
Olivier.Gruber@inria.fr

1
Virtual Machines

Olivier Gruber, Ph.D.

Full-time Professor

Université Joseph Fourier

Laboratoire d'Informatique de Grenoble

Senior Resarcher @ INRIA

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

2
Acknowledgments

● Reference Book

● Research Articles

– Cited on various slides

Virtual Machines
Versatile Platforms for systems and processes

James E. Smith, Ravi Nair

Morgan Kaufmann

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

3
Virtual Machine Basics

● Virtual Machines versus Real Machines

– A virtual machine defines a machine (interface)

– A virtual machine is a machine (implementation)

Virtual Machine

Guest Software

Virtual Machine

Real Machine
Real Machine

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

4
Operating System Basics

● Instruction Set Architecture (ISA)

– Defines the instruction set

– Defines other concepts such as memory, traps, interrupts, etc.

● Application Binary Interface (ABI)

– Defines core concepts above the ISA

– Example: Linux kernel system calls

● Related to processes, threads, files, and devices

Hardware

Operating System

Software

Hardware

Operating System

Software

ISA

ABI

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

5
Operating System Basics

● Operating system design

– Main goal is sharing hardware resources across processes

– It provides each process with the illusion it runs alone on a real machine

● Operating systems are virtual machines

– Subset of the processor instruction set (user-mode)

– Concepts of the ABI

Execution Hardware

Operating System

Processes

ABI

Machine

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

6
Dec Alpha Example

● Digital Alpha machine

– Early provider of a 64bit RISC processor

● Challenge: no existing software...

– Support program binaries compiled to a different ISA / same ABI

● Same ABI: ported the operating system

● Different ISA: emulate one instruction set on a different instruction set

Alpha ISA

Windows OS

IA-32 Software
on Windows ABI

ABI

Emulator

Alpha ISA

Windows OS

64bit RISC Software
on Windows ABI

ABI

Hookway and Herdeg. Digital FX!32: Combining Emulation and Binary Translation.
Digital Technical Journal, January 1997, pp 3-17
Zheng and Thompson. PA-RISC to IA-64: Transparent Execution, No Recompilation.
IEEE Computer, March 2000, pp. 47-53

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

7
Virtual Machine Basics

● Emulator Designs

– Interpretation:

● Interpretation of individual guest instructions (fetch, decode and emulate)

● Easy but slower

– Binary translation

● Binary translation of blocks of guest instructions to native instructions

● More complex but fast (close to native performance)

– Classical trade-off

● Slow interpretation versus high overhead of binary translation

Hardware

Operating System

Application Software

ABI

Emulator

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

8
Virtual Machine Basics

● System Vms (hypervisors)

– Such as Vmware ESX or Xen

– Goal: multiplex out-of-the-box operating systems

– Often virtualize a similar hardware (but not always)

Linux OS

ABI

Hypervisor

Windows OS

ABI

Hardware

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

9
Virtual Machine Basics

● System Vms (hypervisors)

– Typical use in the Cloud

● Provides an ubiquitous hardware

● Provides remote management

– Virtualize a similar hardware

● Because performance is critical

● Same instruction set

● Similar devices, maybe less memory or less cores

– Enables hardware sharing to reduce the costs

● Energy-saving strategy

● Use a few real machine as necessary

– The VM has a long life

● Until the underlying real machine is rebooted

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

10
Virtual Machine Basics

● In-Process Virtualization (Process VMs)

– Virtualizing a real machine within a process

– Runs one out-of-the-box operating systems

– Same hardware or not

Linux OS

ABI

Windows OS

ABI

QEMU - ARM

ARM Linux OS

ARM RISC
Software

on Linux ABI

VirtualBox

IA-32 Linux OS

IA-32 Software
on Linux ABI

Hardware

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

11
Virtual Machine Basics

● In-Process System Vms

– Typical uses

● Kernel development

● Application availability

● Help desks

– Virtualize a similar hardware or not

● Performance is often not as critical as it is for hypervisors

● It is the availability of the platform that matters most

● Similar devices, maybe less memory or less cores

– The VM has a shorter life

● Until the process is killed

● More like an application than a real machine

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

12
Virtual Machine Basics

● Virtualization at different layers...

