
1

Distributed System s

Olivie r Grube r

Full-time Professor
Univers ité Joseph Fourier

Se nior Rese archer
Projet SARDES (INRIA e t IMAG-LS R)

2

Who am I?

� INRIA � Rocqu encourt, France

� Ph.D. (1992)

� INRIA Team Leader (1992-1995)

� IBM Almad en Research Center (1995-1996) � California, USA

� Full-time researcher - ad vanced database group

� IBM Watson Research Center (1997-2007) � New York, USA

� Object-oriented and component-oriented systems

� Web middleware and pervasive ecosystems

� Senior researcher and technical advisor to IBM strategists

� Full-time Professor (2007-today) � Grenoble, France

� Joseph Fourier University, Grenoble

� SARDES team, INRIA Rhones-Alpes

3

Acknowled gments

� Prof. Sacha Krakowiak

� Used his lectures as a canvas

� Reference Book

� Research Articles

� Cited on various slides

Distributed S ys tems
Principle s and Paradigms

S e cond Edition

Andre w Ta nenbaum and Ma arte n Van S te e n

4

This Year Outline

� Course Goals

� Understand architecture and design trade-offs

� Master core techniques and essential distributed algorithms

� Discuss existing systems and frameworks

� Tod ay

� Background on distributed systems

� Fundamentals � Part One

5

Distributed Systems

� What are they?

� Collection of cooperative entities

� Humorous Definition from L. Lam port

� Highlights the cooperative nature of distributed systems

� The increased probability of failures

� The likeliness of their consequences on overall availability and human experience

A distributed system is one that stops you from getting any work done

when a machine you�ve never heard of crashes.

Leslie Lamport

6

Failure Examples

� Bu ffer Change at Polygram

� A small buffer size change, failure of the order-shipping workflow

� Hundreds of trucks and employees out of work for more 24h

� Intrinsic costs and warranty violation

� Septem ber 11th, 2001

� Most businesses in the towers had only regular data backups

� No disaster recovery from replicated data

� Sp ace Shu ttle

� Four computers, many missions ended with one left working...

� Ariane 501

� Ju ne 4th 1996, first launch of Ariane 5 fails: Ariane 5 explodes

http://www.cnes.fr/espace_pro/communiques/cp96/rapport_501/rapport_501_2.html

7

Distributed Systems

� Examp les

� Networked workstations

� A typ ical Local Area Network with d istribu ted ap p lications

� Distribu tin g processing or sharing d ata

� The World-Wide Web

� Where world -wid e scalability is the challenge

� Client-server or p eer-to-peer

� Cellular wireless networks (telephony)

� For voice and d ata, mobile d evices

� Health monitoring of patients at h ome or travelling

8

Distributed Systems

� More Examp les

� Game Consoles

� Sony PlayStation 3 was originally d esigned to d eliver 1 teraflops

� Fou r processors, h ighly-parallel flow-oriented machine

� Em bedded networks

� In p lanes or cars

� BMW Serie 7

� 4 networks, 70 computers

� 70% of car failu res are compu ter-related (hard ware and software)

� Sensor networks

� On-chip networks

� Distributed systems on chip

� Soon, more th an 64 nod es interconnected on one silicium ch ip

9

Distributed System Origins

� Hardware Revolu tion

� Processing

� From 10 millions of d ollars, 1 instruction per second

� To a few hu nd reds of d ollars, 1 billion intructions per second

� Rolls Royce:

� Would be a d ollar

� Would get a billion miles per gallon

� Would be the size of a match box

� Networking

� From some 300 bp s (early mod ems)

� Ethern et from 10Mbps to 10Gbps, w ireless 54 Mbps or more

� Latency from a few microsecond s to a few h und red milliseconds

� Storage

� Access t ime arou nd a few milliseconds (5 to 10ms)

� External transfer rate aroun d 300Mbps

10

Distributed System Origins

� Software Revolu tion

� From standalone applications to cooperative applications

� Standalone App lication

� Sweet spot for traditional operating systems

� Its own data, its own processing, its own windows

� Cooperative Applications

� Integration and interoperability

� Share d ata (like a shared file system or database system)

� Exchange messages like email systems, SMS, web browsers or X11

� Cooperate like systems embedded in a car or world-wide banking systems

11

Distributed System Challenges

� Software

� Softw are is lagging behind hardw are, incredibly so!

