Distributed Systems

Object-Oriented Middleware

The Java Platform

Professeur Olivier Gruber

Université Joseph Fourier

Projet SARDES (INRIA et IMAG-LSR)

Olivier.Gruber@inria. fr

Java Platform - Basics

« Object-oriented model
~ An object is a triplet
+ An identity, a state, and a behavior
- An objectis an instance ofa class
+ Aclass is a factory for its instances
« Instances ofa class form its extent
- Classes are types
* Define a structure (fields)
* Define a behavior (methods)
* Define constructors

class Line {
inta;
intb;
Line(int a, int b) {
this.a = a; this.b = b;

int equation(int x) {
return a*x+b:
}
}

intxy:

Line line = new Line(2.3);
x=5;

y = line.cquation(x);

Olivier. Gruber@inria. fr

Outline

+ Today
- Basics ofthe Java Platform
« Design choices of the Java language
— Java reflection
« Design choices of the Java platform
- Garbage collection, finalizers, soft references

= Class loaders
~ Threads and monitors

- Java Remote Method Invocation (RMI)
« Principles and analysis

+ Discussing distributed garbage collection

Olivier Gruber@inria fr

Java Platform - Basics

* Object-oriented model

- Method invocation class Line {
inta;
+ Sending a message to an object intb;

o _ Line(int a, int b
+ The object is called the receiver et N

- The class dispatches the message -
int equation(int x) {

« This is called late binding (finding the code) . return a*x+b;

* Matching the method signature to the method }

declared in the class

intxy:
Line line = new Line(2.3); invoke_virtual
x=5;

y=tinccauation); e [SO0 T equatoRGI0

0id=0x48
Line (int,int)
object
methods equation(int)

Olivier. Gruber@inria.fr

Java Platform - Basics

« Object-oriented model
- Classes are organized in a sub-typing hierarchy
+ Subtypes inherit both the structure and behavior of super types
+ Do not confuse with aggre gation

=
[T |

- Structural inheritance
« Allficlds are inherited oid=0x48
+ No matter the names or types Ty
a Foo
class Foo { class Bar extends Foo {
inta; intb;
intb; String ¢: d-0x86
Foo(inta, intb) {..} Bar(String ¢, intb) {... }
int foo(int x) {..} int foo(int x) {.. }
void foo(int x, int y) .. } « Bar

intbar(int x, inty) {... }

Olivier.Gruber@inria. fr

Java Platform - Basics

Foo(inta, intb) {..}

int foo(int x))}
i

superclass

class Bar extends Foo {
intb;
String c:

ns tructors
<init=(String,in)
void foo(intint)
int bar(intiny)

Bar(String ¢, intb) {... }
int foo(int x) {2}
void foo(int x, int y) {3}
. intbar(int x, int y) {@)}

methods 5

bytecode

bytecodes

Olivier. Gruber@inria. fr

Java Platform - Basics

+ Object-oriented model
- Classes are organized in sub-typing hierarchy
* Subtypes inherit both the structure and behavior of super types
* Do not confuse with aggregation

- Method inheritance C“’ms::‘m {
+ Method overloading int b;
- Same name, but different signatures Foo(inta, int b) £..}

Method overridding int foo(int x) {..}
}

- Same signature

class Bar extends Foo {
intb;
String c:
overriding

\ Bar(String ¢, intb) {... }
int foo(int x) .. }
Void foo(int x, int) fu. }

overloading intbar(int x, inty) {... }

Olivier Gruber@inria fr

Java Platform - Basics

* Java
- Introduces interface types
* Interfaces only define behaviors
* Interfaces support multiple inheritance
* Aclass implements one or more interfaces
- Abstract classes
* Classes that cannot be instantiated
« Interfaces are always abstract

* Service-oriented pattern
- Service contracts are interfaces or abstract classes

— Service objects are created through a factory pattern

Olivier. Gruber@inria.fr

Java Platform - Basics

¢ Java
- Implicit class link
+ Instanceofoperator
+ The getClass() method
- Garbage collection
« Keep chisses alive as long as they have an instance
- Classes are objects
« So they also have a class
« The metaclass, called the class lass

class Object

Class _chss

class Object {
Class getClass();