– Hypervisors, operating systems, and in-process system VMs

Linux OS

ABI

Windows OS

ABI

QEMU - ARM

ARM Linux OS

ARM RISC
Software

on Linux ABI

VirtualBox

IA-32 Linux OS

IA-32 Software
on Linux ABI

Xen Hypervisor

AMD-64 Hardware

1

3

2

4

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

13
Virtual Machine Basics

● Process-level Virtual Machines

– High-level language virtual machines..

– Examples:

● Oracle Java or Microsoft C#

● Eclipse Rich Client Platform (Java and Eclipse libraries)

● Google Android (Java and Android's libraries)

● Web applications (Flash or HTML5)

Hardware

Linux OS

Java Sources, Java libraries
Java byte code

Linux ABI
ABI

Emulator

Hardware

Linux OS

C Sources, POSIX
Native Assembly

Linux ABI
ABI

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

14
Virtual Machine Basics

● Towards language independence

– Microsoft Common Language Infrastructure

● Common Language Runtime (CLR) and Common Type System (CTS)

– The Java Virtual Machine is going in the same direction

● Already a target for many languages (JavaScript, Scheme, Perl, Python, etc.)

Virtual Machine

Guest Software

ISA of the Virtual Machine

An Instruction Set

An Application Binary Interface

JavaScript

Scheme

Java

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

15
Virtual Machine Basics

● Virtualization at different layers...

– Hypervisors, operating systems, and in-process system VMs

– Adding high-level language VMs

Linux OS

ABI

Windows OS

ABI

VirtualBox

IA-32 Linux OS

Xen Hypervisor

AMD-64 Hardware

1

3

2

4
HL VM

App

HL VM

App

HL VM

App

5

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

16
Virtual Machine Taxonomy

Multiprogrammed
Systems

or
Dynamic Binary

Optimizers

Dynamic
Translators

Classic-System Vms
or

Hosted VMs

Whole-System
VMs

Codesigned
VMs

HLL VMs

Same ISA Different ISASame ISADifferent ISA

System VMsProcess VMs

higher-level
interface

lower-level
interface

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

17
Real Machines

● Computer System Basics

– Outline of the major components of computer systems

● Their interfaces

● The resources managed through those interfaces

– We will look at

● Primary hardware components

– Processor, memory and I/O
– Instruction Set Architecture (ISA)

● Organization of a traditional operating system

– Emphasis on managing system resources
– Such as the processor, memory, or I/O devices

● Discussing microkernels

– Architecture, design, acceptance and performance

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

18
Computer System Architecture

Drivers
Memory
Manager Scheduler

Operating System

Libraries

Application Programs

1

3

2

3

4 5 6

Execution Hardware

Memory
Translation

9

1010

System Interconnect (bus)

11 11 12

Controllers
13

Main Memory

Controllers

I/O Devices

14

8 8 8 8 7 7ISA

Software

Hardware

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

19
Instruction Set Architecture

● Instruction Set Architecture has two parts

– User-level ISA

● Aspects that are visible to non-priviledged code

– System-level ISA

● Aspects that are visible to priviledged code

● Of course, the system-level ISA includes the user-level ISA

7

8

Drivers
Memory
Manager Scheduler

Operating System

33

4 5 6

Execution Hardware
Memory

Translation

9

1010

System Interconnect (bus)
11 11 12
Controllers

13
Main Memory

Controllers

I/O Devices
14

8 8 8 8 7 7ISA

Hardware

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

20
Application Interface

● Application Binary Interface (ABI)

– User-level ISA

● Aspects that are visible to non-priviledged code

– System-call interface

● Provide indirect access to shared resources

● System calls use a trap mechanism to priviledged code in the OS

● Each operating system specifies how parameters are passed

7

3

Drivers
Memory
Manager Scheduler

Operating System

Libraries
3

2

3

4 5 6

Execution Hardware
Memory

Translation

9
1010

System Interconnect (bus)
11 11 12
Controllers

13
Main Memory

Controllers

I/O Devices
14

8 8 8 8 7 7ISA

Software

Hardware

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

21
Application Interface

● Application Programming Interface (API)

