Distributed Systems

Olivier Gruber

Full-time Professor
Université Joseph Fourier

Senior Researcher
Projet SARDES (INRIA et IMAG-LSR)

Who am I?

INRIA - Rocquencourt, France
- Ph.D. (1992)
— INRIA Team Leader (1992-1995)

IBM Almaden Research Center (1995-1996) — California, USA

— Full-time researcher - advanced database group

IBM Watson Research Center (1997-2007) — New York, USA
- Object-oriented and component-oriented systems
- Web middleware and pervasive ecosystems

- Senior researcher and technical advisor to IBM strategists

Full-time Professor (2007-today) — Grenoble, France

- Joseph Fourier University, Grenoble

- SARDES team, INRIA Rhones-Alpes

Acknowledgments

* Prof. Sacha Krakowiak

— Used his lectures as a canvas

e Reference Book

Distributed Systems
Principles and Paradigms

Second Edition

Andrew Tanenbaum and Maarten Van Steen

e Research Articles

— (ited on various slides

This Year Outline

* Course Goals
- Understand architecture and design trade-offs
- Master core techniques and essential distributed algorithms

- Discuss existing systems and frameworks

* Today
- Background on distributed systems

— Fundamentals — Part One

Distributed Systems

* What are they?

- Collection of cooperative entities

* Humorous Definition from L. Lamport

A distributed system is one that stops you from getting any work done
when a machine you’ve never heard of crashes.
Leslie Lamport

- Highlights the cooperative nature of distributed systems
- The increased probability of failures

— The likeliness of their consequences on overall availability and human experience

Failure Examples

Buffer Change at Polygram
- A small buffer size change, failure of the order-shipping workflow
- Hundreds of trucks and employees out of work for more 24h

- Intrinsic costs and warranty violation

September 11th, 2001
- Most businesses in the towers had only regular data backups

- No disaster recovery from replicated data

Space Shuttle

- Four computers, many missions ended with one left working...

Ariane 501

~ June 4™ 1996, first launch of Ariane 5 fails: Ariane 5 explodes

http://www.cnes.fr/espace_pro/communiques/cp96/rapport_501/rapport_501_2.html

Distributed Systems

* Examples
- Networked workstations

* A typical Local Area Network with distributed applications

* Distributing processing or sharing data

- The World-Wide Web

* Where world-wide scalability is the challenge
* Client-server or peer-to-peer
- Cellular wireless networks (telephony)

* For voice and data, mobile devices

* Health monitoring of patients at home or travelling

Distributed Systems

* More Examples
- Game Consoles

* Sony PlayStation 3 was originally designed to deliver 1 teraflops

* Four processors, highly-parallel flow-oriented machine

- Embedded networks

* In planes or cars

- BMW Serie 7
- 4 networks, 70 computers

- 70% of car failures are computer-related (hardware and software)

* Sensor networks
- On-chip networks

* Distributed systems on chip

* Soon, more than 64 nodes interconnected on one silicium chip

Distributed System Origins

e Hardware Revolution

— Processing

* From 10 millions of dollars, 1 instruction per second
* To a few hundreds of dollars, 1 billion intructions per second

* Rolls Royce:

- Would be a dollar
- Would get a billion miles per gallon
- Would be the size of a match box

- Networking
* From some 300 bps (early modems)
 Ethernet from 10Mbps to 10Gbps, wireless 54 Mbps or more
* Latency from a few microseconds to a few hundred milliseconds

— Storage

* Access time around a few milliseconds (5 to 10ms)

» External transfer rate around 300Mbps

Distributed System Origins

Software Revolution

From standalone applications to cooperative applications

Standalone Application

Sweet spot for traditional operating systems

Its own data, its own processing, its own windows

Cooperative Applications

Integration and interoperability
Share data (like a shared file system or database system)
Exchange messages like email systems, SMS, web browsers or X11

Cooperate like systems embedded in a car or world-wide banking systems

10

Distributed System Challenges

Software

Software is lagging behind hardware, incredibly so!

* Distributed programming is orders of magnitude harder
Reasons:

 Parallelism, asynchronous, communication latency, failures, etc.
Should impacts

* Programming languages and models
* Tools and runtimes
* Algorithms

Usually

* Approached through a middleware...

11

Distributed System Challenges

¢ Introducing Middleware
- Higher-level APIs, attempts to help...
- All differents... all quite complex...

* Essentially Two Middleware Families
- Message-oriented

- Object-oriented

Distributed Programming

* Message-Oriented Paradigm
- Send and receive messages

* A message is a byte stream of known length
* Sender: build and send a message
* Receiver: wait and receive a message

- Both synchronous or asynchronous

* Sender may not wait for the response

* Receiver may not wait for the receive

»(Receiver

13

Distributed Programming

Client waiting

response

Server service

Client-Server Basics
- Mostly a synchronous world

* Make a request to a server, wait for the response
* But not always, like backgrounded image downloads for web pages
- Relies on

* Naming scheme: names the destination of messages

* Routing scheme: routes messages to their destination

Distributed Programming

15

e (lient-Server Architecture client ont
- — cllen

- Simpler approach to distributed programming

* The Web is a perfect example
—client

* Each client independently interacts with servers

— Not fully distributed '/

 Each server essentially provides a centralized server

decision point, but also a single point of failure

* Distributed Peer-to-Peer Architecture
peer ~ peer

- Towards identical processes

* No more clients or servers
peer

* Only identical peers —

- Engaged in a cooperative process beer

* Exchange data peer

* Execute logic

Distributed Programming

* Object-oriented Paradigm
- Remote objects and method invocations

* Traditionally synchronous, could be asynchronous
* Message is the method invocation (argument marshalling)
* Routing is based on object identity