� Distribu ted programming is ord ers of magnitud e hard er

� Reasons:

� Parallelism, asynchronou s, communication latency, failu res, etc.

� Should impacts

� Programming langu ages and models

� Tools and ru ntimes

� Algorith ms

� Usually

� App roached th rough a mid d leware...

12

Distributed System Challenges

� Introd ucing Mid d leware

� Higher-level APIs, attempts to help...

� All differents... all quite complex...

� Essentially Two Midd leware Families

� Message-oriented

� Object-oriented
Application

Operating

System

Application

Operating

System

Communication Layer

Middleware

APIs

APIs

13

Distributed Programming

� Message-Oriented Parad igm

� Send and receive messages

� A message is a byte stream of known length

� Send er: build and send a message

� Receiver: wait an d receive a message

� Both synchronous or asynchronous

� Send er may not wait for the response

� Receiver may not wait for the receive

Rece ive rSender

14

Distributed Programming

� Client-Server Basics

� Mostly a synchronous world

� Make a requ est to a server, wait for the respon se

� But not always, like backgrou nd ed image d ownload s for web p ages

� Relies on

� Naming scheme: names the d estination of messages

� Rou ting scheme: rou tes messages to their d estination

Se rve r

Clie nt

re que st re spons e

se rvice

waiting

15

Distributed Programming

� Client-Server Architecture

� Simpler approach to distributed programming

� Th e Web is a p erfect example

� Each client ind ependently interacts w ith servers

� Not fu lly distributed

� Each server essentially p rovid es a cen tralized

decision point, but also a single point of failure

� Distribu ted Peer-to-Peer Architectu re

� Towards identical processes

� No more clients or servers

� Only identical peers

� Engaged in a cooperative process

� Exchange d ata

� Execute logic

client

server

client

client

peer peer

peer

peer

peer

16

Distributed Programming

� Object-oriented Parad igm

� Remote objects and method invocations

� Trad itionally synchronous, cou ld be asynchronou s

� Message is th e method invocation (argument marsh alling)

� Rou ting is based on object id en tity

� Built on a message layer

� Provid es better langu age integration

� Claims improved developers' prod uctivity

� Java RMI or Jini are examples

ReceiverSe nde r

17

Discussing Programming Mod els

(1) invoke a method

(2) wait

(3) get the
returned values

Object 0x12Object 0x12 Object 0x48

public cla ss Foo {
 Bar m_bar;
 public int foo() {
 return m_ba r.ba r(2);
 }
}

public cla ss Ba r {
 int m_va lue;
 public int bar(int factor) {
 return factor*m_va lue;
 }
}

Ba r:bar(2)

e xecute

18

Distributed Programming

� Client-Server Architectu re

� Objects can act as servers

� May be grou ped in physical servers

� A Web server cou ld be imp lemen ted as a remote

Java object, accessed via RMI

� Distributed Peer-to-Peer Architecture

� Objects can be seen as peers

� Objects may implemented distribu ted protocols

� Objects may be replicated and cached

client

server

client

client

peer peer

peer

peer

peer

19

Distributed Programming

Distributed Programming...

Why is it s o hard?

20

Traditional Programming

� Time

� There is a notion of time: the hardware clock

� This means that all events happen on one tim eline

� Memory

� Reads and writes are consistent

� Assum ed to be fast

� Processing

� Method invocations or fu nction calls

� Synch ron ous and expected to work (no remote failu re)

� References are expected to stay available

� No loss of in-memory d ata stru ctu res

� Often single threaded logic

21

Distributed System Challenges

� No Global Time

� Only causality applies

� Calls for asynchronous models

� No Global Ordering

� Between senders and even between messages

� A simple loop with a method call suddenly does not work as expected anymore...

� No Global Consistency

� In practice, too costly and difficult

� The Web caching example

22

Distributed System Challenges

� Failures

� Lost messages or method invocations

� Distingu ish long d elays from actual message loss?

� Distingu ish message loss from actual nod e or process failure?