– Usually defined with respect to a High-Level Language (HLL)

– A key element is the definition of standard libraries

– Such libraries are defined at source-code level

2

Drivers
Memory
Manager Scheduler

Operating System

Libraries

Application
Programs

1

3

2

3

4 5 6

Execution Hardware
Memory

Translation

9
1010

System Interconnect (bus)
11 11 12
Controllers

13
Main Memory

Controllers

I/O Devices
14

8 8 8 8 7 7ISA

Software

Hardware

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

22
Hardware Architecture

Processor

Interface

Memory

Controller

Interface

Controller Controller Expansion Frame Buffer

CD-ROM Floppy

LAN

Local Bus

High-speed I/O Bus

Hard Drives

Low-speed I/O Bus

Monitor

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

23
Processor

● Basic processing

– Fetch, decode, and issue instructions

– You could write a simple interpreter...

● CISC(1) or RISC(2)

– Complex instructions versus simpler instructions

– RISC = ''Relegate Interesting Stuff to Compilers''

– Sometimes CISC outside, but RISC inside...

Processor

Interface

Memory

Controller

Local Bus

1.Complex Instruction Set Computers (CISC)
2.Reduced Instruction Set Computers (RISC)

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

24
Processor

● The challenge is the memory barrier...

– Well over 100 of cycles

– Flattening due to the flattening of CPU clock frequency

1980 1990 2000 2010

1

10

100

1000

C
P

U
 c

l o
ck

s
/ D

R
A

M
 la

te
nc

y

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

25
Processors

● Different types of processors

– In-order pipeline

– Superscalar

– Very Long Instruction Word (VLIW)

● In-order pipeline

– Multiple instructions may be in the pipeline at the same time

– Only one instruction is in each stage at any given time

– Stalls happen when instructions must wait for their operands

Instruction
Fetch

Instruction
Decode

Registers
Execution

Unit
Memory
Access

stages

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

26
Superscalar Processors

● High-performance processors

– Introduce automatic instruction-level parallelism

● Several instruction can be fetched and decoded in the same clock cycle

● Decoded instructions are dispatch into instruction issue buffer

– Begin execution when their input operands are ready
– Without regard to the original program sequence

– Properties

● Peak instruction throughput is higher

● Hopefully reduces stalls

Instruction
Fetch

Instruction
Decode

Registers

Functional
Unit

Memory
Access

Instruction
Dispatch

Functional
Unit

Memory
Access

Issue
Buffer

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

27
VLIW Processors

● Compilers must produce VLIW

– Combine parallel intructions into a very long instruction word (VLIW)

– VLIW are executed in sequence

● VLIW parallelism

– A VLIW can be fetched and decoded in the same clock cycle

– The instructions of the VLIW proceed in parallel

– Begin execution when their input operands are ready

Instruction
Fetch

Instruction
Decode

Registers

Functional
Unit

Memory
Access

Functional
Unit

Memory
Access

VLIW
Buffer

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

28
Hyper-threaded Processors

● Still the memory barrier...

– As processors are going faster, the memory barrier is increasing...

– Can the hardware switch threads when staling?

● Operating system scheduling

– More often well over thousands of instructions

– Incompatible with the few-hundred-instruction-long stalls

● Faking cores

– The OS sees multiple cores, but they are virtual cores

– The hardware has all what it needs to context switch...

