
Olivier.Gruber@inria.fr

1
Distributed Systems

Object-Oriented Middleware

The Java Platform

Professeur Olivier Gruber

Université Joseph Fourier

Projet SARDES (INRIA et IMAG-LSR)

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

2
Outline

● Today
– Basics of the Java Platform

● Design choices of the Java language

– Java reflection

● Design choices of the Java platform

– Garbage collection, finalizers, soft references

– Class loaders

– Threads and monitors

– Java Remote Method Invocation (RMI)

● Principles and analysis

● Discussing distributed garbage collection

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

3
Java Platform - Basics

● Object-oriented model
– An object is a triplet

● An identity, a state, and a behavior

– An object is an instance of a class

● A class is a factory for its instances

● Instances of a class form its extent

– Classes are types

● Define a structure (fields)

● Define a behavior (methods)

● Define constructors

class Line {
 int a;
 int b;
 Line(int a, int b) {
 this.a = a; this.b = b;
 }
 int equation(int x) {
 return a*x+b;
 }
}

int x,y;
Line line = new Line(2,3);
x = 5;
y = line.equation(x);

int a

int b

header

object

class
oid

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

4
Java Platform - Basics

● Object-oriented model
– Method invocation

● Sending a message to an object

● The object is called the receiver

– The class dispatches the message

● This is called late binding (finding the code)

● Matching the method signature to the method
declared in the class

class Line {
 int a;
 int b;
 Line(int a, int b) {
 this.a = a; this.b = b;
 }
 int equation(int x) {
 return a*x+b;
 }
}

int x,y;
Line line = new Line(2,3);
x = 5;
y = line.equation(x);

int a

int b

header

object

classoid=0x48

this=0x48 int equation(int)

Line(int,int)

int equation(int)methods

invoke_virtual

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

5
Java Platform - Basics

● Object-oriented model
– Classes are organized in a sub-typing hierarchy

● Subtypes inherit both the structure and behavior of super types

● Do not confuse with aggregation

– Structural inheritance

● All fields are inherited

● No matter the names or types

class Bar extends Foo {
 int b;
 String c;

 Bar(String c, int b) { ... }

 int foo(int x) {... }
 void foo(int x, int y) {... }

 int bar(int x, int y) { ... }
}

class Foo {
 int a;
 int b;

 Foo(int a, int b) {...}

 int foo(int x) {...}

}

int a

int b

header

a Foo

oid=0x48

int a

int b

header

a Bar

oid=0x86

String c

int b

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

6
Java Platform - Basics

● Object-oriented model
– Classes are organized in sub-typing hierarchy

● Subtypes inherit both the structure and behavior of super types

● Do not confuse with aggregation

– Method inheritance

● Method overloading

– Same name, but different signatures

● Method overridding

– Same signature

class Bar extends Foo {
 int b;
 String c;

 Bar(String c, int b) { ... }

 int foo(int x) {... }

 void foo(int x, int y) {... }

 int bar(int x, int y) { ... }
}

class Foo {
 int a;
 int b;

 Foo(int a, int b) {...}

 int foo(int x) {...}
}

overriding

overloading

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

7
Java Platform - Basics

class Bar extends Foo {
 int b;
 String c;

 Bar(String c, int b) { ... }

 int foo(int x) { }

 void foo(int x, int y) { }

 int bar(int x, int y) { }
}

class Foo {
 int a;
 int b;
 Foo() {...}
 Foo(int a, int b) {...}

 int foo(int x) { }
}

class

<init>(int,int)

int foo(int)
methods

constructors

class

<init>(String,int)

int foo(int)
methods

constructors

void foo(int,int)

int bar(int,int)

1

2

3

4

1
bytecode

2
bytecodes

3

4

superclass

String
classimports

<init>()

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

8
Java Platform - Basics

● Java
– Introduces interface types

● Interfaces only define behaviors

● Interfaces support multiple inheritance

● A class implements one or more interfaces

– Abstract classes

● Classes that cannot be instantiated

● Interfaces are always abstract

● Service-oriented pattern
– Service contracts are interfaces or abstract classes

