
Olivier.Gruber@inria.fr

1

Embedded Linux

Olivier Gruber

Professeur

Université Joseph Fourier

Projet SARDES

(INRIA et IMAG-LSR)

Olivier.Gruber@inria.fr

2

Embedded Linux

� Part One

� Introduction to embedded systems

� Fundamentals of a linux system

� Virtual Machine Monitor technology

� Part Two

� Minimal linux system

� Boot and install process

� Minimal kernel

� OSGi platform

Olivier.Gruber@inria.fr

3

Embedded Systems

� What is an embedded system?

� Dedicated software running in an industrial or consumer product

� What matters is the complete product (hardware+software)

� The software has no value by itself

� Almost everything is board dependent

� Sometimes there is not even an operating system

� Everything is done by hand, hard-coded

� The hardware choice drives everything else

� E.g. satellite software

� Weight and dimensions are imposed

� E.g. low-end phones

� 10 cents per phone for more memory
� 10M euros for 100M phones
� Total software of a phone could be about 1 euro

Olivier.Gruber@inria.fr

4

Embedded Systems

� Major characteristics of embedded systems

� Dedicated software

� A washing machine never brews coffee...

� An MP3 player is not about playing other formats

� Reliable and secure

� Blue screens or segmentation faults are not an option

� Airbus software must be reliable

� ABS software must work when needed

� Security must be a reality

� Car electronics must be secure, not helping car thiefs

� High-security buildings

Olivier.Gruber@inria.fr

5

Embedded Systems

� Major characteristics of embedded systems

� Maintainable

� Product lifespans are in tens of years

� Suggests maintainable software

� A typical car life is 10 years or more

� 70% of car problems are electronic-related

� Most are software bugs

� Some only require to reset the overall system
� Some require patching the embedded software

� Sometimes it is a hardware failure

� But hardware components have a shorter lifetime
� No one wants to throw their car away because of this...

� Suggests a modular approach

� At the level of small embedded systems
� A car could contain 4 networks and about 70 systems

Olivier.Gruber@inria.fr

6

Embedded Systems

� Major characteristics of embedded systems

� Optimized

� Hardware constraints are high

� Small memory footprints

� As low as a few kilobytes
� A few mega-byte memory is huge

� Slow processors

� 8bit or 16bit processors are still around
� Like an ARM7 on Atmel boards for instance

� Slow 32-bit processors
� Such as 33MHz 486 on PC-104 boards
� Or 40MHz Dragonball (68K)

� High-end PDA or smart phones

� About 16 or 32 MB or even 64MB
� Up to 400MHz 32-bit processors

Olivier.Gruber@inria.fr

7

Embedded Systems

� Major characteristics of embedded systems

� Why so optimized?

� A matter of price... because of large volumes

� A matter of weight and dimensions

� A matter of consumption

� Despite power-efficient new processors

� Battery life is the challenge of most mobile embedded systems

� Examples

� An early Palm had a battery life of 3-4 weeks

� A PocketPC survived barely two days

� Think of your digital camera...

Olivier.Gruber@inria.fr

8

Embedded Systems

� Major characteristics of embedded systems

� Specific

� All geared to the targeted board and the functionality

� Form-factors are widely different

� No GUI or just a small LCD

� No mouse or keyboard, may be a touch screen

� Sometimes no human interface at all

� ABS in cars
� Electric meters

� Tools and environments are also specific

� Compilers and debuggers are often specific to a board

� Operating systems are also very diverse and not ubiquitous

� Many different processors (ARMxx, PowerPC, x86, DSPs, others)

� Overall development environment is crude and harsh

Olivier.Gruber@inria.fr

9

Embedded Systems

� A bit of philosophy...

� More powerful hardware... a chance or a curse?

� In fact both... we needed more powerful computers

� But definitively a cancer for software engineering

� Just developed so much bad habits for developers

� Today, an empty library could be 300KB !

� Early personal computers

� ZX-81 with 1KB RAM, 8KB ROM, no disk, no floppy but a tape
� Apple II with 48KB RAM, 16KB ROM, 5 ¼ floppy

� Today's PCs

� 256KB cache, 2GB RAM, 200GB of disk
� 40M LOC for Windows
� Typical software install over 100MB easy

Olivier.Gruber@inria.fr

10

Embedded Systems

� A bit of philosophy...

