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Virtual Machine Taxonomy
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Global View

● High-Level Language Virtual Machines (HLL-VMs)

– At many different layers...

– With different goals...

Operating
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Hardware
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App
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App
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App
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Global View

● HLL-VMs as execution platforms...
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Global View (cont.)

● Discussing Java...

– Was originally intended as Web browser language...

● Promoted as an Applet language for Netscape (1995)

– Graduated to a in-process standalone platform...

● Eclipse, Web Servers, standalone applications, etc.

– Pros

● Portable, safe, easy to learn (close to C/C++)

● Some would say garbage collected

● Some would say reflexive

● Some would say dynamic class loading

– Cons

● Expected to be bulky and monolithic

● Some would say slow

● Some would say fat
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Global View (cont.)

● What is Java?

– A programming language

● Syntax, type system, etc.

– A platform (Java Runtime Environment)

● JRE (Java Runtime Environment)

● Defines concepts such as threads, files, or sockets

● Defines dynamic class loading, security model, etc.

– A virtual machine

● An instruction set

● An Application Binary Interface
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Global View (cont.)

● Java Runtime Environment

– Different profiles: J2EE, J2SE, J2ME, JavaCard

● From almost everything (J2EE) to almost nothing (JavaCard)

– Google Android

● Another completely different runtime environment

● Virtual Machines

– From large-scale servers

● Thousands of threads on 150GB heap on 64bit multi-cores

– To client platforms

● A few threads on 500MB to 1GB heap on 32bit or 64bit processors

– To embedded platforms

● Often a single thread on as little as 64KB on 8bit or 32bit microcontrollers

– To Smart Cards

● Almost nothing at all... on a smart-card System-On-Chip (SoC)
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Global View (cont.)

● Focus on the virtual machine

– They define software machines as opposed to hardware machines

● Microsoft.NET

– Based on Common Language Runtime (CLR)

● For all Microsoft language (C, C#, JavaScript, etc.)

● No compiler generates real assembly language...

– Common Language Instructions (CLI)

● Object-oriented bytecode

● Later compiled to the assembly language of some real machine...

CLR

Language-independent CLI 
and DotNET ABI JavaScript

C

C#
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Global View (cont.)

● A shift of responsabilities...
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Global View (cont.)

● Object-oriented ISA

– Both CLI and Java bytecode are object-oriented

● Instruction Set

– All the regular instructions 

– Stack-oriented instructions

– Object-oriented calling convention

● Application Binary Interface

– Object-oriented interfaces ``replace system calls``

– In other words, some objects are gates to the outside world

– Either to a different language, the operating system, or the hardware
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11Class File Format

● Meta-data part

● A Java type description

– A class name and flags

– Its superclass and implemented interfaces

– Its fields and methods

● All linking information is expressed through names

– Naming types (classes, interfaces)

– Naming members (fields and methods)

● Constant pool

● Contains the linking names

● But also some constant values

– Primitive types and strings

● Code part

● Bytecode sequences

● As attributes on methods

magic number

constant pool size

constant pool

access flags

this class

superclass

interface count

interfaces

field count

fields

method count

methods

attribute count

atrributes
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public class Line {
   int a;
   int b;
   Line(int a, int b) {
      this.a = a; this.b = b;
   }
   int equation(int x) {
      return a*x+b;
   }
   public String toString() {
      return “a line“;
   }
}

magic number
constant pool size
constant pool:
  “a line“

access flags: public
this class: Line 
superclass:  
interface count: 0
interfaces: 

field count: 2   
   int a;
   int b;
method count: 3   
   <init>(int a, int b)
   int equation(int x)
   public String toString()

attribute count: 3   
  bytecode arrays   

idx

java.lang.Object
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package org.pqr; 

import org.xyz.Foo; 

public class Bar extends Foo
   implements  IBar {
   int b;
   String c;

   Bar(String c, int b) { ... }
   
   int foo(int x) {... }
   void foo(int x, int y) {... }
   
   int bar(int x, int y) { ... }
}

package org.xyz; 

public class Foo {
   int a;
   int b;

   Foo(int a, int b) {...}

   int foo(int x) {...}
   
}

magic number
constant pool size
constant pool:

access flags: public
this class: Bar 
superclass:  
interface count: 0
interfaces: 

field count: 2   
   int a;
   

method count: 3   
   <init>(String c, int b)
   int foo(int x)
   void foo(int x, int y)
   int bar(int x, int y) 

attribute count: 4   
  bytecode arrays   

idx

java.lang.String

org.xyz.Foo
org.pqr.IBar

idx

String c;
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● Java Instruction Set

● Common instructions

– Arithmetic instructions, branch instructions, etc.