}

class Foo extends Object {
intab;

instance ofitself

Class _super]

—_

class Foo|

one Foo instance

class Class

Olivier.Gruber@inria. fr

Java Platform - Reflection

« Java runtime reflection
- Reify types at runtime
- Essentially through
« java.lang.Class
+ java.lang.reflect.*

« Looking at code
- Browse the JDK sources
- Samples to illustrate core functions
+ Walk meta-level description through class objects
+ Instantiate objects
« Invoke methods
* Getand set fields

Olivier. Gruber@inria. fr

Java Platform - Basics

10
* Java
—~ Static fields class Foo {

inta,b;

* As constants, both in interfaces or classes static int ¢;

* As non-constant fields, only in classes

N . class Barl extends Fe
- Statics are named global variables L:‘;;c;“ extends Foo {
+ They are not class fields, in the proper sense static int d;
 Indeed, superclass statics are shared
class Bar2 extends Foo {
inte;
static int d;
oid
—
class Foo
Foo instance
class Barl class Bar2
Olivier. Gruber@inria.fr
Java Platform - Reflection .

« Core reification

- Classes, interfaces, constructors, methods, fields

« Modifiers
- Access modifiers (public, private, protected)
- On fields, methods and classes

¢ Access and invoke
- Can getand set fields
- Can invoke methods

- Can construct new instances
* But

- Cannot create new types
- Add methods or fields, etc.

Olivier. Gruber@inria.fr

Java Platform - Reflection

Java Platform — Class Loaders

« Java Arrays
~ Arrays are objects in Java
« The synthetic field length
* Special operator [|
- Array classes also automatically reified
* Modifiers
- Amay classes have the access modifiers of their element type
- Anarray of private classes is private
* Arrays are cloneable and serializable

« Can construct new instances
- Directly:
« inta[]=new int[3];
= Through reflection:

+ Person p[] = Array.newlnstance(Person.class,3);

Olivier.Gruber@inria. fr

« Started Simple
- As a sandbox for applets

- Wanted a complete isolation of downloaded code

« Essentials
- Its own copy of classes
+ Avoid sharing statics
* Avoid name and version conflicts between loaded classes
- Works hand-in-hand with Java security

« Controls accesses to resources

+ Evolved Poorly — Mixing several concepts
- Ascoping mechanism for types
- Adynamic and lazy linker for classes
- A mechanism to define (load) types

Olivier Gruber@inria fr

Java Platform — Class Loaders

Class Loaders — Class File Format

¢ Class Loading

~ Only through the class file format
« This is quite unfortunate
* Only the JVM can create types programmatically

- Special native method in the JVM
+ The native method Class Loader.define(...)
« Passing the byte array ofa class file to define the described type

- The class file is an exchange format
+ Could have been in XML, used a more efficient binary representation

« Produced by Java compilers and consumed by class loaders

Olivier. Gruber@inria. fr

* Meta-data part
- Alava type description
* Aclass name and flags
« Its superclass and implemented interfaces
* Its fields and methods
- Alllinking information is through names
* Naming types (classes, interfaces)

+ Naming members (fields and methods)

« Constant pool
- Contains the linking names
- Butalso some constant values

* Primitive types and strings

+ Code part
- Bytecode sequences

-~ As attributes on methods

Olivier. Gruber@inria.fr

Classfile Examples

17
public class Line { magic number
inta; constant pool size
intb; constant pool.
Line(inta, intb) { “a line
. this.a = a; this.b = b; java.ang.Object
int equation(int x) { access flags: public
this class: Line
superclass: idx-
public String toString() { e count: 0
return ‘a line*
}
} field count: 2
inta;
method count: 3
<init>(int a, int b)
int equation(int x)
public String toString()
attribute count: 3
bytecode arrays
Olivier.Gruber@inria fr
Java Platform - Reflection ,
1

* Class loaders
- Ascope for Java types

+ Two class loaders defining the same type yields two runtime types
« Even when using the same class file