� The problem is all across the board

� Operating systems and compilers

� Middleware frameworks, including verbose code generators

� High-level language libraries (e.g. Java) and application developers

� Just a comparison

� Sun's Sparc (1987) 512KB RAM, 70MB hard drive

� With Unix, gcc, gdb, X11, latex, emacs, etc...

� With Smalltalk that was an entire environment

� Eclipse 3.2

� Just an IDE for Java over 130MB...

� Plus a JRE of 16MB

Olivier.Gruber@inria.fr

11

Embedded Systems

� A bit of philosophy...

� Results in a profound schism

� Between traditional and embedded systems

� Lack of skills

� Only a few are still understanding low-level systems

� Going back in history

� Dedicated operating systems and tools

� For small boards

� Linux is too fat and complex for most embedded systems

� But it can be tailored down a bit

� We are still talking dozens of MB still

� Suited for a whole range of hardware configuration

� Routers, PDAs, smart phones, GPS, etc.

Olivier.Gruber@inria.fr

12

Embedded Systems

� Slowly evolving

� Better modularity and reusability

� Towards reusable components

� Starting with operating systems

� Continues with middleware systems

� Talking about software components like OSGi

� Not a reality today

� Everything is done by hand

� The hardware choice drives everything else

� But software costs are unmastered

� Assembly language is still used in many products

� C is the default choice, sometimes C++

� Java is trying to impose itself

Olivier.Gruber@inria.fr

13

Embedded Systems

� Another schism: real time or not

� Traditional operating systems are time-sharing systems

� No real time constraints for correctness

� Most often, scheduling favors overall throughput

� Real-time systems

� There is no single definition of what a real-time system is

� But time constraints become part of the correctness definition

Olivier.Gruber@inria.fr

14

Embedded Systems

� Soft real time

� Accuracy in time constraints is around 500ms

� Examples

� Video streaming where missing a few frames is acceptable

� Most physical sensors such as wind, speed or temperature

� Hard real time

� Each processing is defined with a time constraint

� That must be respected

� Under all loads

� Hard real time usually also implies

� Deterministic behavior with high availability and dependability

� Examples

� Embedded systems for cars, trains, planes, satellites or nuclear plants

Olivier.Gruber@inria.fr

15

Embedded Systems

� Small experience

� Signal generation at a given frequency

� We use the PC parallel port and a small program

� To generate a certain frequency (25Hz, so about a half-period of 20ms)

� We compare on the same hardware

� A standard linux

� A real-time system

Computer

Parallel port

Olivier.Gruber@inria.fr

16

Embedded Systems

� Comparing soft and hard real time

Timings from standard linux are

heavily influenced by load

from 22Hz to 29Hz

Most within +/- 1 seconds in full load

and some within +/- 3 seconds

Timings from realtime linux are

slightly influenced by load

from 24.98Hz to 25.01Hz

Most within +/- 10ms in full load.

Olivier.Gruber@inria.fr

17

Embedded Systems

� Discussion

� Standard linux and other operating systems cannot be used for real-time

� Some patches exist to improve the situation

� But they are not making Linux a hard real-time system

� Predictability versus performance

� Predictability usually means less performance on equal hardware

� A real-time system does not perform better

� It is more predictable

� Because some performance is lost to predictability

Olivier.Gruber@inria.fr

18

Embedded Systems

� Memory sizes

� Typical sizes are given in the table

� The number dates back to 2002 or so

� Note:

� Didn't change for the smaller embedded systems

� Have doubled or so for the larger ones (up to 128MB)

� The ROM is opposed to the RAM

� But often most or all of the ROM is in reality some FLASH

Systems Large Medium Typical Deeply embedded

RAM

ROM

32-8 MB

32-8 MB

8-2 MB

8-2 MB

4-0.1 MB

2-0.5 MB

Less than 0.1 MB

0.5-0.1 MB

Processor 32bit 32-16bit 16-8bit 8bit

Olivier.Gruber@inria.fr

19

Embedded Systems

� System footprint

� We must consider both static and dynamic footprint

� Static footprint is the usual one we talk about

� Easier to measure

� Just look at the code sizes

� Although pay attention to dynamically loaded code

� Shared libraries
� Kernel modules

� Dynamic footprint is the real measure

� Harder to measure

� Need tools but also it may depend on the working set

� But this is what need to fit in memory!