● Object-related instructions

– Allocation:

● new, anewarray and multinewarray
– Type cheching

● checkcast and instanceof
– Field access

● getfield, getstatic, putfield and putstatic
– Array access

● aload and astore
– Method invocation

● invokesuper, invokestatic, invokeinterface, and invokevirtual
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● Architected Stack

● Stack Frames, one per method invocation

● Per stack frame:

– Frame header

● Return address, and corresponding method
– Arguments and local variables

– Operand stack

● Instruction operands

● From the operand stack or the class constant pool
Header

...

arg n

arg 0

...

lvar m

lvar 0

...

max

0
opstack

stack
frame

Header

arg 0

...

lvar m

lvar 0

...

0
opstack

stack
frame

args

putfield (8bit) field-index (16bit) 

Opstack:  ..., objectref, value 
            =>   ..., 

invokeinterface (8bit) method-index (16bit) 

Opstack: ..., objectref, [arg1, [arg2, ...]] 
=> … [value] 
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● Object-oriented model

● An object is a triplet

– An identity, a state, and a behavior

● An object is an instance of a class

– A class is a factory for its instances

– Instances of a class form its extent

● Classes reify types

– Define a structure (fields) 

– Define a behavior (methods)

– Define constructors

class Line {
   int a;
   int b;
   Line(int a, int b) {
      this.a = a; this.b = b;
   }
   int equation(int x) {
      return a*x+b;
   }
}

int x,y;
Line line = new Line(2,3);
x = 5;
y = line.equation(x);

int a

int b

header

object

class
oid
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17Object-Oriented ISA

● Object-oriented model

● Arrays are objects in Java

– The synthetic field length

– Special builtin operator []

● Array classes also automatically created

– Array classes have the access modifiers of their element type

– An array of private classes is private

– Arrays are cloneable and serializable

● Classes are objects too!

– We will come back to that later...
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18Object-Oriented ISA

● Object-oriented model

● Method invocation

– Sending a message to an object

– The object is called the receiver

● The class dispatches the message

– This is called late binding (finding the code)

– Matching the method signature to the method declared in the class 

class Line {
   int a;
   int b;
   Line(int a, int b) {
      this.a = a; this.b = b;
   }
   int equation(int x) {
      return a*x+b;
   }
}

int x,y;
Line line = new Line(2,3);
x = 5;
y = line.equation(x);

int a

int b

header

object

classoid=0x48

this=0x48 int equation(int)

Line(int,int)

int equation(int)methods

invokevirtual  method-index
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● Object-oriented model

● Classes are organized in sub-typing hierarchy

– Subtypes inherit both the structure and behavior of super types

– Do not confuse with aggregation

● Method inheritance

– Method overloading

● Same name, but different signatures
– Method overridding

● Same signature
● Structural inheritance

– All fields are inherited

– No matter the names or types

class Bar extends Foo {
   int b;
   String c;

   Bar(String c, int b) { ... }
   
   int foo(int x) {... }

   void foo(int x, int y) {... }
   
   int bar(int x, int y) { ... }
}

class Foo {
   int a;
   int b;

   Foo(int a, int b) {...}

   int foo(int x) {...}
}

overriding

overloading



©Pr. Olivier Gruber

20Object-Oriented ISA

● Object-oriented model – Structural inheritance

● All fields are inherited

● No matter the names or types

class Bar extends Foo {
   int b;
   String c;

   Bar(String c, int b) { ... }
   
   int foo(int x) {... }
   void foo(int x, int y) {... }
   
   int bar(int x, int y) { ... }
}

class Foo {
   int a;
   int b;