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

29
Discussing the Limits

1.5u .5u 0.18u 65nm

1

10

100

1000

R
el

at
iv

e
S

pe
ed

up

ov
er

 th
e

la
st

 2
0

ye
ar

s

2002 2006 2010 2014

1

100

200

Po
w

er
 (

w
at

ts
)

300

500

400

2018

Architecture Performance

Transistor Performance

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

30
Memory

● Memory System

– A combination of main memory and cache memories

● Cache memories are generally hidden from software (hardware managed)

● Memory access is at least per byte, but it may be a word (16 or 32 bits)

● Often, memory access is per line of 32 to 128 bytes

– Composite main memory

● The address space may be composed of different types of memory

– RAM, ROM, I/O memory, others
– Each may have its own instruction sets for reading or writing

● Usually divided in pages (like 4KB pages)

– Pages may have different access privileges (read, write, execute)

ROMRAMI/O devicesRAM unusedunused

real address space

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

31
Memory

● Cache Memories

– Hiding high memory latencies

● Many tens or hundred clock cycles (for in-memory pages)

– Works on the principle of locality

● Temporal locality (what has been used recently is likely to be used again)

● Spatial locality (what is close to what is being used is likely to be used)

– In 65nm technology

● 10MB on-die cache (L1)

● As much as 40% of total die area

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

32
Memory

● Cache Memories

– Caches memory lines (called cache lines)

● A cache hit finds the addressed data in the cache

● A cache miss does not and loads a memory line

● A replacement algorithm must be in place to free cache lines

tag

tags

offset

memory lines

address

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

33
Input/Output Systems

● Architecture

– Consist of a number of buses

● That connect the processor and memory to I/O devices

● Such buses are often standardized (PCI or AGP)

● Devices often use a controller to connect to such buses

– A bus is a conduit for device commands and for data transfers

● Different Designs

– Programmed I/O

● Processor issues a request and polls for its completion

– Interrupt-driven I/O

● Processor issues a request and is interrupted when completed

● Processor controls any data transfer from the controller to memory

– DMA I/O

● Processor issues a request and is interrupted when completed

– Controllers have Direct Memory Access (DMA)
● Could use special processors called I/O Processors (IOPs)

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

34
User-level ISA

● Instruction Set Architecture

– Storage resources, e.g. memory and registers

– An instruction set

● Register Architecture

– General-purpose registers

● Used to hold any operands to instructions

– Typed registers

● Such as floating-point registers

– Special-purpose registers,

● Program Counter (PC), status registers or stack registers

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

35
User-level ISA

● Memory Architecture

– Defines through an address space

● Usually 32bit addresses

● Could be 64bit on newer processors

● Usually divided between user and kernel

– Flat or segmented address space

● Flat address space

– Addresses in load/store instructions represent virtual addresses
– The MIPS 32-bit ISA is a flat address space, from 0x00 to 0x7FFF FFFF

● Segmented

– Addresses in load/store instructions are relative to segments
– The Intel IA-32 and PowerPC are both a segmented address space

0x0000 0000

0xFFFF FFFF

0x8000 0000

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

36
User-level ISA

● Memory Architecture

– The Intel IA-32 memory

● Virtual addresses are 32bit addresses

● Supports up to 64K segments, each segment is up to 4 GB

● Provide only 6 segment registers

– Hence, at any point in time, only 6 segments are accessible
– Each load/store instruction specifies a segment and 32bit offsets

● The offset can be an immediate value or the addition of an immediate
value and the content of a general-purpose register

● Could be make it flat

– By setting all segment registers to the same base address
– Done by both Unix and Windows

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

37
User-level ISA

● Memory Architecture

– The PowerPC three types of addresses

● Effective addresses (32-bit address space)

– Divided into 16 segments of 256MB (28 bit)
– Top 4 bits index the segment register (SR0 to SR15)
– Notice that pointer arithmetics may change the segment index

● Virtual addresses (52-bit address space)

– But real addresses are 32-bit addresses

segments

SR 1
SR 0

SR 15

0x0 0000 0000 0000

0xF FFFF FFFF FFFF

virtual address spacesegno page index byte offset
4bits 16bits 12bits

vsid of 24bits

vsid page index byte offset
24bits 16bits 12bits

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

38
User-level ISA

● User-level Instruction Set

– A mean of transforming data held in registers and memory

– Instructions are grouped according to what they manipulate

Integer
Instructions

load byte
load word
store byte

load double
load float

...

Memory
Instructions

add
compare logical
exclusive OR

rotate left with carry
to-byte or to-long

...

