Systémes et Applications Répartis

Fundamentals — Part Three

Professeur Olivier Gruber

Université Joseph Fourier

Projet SARDES (INRIA ¢t IMAG-LSR)

Olivier.Gruber@inria. fr

Outline

* Memory consistency models
- Distributed systems have no central consistent memory
+ Natural consistency (sequential consistency) is expensive to implement
- Search for different compromises
* Sequential, causal or eventual consistency
* Integrating consistency and synchronization
- Memory consistency protocols

+ Afew protocols such primary-based and replicated-write protocols

Olivier. Gruber@inria. fr

Message Fundamentals

« Previous Lectures
- Discussing messages
* How do we name the destination?
* How do we route the message?
- Discussing time
* Whatnotion oftime do we have?

* How do we synchronize activities?

* Today's Lecture
- Discussing memory models...
* When accessing something means acquiring a copy through messages

* When updating a local copy requires sending notification messages

Olivier Gruber@inria fr

Useful Notations

« Notations
- Read operation at process P, on data x returning the value @
.« R(x)a
- Write operation at process P, on data x writing the value b
.« Wb
- Time flows from left to write
- Alldata items are initialized to NIL

P W(a

'

P R (x)NIL Rz(x)a\
reading default NIL value 'sometime before the read, P2 replica is updated
with the value written by P,

Olivier. Gruber@inria.fr

Shared Store

¢ Processes
- We have N processes

- We have a shared data store with data items

P R(x)___1 Wx)?2 R(x)___ 2 R(x)___ 2
write-
read through

Store

L R 1 R 2

Olivier.Gruber@inria. fr

Shared Store

« Discussion
- Like a normalshared memory, requires the use of synchronization

- Poor performance (latencies)

P RE___1 W2 R(x). 2 R(x). 2

| ___1 Wx2 Rx)______ 2 RKx____

wite-
read through

Store

Pi RR__I R R 2

Olivier Gruber@inria fr

Shared Store

¢ Introducing local caches
~ One local cache per process
- Shorter latencies, but we need a consistency protocol
+ Store must remember who has a cached copy ofeach data item

* Must be able to callback caches to install updates

Rx)___1 W2 RX2 R(x)2

Cache | I D=1l x=2,

read write>

Cache | [Tx=1] [x2]]

Pr ORI R()1 R(x)2

Olivier. Gruber@inria. fr

Shared Store

« Introducing cache flushes
- Caches may overflow, we need to flush some cached data items
flush

P: RX___1 W2

| ___

Cache

read wite®

Olivier. Gruber@inria.fr

Shared Store

Shared Store

¢ Cache Design
- How do we maintain the store copy lists?

- So to avoid unnecessary update messages

P v Rx)___1 W2

I -
N B I =1 B S M)

Unnecessary
update

Store

write-
through

Olivier.Gruber@inria. fr

+ Cache Design
- Maintaining the store copy lists
« Background messages
* Time-To-Live caches (watch for time skew)

P: Rx__1 W2

'

Cache

Store

Cache |

P: R(__1 W(x)3 R(x)3

2

Olivier Gruber@inria fr

Shared Store

Shared Store

« Cache Design
- Use FIFO communication channels!
+ With TCP/IP, requires to keep sockets open
* With UDP, you need to implement FIFO/lossless

reading an old value

R(X)1

T Re_ R(X)1 R(X)2

Olivier. Gruber@inria. fr

* Overview
- Shared data store

— Cache with flush and consistency protocol over FIFO channels

R(x)3

I s = Tot] P

read write®

wite-
through

3 fy 1

P R(X___1 R()1 R(x)2 W(x)3

Cache | IT=1] = [x5 |

Olivier. Gruber@inria.fr

Distributed Store

Shared Data Store

- Once shared store g

- Multiple processes with local caches
write cache

Distributed Data Store request update

- Multiple processes with local caches

- No materialized shared store at any one site

- Implemented through distributed protocols

« Consistency Challenge
. write
- Maintaing consistency incurs a certain overhead request

¢ Dilema

- The stronger the consistency, the easier to use
the distributed system, but the more expensive
the consistency protocol

Olivier.Gruber@inria. fr

Sequential Consistency

* Defined by Lamport (1979)
- Memory works as expected with multiple processes

The result of any execution is the same as if the read and write operations
by all processes on the data store were executed in some sequential order
and the operations of each individual process appear in this sequence

in the order specified by its program.