– Service objects are created through a factory pattern

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

9
Java Platform - Basics

● Java
– Implicit class link

● Instanceof operator

● The getClass() method

– Garbage collection

● Keep classes alive as long as they have an instance

– Classes are objects

● So they also have a class

● The metaclass, called the class lass

one Foo instance

class Object {
 Class getClass();
 ...
}

class Foo extends Object {
 int a,b;
 ...
}

Class _class

header

class Class

instance of itself

Class _class

header
class Object

Class _class

header
class Foo

Class _class

header

int a

int b

Class _super

Class _super

Class _super

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

10
Java Platform - Basics

● Java
– Static fields

● As constants, both in interfaces or classes

● As non-constant fields, only in classes

– Statics are named global variables

● They are not class fields, in the proper sense

● Indeed, superclass statics are shared

int a

int b

header

Foo instance

oid

class Foo {
 int a,b;
 static int c;
}

class Bar1 extends Foo {
 int e;
 static int d;
}

class Bar2 extends Foo {
 int e;
 static int d;
}

int c

header

class Foo

int d

header

class Bar1

int d

header

class Bar2

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

11
Java Platform - Reflection

● Java runtime reflection
– Reify types at runtime

– Essentially through

● java.lang.Class

● java.lang.reflect.*

● Looking at code
– Browse the JDK sources

– Samples to illustrate core functions

● Walk meta-level description through class objects

● Instantiate objects

● Invoke methods

● Get and set fields

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

12
Java Platform - Reflection

● Core reification
– Classes, interfaces, constructors, methods, fields

● Modifiers
– Access modifiers (public, private, protected)

– On fields, methods and classes

● Access and invoke
– Can get and set fields

– Can invoke methods

– Can construct new instances

● But
– Cannot create new types

– Add methods or fields, etc.

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

13
Java Platform - Reflection

● Java Arrays
– Arrays are objects in Java

● The synthetic field length

● Special operator []

– Array classes also automatically reified

● Modifiers

– Array classes have the access modifiers of their element type

– An array of private classes is private

● Arrays are cloneable and serializable

● Can construct new instances
– Directly:

● int a[] = new int[3];

– Through reflection:

● Person p[] = Array.newInstance(Person.class,3);

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

14
Java Platform – Class Loaders

● Started Simple
– As a sandbox for applets

– Wanted a complete isolation of downloaded code

● Essentials
– Its own copy of classes

● Avoid sharing statics

● Avoid name and version conflicts between loaded classes

– Works hand-in-hand with Java security

● Controls accesses to resources

● Evolved Poorly – Mixing several concepts
– A scoping mechanism for types

– A dynamic and lazy linker for classes

– A mechanism to define (load) types

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

15
Java Platform – Class Loaders

● Class Loading
– Only through the class file format

● This is quite unfortunate

● Only the JVM can create types programmatically

– Special native method in the JVM

● The native method ClassLoader.define(...)

● Passing the byte array of a class file to define the described type

– The class file is an exchange format

● Could have been in XML, used a more efficient binary representation

● Produced by Java compilers and consumed by class loaders

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

16
Class Loaders – Class File Format

● Meta-data part
– A Java type description

● A class name and flags

● Its superclass and implemented interfaces

● Its fields and methods

– All linking information is through names

● Naming types (classes, interfaces)

● Naming members (fields and methods)