- Beware of equivalent names

+ Name equivalence does not mean a thing between class loaders
« Same type name does not mean the same type

- Structural equivalence does not mean the same type

+ Two types are the same only if the two class objects are the same class object

Rule 1: two classes are the same if they are the same class object

Rule 2: one class object belongs to one and only one classloader

Olivier. Gruber@inria. fr

Classfile Examples
18
package org.xyz; package org.par; P—
. . . constant pool size
pui::ichss Foo { import org xyz Foo; constant pool:
int bs public class Bar extends Foo java Jang.S tring 4——
implements 1Bar { org pqr.Bar4————
Foo(inta, intb) {..} ism b; org.xyz.Foo:
tring ¢ "
tmots) 0.3 s access flags: public
this class: Bar
u h) .
) Bar(String ¢, intb) {.. | e
int fooint x) {.. } interface count: 0
Void foo(int x, int) f.. } interfaces: idx
intbar(int x, int y) { ﬁcvh] count: 2
}
String ¢;——————
method count: 3
<init>(String ¢, int b)
int foo(int x)
void foo(int x, int y)
int bar(intx, int y)
atribute count: 4
bytecode arrays
Olivier.Gruber@inria. fr
Java Platform - Reflection N

* Hierarchy of scopes
- Asingle tree of class loaders per JVM
— Aclass loader has a parent class loader

- Types in the parent class loader are visible

* Bootstrap class loader
~ The root ofall class loaders
- Created at bootstrap by the JVM to load core classes
* java.lang.Object, java.lang.Class

+ java.lang.String, java.lang. Throwable, java Jang.Exception
« Etc.

Olivier. Gruber@inria.fr

Java Platform - Reflection Java Platform - Reflection

21
¢ Class loading + Dynamic and lazy class linker
- Atree ofclass loaders ClassLoader - Multi-stage linking ClassLoader
superclass i superclass
- Acomplex graph of types across all * Loading
class loaders + Prepared
. * Resolved
* Reminder esoe
« Tnitialized (static initializer)
- Could have redundant loading! t . \ f
) - Warning ;
parent parent
* Loading may succeed but resolving or s
Pr— l initializing may fail much later JR— \
the same class file may be loaded
in different class loaders...
it will be different class objects superclass superchass
and therefore different types import import
ClassLoader ChissLoader
Olivier.Gruber@inria fr Olivier.Gruber@inria. fr
Java Platform - Objects N Java Platform - Objects
« Java objects « Javais garbage collected
- Instances - Live objects are kept
* An objectis an instance ofa class - Live objects are reachable from roots of persistence
+ Ithas an identity and a state (field values) - Roots are traditionally thread stacks and static fields in loaded classes
- Two way to compare objects
+ Equality ofidentities (using the operator == * Being garbage is a stable property
« Equality of states (using the Object.equals(Object) method) - Le. once an object is garbage, it remains garbage
« Hash code
- ObjecthashCode() method root root root
+ Not a realidentity, but it is invariant per instance
+ Used for collections such as directories or maps _ S—>
A mutator cuts Garbage
~ WARNING a reference Collection

+ The hash code must work correctly with the value equality
« If equals, they must have the same hash code

+ Ifyou need to override one, override both methods

Olivier. Gruber@inria. fr Olivier. Gruber@inria.fr

Java Platform - Objects

25

« Garbage Collector

- Garbage collection is about detection and reclaimation of garbage objects

- Different approaches are possible

+ Scavenger, mark& weep, generational, etc.

* Performance

- Limit the overhead, so run the GC rarely

- Avoid growing the heap, so run the GC often enough
« Correctness

- Neverdetect and reclaim a live object
¢ Liveness

- Detect and reclaim garbage faster than objects are allocated

Olivier.Gruber@inria. fr

Java Platform — Garbage Collection .