   Foo(int a, int b) {...}

   int foo(int x) {...}
   
}

int a

int b

header

a Foo

oid=0x48

int a

int b

header

a Bar

oid=0x86

String c

int b
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Object-Oriented ISA 

● Object-oriented model – Structural inheritance

– Computing the memory layout of a class C

int i

float f

header

object

Class Coid=0x15ef

Object o :  0x8

long l : 0x12
fields

Class S

int i : 0x0

float f : 0x4fields

int i

float f

header

object

oid=0x48

Object o

long l

Instructions: 

Putfield (8bit) index (16bit) 

Opstack:  ..., objectref, value 
            =>   ..., 

getfield (8bit) index (16bit) 

Opstack: ..., objectref 
=> ..., value
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class Bar extends Foo {
   int b;
   String c;

   Bar(String c, int b) { ... }
   
   int foo(int x) {       }

   void foo(int x, int y) {        }
   
   int bar(int x, int y) {        }
}

class Foo {
   int a;
   int b;
   Foo() {...}
   Foo(int a, int b) {...}

   int foo(int x) {       }
}

class

<init>(int,int)

int foo(int)
methods

constructors

class

<init>(String,int)

int foo(int)
methods

constructors

void foo(int,int)

int bar(int,int)

1

2

3

4

1
bytecode

2
bytecodes

3

4

superclass

String
classimports

<init>()
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Java Platform – Bytecode

● Method invocations

– invokevirtual index

● opstack: ..., this, [arg1, [arg2,...]] => ...

● Index is to a method symbolic reference in the constant pool

● Will be translated to a vtbl-indirect jump at runtime

– invokestatic index

● opstack: ..., [arg1, [arg2,...]] => ...

● Index is to a method symbolic reference in the constant pool

● Will be translated to a direct jump address at runtime

– invokeinterface index

● opstack: ..., this, [arg1, [arg2,...]] => ...

● Index is to a method symbolic reference in the constant pool

● Will require a dynamic lookup for the method signature in order to locate the code to execute
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Object-Oriented ISA 

● Object-oriented model – Virtual Method Invocation

– Optimizing method invocation through virtual tables

● Compute recursively the virtual table of the superclass S of C

● Make a copy of the vtbl of class S

● Use it as a starting point for the vtbl of the class C

● Skip static methods, private, and constructor methods

– For each method M declared in class C

● If M signature is new

– That is, no method in the virtual table has it
– Add an entry, with the code pointer of M
– Remember the vtbl index in the reified description of M

● Else if M overrides an existing method M'

– Replace the M' entry with the code pointer of M

Class C

Class S

Instruction: 
invokeinterface (8bit)
index (16bit) 

Opstack: ..., objectref, [arg1, [arg2, ...]] 
=> … [value] 
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Object-Oriented ISA

class Bar extends Foo 
   implements  IBar {

   int b;
   String c;

   Bar(String c, int b) { ... }
  
   int foo(int x) {       }

   void foo(int x, int y) {       }
   
   int bar(int x, int y) {       }
}

class Foo {
   int a;
   int b;

   Foo(int a, int b) {...}

   int foo(int x) {       }

   private _foo(int x) {      }
}

1

2

3

4

class Object

vtbl

String toString()
int hashCode()
boolean equals()
void wait();
void wait(long);

1
2
3
4
5

class Foo

vtbl

String toString()
int hashCode()
boolean equals()
void wait();
void wait(long);
int foo(int);

1
2
3
4
5
6

class Bar

vtbl

String toString()
int hashCode()
boolean equals()
void wait();
void wait(long);
int foo(int);
int bar(int,int);
int foo(int, int);

1
2
3
4
5
6
7
8

1

2

3
4

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e
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● Service-oriented programming

● Java Interfaces

– Interfaces only define behaviors

– Interfaces support multiple inheritance

– A class implements one or more interfaces

● Abstract classes

– Classes that cannot be instantiated

– Interfaces are always abstract

● Invocation overheads

● Abstract classes retain the virtual-table invocation

● Interfaces introduce more overhead 

– One vtbl is necessary for the virtual invocations (the one for the class)

– One vtbl is necessary per implemented interface
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Object-Oriented ISA

● Object-oriented model – Interface Method Invocation

– Caller only knows the interface type, not the actual receiver type

– We need a mechanism to select the right ivtbl on the actual receiver

– Use the 16-bit index  as the index in the ivtbl

– Use the 16-bit unused to store the unique interface id

Instruction: 
invokeinterface (8bit)
index (16bit) 
unused (16bit)