Olivier.Gruber@inria.fr

20

Embedded Systems

� Programming languages

� Assembly language is still by far the language of choice

� Enables to control both footprint and performance

� But increased software development costs as software complexity grows

� Lacks portability across the increasing families of processors

� Strong ARM, SH3, PowerPC, Intel IA-32 and others

� C language

� Becoming the preferred language

� If performance and footprint considerations allow to use C

� Learn and use compiler options (like GCC -Ox for performance and -Os for size)

� Heavy use of macros for adapting software

� Adapting software is a major step in embedded system programming

� Many constants are hardware dependent
� Many low-level APIs are hardware dependents

� Powerful macro languages are used to support the necessary software adaptation

Olivier.Gruber@inria.fr

21

Embedded Systems

� Programming languages

� Considering Java

� The portability of Java is extremely interesting to preserve software
investments

� But standard Java is not an option

� JVMs are too fat

� Libraries are poorly programmed and too fat

� No hardware specifics are not reified

� Sun's is promoting J2ME profiles

� Smart card

� CDLC and CDC

� Foundation and personal

� Several efforts exist

� Savaje or Esmertec for example

Olivier.Gruber@inria.fr

22

Embedded Systems

� Programming languages

� Industrial Software Technologies (IST)

� A French technological leader in deeply embedded Java

� Bare metal virtual machines as small as 32KB

� Up to 64KB with a MIDP profile

� From 8bit processors up to 32bit processors

� Runs on many different processors and reifies many board specifics

� Accelerator technology

� IceTea language, a derivative of Java

� Produces faster code than most platform C compilers!

� Tailored virtual machines

� For each hardware and each product line

� Full control over the safety/speed/footprint challenge

� Advanced debugging and testing environments

� Hardware simulators with full assert modes

� Discover 95% of problems, leaves only 5% on the actual board

Olivier.Gruber@inria.fr

23

Embedded Systems

� Operating systems

� Evolution

� Embedded systems used to be bare-metal standalone program

� Simple functionality and complete control over the hardware

� But this is no longer an option in many products

� Software complexity is rising fast

� Heterogeneity of hardware is also increasing rapidly

� Multi-function embedded systems

� All this suggests to use an operating system

� Supports multi-programming

� Virtualizes the hardware specifics through device drivers

� Provide standardized Application Binary Interfaces (ABI)

� Provides a basis for security and isolation

Olivier.Gruber@inria.fr

24

Embedded Systems

� Operating systems

� Some examples

� VxWorks from WindRiver (www.windriver.com)

� The number one real-time OS in the embedded industry

� WindRiver also acquired recently the pSOS real-time kernel

� Technology

� Provides strong network connectivity
� TCP/IP stack natively integrated in the kernel
� Comes with tools for cross-compiling and testing

� Licenses are expensive

� QNX (www.qnx.com)

� Canadian Unix-like real-time OS

� POSIX-compliant
� Graphical interface is Photon, close to X Window System
� Uses GNU tools

� Can be used for free for non commercial applications

Olivier.Gruber@inria.fr

25

Embedded Systems

� Operating systems

� Some examples

� LynxOS

� Another real-time POSIX-compliant operating system

� Developed by LynuxWorks (www.lynuxworks.com)

� �C/OS and �C/OS II (www.ucos-ii.com)

� Created by Canadian Jean J. Labrosse for microcontrollers

� Targeted originally the Motorola 68HC11 but it is now available for others

� Provides a minimal TCP/IP stack (C/IP�)

� Can be used for free for non commercial applications

Olivier.Gruber@inria.fr

26

Embedded Systems

� Operating systems

� More examples

� Windows CE

� US Microsoft targets embedded markets

� About personal devices such as Smart phones or Personal Digital Assistants
� A matter of long-term survival for Microsoft

� Too fat and too slow for most embedded systems

� Requires 400MHz processors and 64MB of RAM...
� But attractive because of its compatibility and integration with desktops