« Discussing Reference Counting
- Problematic on multi-processors

+ Inherently i I: impossible to run ¢
+ Incrementing and decrementing require a critical section
- Does not require to scan thread stacks
+ But requires to account for localvariables and arguments
. a high overhead (i d)
- Extra paging

+ Accesses objects even if only references are manipulated
« Dirties memory pages, potentially increasing the overhead of virtual memory paging

- Does notreclaim cycles

Olivier. Gruber@inria. fr

Java Platform — Garbage Collection

26,

+ Reference Counting
- Each object is associated a counter
* Counts the number of references on that object
- Counter management
« Happens on assigning reference
- Decrement the count of the previously referenced object (if any)
- Increment the counter of the newly referenced object
* Applies to
- Reference fields in objects as well as local variables and parameters
* When a counter reaches zero

-~ The object owning that counter is garbage

“o—®

A

Olivier Gruber@inria fr

Java Platform — Garbage Collection

28,

+ Scavenger
- Copying collector, using two spaces
« Copy live objects from the old space to the new one
* Discard the old space

object heap object heap

Q@ live object
@ root object
© garbage object

Olivier. Gruber@inria.fr

Java Platform — Garbage Collection

¢ Scavenger details
- Live objects are reachable from roots (thread stacks and class statics)
- Leave a forwarder in-place of copied objects

+ Allows to detect cycles (correctness when copying)
* As wellas treat correctly shared objects

- Use to-space as a recursion stack

1/l

=

from space to space

object heap

© object O garbage object
@ root object

O forwarder

Olivier.Gruber@inria. fr

Java Platform — Garbage Collection

¢ Mark &Sweep
- Atwo-phase garbage collection
* Amarking phase, coloring live objects

+ Asweeping phase reclaiming garbage objects (not colored)
- Marking phase

+ Walks the refer-to graph from roots (thread stacks and class statics)
« Carry the current color

D -'D

object heap

object heap

© object @ Live object
@ root object @ root object

Olivier. Gruber@inria. fr

Java Platform — Garbage Collection

+ Discussing Scavenger
- Simple when designed as stop the world
« Asimple depth-first recursive walk ofan object graph
* Cycles are casily detected through forwarders
* Require to scan thread stacks
- Clustering objects
* Depth-first scavenging produces efficient in-memory clustering of objects
- Efficiency
« Depends on the ratio of live versus garbage objects
* Also depends on the cumulative size of live objects
« The fewer live objects, the more effective

* May lead to allocate twice the heap size

Olivier Gruber@inria fr

Java Platform — Garbage Collection

* Mark & Sweep
- Sweep phase

* Sweeps sequentially the object heap to discover garbage objects
- Reclaiming garbage

* Using free lists (non-compacting sweeping)

* Compactas sweeping (challenging to maintain references)

'//—»o‘./o

object heap

object heap

© Live object

@ rootobject

Olivier. Gruber@inria.fr

Java Platform — Garbage Collection

33
¢ Discussing Mark & Sweep
- Not too sensitive to the live/garbage ratio
- Requires to scan thread stacks
- Caveats of free-list memory management
+ Can lead to traditional fragmentation
+ Costly allocation (different algorightms such as first-fit, best-fit, etc.)
- Two scans of the object heap
+ One through references and the other sequentially
* May lead to heavy paging activity if heap larger than main memory
+ Itdefeats the LRU policy of most virtual memory systems
« Compacting Mark&Sweep
- Some mark& weep do compact the heap during the sweep phase
- Usually done by slidding objects, does not improve locality
Olivier.Gruber@inria.fr
Java Platform - Finalizers \
5

+ Finalizers introduces resurection
- Itis legal for a finalize method to make a garbage object live again
- Reminder: finalizers are called only once per object

- Require to detect twice that an object is garbage

« Impacts garbage collection new
- Introduce a new state: /
reachable
+ Reachable (live)
- There is a path from roots to the object
* Resurrectable
resurrectable
~ The object is not reachable
- The object may be resurrected
- Allobjects go through that state
+ Unreachable (garbage) unreachable
~ The object is not reachable

- The object cannot be resurrected rechim

Olivier. Gruber@inria. fr

Java Platform - Finalizers

+ The problem
- Java depends on a lot of native resources represented by objects

- How does one free those resources?

