Olivier Gruber

Professeur Université Joseph Fourier

Projet SARDES

(INRIA et IMAG-LSR)

Olivier.Gruber@inria.fr

Embedded Linux

- VirtualBox
- Virtual Machine Monitor
 - · Advanced technology for hosting several guest operating systems
 - · Within a process, virtualize a bare hardware
- Typical use
 - Installing a different operating system
 - Windows on Linux, Linux on Mac-OS or Windows on Mac-OS
 - · Simplifies operating system work
 - Safer and faster
 - Ability to show virtual devices
 - Hard disks
 - CD-ROM

Olivier.Gruber@inria.fr

Embedded Linux

- Pre-requisite
 - Be root on your machine
 - Virtual Machine Monitor
 - Download VirtualBox from www.virtualbox.org
 - Linux kernel sources
 - Download Linux kernel sources, suggested version 2.6.23.9
 - From http://www.kernel.org/
 - Or ftp://ftp.free.fr/mirrors/ftp.kernel.org/linux/kernel
- Grub loader
 - · Download Grub loader, version 0.97
 - From ftp://alpha.gnu.org/gnu/grub/

Olivier.Gruber@inria.fr

Embedded Linux

- VirtualBox
 - Create a virtual machine
 - · With 16MB of RAM
 - · With a hard disk of 32MB
 - Next steps
 - Create a bootable CD-ROM image
 - Make it visible to VirtualBox as a boot device
 - Boot from it

- · BIOS boot sequence
- Boot devices setup in the BIOS setup
 - · Usually floppy, CD and hard disk
 - Could be also USB devices (not always supported)
- Hardware boot process
 - · Loads first sector (512bytes) of a boot device
 - · Jumps in it
- Boot loader
- Linux kernel is just too large to be loaded directly by the BIOS
- We need a staged loading process...

Olivier.Gruber@inria.fr

Embedded Linux

- GRUB = GRand Unified Boot-loader
- Two stages
 - Stage1
 - 512byte boot sector
 - Will be installed on the first boot sector of a boot device
 - Will load stage2
 - Stage2
 - 100KB loader
 - Understands certain file system formats
 - MSDOS FAT16 and FAT32
 - Minix fs, Linux ext2, ReiserFS,
 - JFS, XFS, BSD ufs
 - Will load and uncompress the Linux kernel

Olivier.Gruber@inria.fr

Embedded Linux

- GRUB = GRand Unified Boot-loader
 - From GNU (GNU is Not Unix)
 - Read the README and INSTALL (as always)
 - Configuring
 - · ./configure -prefix=PATH
 - Do give a PATH to a local directory in your home
 - Otherwise it installs on /boot/grub
 - Building
 - make
 - Installing
 - · make install

Olivier.Gruber@inria.fr

Embedded Linux

- Bootable CD-ROM
 - Make an ISO 9660 image
 - · CD-ROM data disks use a different file system than hard disks
 - · Look at the manual of mkisofs
 - Make it bootable
 - GRUB is compatible with booting CD-ROM
 - · Through the stage2_eltorito

DO NOT BURN A CD Make an image (iso file)

- · GRUB How-Tos
- http://www.gnu.org/software/grub/manual/html_node/Installation.html#Installation
 - · Installing GRUB natively
 - · Making a bootable CD-ROM

Olivier.Gruber@inria.fr

Embedded Linux

Linux kernel

- Look under /boot
 - vmlinuz-2.6.23.9-xyz
 - System.map-2.6.23.9-xyz
- Look under /boot/grub
 - · You see the GRUB files
- Kernel itself
 - One executable, fairly large 500KB to 1.5MB compressed
 - · System map is about kernel symbols

Olivier.Gruber@inria.fr

Embedded Linux

Bootable CD-ROM

- Make the ISO image visible to your virtual machine
 - Using the disk manager in VirtualBox
- Boot from it
 - · You should see the grub prompt
 - · There is not much we can do...
 - We need a bootable Linux CD-ROM
 - So that we can boot from it
 - Partition and format the hard drive
 - Install GRUB on it