Opstack: ..., objectref, [arg1, [arg2, ...]] 
=> … [value]

int a

int b

header

object

vtbl

ivtbl
index

ivtbl

ivtbl
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● Object-oriented model

● Static fields

– As constants, both in interfaces or classes

– As non-constant fields, only in classes

● Statics are named global variables

– They are not class fields, in the proper sense

– Indeed, superclass statics are shared

int a

int b

header

Foo instance

oid

class Foo {
   int a,b;
   static int c;
}

class Bar1 extends Foo {
   int e;
   static int d;
}

class Bar2 extends Foo {
   int e;
   static int d;
}

int c

header

class Foo

int d

header

class Bar1

int d

header

class Bar2
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● Object-oriented model – Classes are objects

● So they also have a class

● The metaclass, called the class lass

● Keep classes alive as long as they have an instance

one Foo instance

class Object {
   Class getClass();
   ...
}

class Foo extends Object {
   int a,b;
   ...
}

Class _class

header

class Class 

instance of itself

Class _class

header
class Object

Class _class

header
class Foo

Class _class

header

int a

int b

Class _super

Class _super

Class _super
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● Started Simple

● As a sandbox for applets

● Wanted a complete isolation of downloaded code

● Essentials

● Its own copy of classes

– Avoid sharing statics

– Avoid name and version conflicts between loaded classes

● Works hand-in-hand with Java security

– Controls accesses to resources

● Evolved Poorly – Mixing several concepts

● A scoping mechanism for types

● A dynamic and lazy linker for classes

● A mechanism to define (load) types
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● Class Loading

● Only through the class file format

– This is quite unfortunate 

– Only the JVM can create types programmatically

● Special native method in the JVM

– The native method ClassLoader.define(...)

– Passing the byte array of a class file to define the described type

● The class file is an exchange format

– Could have been in XML, used a more efficient binary representation

– Produced by Java compilers and consumed by class loaders
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● Class loaders

● A scope for Java types

– Two class loaders defining the same type yields two runtime types

– Even when using the same class file

● Beware of equivalent names

– Name equivalence does not mean a thing between class loaders

– Same type name does not mean the same type

● Structural equivalence does not mean the same type

– Two types are the same only if the two class objects are the same class object

Rule 1: two classes are the same if they are the same class object

Rule 2: one class object belongs to one and only one classloader
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● Hierarchy of scopes

● A single tree of class loaders per JVM

● A class loader has a parent class loader

● Types in the parent class loader are visible

● Bootstrap class loader

● The root of all class loaders

● Created at bootstrap by the JVM to load core classes

– java.lang.Object, java.lang.Class

– java.lang.String, java.lang.Throwable, java.lang.Exception

– Etc.
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● Class loading

● A tree of class loaders

● A complex graph of types across all class loaders

● Reminder

● Could have redundant loading!

Foo
class

Bar
class

superclass

String
class

import

Object
class

superclass

superclass

parent

ClassLoader

ClassLoader

If the same class file is loaded 
in different class loaders...

Then, it will be different class objects 
and therefore different types
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● Dynamic and lazy class linker

● Multi-stage linking

– Loading

– Prepared

– Resolved

– Initialized (static initializer)

● Warning

– Loading may succeed but resolving or initializing 
may fail much later

Foo
class

Bar
class

superclass

String
class

import

Object
class

superclass

superclass

parent

ClassLoader

ClassLoader
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Java Platform – Reification 

● Different approaches are possible

– Original Sun's JVM

● All C structures to represent Java types, no reflection in Java

– Mix-mode

● A mix of internal C structures and Java objects

● This is the current approach for Sun's JVM

– Pure Java approach

● Uniform representation using only objects

● The emulator uses directly this representation or some derivative of it

meta-data

Class file

load

loader
Reified

Java types

linker

emulator

code

Object
Heap
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Java Platform – Emulator 

● Emulator

– It is the execution engine

– It can be either an interpreter or a binary translator

● Binary translator

– Can be a Just-In-Time compiler (JIT)

