Distributed Systems Who am I?

¢ INRIA - Rocquencourt, France
- Ph.D.(1992)
- INRIA Team Leader (1992-1995)

¢ IBM Almaden Research Center (1995-1996) — California, USA

ot - Full-ti her - ad d datab
Olivier Gruber ull-time researcher - ad vanced database group
« IBM Watson Research Center (1997-2007) - New York, USA
Full-time Professor - Object-oriented and component-oriented systems

Université¢ Joseph Fourier - Web middleware and pervasive ecosystems

Senior Researcher - Senior researcher and technical advisor to IBM strategists
Projet SARDES (INRIA et IMAG-LSR)

¢ Full-time Professor (2007-today) — Grenoble, France
- Joseph Fourier University, Grenoble

- SARDES team, INRIA Rhones-Alpes

Acknowledgments This Year Outline
3
¢ Prof. Sacha Krakowiak * Course Goals
- Used his lectures as a canvas - Understand architecture and design trade-offs
+ Reference Book - Master core techniques and essential distributed algorithms

- Discuss existing systems and frameworks
Distributed Systems

Principles and Paradigms « Today
Second Edition - Background on distributed systems

Andrew Tanenbaum and Maarten Van Steen - Fundamentals — Part One

¢ Research Articles

- Cited on various slides




Distributed Systems

¢ What are they?

- Collection of cooperative entities

¢ Humorous Definition from L. Lamport

A distributed system is one that stops you from getting any work done
when a machine you’ve never heard of crashes.
Leslie Lamport

- Highlights the cooperative nature of distributed systems

- The increased probability of failures

- The likeliness of their consequences on overall availability and human experience

Distributed Systems

¢ Examples

- Networked workstations
* Atypical Local Area Network with distributed applications
* Distributing processing or sharing data

- The World-Wide Web
* Where world-wide scalability is /e challenge
* Client-server or peer-to-peer

- Cellular wireless networks (telephony)
* For voice and data, mobile devices

* Health monitoring of patients at home or travelling

Failure Examples

¢ Buffer Change at Polygram
- A small buffer size change, failure of the order-shipping workflow
- Hundreds of trucks and employees out of work for more 24h

- Intrinsic costs and warranty violation

* September 11th, 2001
- Most businesses in the towers had only regular data backups

- No disaster recovery from replicated data

« Space Shuttle

- Four computers, many missions ended with one left working...

¢ Ariane 501
- June 4" 1996, first launch of Ariane 5 fails: Ariane 5 explodes

P/ cnes. _p i p96/rapport_501/rapp

Distributed Systems

_501_2.html

¢ More Examples
- Game Consoles
+ Sony PlayStation 3 was originally designed to deliver 1 teraflops
 Four processors, highly-parallel flow-oriented machine
- Embedded networks
« Inplanes or cars
- BMW Serie 7
- 4networks, 70 computers
— 70% of car failures are computer-related (hard ware and software)
* Sensor networks
- On-chip networks
* Distributed systems on chip

* Soon,more than 64 nodes interconnected on one silicium chip



Distributed System Origins

¢ Hardware Revolution
- Processing
« From 10 millions of dollars, 1 instruction per second
* Toa few hundreds of dollars, 1 billion intructions per second
* Rolls Royce:
- Would be a dollar

- Would geta billion miles per gallon

- Would be the size of a match box
- Networking
* From some 300 bps (early modems)
« Ethernet from 10Mbps to 10Gbps, wireless 54 Mbps or more
« Latency from a few microseconds to a few hundred milliseconds
- Storage
* Access time around a few milliseconds (5 to 10ms)

« External transfer rate around 300Mbps

Distributed System Origins

¢ Software Revolution

- From standalone applications to cooperative applications

¢ Standalone Application
- Sweet spot for traditional operating systems

- Its own data, its own processing, its own windows

« Cooperative Applications
- Integration and interoperability
- Share data (like a shared file system or database system)
- Exchange messages like email systems, SMS, web browsers or X11
- C bedded

P like systems in a car or world-wide banking systems

Distributed System Challenges

¢ Software
- Software is lagging behind hardw are, incredibly so!
« Distributed programming is orders of magnitude harder
- Reasons:
* Parallelism, asynchronous, communication latency, failures, etc.
- Should impacts
« Programming languages and models
* Tools and runtimes
* Algorithms
- Usually

+ Approached through a middleware...

Distributed System Challenges

¢ Introducing Middleware
- Higher-level APIs, attempts to help...

- All differents... all quite complex...

« Essentially Two Middleware Families
- Message-oriented

- Object-oriented

APIs

APls Operating Operating
System System




Distributed Programming

Message-Oriented Paradigm
- Send and receive messages
* A message is a byte stream of known length
« Sender: build and send a message
+ Receiver: wait and receive a message
- Both synchronous or asynchronous
* Sender may not wait for the response

* Receiver may not wait for the receive

Cender>

Distributed Programming

Distributed Programming

Client-Server Architecture
- Simpler approach to distributed programming
+ The Web is a perfect example
+ Each client independently interacts with servers
- Not fully distributed
« Each server essentially provides a centralized
decision point, but also a single point of failure
Distributed Peer-to-Peer Architecture
- Towards identical processes
* No more clients or servers
+ Only identical peers
- Engaged in a cooperative process
* Exchange data

* Execute logic

client

g client
/ﬁ client

server

peer

Client waiting

request

Server Satalad

¢ Client-Server Basics
- Mostly a synchronous world
* Make a request to a server, wait for the response
« But not always, like backgrounded image downloads for web pages
- Relies on
* Naming scheme: names the destination of messages

* Routing scheme: routes messages to their destination

Distributed Programming

¢ Object-oriented Paradigm

- Remote objects and method invocations
« Traditionally synchronous, could be asynchronous
* Message is the method invocation (argument marshalling)
* Routing is based on object identity

- Built on a message layer
* Provides better language integration
+ Claims improved developers' productivity

* Java RMI or Jini arc examples

CSender> Receiver
=



Discussing Programming Models

Object 0x12

(1) invoke a method
\l—
@t —

(3) get the

Object 0x48

execute

|

|
returned values | 7
|

public chiss Foo { public chass Bar {

Bar m_bar;
public int foo() {
return m_bar.bar(2);

intm_value;
public int bar(int factor) {
return factor'm_value;

Distributed Programming

Distributed Programming...