● Constant pool
– Contains the linking names

– But also some constant values

● Primitive types and strings

● Code part
– Bytecode sequences

– As attributes on methods

magic number

constant pool size

constant pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

attribute count

atrributes

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

17
Classfile Examples

public class Line {
 int a;
 int b;
 Line(int a, int b) {
 this.a = a; this.b = b;
 }
 int equation(int x) {
 return a*x+b;
 }
 public String toString() {
 return “a line“;
 }
}

magic number
constant pool size
constant pool:
 “a line“

access flags: public
this class: Line
superclass:
interface count: 0
interfaces:

field count: 2
 int a;
 int b;
method count: 3
 <init>(int a, int b)
 int equation(int x)
 public String toString()

attribute count: 3
 bytecode arrays

idx

java.lang.Object

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

18
Classfile Examples

package org.pqr;

import org.xyz.Foo;

public class Bar extends Foo
 implements IBar {
 int b;
 String c;

 Bar(String c, int b) { ... }

 int foo(int x) {... }
 void foo(int x, int y) {... }

 int bar(int x, int y) { ... }
}

package org.xyz;

public class Foo {
 int a;
 int b;

 Foo(int a, int b) {...}

 int foo(int x) {...}

}

magic number
constant pool size
constant pool:

access flags: public
this class: Bar
superclass:
interface count: 0
interfaces:

field count: 2
 int a;

method count: 3
 <init>(String c, int b)
 int foo(int x)
 void foo(int x, int y)
 int bar(int x, int y)

attribute count: 4
 bytecode arrays

idx

java.lang.String

org.xyz.Foo
org.pqr.IBar

idx

String c;

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

19
Java Platform - Reflection

● Class loaders
– A scope for Java types

● Two class loaders defining the same type yields two runtime types

● Even when using the same class file

– Beware of equivalent names

● Name equivalence does not mean a thing between class loaders

● Same type name does not mean the same type

– Structural equivalence does not mean the same type

● Two types are the same only if the two class objects are the same class object

Rule 1: two classes are the same if they are the same class object

Rule 2: one class object belongs to one and only one classloader

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

20
Java Platform - Reflection

● Hierarchy of scopes
– A single tree of class loaders per JVM

– A class loader has a parent class loader

– Types in the parent class loader are visible

● Bootstrap class loader
– The root of all class loaders

– Created at bootstrap by the JVM to load core classes

● java.lang.Object, java.lang.Class

● java.lang.String, java.lang.Throwable, java.lang.Exception

● Etc.

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

21
Java Platform - Reflection

● Class loading
– A tree of class loaders

– A complex graph of types across all
class loaders

● Reminder
– Could have redundant loading!

Foo
class

Bar
class

superclass

String
class

import

Object
class

superclass

superclass

parent

ClassLoader

ClassLoader

the same class file may be loaded
in different class loaders...

it will be different class objects
and therefore different types

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

22
Java Platform - Reflection

● Dynamic and lazy class linker
– Multi-stage linking

● Loading

● Prepared

● Resolved

● Initialized (static initializer)

– Warning

● Loading may succeed but resolving or
initializing may fail much later

Foo
class

Bar
class

superclass

String
class

import

Object
class

superclass

superclass

parent

ClassLoader

ClassLoader

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

23
Java Platform - Objects

● Java objects
– Instances

● An object is an instance of a class

● It has an identity and a state (field values)

– Two way to compare objects

● Equality of identities (using the operator ==)

● Equality of states (using the Object.equals(Object) method)

● Hash code
– Object.hashCode() method

● Not a real identity, but it is invariant per instance

● Used for collections such as directories or maps

– WARNING

● The hash code must work correctly with the value equality

● If equals, they must have the same hash code

● If you need to override one, override both methods

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

24
Java Platform - Objects

● Java is garbage collected
– Live objects are kept

– Live objects are reachable from roots of persistence

– Roots are traditionally thread stacks and static fields in loaded classes

● Being garbage is a stable property
– I.e. once an object is garbage, it remains garbage

root root

Garbage
Collection

root

X
A mutator cuts
a reference

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

25
Java Platform - Objects

● Garbage Collector
– Garbage collection is about detection and reclaimation of garbage objects

– Different approaches are possible

● Scavenger, mark&sweep, generational, etc.