� Lost remote references

� Violates GC assump tion

� Consistency

� Difficu lt to achieve syn chronization on shared objects/ d ata

� Prop agatin g up d ates between copies of sh ared d ata

� Secu rity

� Becomes rapidly a concern

� Eavesd rop ping on communication

� Identity th eft

� Tru sting th e mid d le man...

23

Overall Goals of Distributed Systems

� Transp arency

� Access, location, migration and relocation transparencies

� Concu rrency and fault-tolerance

� Scalability

� Geographical scale

� Scaling in size (u sers, nodes, resources)

� Administrative scalability across adm inistration domains

� Availability

� Facing failures or downtime

� Facing evolution as long-live systems mu st change

� Mobility

� Users are mobile, across the globe, with intermittent connectivity

24

Essential Trade-Offs

� About Transparency

� Transparency is considered

� To be more p rodu ctive

� But u sually expensive to provid e

� Not always better

� Can't change the laws of ph ysics

� A few hundred milliseconds across the atlantic

� Different time zones, time and geographically sensitive services

� Knowing wh at is costly

� Actual costs do impact algorithms and data stru ctures

� Knowing wh ere failures may hap pen

� Leverage application semantics

� Levarage the ability of humans to ad apt

25

Essential Trad e-offs

� Abou t Scalability

� Scale in number of nodes or users

� From a few n od es to th ousand s of nod es...

� Th e Web... millions of nod es... su ch as Gnu tella w ith 50 millions p eers

� Scale geographically

� Physical network capabilit ies are a concern

� The speed of light can't be changed...

� Limited bandw ith and latency

� Latency is more of a problem than bandwidth for d istributed systems

� Worsen by the fact that most distributed systems are synchronous

� Commu nication on WANs

� Unreliable: loss of messages, partitioning, non-FIFO channels

� Point-to-point channels (no mu lticast or broadcast)

� Scale administratively

� Conflicting p olicies for resource management and p ayment

� Different requirements abou t secu rity

� Trust between ad min istration d omains

26

Essential Trade-offs

� About Failures

� Automated fault-tolerance is more prod uctive

� 80% of the cod e of a DBMS is imp acted by transactions and recovery

� Error-prone issu es for most d evelop pers

� But fault-tolerance is expensive

� Synch ron ization in d istribu ted system are comp lex algorithms

� A lot of messages are exchanged

� Supp orting message loss incurs extra complexity

� Recovery mean s logging on stable storage

� Still expensive, even with faster hardw are

27

Conclusion

� Client-Server Architecture

� Incredibly successful in the last 10 years or so

� Sup ports th e Web and its related e-commerce activities

� Both Business-to-Consumers (B2C) and Bu siness-to-Bu siness (B2B)

� It can scale well and provide high-availability

� It is a matter of tech nology

� Fast hardw are improvements, smart in-network caching, and rou ter technologies

� It is therefore a matter of mon ey

� But also a matter of design for both the midd lew are and its applications

28

Conclusion

� Beyond Client-Server Architecture

� Why?

� Not all commu nities have enou gh money

� Not all systems can accept single p oints of failures

� Each web server is a failure point, unless it is replicated (which we w ill study)

� Not all systems can work across u ncoop erative servers

� Global decisions and coop erations are often unavoidable

� Examples: banking, financial systems, trad ing, booking systems

� Towards fully distributed systems

� Fund amentally a peer-to-p eer architecture

� Essentially abou t looking at equal partners in a distributed system

� This is not only about file sharing, it is about more advanced algorithms

� Ad d ressing excitin g transp arency and correctness challenges

29

Conclusion

� Course Content Overview

� Fundam entals

� Message-oriented paradigm

� Naming destinations and routing messages

� Discussing and mastering time

� Synchronization, inclu ding election algorithms

� Memory consistency mod els

� H igh-availability and fault-tolerance through replication

� Object-oriented parad igm

� Object-oriented paradigm, typ e reflection, class load ers

� Object id entity, object proxies, p arameter marshalling, d istributed garbage collection

� Service-oriented architecture and modules for networked managed platforms

� Case study:

� Java Messaging Service

� Java Platform, RMI, and OSGi