Floating-point
 Instructions

relative branch
absolute branch

branch if-negative
jump to subroutine

return
...

Branch
Instructions

add float
add double

convert to integer
compare double
compare float

...

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

39
User-level ISA

● Memory Instructions

– Load from memory to a register, store a register to memory

– User-level addresses called virtual, logical or effective addresses

● Integer Instructions

– Such as arithmetic, logical and shift operations

– In CISC(1) ISAs

● Addressing mode may be a mix of registers and offsets

● Arithmetic instructions may involve registers and memory locations

– In RISC(2) ISAs

● A simpler instruction format

● Addressing mode may still be a mix of registers and offsets

● Arithmetic instructions are only on registers

1.Complex Instruction Set Computers (CISC)
2.Reduced Instruction Set Computers (RISC)

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

40
User-level ISA

● Floating-point Instructions

– Usually refers to floating-point registers

● The Intel IA-32 uses a stack for floating-point registers

● Other architectures may use directly accessible typed registers

● Branch Instructions

– Branch instructions change the flow of control

● Accomplished by changing the Program-Counter register

● Changes where the next instruction is fetched

● Greatly impacts the pipeline effectiveness

– Different branch instructions

● Branch instructions may be conditional or indirect (using a register)

● Branch-and-link, a jump to a subroutine that also saves a return address

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

41
System-level ISA

● Resource Management

– User-level ISA

● Mostly about getting user tasks done

– System-level ISA

● Mostly about management of system resources

– Process, memory and I/O management
● Require priviledges

– User mode versus system mode (also called kernel or priviledged)

Kernel
Level 0

System Services

Level 1

Extensions

Level 2

User Mode

User Mode

System
Mode

Most OS relies
on two levels only

Intel IA-32 supports
up to four levels

Level 3

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

42
System-level ISA

● System-level Registers

– Most ISAs include special registers

● To assist with hardware resource management

– System clock register

● Records the number of clock ticks elapsed since last reset

– Trap and interrupt registers

● Records information about the occurence of traps and interrupts

● Mask register inhibits or allows traps and interrupts

– Translation Table Pointers

● Support virtual address spaces

● Maps memory pages or segments to real memory

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

43
System-level ISA

● Processor Management

– Requires minimal support

● A system-return instruction

– Jumps to user code
– Switches to user-level mode

● Interval timer

– Getting back the control after some elapsed time
– Uses an interrupt to switch back to system mode

– Traps and interrupts

● Need specific support (mix of hardware and software)

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

44
System-level ISA

● Processor Management

– Traps and interrupts

● A trap occurs as a side effect of the execution of an instruction

– Corresponds to exception conditions such as arithmetic overflows, page
faults or violations of memory-access priviledges...

– The ISA specifies traps on a per instruction basis
● Interrupts are caused by the occurance of external events

– Interrupts are not related to the execution of specific instructions
– Examples are I/O interrupts or timer interrupts

● Traps and interrupts may be masked

– Trap-like Instructions

● Some instructions are designed to act as explicit or conditional traps

– The most important example is the system-call instruction
– Details about system calls are part of the Application Binary Interface

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

45
System-level ISA

● Trap Handling

– Processor goes into a precise state with respect to the trapping
instruction

● All instructions prior to the trapping instruction are completed and make all
their specified register and memory modifications

● Depending on the ISA, the instruction causing the exception either completes
(e.g. an overflow exception) or does not cause any change of state (e.g. page
faults)

● None of the instructions following the trapping instructions modify the
registers or memory in any way (this is important when having instruction-
level parallelism, either pipeline, superscalar or VLIW)

– The program counter is saved

● In an ISA-specific location (either register or memory).