� Information at www.microsoft.com/windows/embedded

Olivier.Gruber@inria.fr

27

Embedded Systems

� Operating systems

� More examples

� Nucleus

� Developed by Accelerated Technology Inc. (www.accelerated-technology.com)

� Real-time operating system

� TCP/IP connectivity
� User interfaces through a Graphix library,
� Web browser (WebBrowse)
� HTTP server (WebServer)

� Sources are provided and there is no royalties for redistribution

� eCOS (Embeddable Configurable Operating System)

� Initially from Cygnus, acquired by Red Hat Software

� Real-time operating system for tiny memory footprints

� Based on POSIX and GNU tools

� Provides TCP/IP connectivity

� Available under a license close to GNU GPL

� Sources at http://ecos.sourceware.org

Olivier.Gruber@inria.fr

28

Embedded Systems

� Embedded Linux

� Used to be not a player for embedded systems...

� Just too fat, embedded devices too small and too slow

� Embedded systems were about assembly language and dedicated software...

� By 2000

� Smaller Linux-based distributions are available

� Medium to large embedded systems are powerful enough

VxWorks Embedded
Windows

pSOS Embedded
Linux

Nucleus VRTX

0%

50%

25%

2000

1999

1998

Polls of the readers of the
Embedded Systems Programming Magazine

n/a

Olivier.Gruber@inria.fr

29

Embedded Systems

� Embedded Linux

� Problems with proprietary operating systems

� Often made by small companies

� Difficult to keep up with hardware evolutions

� A processor lifetime is about 12 to 24 months

� Real risk of a embedded software company going under

� Usually requires to by expensive source licenses

� License costs are already too high

� Profit margins are decreasing

� Software must almost be free

� Software development costs

� Tool chains are specific and expensive

� Difficult to find qualified people (not taught in Universities)

� Trainings are expensive

Olivier.Gruber@inria.fr

30

Embedded Systems

� Embedded Linux

� Open source advantages

� Free to use and free is good!

� Source availability

� Both for tomorrow's bug and legacy processor support

� But also for the ability to develop derivative work

� A dynamic community

� Finding help on line

� Through FAQs, mailing lists, newsgroups, etc.

� Software that is evolving rapidly

� With respect to new processors or devices
� With respect to fixing bugs

� Licenses allowing commercial usages

� GPL and LGPL licenses

� MIT or BSD licenses

� Apache or Eclipse licenses

Olivier.Gruber@inria.fr

31

Embedded Systems

� Embedded Linux

� Open source challenges

� Diversity and heterogeneity of Linux distributions

� Somewhat the same but still different enough to require an important ramp up

� The licensing fears

� Not quite a reality for building commercial systems

� Even with the GPL, what was open source must remain so

� But one can use Linux in a commercial routers or PDA

� Lack of support and guarantees

� Just a very different model for the embedded world

� One has to believe in the community rather than on a contract
� In reality, both work and both don't...

� Many businesses are built around providing support for OSS

Olivier.Gruber@inria.fr

32

Embedded Linux

� So where do we stand with embedded Linux?

� A few numbers from a study from Venture Development Corporation (VDC)

� $28M in 2000, $55M in 2001, projected to be $305M in 2005

� 59% of the embedded industry players had never used Linux in 2001

� 19% had used it on one project and 22% used it on several projects

� Linux usage 2002 (source: CNET Networks Inc.)

Undecided
(16%)

1 to 2 years
(8%)

6 to 12
months (13%)

1 to 6 months
(18%)

Started
already (47%)

When do you plan to use Linux
for an embedded system project?

Olivier.Gruber@inria.fr

33

Embedded Linux

� Linux usage (source: CNET Networks Inc.)

Available de-
velopers (9%)

Device drivers
and tools (9%)

Networking
support (16%)

Reliable (18%)

No royalties
(19%)

Open sources
(20%)

Not Microsoft
(9%)

Why are you considering or using Linux?
(2002)

Olivier.Gruber@inria.fr

34

Embedded Linux

� Linux usage (source: CNET Networks Inc.)