* The finalize method

— The object class defines a method finalize()
+ Any class may redefine this finalize method
* Aclass thatredefines its finalize method is said to have a finalizer

- When is it called?
« The finalize method is called when the object is detected as being garbage
« Ifthe finalize method is not redefined, it is not called
* However, the finalize method is called only once

- Threads?
* There is no guarantee about which thread is used to call finalize methods

* Butthat thread does not hold any user-level Java monitor

Olivier Gruber@inria fr

Java Platform - Finalizers

« Compatibility with GC algorithms
- Compatible with reference counting
« Easy to call the finalizer when the counts drop to zero
* Easy to know that the object remained garbage
— Counter stillat zero after the finalizer run
* Butreference counting is rarely used in practice
- Incompatible with scavenging
* Reintroduces a sweep to find garbage objects with a finalizer
* Never know when to free the from-space because ofresurection
- Mark&Sweep is well-suited
* Easy to extend the sweeping phase to find objects with finalizers
- Butdehys the actual reclaimation of garbage objects
« Still requires two marking phase to really know ifan object is garbage

Olivier. Gruber@inria.fr

Java Platform - Objects

¢ Java Finalizers — complex and not enough
- Native resources are often really scarce
- Garbage collection is too asynchronous

- So native resources are not freed fast enough

« Raising the GC frequency is difficult
- Because it is most often stop-the-world
- Because it represents an overhead
« Marking the object graph
+ Sweeping the object heap
« Introduce explicit close/dispose operations
- On Sockets, files
- On Widget toolkits
- Etc.

Olivier.Gruber@inria. fr

Java Platform - References

* Java References
- Normalsemantics for objects that are strongly reachable
« Ifyou do not use weaker references, nothing is different than usual Java
- Weaker references are managed by the GC

+ When an object is no longer strongly reachable
+ The GC may clear weaker references to that object at any time
- Notification

+ Areference may be associated to a reference queue (Reference Queue class)
+ Once the GC cuts a reference, it push that reference on its associated queue
variable
referent

references

N = e
references

Olivier. Gruber@inria. fr

Java Platform - References

« Introducing different semantics for Java references
- Strong references
« The usual object references in the Java language
- Weaker references in java.lang.ref
* SoftiReference and WeakReference

+ PhantomReference

variable

an object

called the referent
Reference

object

Olivier Gruber@inria fr

Java Platform - References

40

+ State changes
- Reachable is detailled into
* Strongly reachable
- Reachable through strong re ferences
* Softly reachable
- Not strongly reachable
~ Reachable through soft references
* Weakly reachable
- Neither strongly nor sofily reachable
= Reachable through weak references
- Unreachable
* Phantom reachable
~ Not reachable but through phantom references
- Such objects are not resurrectable
* Unreachable
- Entirely unreachable
- Ready to be reclaimed

strongly reachable

sofily reachable

weakly reachable

resurrectable

phantom

unreachable

reclaim

Olivier. Gruber@inria.fr

Java Platform - References

41
* Discussing soft versus weak references
- Weak references
+ Weak references must be cleared by the GC as soon as the referenced object is weakly
reachable (neither strongly or sofily reachable)
+ Used for canonical mappings
- Keep a mapping key to value
~ Clean the mapping as soon as the key is no longer used (reachable)
- Softreferences
+ Softreferences must only be cleared by the GC before it raises an out-of-memory
exception, but it may sooner
« Itis suggested that clearing soft references follows the policy:
- Keep recently created and recently used soft references
+ Used for caching objects
- Aservice provides an object
- Clients keep a reference as long as they need to use the object
= The GC only reclaims the object and cuts your soft reference if it needs memory
Olivier.Gruber@inria.fr
Java Platform — Remote Method Invocations .