● Some or all of the registers may be saved by the hardware implementation

● On RISC processors, this is left to the trap- or interrupt-handling software

– The processor is placed in system mode

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

46
System-level ISA

● Trap Handling

– Control is transferred to a memory location that is specified in the ISA

● This code may complete the save of the precise state of the processor

– E.g. saves registers if the hardware didn't do it
● This code may transfer execution to a user-level handler

– Like in the case of arithmetic overflow

– Upon trap-handing completion

● Restore the saved precise state

● Jumps back to the location that trapped

– For most traps, the trapped instruction is re-executed
– Otherwise, the trapped instruction just completes and the execution

proceeds with the next instruction in sequence

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

47
System-level ISA

● Interrupt Handling

– Interrupts are treated in a manner similar to traps

● The precise state of the processor must be produced

● For some interrupts, an incomplete state may be acceptable

– Some liberty

● Because it is caused by an external event, there is some liberty in deciding
when to treat an interrupt, making the saving of a precise state simpler

– Interrupts may be disabled

● Some interrupts are not maskable such as power-failure or high-temperature
interrupts

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

48
System-level ISA

● Memory Management

– Goals

● Provide virtual memory larger than physical memory

● Share physical memory amongst processes

● Isolate processes

● Provide fine-grain access protection (read/write/execute)

– Main concepts

● Page Tables

– Supports virtual-to-physical memory mapping
● Translation Lookaside Buffer

– Small associative cache to speed-up address translation

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

49
System-level ISA

● Page Tables

– Supports virtual-to-physical memory mapping

● One such page table per process

● Requires a replacement strategy (often Least-Recently-Used)

– Per virtual page

● Valid bit (the page is mapped in memory or not)

● Protection bits (read, write and execute priviledges)

● The page address in physical memory

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

50
System-level ISA

page no

.

.

.

offset

real page no

virtual address

protectionvalid

real page noprotection⎤valid
real page noprotectionvalid

offset

real page noprotectionvalid
real page noprotectionvalid
real page noprotection⎤valid

real page noprotection⎤valid

page no

physical address

Simple Page Table Design

page table

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

51
System-level ISA

● Memory Management

– Translation Lookaside Buffer

● Small associative cache to speed-up address translation

– In most architectures

● A lookup is done in parallel with a cache access

● Hence, TLBs incur no specific performance penalty

– Caches page protections

● Access are checked at the TLB level if there is a hit

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

52
System-level ISA

page no

.

.

.

offset

real page no

virtual address

prot⎤v

real page no
real page no

offset

real page no
real page no
real page no

real page no

page no

physical address

Translation Lookaside Buffer
and

Simple Page Table Design

page table

protv
protv
protv
prot⎤v

prot⎤v
protv

real page noprotv

real page no
real page no

protv
protv

page no

page no
page no

offsetpage no

physical address

Translation Lookaside Buffer

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

53
System-level ISA

● Memory Management

– Mix of hardware and software, the frontier depends on the ISA

● Architected Page Table

– Page table defined in the ISA

● TLB is in hardware, mostly transparent but for a purge instruction

– A page table miss is a trap

● The information about the page fault is defined in the ISA

● Page table format is defined in the ISA

● Architected TLB:

– TLB defined in the ISA

● Special instructions to read or write TLB entries, a TLB miss is a trap

– Page table is done in software

● Without design constraints, the hardware is unaware of the page table

● Opens the possibility for inverted page tables for large address spaces

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

54
System-level ISA

● Memory Management

TLB entry format

TLB configuration

Page table entry format

Page table configuration

Miss in TLB

Miss in page table

New entry in TLB

New entry in page table

Architected TLB Architected Page Table

Defined in ISA

Defined in ISA

Left to OS implementation

Left to OS implementation

Causes TLB fault to OS

Detected and handled by OS

Made by OS

Made by OS

Left to hardware design

Left to hardware design

Defined in ISA

Defined in ISA

Hardware accesses page table

Causes page fault

Made by hardware

Made by OS

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

55
System-level ISA

● Input/Output Management

– Some ISA have specific I/O instructions

● The instructions look like load and store instructions

– The address identifies the device
– The value is either data or command

● Examples: IBM System/360 or the Intel IA-32

– Some ISA have memory-mapped I/O

● Use regular load and store instructions

– Not on real memory however, within a special address range
● The address identifies the device or a special port of a device
● One device may be mapped at several memory location