● Most JVM have a JIT approach

– Can be a Ahead-Of-Time compiler (AOT)

● GCJ can be used as an AOT

● Interpreter

– Use a traditional fetch-decode-issue cycle

mailto:Olivier.Gruber@inria.fr
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Java Platform – Emulator 

● Interpreter

– Use a traditional fetch-decode-issue cycle

– Native code, the processor is the interpreter

– Bytecode, the interpreter is a dispatch loop

native code bytecode

Branches

Data flow

interpreter
routines

dispatch
loop

Execution flow

mailto:Olivier.Gruber@inria.fr
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Java Platform – Emulator 

● Indirect threaded interpreter

– Use a traditional fetch-decode-issue cycle

● But save 2 out 3 branches... 

● Huge gain in performance...

– But avoid the loop and switch; threads in routines the dispatch

● Use an array of routines, indexed by bytecode

● Fetch the next bytecode, use it to index the array to find the next routine to jump to

native code bytecode

Branches

Data flow

Execution flow

mailto:Olivier.Gruber@inria.fr
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Java Platform – Emulator 

● Indirect threaded interpreter - Analysis

– Memory access

● We still have a memory access to fetch the next bytecode

● Another register-indexed memory access to read the corresponding routine address

– Branch 

● We still have a register-indirect branch

● Target address is known right before doing the jump

bytecode

Branches

Data flow

Execution flow

routine 
addresses

Fetch 
next bytecode

Fetch 
next routine
address
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Java Platform – Emulator 

● Indirect threaded interpreter - Analysis

– Repeated decoding

● Still have to decode operands for every bytecode

● Examples: 

– Extract constant values from the constant pool
– Field offsets (indexed access through the constant pool)
– Vtbl indices when invoking methods (indexed access through the constant pool)

bytecode

Branches

Data flow

Execution flow

routine 
addresses

Fetch 
next bytecode

Fetch 
next routine
address

Fetch and decode operands

mailto:Olivier.Gruber@inria.fr
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Java Platform – Emulator 

● Direct threaded interpreter

– Pre-compile bytecode sequence into instruction sequence

– Instructions are made easier to interpret

● Usually a struct in memory

– Have the address of the routine and one or two extracted operands
● Allocated as an array, contiguous in memory

– Execution flows in sequence through instructions in memory, but for branches

bytecode

Branches

Data flow

Execution flow

precompile

instruction
array

mailto:Olivier.Gruber@inria.fr
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Java Platform – Emulator 

● Direct threaded interpreter – Prefetching

– Using superscalar ability to reorder instructions

● Prefetch the next handler before executing the current one

– Expected gains

● Expected gain on memory access delays

● Expected to help keep the pipeline from stalling if target address is known soon enough

bytecode

Branches

Data flow

Execution flow

precompile

instruction
array
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Java Platform – Emulator

● Just-In-Time Compilation

– Produce assembly instructions from bytecode

● A specific field of Dynamic Binary Translation (DBT)

– Must be fast, as DBT in hypervisors

– Simpler since it is translating well-formed bytecode

● Key optimizations

– Making the interpreter disappear...

– Code relayout

– Inlining

– Dynamic decisions

mailto:Olivier.Gruber@inria.fr
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Java Platform – Emulator

● Making the interpreter disappear...

– We are executing native assembly instructions

● What is the difference with the assembly produced from the sources of a C program?

– Only the semantics of the language

– Null pointer checks, array index checks, 

– Method polymorphism, dynamic type checks

– Object monitors

● Code relayout

– Same as for all statically compiled languages

– Lifting invariants from loops

– Efficient use of registers as the ultimate cache level of the memory hierarchy

– Ordering instructions to help reduce the memory barrier

mailto:Olivier.Gruber@inria.fr
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Java Platform – Emulator

● Inlining

– Essential but hard because of bounded polymorphism in object-oriented programs

– Easy on static methods and constructors

– But often requires to be able to de-virtualize

● Dynamic decisions

– Monitor programs' behavior and adapt the produced code

– Optimize harder the hot spots 

● Example: allocate more time for register allocation (more than 50% of compile time in JITs)

– Produce slow and fast paths for common cases

– Often rely on inserting barriers in the instruction stream

– Often requires On-Stack Replacement

– Helps with debugging, OSR of optimized methods

mailto:Olivier.Gruber@inria.fr
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● Traditional approach based on threads

● Define a Thread class, instances map to kernel threads

● For each thread, we have an invocation stack

● Synchronization based on monitors with an exit consistency

● Added Java locks later on...