— Built on a message layer

* Provides better language integration
* Claims improved developers' productivity

* Java RMI or Jini are examples

16

Discussing Programming Models

Object 0x12 Object 0x48
| |

(1) invoke a method |

= & execute

(2) wait
\ | Bar:bar(2) /
|

(3)getthe =_
returned values |
|

public class Foo { public class Bar {
Bar m_bar; int m_value;
public int foo() { public int bar(int factor) {
return m_bar.bar(2); return factor*m_value;
} }

} }

Distributed Programming

18

e (lient-Server Architecture client

client
- Objects can act as servers i

* May be grouped in physical servers
* A Web server could be implemented as a remote j client

Java object, accessed via RMI '/

server

 Distributed Peer-to-Peer Architecture
- Objects can be seen as peers

- Objects may implemented distributed protocols peer beer

- Objects may be replicated and cached i

peer

peer

peer

Distributed Programming

Distributed Programming...

Why is it so hard?

Traditional Programming

e Time
— There is a notion of time: the hardware clock

- This means that all events happen on one timeline

* Memory
— Reads and writes are consistent

- Assumed to be fast

* Processing
- Method invocations or function calls
* Synchronous and expected to work (no remote failure)
- References are expected to stay available
* No loss of in-memory data structures

- Often single threaded logic

20

Distributed System Challenges

21

* No Global Time
- Only causality applies

- Calls for asynchronous models

* No Global Ordering

- Between senders and even between messages

- A simple loop with a method call suddenly does not work as expected anymore...

* No Global Consistency
- In practice, too costly and difficult

- The Web caching example

Distributed System Challenges

* Failures
- Lost messages or method invocations

 Distinguish long delays from actual message loss?

* Distinguish message loss from actual node or process failure?
- Lost remote references

* Violates GC assumption
- Consistency

* Difficult to achieve synchronization on shared objects/data

* Propagating updates between copies of shared data

* Security
- Becomes rapidly a concern

* Eavesdropping on communication
* Identity theft

* Trusting the middle man...

Overall Goals of Distributed Systems

Transparency
— Access, location, migration and relocation transparencies

- Concurrency and fault-tolerance

Scalability
- Geographical scale
- Scaling in size (users, nodes, resources)

- Administrative scalability across administration domains

Availability
- Facing failures or downtime

- Facing evolution as long-live systems must change

Mobility

- Users are mobile, across the globe, with intermittent connectivity

Essential Trade-Offs

* About Transparency
- Transparency is considered

* To be more productive

 But usually expensive to provide
- Not always better

* Can't change the laws of physics

- A few hundred milliseconds across the atlantic

- Different time zones, time and geographically sensitive services
* Knowing what is costly

- Actual costs do impact algorithms and data structures
* Knowing where failures may happen

- Leverage application semantics

- Levarage the ability of humans to adapt

24

Essential Trade-offs

* About Scalability
— Scale in number of nodes or users

* From a few nodes to thousands of nodes...

* The Web... millions of nodes... such as Gnutella with 50 millions peers
- Scale geographically

 Physical network capabilities are a concern

= The speed of light can’t be changed...
- Limited bandwith and latency

* Latency is more of a problem than bandwidth for distributed systems
* Worsen by the fact that most distributed systems are synchronous

e Communication on WANSs

- Unreliable: loss of messages, partitioning, non-FIFO channels

- Point-to-point channels (no multicast or broadcast)

- Scale administratively

 Conlflicting policies for resource management and payment
- Different requirements about security

* Trust between administration domains

25

Essential Trade-offs

* About Failures
- Automated fault-tolerance is more productive

* 80% of the code of a DBMS is impacted by transactions and recovery

* Error-prone issues for most developpers
- But fault-tolerance is expensive

* Synchronization in distributed system are complex algorithms

- A lot of messages are exchanged

- Supporting message loss incurs extra complexity
* Recovery means logging on stable storage

- Still expensive, even with faster hardware

26

Conclusion

* Client-Server Architecture
- Incredibly successful in the last 10 years or so
* Supports the Web and its related e-commerce activities
e Both Business-to-Consumers (B2C) and Business-to-Business (B2B)
- It can scale well and provide high-availability

* Itis a matter of technology

- Fast hardware improvements, smart in-network caching, and router technologies

* Itis therefore a matter of money

- But also a matter of design for both the middleware and its applications

Conclusion

* Beyond Client-Server Architecture
- Why?
* Not all communities have enough money
* Not all systems can accept single points of failures
- Each web server is a failure point, unless it is replicated (which we will study)

* Not all systems can work across uncooperative servers

- Global decisions and cooperations are often unavoidable

- Examples: banking, financial systems, trading, booking systems

- Towards fully distributed systems

* Fundamentally a peer-to-peer architecture

- Essentially about looking at equal partners in a distributed system

- This is not only about file sharing, it is about more advanced algorithms

* Addressing exciting transparency and correctness challenges

28

Conclusion

e (Course Content Overview
- Fundamentals

* Message-oriented paradigm
- Naming destinations and routing messages
- Discussing and mastering time
- Synchronization, including election algorithms
- Memory consistency models
- High-availability and fault-tolerance through replication
* Object-oriented paradigm
- Object-oriented paradigm, type reflection, class loaders
- Object identity, object proxies, parameter marshalling, distributed garbage collection

- Service-oriented architecture and modules for networked managed platforms

- Case study:

* Java Messaging Service

* Java Platform, RMI, and OSGi

29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