● Performance
– Limit the overhead, so run the GC rarely

– Avoid growing the heap, so run the GC often enough

● Correctness
– Never detect and reclaim a live object

● Liveness
– Detect and reclaim garbage faster than objects are allocated

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

26
Java Platform – Garbage Collection

● Reference Counting
– Each object is associated a counter

● Counts the number of references on that object

– Counter management

● Happens on assigning reference

– Decrement the count of the previously referenced object (if any)

– Increment the counter of the newly referenced object

● Applies to

– Reference fields in objects as well as local variables and parameters

● When a counter reaches zero

– The object owning that counter is garbage

1

2

1 0

3

1

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

27
Java Platform – Garbage Collection

● Discussing Reference Counting
– Problematic on multi-processors

● Inherently incremental: impossible to run concurrently

● Incrementing and decrementing require a critical section

– Does not require to scan thread stacks

● But requires to account for local variables and arguments

● Introduces a high overhead (increment/decrement)

– Extra paging

● Accesses objects even if only references are manipulated

● Dirties memory pages, potentially increasing the overhead of virtual memory paging

– Does not reclaim cycles

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

28
Java Platform – Garbage Collection

● Scavenger
– Copying collector, using two spaces

● Copy live objects from the old space to the new one

● Discard the old space

object heap

live object

root object

object heap

garbage object

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

29
Java Platform – Garbage Collection

● Scavenger details
– Live objects are reachable from roots (thread stacks and class statics)

– Leave a forwarder in-place of copied objects

● Allows to detect cycles (correctness when copying)

● As well as treat correctly shared objects

– Use to-space as a recursion stack

from space to space

object

root object

object heap

forwarder

garbage object

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

30
Java Platform – Garbage Collection

● Discussing Scavenger
– Simple when designed as stop the world

● A simple depth-first recursive walk of an object graph

● Cycles are easily detected through forwarders

● Require to scan thread stacks

– Clustering objects

● Depth-first scavenging produces efficient in-memory clustering of objects

– Efficiency

● Depends on the ratio of live versus garbage objects

● Also depends on the cumulative size of live objects

● The fewer live objects, the more effective

● May lead to allocate twice the heap size

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

31
Java Platform – Garbage Collection

● Mark & Sweep
– A two-phase garbage collection

● A marking phase, coloring live objects

● A sweeping phase reclaiming garbage objects (not colored)

– Marking phase

● Walks the refer-to graph from roots (thread stacks and class statics)

● Carry the current color

object heap

object

root object

object heap

Live object

root object

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

32
Java Platform – Garbage Collection

● Mark & Sweep
– Sweep phase

● Sweeps sequentially the object heap to discover garbage objects

– Reclaiming garbage

● Using free lists (non-compacting sweeping)

● Compact as sweeping (challenging to maintain references)

object heap

Live object

root object

object heap

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

33
Java Platform – Garbage Collection

● Discussing Mark & Sweep
– Not too sensitive to the live/garbage ratio

– Requires to scan thread stacks

– Caveats of free-list memory management

● Can lead to traditional fragmentation

● Costly allocation (different algorightms such as first-fit, best-fit, etc.)

– Two scans of the object heap

● One through references and the other sequentially

● May lead to heavy paging activity if heap larger than main memory

● It defeats the LRU policy of most virtual memory systems

● Compacting Mark&Sweep
– Some mark&sweep do compact the heap during the sweep phase

– Usually done by slidding objects, does not improve locality

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

34
Java Platform - Finalizers

● The problem
– Java depends on a lot of native resources represented by objects

– How does one free those resources?

● The finalize method
– The object class defines a method finalize()

● Any class may redefine this finalize method

● A class that redefines its finalize method is said to have a finalizer

– When is it called?

● The finalize method is called when the object is detected as being garbage

● If the finalize method is not redefined, it is not called

● However, the finalize method is called only once

– Threads?