● But other approaches exist

● Single-threaded Java, no monitor

● Event-oriented execution, usually single-threaded
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Java Platform – Execution

● Memory isolation

● Traditionally done through processes, leveraging virtual memory

● Can be done almost for free in HLL Vms

– Isolate in J2ME

– AppDomains in CLR

● The principle

● Since object references cannot be forged...

● Isolation can be achieved by controlling how references are passed

● Enabling code sharing (as regular operating systems do)

HL VM

App

HL VM

App

Operating System

HL VM

App

HL VM

App

Operating System

HL VM

AppApp App

HL VM App App

HL VM
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● Java is garbage collected

● Live objects are kept

● Live objects are reachable from roots of persistence

● Roots are traditionally thread stacks and static fields in loaded classes

● Being garbage is a stable property

● I.e. once an object is garbage, it remains garbage

root root

Garbage
Collection

root

X
A mutator cuts 
a reference
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● Garbage Collector

● Garbage collection is about detection and reclaimation of garbage objects

● Different approaches are possible

– Scavenger, mark&sweep, generational, etc.

● Performance

● Limit the overhead, so run the GC rarely

● Avoid growing the heap, so run the GC often enough

● Correctness

● Never detect and reclaim a live object

● Liveness

● Detect and reclaim garbage faster than objects are allocated
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● Reference Counting

● Each object is associated a counter

– Counts the number of references on that object

● Counter management

– Happens on assigning reference

● Decrement the count of the previously referenced object (if any)
● Increment the counter of the newly referenced object

– Applies to 

● Reference fields in objects as well as local variables and parameters
– When a counter reaches zero

● The object owning that counter is garbage

1

2

1 0

3

1
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● Discussing Reference Counting

● Problematic on multi-processors

– Inherently incremental: impossible to run concurrently

– Incrementing and decrementing require a critical section

● Does not require to scan thread stacks

– But requires to account for local variables and arguments 

– Introduces a high overhead (increment/decrement)

● Extra paging

– Accesses objects even if only references are manipulated

– Dirties memory pages, potentially increasing the overhead of virtual memory paging

● Does not reclaim cycles
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● Scavenger

● Copying collector, using two spaces

– Copy live objects from the old space to the new one

– Discard the old space

object heap

live object

root object

object heap

garbage object
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● Scavenger details

● Live objects are reachable from roots (thread stacks and class statics)

● Leave a forwarder in-place of copied objects

– Allows to detect cycles (correctness when copying)

– As well as treat correctly shared objects

● Use to-space as a recursion stack

from space to space

object

root object

object heap

forwarder

garbage object



©Pr. Olivier Gruber

55Java Platform – Garbage Collection

● Discussing Scavenger

● Simple when designed as stop the world

– A simple depth-first recursive walk of an object graph

– Cycles are easily detected through forwarders

– Require to scan thread stacks

● Clustering objects 

– Depth-first scavenging produces efficient in-memory clustering of objects

● Efficiency

– Depends on the ratio of live versus garbage objects

– Also depends on the cumulative size of live objects

– The fewer live objects, the more effective

– May lead to allocate twice the heap size
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● Mark & Sweep

● A two-phase garbage collection

– A marking phase, coloring live objects

– A sweeping phase reclaiming garbage objects (not colored)

● Marking phase

– Walks the refer-to graph from roots (thread stacks and class statics)

– Carry the current color

object heap

object

root object

object heap

Live object

root object
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● Mark & Sweep

● Sweep phase

– Sweeps sequentially the object heap to discover garbage objects

● Reclaiming garbage

– Using free lists (non-compacting sweeping)

– Compact as sweeping (challenging to maintain references)

object heap

Live object

root object

object heap
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● Discussing Mark & Sweep

● Not too sensitive to the live/garbage ratio

● Requires to scan thread stacks

● Caveats of free-list memory management

– Can lead to traditional fragmentation

– Costly allocation (different algorightms such as first-fit, best-fit, etc.)

