inria. fr

Bully Algorithm

@ ®/®
@

©}
©& @ elected =

Olivier Gruber@inria fr

Election Algorithms

« Aring algorithm
- N processes are organized as a ring overlay

- Synchronous network, loss-less and FIFO

@
OO

Olivier. Gruber@inria. fr

Election Algorithms

* Aring algorithm
- Any process needing a coordinator
* Creates an ELECTION message with its own identity
+ Sends a ELECTION message to the next node on the ring
~ Loops on the overlay until it finds one successor alive
= Ifnone are alive, it self-elects as a coordinator
- Any process receiving an ELECTION message
* Add its own identity to the message
* Forwards the message to the next node on the ring
* Loops on the overlay until it finds one successor alive
— First loop is done
* The ELECTION message comes back to the originator
~ Elects the process with the highest identifier as the coordinator
« Circulate the COORDINATOR message notifying
- Who the coordinator is

= Who is in the overlay (removing failed processes)
Olivier.Gruber@inria.fr

Ring Algorithm

Discussing Failures

election

Olivier.Gruber@inria. fr

* Messages may be lost or delayed enormously

- Impossible to detect the difference in practice

* Processes may fail
- Fail-stop
* Works correctly or not at all
* How do we differentiate between lost or delayed messages and failed process?
- Partially fail (algorithm failure, boundary condition, etc.)

* May accept message and make erroneous answers

+ Requirements for previous algorithms
- Messages must be delivered in bounded time (no loss)

- Processes may only fail-stop

Olivier Gruber@inria fr