● There is no guarantee about which thread is used to call finalize methods

● But that thread does not hold any user-level Java monitor

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

35
Java Platform - Finalizers

● Finalizers introduces resurection
– It is legal for a finalize method to make a garbage object live again

– Reminder: finalizers are called only once per object

– Require to detect twice that an object is garbage

● Impacts garbage collection
– Introduce a new state:

● Reachable (live)

– There is a path from roots to the object

● Resurrectable

– The object is not reachable

– The object may be resurrected

– All objects go through that state

● Unreachable (garbage)

– The object is not reachable

– The object cannot be resurrected

reachable

resurrectable

unreachable

new

reclaim

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

36
Java Platform - Finalizers

● Compatibility with GC algorithms
– Compatible with reference counting

● Easy to call the finalizer when the counts drop to zero

● Easy to know that the object remained garbage

– Counter still at zero after the finalizer run

● But reference counting is rarely used in practice

– Incompatible with scavenging

● Reintroduces a sweep to find garbage objects with a finalizer

● Never know when to free the from-space because of resurection

– Mark&Sweep is well-suited

● Easy to extend the sweeping phase to find objects with finalizers

– But delays the actual reclaimation of garbage objects

● Still requires two marking phase to really know if an object is garbage

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

37
Java Platform - Objects

● Java Finalizers – complex and not enough
– Native resources are often really scarce

– Garbage collection is too asynchronous

– So native resources are not freed fast enough

● Raising the GC frequency is difficult
– Because it is most often stop-the-world

– Because it represents an overhead

● Marking the object graph

● Sweeping the object heap

● Introduce explicit close/dispose operations
– On Sockets, files

– On Widget toolkits

– Etc.

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

38
Java Platform - References

● Introducing different semantics for Java references
– Strong references

● The usual object references in the Java language

– Weaker references in java.lang.ref

● SoftReference and WeakReference

● PhantomReference

Reference

SoftReference WeakReference PhantomReference

variable

an object
called the referent

Reference
object

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

39
Java Platform - References

● Java References
– Normal semantics for objects that are strongly reachable

● If you do not use weaker references, nothing is different than usual Java

– Weaker references are managed by the GC

● When an object is no longer strongly reachable

● The GC may clear weaker references to that object at any time

– Notification

● A reference may be associated to a reference queue (ReferenceQueue class)

● Once the GC cuts a reference, it push that reference on its associated queue

variable

referent

queue

references
sharing the
same queue

cleared
references

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

40
Java Platform - References

● State changes
– Reachable is detailled into

● Strongly reachable

– Reachable through strong references

● Softly reachable

– Not strongly reachable

– Reachable through soft references

● Weakly reachable

– Neither strongly nor softly reachable

– Reachable through weak references

– Unreachable

● Phantom reachable

– Not reachable but through phantom references

– Such objects are not resurrectable

● Unreachable

– Entirely unreachable

– Ready to be reclaimed

strongly reachable

resurrectable

unreachable

new

reclaim

phantom

softly reachable

weakly reachable

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

41
Java Platform - References

● Discussing soft versus weak references
– Weak references

● Weak references must be cleared by the GC as soon as the referenced object is weakly
reachable (neither strongly or softly reachable)

● Used for canonical mappings

– Keep a mapping key to value

– Clean the mapping as soon as the key is no longer used (reachable)

– Soft references

● Soft references must only be cleared by the GC before it raises an out-of-memory
exception, but it may sooner

● It is suggested that clearing soft references follows the policy:

– Keep recently created and recently used soft references

● Used for caching objects

– A service provides an object

– Clients keep a reference as long as they need to use the object

– The GC only reclaims the object and cuts your soft reference if it needs memory

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

42
Java Platform - References

● Discussing phantom references
– More powerful than just finalizers

● Finalizers are called only once

● So if objects are resurrected, finalizers can no longer be used for cleanups

– Phantom references introduce post-mortem resource management

● An object that is phantom-reachable can no longer be resurrected

● It is therefore the absolute last moment to do some cleanup

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

43
Java Platform – Remote Method Invocations

● Requires extensions to the Java Platform
– Remote references... Java references are local to a JVM