R,(x)b R,(x)a

¥ R,(x)b R (x)a

sequentially consistent

possible equivalent sequential order:

W,(x)b R (x)b R(x)b W (x)a R (x)a R,(x)a

Olivier. Gruber@inria. fr

Consistency Models

+ Consistency Definition
- Essentially a contract between processes and a data store
- Each model defines correctness rules

- Each model defines operations and a data unit of consistency

 Different Models
- Trying to maximize both performance and usability
* Using domain-specific knowledge
- Three dimensional space:
* Numerical deviation
- Allowing different replicas to differ numerically
- E.g. precise temperature sensors but replicas have degree-rounded temperatures
« Staleness deviation
- Allowing different replicas to have less recent values
- E.g. DNS, in-network web caches or out-of-date seat availability (booking systems)
+ Ordering deviation

- Allowing different replicas to execute read/write operations in different orders

Olivier Gruber@inria fr

Sequential Consistency

The result of any execution is the same as if the read and write operations
by all processes on the data store were executed in some sequential order
and the operations of each individual process appearin this sequence

in the order specified by its program.

R (x)b R (x)a

not sequentially consistent K R(0a R (x)b
no possible equivalent sequential order:
W,(x)b R(x)b W,(x)a R(x)a R,(x)a R(x)b

can'tread the value b from x
W (x)a R (x)a R (x)aW,(x)b R (x)bR(x)b

violate F’3 local sequential order

Olivier. Gruber@inria.fr

Sequential Consistency

¢ Possible Design
- Use totally-ordered multicast on writes

« Allprocesses see the same order of writes
« It prod only all i e

Notice the delay...

Pi W

P, W,0

P R (x)b R (0a

Py R (x)b R (x)a

Olivier.Gruber@inria. fr

Sequential Consistency

+ Non-Sequential Executions

- Impossible, would violate the totally-ordered multicast property

P R (X R (x)a

P m R (x)b

violate totally-order multicast

Olivier Gruber@inria fr

Causal Consistency

* Weaker Consistency
- Harder to use, potentially more parallelism
- Causality
« IfaneventE, is caused or may be influenced by an event E,
« Causality requires that everyone sees the event E before the event E,
Writes that are potentially causally related must be seen by all processes

in the same order. Concurrent writes may be seen in a different order on
different machines.

P W (xa W, (x)e
Py Rea wep f
P
P

K R (0a ‘\ ’ R(xc R,(x)b

E R (x)a \J Rb R (e \

concurrent writes

different orders

Olivier. Gruber@inria. fr

Causal Consistency

W (x)a
R Wooe
H R(0b R,(0a

E \/ R(a Rxb

causal writes

P
P
P
P

i
K

not causally consistent)
execution concurrent wites.
non-causally related

causally
consistent now

PioW(a

Py Rege W, (xb P

P / R0b R (xa

P R(xa R(xb

removed the causal dependency: Rz(x)a

Olivier. Gruber@inria.fr

Causal Consistency

¢ Design
- Requires that each process keeps tracks of which write operations it has seen
« One may use vector clocks for this
- Replica coherence

«+ One vector clock per data item

— Clock ticks on writes (as in causally-ordered multicast)
* On local writes, multicast update messages

- Causally-ordered multicast of the value

- Timestamped with the vector clock

Olivier.Gruber@inria. fr

Causal Consistency

P

delayed delivery
P

still impossible
P R(0b R (x)a
3000 4,000 4100
P R (x)a R,(x)b
4,0,0,0 4,1,0,0

Olivier. Gruber@inria. fr

Causal Consistency

P W (a

'

a(4,0,0,0) 5(4,1,0,0)
P R(a Wb
4,0,0,0 4,10,
impossible,
local value is b
b(4,1,0,0)}
Py R (b R (xa
4000 4,100
P R (x)a R ()b
4000 4,000 2,100

Olivier Gruber@inria fr

Causal Consistency

K
3,000 4,000

Olivier. Gruber@inria.fr

Causal Consistency

Advanced protocol... when does it work?