� All-free Open Source Software (OSS)

� For a commercial product, paying for support is an important opportunity to
ease Linux adoption and reduce development times

Willing to pay
(68%)

Undecided
(19%)

Not willing to
pay (13%)

Would you be willing to pay for support?
(2002)

Olivier.Gruber@inria.fr

35

Embedded Linux

Which OSes have been in your (company's) embedded designs

during the past two years?

Source: http://www.linuxdevices.com
Olivier.Gruber@inria.fr

36

Embedded Linux

Actual and planned Linux use may converge by 2012

Source: http://www.linuxdevices.com

Olivier.Gruber@inria.fr

37

Embedded Linux

Source: http://www.linuxdevices.com
Olivier.Gruber@inria.fr

38

Embedded Linux

This suggests that Linux continues to deliver on the promise of vendor neutrality and

absence of vendor lock-in, and that embedded Linux technology remains adequately

decoupled from the fortunes or failings of any single company or organization.

Source: http://www.linuxdevices.com

Olivier.Gruber@inria.fr

39

Embedded Linux

Source: http://www.linuxdevices.com
Olivier.Gruber@inria.fr

40

Embedded Linux

Source: http://www.linuxdevices.com

Olivier.Gruber@inria.fr

41

Embedded Systems

� Some embedded Linux distributions

� MontaVista Linux

� From http://www.mvista.com

� Leader for commercial embedded Linux systems

� Introduced the soft-real-time features in the Linux kernel 2.6

� Supports a large number of processors

� BlueCat Linux

� From LynuxWorks (www.lynuxworks.com)

� BlueCat version 5.0 is based on the Linux kernel 2.6

Olivier.Gruber@inria.fr

42

Embedded Systems

� Some embedded Linux distributions

� Clinux �

� From http://www.uclinux.com

� Pronounce (u-see-linux)

� Targets processors with no MMU (Memory Management Unit)

� Available on many processors

� ColdFire Motorola, 68xxx, ARM, Intel i960, Axis ETRAX, etc.

� Fast inclusion of new 2.6 kernel versions

� A commercial support is available from Arcturus Networks

Olivier.Gruber@inria.fr

43

Embedded Systems

� Some embedded Linux distributions

� RTAI Linux

� From http://www.rtai.org

� Adding a real-time kernel as loadable module

� Linux is considered as the low-priority task

� Was developed from RTLinux

� But it is now independent and has an active community

� EDLK

� From a German corporation (http://www.denx.de)

� Open source but no real time support

� Excellent quality for cross-compiling to x86, PowerPC and ARM

Olivier.Gruber@inria.fr

44

Embedded Systems

� Some embedded Linux distributions

� PeeWee Linux (http://www.peeweelinux.org)

� Kernel 2.2 without real-time support

� Easy-to-use tool to build the overall system image

� Somewhat like make menuconfig for the kernel

� Supports DiskOnChip Flash memories

� Somewhat obsolete though

Olivier.Gruber@inria.fr

45

Embedded Systems

� Embedded Linux

� When to not use Linux?

� Target system does not need network connectivity or other existing drivers or
protocols

� Target system does not need to evolve (short lifetime for example)

� Target system is too small

� Minimal Linux kernel is at least 400KB compressed

� Average Linux kernel is usually over 1MB compressed

� Dynamic footprint is at least 4MB

� GPL/LGPL is unacceptable to you, your boss or your specific needs

� What to do then?

� Look at using eCos or �C/OS

� Bare metal tiny Java virtual machines like IST

� Do your own development

Olivier.Gruber@inria.fr

46

Embedded Linux

� Case study

� Build a minimal kernel for running an OSGi platform on a JVM

� Practical knowledges

� Understand the Linux kernel boot process

� Understand how to tailor a Linux kernel and a distribution

� Understand how to install from scratch

� Understand how to use Virtual Machine Monitors

Olivier.Gruber@inria.fr

47

Embedded Linux

� Pre-requisite

� Be root on your machine

� Virtual Machine Monitor

� Download VirtualBox from www.virtualbox.org

� Linux kernel sources

� Download Linux kernel sources, suggested version 2.6.23.9

� From http://www.kernel.org/

� Or ftp://ftp.free.fr/mirrors/ftp.kernel.org/linux/kernel

� Grub loader

� Download Grub loader, version 0.97

� From ftp://alpha.gnu.org/gnu/grub/