* Requires extensions to the Java Platform

Remote references... Java references are localto a JVM

Remote method invocations... Java method invocations is localto a JVM

* Available in the JDK 1.4
- Also as free software such as NinjaRMI (Berkeley) or Jeremie (ObjectWeb)

thread stack
remote
invoke
V™M remote

reference
. stack frame

@ receiver (this)

Olivier. Gruber@inria. fr

Java Platform - References

42

« Discussing phantom references
~ More powerful than just finalizers
« Finalizers are called only once
* Soifobjects are resurrected, finalizers can no longer be used for cleanups
- Phantom references introduce post-mortem resource management
* An object that is phantom-reachable can no longer be resurrected

 Itis therefore the absolute last moment to do some cleanup

Olivier Gruber@inria fr

Java Platform - RMI

44

* Remote references
- Relies on stubs and skeletons
* Stubs and skeletons are regular Java objects
- Astub identifies its remote skeleton

* Using a machine IP, a port number, and a skeleton identifier
- Askeleton identifies its local object

+ Using a local Java reference

Ox?\. ’/' <>0x48

stub skeleton

Java Virtual Machine Java Virtual Machine

Olivier. Gruber@inria.fr

Remoting Method Invocation

Remote Method Invocation

45
* Remote invocations
- Over remote references, through stubs and skeletons
- Mashalling and unmarshalling of parameters
rocess rocess
Object 0x12
Foo Bar
Object 0x48
method = bar(int)int
F=5factor .
replyTo = IP, port, and thread id
public int bar(int factor) {
=_ux|thread id
returned value = 8 return factor'm_value;
i
Olivier.Gruber@inria. fr
Discussing Programming Models -

(1) invoke | I | |

the method \

@wrapargs ____—1—
and method signature
in message | |

(3) unwrap
| | | and dispatch

(4) execute

(6) unwrap out |

parameters \»‘r’

;./

—
(5) wrap out

' parameters

public class Bar implements IBar {
intm_value:
public int bar(int factor) {
return factor*m_value;

public class Foo {
IBarm_bar;
public int foo() {
return m_bar.bar(2);

Olivier. Gruber@inria. fr

46/
Object 0x12 Object 0x48
| I
(1) invoke a method
< [
execute
(2) wait \‘ Barbar()
|
Gygetthe o
returned values ‘
[
[
‘ [
public class Foo { public class Bar implements IBar {
IBar m_bar; intm_value;
public int foo() { public int bar(int factor) {
return m_bar.bar(2); return factorm_value;
} }
H H
Olivier.Gruber@inria. fr
Java Platform - RMI »

« Creating a remote reference

- Passed as arguments or returned Object 0x12

- - o
Create skeleton
locate skeleton id (s kelid)
Skelid is a key to
alocal table of skeletons
Create stub
Knows the IP, port, and s kelid
Indexed in a local table of s tubs

Olivier. Gruber@inria.fr

Java Platform - RMI

Java Platform - RMI

49
¢ Why stub and skeleton tables?
- Avoids re-creating stubs or skeletons for an object if they exist already
- Avoids overloading the DGC and the local tables
- Faster lookups to find a skeleton or a stub
« Use naming service to bootstrap
- How do we get the first remote reference?
+ Use a name service binding names to remote objects
+ Already uses stubs and skeletons Name Service
- So, how do we bootstrap?
stub
l ()
'/' 0x48
skeleton
Olivier.Gruber@inria.fr
RMI - Execution Model .

Multi-threaded execution model
- Server objects may be invoked from several clients
+ Method invocations happen in parallel
- Server objects must be developed assuming multiple threads
+ Use synchronized methods
+ Use synchronized blocks

RMI thread pool
- Manages a pool of threads

. . . ts
- Pick one thread to carry one invocation feques

Olivier. Gruber@inria. fr

50
+ Looking ata simple example
- Asimple bank is a remote object, that manages account objects
* Can either extend the UnicastRemoteObject
- Account objects are also remote objects, allowing simple operations
* See the balance ofthe account, credit or debut money
+ Discussing the example
~ About threads
* Which threads are used to carry remote invocations?
* Why didn't the server or client process stop at the end of main?
- Service contracts
* Why use an interface for typing the remote reference to the bank?
- The account remained a remote object...
* What about strings? Aren't they objects?
Olivier. Gruber@inria.fr
RMI - Execution Model .