– Remote method invocations... Java method invocations is local to a JVM

● Available in the JDK 1.4
– Also as free software such as NinjaRMI (Berkeley) or Jeremie (ObjectWeb)

JVM

JVM

JVM

3

3

thread stack

2

32

remote
invoke

remote
reference

4

1

4

1
2

2

1

1

3

4
4

stack frame

1

1

receiver (this)

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

44
Java Platform - RMI

● Remote references
– Relies on stubs and skeletons

● Stubs and skeletons are regular Java objects

– A stub identifies its remote skeleton

● Using a machine IP, a port number, and a skeleton identifier

– A skeleton identifies its local object

● Using a local Java reference

Ox12 0x48

Java Virtual Machine Java Virtual Machine

stub skeleton

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

45
Remoting Method Invocation

● Remote invocations
– Over remote references, through stubs and skeletons

– Mashalling and unmarshalling of parameters

...
int i;
...
i = m_bar.bar(2);

public int bar(int factor) {

 return factor*m_value;
}

foo bar

process process

Object 0x12

Object 0x48

Foo Bar

method = bar(int)int
factor = 2
replyTo = IP, port, and thread id

thread id
returned value = 8

stub skeleton

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

46
Remote Method Invocation

(1) invoke a method

(2) wait

(3) get the
returned values

Object 0x12Object 0x12 Object 0x48

public class Foo {
 IBar m_bar;
 public int foo() {
 return m_bar.bar(2);
 }
}

public class Bar implements IBar {
 int m_value;
 public int bar(int factor) {
 return factor*m_value;
 }
}

Bar:bar()
execute

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

47
Discussing Programming Models

public class Foo {
 IBar m_bar;
 public int foo() {
 return m_bar.bar(2);
 }
}

public class Bar implements IBar {
 int m_value;
 public int bar(int factor) {
 return factor*m_value;
 }
}

(1) invoke
the method

(2) wrap args
and method signature
in message

(3) unwrap
and dispatch

(4) execute

(5) wrap out
parameters

(6) unwrap out
parameters

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

48
Java Platform - RMI

● Creating a remote reference
– Passed as arguments or returned

Ox12

Object 0x12

Object 0x48

Foo Bar

Ox12 0x48

Ox12 0x48

0x48

Create skeleton
Allocate skeleton id (skelid)

Skelid is a key to
a local table of skeletons

Create stub
Knows the IP, port, and skelid
Indexed in a local table of stubs stub

skeleton

skeleton

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

49
Java Platform - RMI

● Why stub and skeleton tables?
– Avoids re-creating stubs or skeletons for an object if they exist already

– Avoids overloading the DGC and the local tables

– Faster lookups to find a skeleton or a stub

● Use naming service to bootstrap
– How do we get the first remote reference?

● Use a name service binding names to remote objects

● Already uses stubs and skeletons

– So, how do we bootstrap?

Ox12 0x48

stub skeleton

Name Service

stublookup

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

50
Java Platform - RMI

● Looking at a simple example
– A simple bank is a remote object, that manages account objects

● Can either extend the UnicastRemoteObject

– Account objects are also remote objects, allowing simple operations

● See the balance of the account, credit or debut money

● Discussing the example
– About threads

● Which threads are used to carry remote invocations?

● Why didn't the server or client process stop at the end of main?

– Service contracts

● Why use an interface for typing the remote reference to the bank?

– The account remained a remote object...

● What about strings? Aren't they objects?