– The value is either data or command

– Interrupts are a part of most I/O architectures

● A way for getting the attention of the operating system

● Indicate an external event or the completion of a request

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

56
Operating System Interface

● The foundation

– A process is the foundation of this virtualization

● A virtual address space, with one or more threads

● System calls, a way to request a service from the OS

● Signals for handling traps and interrupts

– ABI versus API

● Usually, applications do not use the binary interface directly

● Applications use libraries offering a higher-level programming interface

Alpha ISA

Windows OS

Alpha Software
for Windows

ABI

Digital Alpha Machine
running Windows OS

Libraries
API

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

57
Operating System Interface

● Process

– A virtualized memory space

● Provides two illusions

– Owning the entire memory
– A potentially larger amount of memory

● Mapping to real memory through a page table

– Process switching

● Steps

– Require to change the page table pointer
– Flush the TLB

● Overhead

– Memory barrier hit
● TLB is empty, so page table lookup will occur
● The content of L1,L2 caches are irrelevant

– Potential disk barrier hit
● Pages in memory may not be the one needed

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

58
Operating System Interface

● Threads

– A virtualized execution flow

● Reified through a Thread Control Block (TCB)

– A program counter, user-level processor registers
– A stack pointer for push and popping stack frames

● Needs a stack

– A contiguous memory segment for the stack
– Using memory protection to grow the stack when necessary

– Thread switching

● Threads are interrupted through the timer interrupt

– The scheduler is the interrupt handler for the timer
● The scheduler finishes the save of the thread context
● It chooses what thread should be next to run
● Restore the context of that thread, jump back to user-level code
● Invalid TLB if switching between processes

● Overhead

– Stalling pipeline, new working set and new locality
– L1,L2 caches and TLB most likely irrelevant

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

59
Operating System Interface

● Signals

– Used to expose some ISA supports traps and interrupts

● Timer interrupt or overflow trap

● Memory violation traps (protection violation or non-valid address)

– Signal handlers

● Default handlers are provided

● Applications may redefine them with user-level handlers

● Through the sigvec() system call

– Signals may be masked

● Through the sigblock() or sigsetmask() system call

● Some signals cannot be masked (SIGSTOP and SIGKILL)

– Signal occurances

● Either because of real traps or interrupts

● Could be software generated through the kill() system call

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

60
Operating System Interface

● System Calls

– A trap in kernel mode

– Carries different service requests

● Either through values in ISA-specified registers

● Or through data structures in memory

● This is all operating system specific

– Different system calls

● For process management

● For memory management

● For Input/Output operations #include <syscall.h>
extern int syscall(int,...);

int file_close(int fileDescriptor) {

 return syscall(SYS_close, fileDescriptor);
}

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

61
Operating System Interface

● System Calls

– Process management system calls

● Create or terminate processes

– Examples such as Linux fork(), exec() or exit() system calls
● Other system calls

– Synchronization ones such as wait(), sleep() or wakeup()
– Others such as setpriority() or getrusage()

– Memory management system calls

● Use the malloc/free API, internally uses the sbrk() system call

● Manipulate memory protection through mprotect() system call

● Shared mapped segments through shmget() system call

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

62
Operating System Interface

● System Calls

– Input/Output system calls

● Applications do not directly use I/O instructions or I/O memory

– I/O memory is not mapped in application processes
– I/O instructions are priviledged

● Make device-independent system calls like open(), read() and close()

– Character devices
● Direct communication with application code
● A character at a time

– Block devices
● Larger granularity of interactions
● Data transfers happen through memory buffers

mailto:Olivier.Gruber@inria.fr

Olivier.Gruber@inria.fr

63
Operating System Interface

● System Calls

– Device drivers

● Implements device-independent system
calls in a device-dependent way

● Directly using I/O instructions or load and
store instructions in I/O memory

● Responsible of both issuing commands
and handling interrupts

Application

Operating System

system calls

I/O drivers

driver calls

Hardware

I/O operations

ABI

ISA

librairies

mailto:Olivier.Gruber@inria.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