P W (xa
4,0,0,0
a(4,0,0,0)

4,000 still impossible

P R, (x)a
Dropped update

¥ R () R ()b

4,000 41,00

Olivier.Gruber@inria. fr

Eventual Consistency

« Eventual Consistency
- Weaker consistency, but rather easy to use
+ Corresponds to a class of systems with simpler requirements
+ Before, we tried system-wide consistency
- Assumed concurrent updates from different processes
- Assume that processes use mutual exclusion or transactions
+ Looking ata specialclass of data stores
- Most processes are simply reading data
- When concurrent updates happen, they can be easily resolved
- DNS example:
« Everybody reads, only the domain owner updates DNS records
- 1tis ok to read out of date records for a while
- Use lazy background update messages
« Eventually, copies will get consistent
- Web example:
+ Same reality about the Web and web page updates

« Even including in-network caching & la Akamai

Olivier. Gruber@inria. fr

FIFO Consistency

+ Even Weaker Consistency

- Even harder to use, but potentially more parallelism

Writes from a single process must be seen by all processes in the same order.
Writes from different processes may be seen in different orders.

P W,(xa

Py R(xa Wb W,xe

P Rb R(xa R(xe
P R(xa R(Xb R(x)e

Implementation: a simple counter per item and per process is enough

Olivier Gruber@inria fr

Synchronization and Consistency

* Rationales
- Consistency on simple read-write operations are costly
- Ifsynchronization is used, consistency protocols may be delayed at
synchronization points
* Basic Idea
- Associate a monitor with one or more data items
* Called protected data items
- Coordinate consistency and synchronization protocols

* Monitor operations must respect sequential consistency
- Enterand leave critical sections are seen in the same order by all processes

+ Data consistency
= Allwrites on protected items must be visible locally before one enters the critical section
~ Accesses (reads or writes) on protected items outside the critical section are unde fined

Olivier. Gruber@inria.fr

Synchronization & Consistency

Examples

p; E W(x)a W(x)b L

P, R(x)a R(x)b E R(x)b
Ps R(x)a E R(x)b
P, R(x)b E R(x)b

possible execution

p, EW(x)aW(x)b L
P, E R(x)a

impossible to read the value a

Olivier.Gruber@inria. fr

Release Consistency

« Eager Approach
— Only enters the critical section once all local copies are up to date

* Acquiring the critical section and receiving pending updates must be coordinated
~ When leaving the critical section

+ Eagerly send local updates towards other replicas

PioWa L)

. EGOR(Ma Wb

K EGOR, (8 % W (xb

impossible
must wait for the update

Olivier Gruber@inria fr

Release Consistency

« Lazy Approach
- Upon entering the critical section
+ Pullmissing updates on protected items
+ Optimization: pigging back updates on granting access
- When leaving the critical section

+ Nothing needs to be done

P W (a L)

Iy x request

) R, Wb L(x)

request x
P %x\\wx)a W,(9b L6) \/

Olivier. Gruber@inria. fr

Discussing Consistency

* Undefined Semantics

- Accessing protected data items outside critical sections

stale read
not within a critical section for data item y

P EGE) W, W b LE)LK)

x(@) /| y(b)
P E(x) ,(x)a Ry(YNIL E(y) R (y)b Ly)L(x)
(b)
P E(y), b E(y) i

Olivier. Gruber@inria.fr