Olivier.Gruber@inria.fr

Embedded Linux

Kernel Modules

- Not all functionality are statically linked in the Linux kernel
 - · New device drivers such a network cards or disk controllers
 - New bus supports such as PCI, PCMIA, USB, etc.
 - · Higher functions such as IP tables or SCSI support
- Propose the concept of modules
 - Can be dynamically loaded and unloaded
 - Better usage of kernel memory
 - Supports PnP devices without rebooting
 - Suited for embedded systems?
 - Kernel is a tad larger with module support enabled
 - Need more static footprint since modules are in the file system
 - Under /lib/modules/
 - No single answer...

13

- · Kernel Modules
- Under /lib/modules/
 - · One hierarchy per version of the kernel
 - · Per kernel version
 - Hierarchy of modules organized by functional themes
 - Look under /lib/modules/x.y.z/kernel

Is /lib/modules/2.6.18.8-0.7-default/kernel arch crypto drivers fs kernel lib net security sound

Olivier.Gruber@inria.fr

Embedded Linux

1

- · Kernel Modules
 - Manipulating modules
 - · Listing modules: Ismod
 - · Inserting module: insmod
 - · Removing a module: rmmod
 - Dealing with dependencies
 - Use modprobe if modules may have dependencies
 - Look at the man pages...

Olivier.Gruber@inria.fr

Embedded Linux

- Kernel Modules
 - Modules have dependencies between them
 - · Generated at each Linux boot by the command
 - # depmod -a
 - Remembered in a modules.dep

Is /lib/modules/2.6.18.8-0.7-default/
CiscoVPN build kernel misc source weak-updates
modules.ccwmap modules.map modules.usbmap
modules.ieee1394map modules.seriomap
modules.inputmap modules.symbols
modules.alias modules.isapnpmap
modules.unsupported

Olivier.Gruber@inria.fr

Embedded Linux

10

- Kernel file system (/proc)
 - Virtual file system representing the state of the machine
 - · A way for the kernel to communicate with user space
 - Example:
 - The command Ismod is in fact reading the information from /proc
 - # cat /proc/modules
 - · Look at numerical directories under /proc
 - Information about processes
 - Full documentation under
 - /usr/src/linux/Documentation/filesystems/proc.txt
 - · Peek around your /proc hierarchy

17

- Making a bootable Linux CD-ROM
 - Booting
 - · We need a GRUB-enabled ISO image
 - · We need a kernel and its modules
 - Boot sequence
 - · GRUB loads itself
 - · Loads and uncompress the Linux kernel image
 - · Starts executing the kernel
 - Then what?

Olivier.Gruber@inria.fr

Embedded Linux

19

- Making a bootable Linux CD-ROM
 - Initial RamDisk (initrd)
 - The init process
 - · A minimal file system image
 - Look at /boot/initrd
 - · It is a cpio archive compressed by gzip
 - Uncompress and unarchive
 - · Or it is a compressed ext2 file system image
 - Uncompress and then mount through the loop driver
 - Mounted as the root file system
 - · Mounted on /

Olivier.Gruber@inria.fr

Embedded Linux

• Making a bootable Linux CD-ROM

- We need an initial process...
 - · The init process
- From where?
 - · From what file system?
 - The root file system...
 - Parameter to the Linux kernel startup
 - GRUB root command
 - · How does the kernel read that file system?

Olivier.Gruber@inria.fr

Embedded Linux

20

- Making a bootable Linux CD-ROM
 - We need to tailor the init process
 - To make minimal so that it works and ends in a shell
 - We need minimal commands
 - · Such as ls, cat, mkdir, etc.
 - We need a shell interpreter
 - So we need the necessary libraries...
 - · Use Idd to see what the dependencies are
 - The manual approach is tedious
 - · Write a shell script to gather the necessary libraries