● Two scans of the object heap

– One through references and the other sequentially

– May lead to heavy paging activity if heap larger than main memory

– It defeats the LRU policy of most virtual memory systems

● Compacting Mark&Sweep

● Some mark&sweep do compact the heap during the sweep phase

● Usually done by slidding objects, does not improve locality
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● Compacting Mark&Sweep

– Usually done by sliding objects

– Does not improve locality, but eliminates fragmentation

– But how do we update references when sliding objects?

– A possible design: threading references...
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● Threading references when marking
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● Un-threading references when sweeping
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● Challenges

● Scalability

– Up to 150GB of heap space...

– Even worse if we consider I/Os

● Real-time behavior

– Stop-the-world is an easier design for garbage collectors

– Incremental garbage collectors are possible

● Memory leaks exist even with a garbage collector...

– In C++, leaks occur because developers forget to free objects

– In Java, leaks occur because developers forget to forget references

– The object cache nightmare...

● Native resources...
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● The problem

● Java depends on a lot of native resources represented by objects

● How does one free those resources?

● The finalize method

● The object class defines a method finalize()

– Any class may redefine this finalize method

– A class that redefines its finalize method is said to have a finalizer

● When is it called?

– The finalize method is called when the object is detected as being garbage

– If the finalize method is not redefined, it is not called

– However, the finalize method is called only once

● Threads?

– There is no guarantee about which thread is used to call finalize methods

– But that thread does not hold any user-level Java monitor
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● Finalizers introduces resurection

● It is legal for a finalize method to make a garbage object live again

● Reminder: finalizers are called only once per object

● Require to detect twice that an object is garbage

● Impacts garbage collection

● Introduce a new state: 

– Reachable (live)

● There is a path from roots to the object
– Resurrectable 

● The object is not reachable
● The object may be resurrected
● All objects go through that state

– Unreachable (garbage)

● The object is not reachable
● The object cannot be resurrected

reachable

resurrectable

unreachable

new

reclaim
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● Compatibility with GC algorithms

● Compatible with reference counting

– Easy to call the finalizer when the counts drop to zero

– Easy to know that the object remained garbage

● Counter still at zero after the finalizer run
– But reference counting is rarely used in practice

● Incompatible with scavenging

– Reintroduces a sweep to find garbage objects with a finalizer

– Never know when to free the from-space because of resurection

● Mark&Sweep is well-suited

– Easy to extend the sweeping phase to find objects with finalizers

● But delays the actual reclaimation of garbage objects
– Still requires two marking phase to really know if an object is garbage
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● Java Finalizers – complex and not enough

● Native resources are often really scarce 

● Garbage collection is too asynchronous

● So native resources are not freed fast enough

● Raising the GC frequency is difficult 

● Because it is most often stop-the-world

● Because it represents an overhead

– Marking the object graph

– Sweeping the object heap

● Introduce explicit close/dispose operations

● On Sockets, files

● On Widget toolkits

● Etc.
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● Introducing different semantics for Java references

● Strong references

– The usual object references in the Java language

● Weaker references in java.lang.ref

– SoftReference and WeakReference

– PhantomReference

Reference

SoftReference WeakReference PhantomReference

variable

an object
called the referent

Reference
object
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● Java References

● Normal semantics for objects that are strongly reachable

– If you do not use weaker references, nothing is different than usual Java

● Weaker references are managed by the GC

– When an object is no longer strongly reachable

– The GC may clear weaker references to that object at any time

● Notification

– A reference may be associated to a reference queue (ReferenceQueue class)

– Once the GC cuts a reference, it push that reference on its associated queue 

variable

referent

queue

references 
sharing the 
same queue

cleared
references 
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● State changes

● Reachable is detailed into

– Strongly reachable

● Reachable through strong references
– Softly reachable

● Not strongly reachable
● Reachable through soft references

– Weakly reachable

● Neither strongly nor softly reachable
● Reachable through weak references

● Resurrectable

– Only resurrectable through a finalizer as before

● Unreachable

– Phantom reachable

● Not reachable but through phantom references
● Such objects are not resurrectable