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

51
RMI – Execution Model

● Multi-threaded execution model
– Server objects may be invoked from several clients

● Method invocations happen in parallel

– Server objects must be developed assuming multiple threads

● Use synchronized methods

● Use synchronized blocks

● RMI thread pool
– Manages a pool of threads

– Pick one thread to carry one invocation

Server
Object

requests

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

52

RMI thread pool

RMI – Execution Model

● Thread pool details

request queue

RMI daemon thread

worker thread

Method

invocations

request
dispatcher

Client
Requests

worker thread
worker thread

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

53
RMI – Execution Model

● The loopback problem...
– Typical of a callback pattern (like in our example) or a distributed cycle

– RMI uses no concept of distributed thread

● Thread A and Thread C are different Java threads

● Wastes resources and yields a high probability of deadlocks

3

remote
invoke

remote
references 4

2

2

1

1

3

4

5
5

Thread A

Thread B

Thread C

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

54
Java Platform – RMI Programming Model

● Remote objects are used through remote interfaces
– All remote interfaces extend the java.rmi.Remote interface

– All remote methods throw at least the java.rmi.RemoteException

● Remote objects
– All remote objects extend the java.rmi.UnicastRemoteObject

● Why only remote interfaces?
– Stubs are regular Java, no special support in the Java Virtual Machine

– Stub classes implement the remote interfaces of their target object

Ox12 0x48

stub skeleton

public class Foo {
 IBar m_bar;
 public int foo() {
 return m_bar.bar(2);
 }
}

public class Bar implements IBar {
 int m_value;
 public int bar(int factor) {
 return factor*m_value;
 }
}

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

55
Java Platform – RMI Programming Model

● Arguments and returned values or objects
– Two semantics: by-value or by-reference

● Primitive types are always passed by-value
– Primitive types are boolean, byte, char, short, int, float, double

● What about objects?
– Can be either by-value or by-reference...

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

56
Java Platform – RMI Programming Model

● Objects by-value
– Any object which is “serializable”

● The class of the object implements java.io.Serializable

– Copy semantics

● Deep copy... yields two objects: both on server and client sides

● An example – a simple method returning a reference

invoke
Server
Object

Client
Object

return
Server
Object

Client
Object

public Object getObject();

must be serializable

made a copy

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

57
Java Serialization

● Deep copy
● Recursive depth-first copy of an object graph from a root

● If any object encountered is not serializable, an exception is thrown

● Notice that cycles are properly handled

root rootdeep copy

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

58
Java Serialization

● Individual object copy
– By default, all instance fields are copied

– Transient modifier on declared fields transient

● Set to null when copied

● Be mindful of sharing across transient and non-transient references

– Attention

● Static fields are part of the class

● Not part of the instances of that class

● Therefore, static fields are not serialized

root rootdeep copy

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

59
Java Serialization

● Individual object copy
– Reference to instances of RemoteObject are handler properly

● Will create a stub-skeleton pair

root

copyroot deep copy

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

60
Java Serialization

● Java Runtime Environment
– Most JRE classes are serializable

– Their instances will be passed by value

● Examples
– Java collections such as hash tables or vectors

– String objects

– Arrays are serializable objects

● Some classes are not serializable
– Only make sense locally, such as files, sockets, threads, etc.

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

61
Distributed Garbage Collection

● Live objects
– Locally or remotely reachable from roots

– Natural extension to the local case

● If a stub is reachable, so is the skeleton

● If the stub is reachable, so is the remote object

Remote
Object

client
object

root

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

62
Distributed Garbage Collection

● A simple solution
– Mixing reference counting and leases

– Local garbage collectors are left unchanged

– Counts stub references on skeletons

– Uses lease to resist failures

● Default lease is 10 minutes

● RMI middleware renews leases at half-life

Remote
Object

client
object

root

client
object

root

count=2

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

63
Distributed Garbage Collection

● Design
– Tracks remote references through soft references

● Renew leases as long as the soft references are not cleared

● RMI middleware renews leases at half-life

– Only increment/decrement remote counters when stubs are collected

Ox12 0x48

Tracks stubs through soft references...

stub skeleton

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

64
Distributed Garbage Collection

● Watch for distributed cycles...
– RMI DGC neither detects nor collects distributed cycles...

remote
object

client
object

root

root

X
X

mailto:Olivier.Gruber@inria.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