Why is it so hard?

Distributed Programming

¢ Client-Server Architecture client X
client
- Objects can act as servers ﬁ
« May be grouped in physical servers
+ A Web server could be implemented as a remote client
Java object, accessed via RMI
server

« Distributed Peer-to-Peer Architecture
- Objects can be seen as peers
- Objects may implemented distributed protocols peer peer

- Objects may be replicated and cached
peer

peer
peer

Traditional Programming

* Time
- There is a notion of time: the hardware clock

- This means that all events happen on one timeline

¢« Memory
- Reads and writes are consistent

- Assumed to be fast

¢ Processing
- Method invocations or function calls
* Synchronous and expected to work (no remote failure)
- References are expected to stay available
* No loss of in-memory data structures

- Often single threaded logic




Distributed System Challenges

No Global Time
- Only causality applies

- Calls for asynchronous models

No Global Ordering

- Between senders and even between messages

- Asimple loop with a method call suddenly does not work as expected anymore...

No Global Consistency
- In practice, too costly and difficult

- The Web caching example

Overall Goals of Distributed Systems

Transparency
- Access, location, migration and relocation transparencies

- Concurrency and fault-tolerance

Scalability
- Geographical scale
- Scaling in size (users, nodes, resources)

- Administrative scalability across administration domains

Availability
- Facing failures or downtime

- Facing evolution as long-live systems must change

Mobility

- Users are mobile, across the globe, with intermittent connectivity

Distributed System Challenges

* Failures
- Lost messages or method invocations
« Distinguish long delays from actual message loss?
« Distinguish message loss from actual node or process failure?
- Lost remote references
* Violates GC assumption
- Consistency
« Difficult to achieve synchronization on shared objects/ data

* Propagating updates between copies of shared data

¢ Security
- Becomes rapidly a concern
+ Eavesdropping on communication
* Identity theft

* Trusting the middle man...

Essential Trade-Offs

¢ About Transparency
- Transparency is considered
+ To be more productive
* But usually expensive to provide
- Not always better
+ Can't change the laws of physics
- A few hundred milliseconds across the atlantic
- Different time zones, time and geographically sensitive services
* Knowing what is costly
- Actual costs do impact algorithms and data structures
+ Knowing where failures may happen
- Leverage application semantics

- Levarage the ability ofhumans to adapt



Essential Trade-offs

* About Scalability
- Scale in number of nodes or users
« From a few nodes to thousands of nodes...
* The Web... millions of nodes... such as Gnutella with 50 millions peers
- Scale geographically
« Physical network capabilities are a concern
— The speed of light can't be changed...
— Limited bandwith and latency
« Latency is more of a problem than bandwidth for distributed systems

* Worsen by the fact that most distributed systems are synchronous
* Communication on WANs

~ Unreliable: loss of messages, partitioning, non-FIFO channels
— Point-to-point channels (no mu lticast or broadcast)
- Scale administratively
+ Conflicting policies for resource management and payment
- Different requirements about security

* Trust between administration domains

Conclusion

* Client-Server Architecture

- Incredibly successful in the last 10 years or so
* Supports the Web and its related e-commerce activities
« Both Business-to-Consumers (B2C) and Business-to-Business (B2B)

- It can scale well and provide high-availability
« It is a matter of technology

~ Fasthardware improvements, smart in-network caching, and router technologies

* Itis therefore a matter of money

- But also a matter of design for both the middlew are and its applications

Essential Trade-offs

¢ About Failures
- Automated fault-tolerance is more productive
* 80% ofthe code of a DBMS is impacted by transactions and recovery
« Error-prone issues for most developpers
- But fault-tolerance is expensive
* Synchronization in distributed system are complex algorithms
- Alot of messages are exchanged
- Supporting message loss incurs extra complexity
* Recovery means logging on stable storage

— Still expensive, even with faster hardware

Conclusion

¢ Beyond Client-Server Architecture
- Why?
* Not all communities have enough money
* Not all systems can accept single points of failures
- Each web server is a failure point, unless it is replicated (which we will study)
* Not all systems can work across uncooperative servers
- Global decisions and cooperations are often unavoidable
- Examples: banking, financial systems, trading, booking systems
- Towards fully distributed systems
* Fundamentally a peer-to-peer architecture
- Essentially about looking at equal partners in a distributed system
- This is not only about file sharing, it is about more advanced algorithms

* Addressing exciting transparency and correctness challenges



Conclusion

Course Content Overview
- Fundamentals

* Message-oriented paradigm
- Naming destinations and routing messages
- Discussing and mastering time
- Synchronization, including election algorithms
- Memory consistency models
- High-availability and fault-tol through

* Object-oriented paradigm
- Object-oriented paradigm, type reflection, class loaders
- Object identity, object proxies, parameter marshalling, distributed garbage collection
- Service-oriented architecture and modules for networked managed platforms

- Case study:
* Java Messaging Service

* Java Platform, RMI, and OSGi