– Unreachable

● Entirely unreachable
● Ready to be reclaimed

strongly reachable

resurrectable

unreachable

new

reclaim

phantom

softly reachable

weakly reachable
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● Discussing soft versus weak references

● Weak references

– Weak references must be cleared by the GC as soon as the referenced object is weakly reachable (neither 
strongly or softly reachable)

– Used for canonical mappings

● Keep a mapping key to value
● Clean the mapping as soon as the key is no longer used (reachable)

● Soft references

– Soft references must only be cleared by the GC before it raises an out-of-memory exception, but it may 
sooner

– It is suggested that clearing soft references follows the policy:

● Keep recently created and recently used soft references
– Used for caching objects

● A service provides an object
● Clients keep a reference as long as they need to use the object
● The GC only reclaims the object and cuts your soft reference if it needs memory
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● Discussing phantom references

● More powerful than just finalizers

– Finalizers are called only once

– So if objects are resurrected, finalizers can no longer be used for cleanups

● Phantom references introduce post-mortem resource management

– An object that is phantom-reachable can no longer be resurrected

– It is therefore the absolute last moment to do some cleanup

● Cleared Reference

● Once cleared, a reference does not provide access to its referent object

● If cleaning needs to happen

– Sub-class the appropriate reference class (soft, weak, or phantom)

– Add the info you need to the cleanup as fields in your reference subclass
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● Let's discuss performance...

● This is a complex subject because it is heavily related to the workload characteristics...

● Macro or micro benchmarks? Neither is perfect

● Beware of the tyranny of micro-benchmarks. Think in terms of 2s to open a window...

● Java macro characteristics

● Footprint: from Java cards to huge servers (150GB of object heap)

● Performance: from within 10% of hand-crafted C to dozens of times slower

● Do not confuse Java semantics and the design of some specific virtual machine...

● Expressive power

● Some say lower than C, some say way higher... 

● It is a matter of perspective, higher from a software engineering perspective
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● What is the cost of emulation?

● High with an interpreter, obviously

● What about Just-In-Time or Ahead-Of-Time?

● Comparing C and Java

● Can the generated code be as efficient?

● Are we comparing apples and oranges?
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● A lot of instructions compile the same

● Arithmetic expression, branch, loops, …

● Invoking static methods (equivalent to a function call)

● Allocating objects (not so different than malloc)

● Threads and monitors, usually implemented using pthreads

● Some instructions have more semantics

● Field access includes NPE checks

● Array access includes NPE checks and bound checks

● Virtual method invocations, includes polymorphic late binding

● Runtime check-casts (because of bounded polymorphic types)
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● So, what if... 

● You trust your code, you could remove NPE and bound checks as well as runtime check-casts

● You don't use polymorphic types, you could devirtualize method calls

● What about programming style?

● Object-oriented programming promotes encapsulation which promotes small methods

– Compile-time inlining can be used, when the invoke can be devirtualized

– Polymorphism has been argued to improve the structure and maintainability of programs

● Object-oriented programming promotes creating a lot of small objects

– True, but this is also poor programming to abuse it

– It depends on the application, some have easy to manage data structures, other do not

● How should we compare malloc/free versus garbage collection?
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● So, why is Java slow? 

● We  need to distinguish the language and the platform...

● There are hidden costs... not always obvious to see...

● Garbage collection 

● This is not free, of course

● It can be incremental (very short, frequent pauses)

● It can be parallelized, could be very interesting on multi-core systems

● This is hard stuff...

● Class loading

● This is not free either, this is dynamic linking, bytecode verification, and JIT compilation

● Verification can be turned off if you trust the source of your code

● JIT compilation can be avoided by AOT compilation

● Dynamic linking can be reduced using pre-linked formats (close to shared libraries)

● Watch for the spaghetti plate effect in your libraries... leading to lazy class loading
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● Are you sure it is Java that is slow?

● Or could it be because of middleware frameworks we run above the JRE?

● Or could it be because of sloppy programs written in Java?

● Or could it be because so many Java code is automatically generated by tools?

● A little bit of all the above points...

● But most importantly, because it can...

● In reality, because it could...

● Slower improvements in hardware and tighter energy budget are game changers...

● New JVM implementations and cleaner JREs are appearing for embedded devices...

● Java can even be found in hard and soft real-time environments...
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