* Thread pooldetails

Client
Requests

RMI thread pool

—B RMIdaemon thread
request

request queue

T workerthread

Olivier. Gruber@inria.fr

RMI - Execution Model

53
The loopback problem...
- Typical ofa callback pattern (like in our example) or a distributed cycle
- RMIluses no concept of distributed thread
+ Thread A and Thread C are different Java threads
* Wastes resources and yields a high probability of deadlocks
Thread C
Olivier.Gruber@inria.fr
Java Platform — RMI Programming Model
55

« Arguments and returned values or objects
- Two semantics: by-value or by-reference

« Primitive types are always passed by-value
- Primitive types are boolean, byte, char, short, int, float, double

* Whatabout objects?
- Can be either by-value or by-reference...

Olivier. Gruber@inria. fr

Java Platform — RMI Programming Model

54

+ Remote objects are used through remote interfaces
- Allremote interfaces extend the java.rmiRemote interface

- Allremote methods throw at least the java.rmi.Remote Exception

+ Remote objects

- Allremote objects extend the java.rmi.UnicastRemoteObject

+ Why only remote interfaces?
— Stubs are regular Java, no special support in the Java Virtual Machine

- Stub classes implement the remote interfaces of their target object

Ox?\. '/' Ooms

stub skeleton

public class Foo { public class Bar implements Bar {

Barm_bar; intm_value;
public int foo() { public int bar(int factor) {
return m_bar.bar(2); return factor®m_value;

Olivier Gruber@inria fr

Java Platform — RMI Programming Model

* Objects by-value
~ Any object which is “serializable™
* The class ofthe object implements java.io.Serializable
- Copy semantics

* Deep copy... yields two objects: both on server and client sides
« An example — a simple method returning a reference

public Object getObject();

Client Server
Object \ invoke Object
| WP L

Client

Object mustbe serializable

made a€opy

Olivier. Gruber@inria.fr

Java Serialization

Deep copy
* Recursive depth-first copy of an object graph from a root
« Ifany object encountered is not serializable, an exception is thrown

* Notice that cycles are properly handled

root deep copy root

=]

Olivier.Gruber@inria. fr

Java Serialization

« Individual object copy
- Reference to instances of RemoteObject are handler properly

* Willcreate a stub-skeleton pair

root
¥

root deep copy copy
»

Olivier. Gruber@inria. fr

Java Serialization

58

« Individual object copy
- By default, allinstance fields are copied
- Transient modifier on declared fields transient
« Setto null when copied
* Be mindful of sharing across transient and non-transient references
- Attention
« Static fields are part ofthe class
* Notpart of the instances of that class

* Therefore, static fields are not s erialized

root root

deep copy

=

Olivier Gruber@inria fr

Java Serialization

60

« Java Runtime Environment
- Most JRE classes are serializable

- Their instances will be passed by value

* Examples
- Java collections such as hash tables or vectors
- String objects
- Arrays are serializable objects

« Some classes are not serializable

- Only make sense locally, such as files, sockets, threads, etc.

Olivier. Gruber@inria.fr

Distributed Garbage Collection

¢ Live objects
- Locally or remotely reachable from roots
- Naturalextension to the local case
* Ifa stub is reachable, so is the skeleton
+ Ifthe stub is reachable, so is the remote object

client Remote
object Object

Olivier.Gruber@inria. fr

Distributed Garbage Collection

« Design
- Tracks remote references through soft references
* Renew leases as long as the soft references are not cleared
* RMImiddleware renews leases at half-life
- Only increment/decrement remote counters when stubs are collected

Tracks stubs through soft references....

O
Ox12 0x48

stub skeleton

Olivier. Gruber@inria. fr

Distributed Garbage Collection

62,

+ Asimple solution
- Mixing reference counting and leases
- Local garbage collectors are left unchanged
- Counts stub references on skeletons
- Uses lease to resist failures
* Defaultlease is 10 minutes

* RMImiddleware renews leases at halflife

client
object count=2

root
sl
object

Remote
Object

Olivier Gruber@inria fr

Distributed Garbage Collection

64

« Watch for distributed cycles...

- RMIDGC neither detects nor collects distributed cycles...

remote
object

client
object

P

Olivier. Gruber@inria.fr

