
©Pr. Olivier Gruber

Distributed Systems

Fundamentals – Part Two

Professor Olivier Gruber

Université Joseph Fourier

Projet SARDES (INRIA et IMAG-LSR)

©Pr. Olivier Gruber

Message Fundamentals

● Specific techniques

● Logical clocks and totally-ordered multicast

● Vector clocks and causally-ordered multicast

● Matrix clocks and causal point-to-point messaging

● Election in distributed systems

● Replication

● Consensus

©Pr. Olivier Gruber

Totally-Ordered Multicast

● Problem

● How do we order multicast messages to a group of processes?

● Example – Bank Account Interest

● You deposit 100€ to your account that contains 1000€

● Banker applies your monthly interest 1%

● Bank accounts are replicated in Paris and Berlin

– Same execution order = 1110€

– Different execution orders = 1111€

● Example – Deposit and Withdrawal

● Same bank, you deposit 400€ and withdraw 1200€

– Same execution order, accepted on all replicas

– Different execution orders, one replica may reject the withdrawal

©Pr. Olivier Gruber

Execution Model

● Process model

● Each process is a local sequence of events

– pi : ei
1, ei

2, ei
3, …, ei

k, …

● An event is a local state change in the process

● Communication model

● Process may exchange messages

● Message delays are unknown, messages may be lost

● Sending or receiving a message is a state change, thus an event

p1

p2

p3

m2

m3

e1
1 e1

3

e2
1 e2

2

e3
1

e1
2

e2
3

e3
2 e3

3

©Pr. Olivier Gruber

Causal Order

● Lamport (1978)

● Causal order between two events is noted

– e ⇾ e'

● It is defined as

– e happened­before e'

● In our execution model, we have e e' ⇾ if

– e and e' happens in the same process and e happens before e'

– e is the sending of a message m and e' is receiving that message

● The causal relationship is transitive

– If e e“⇾ and e“ e'⇾ then e e'⇾

● Causal order is only a partial order

– Not all events may be causally ordered

©Pr. Olivier Gruber

Causal Order

● Example

● We have

– e1
1 ⇾ e1

2 e⇾ 1
3

– e2
1 e⇾ 2

2 e⇾ 2
3

– e2
2 e⇾ 1

2

● Therefore we have

– e2
2 e⇾ 1

3

● But we only have a partial order

– We neither have e1
1 ⇾ e2

1 or e1
1 ⇾ e2

1

– Noted as e1
1 e∥ 2

1

p1

p2

m1

e1
1 e1

3

e2
1 e2

2

e1
2

e2
3

©Pr. Olivier Gruber

Logical Clocks

● Logical Clocks

● Nothing to do with real time

● Logical clock for an event ei
k is noted LC(ei

k)

● Design

– Logical clocks are maintained as local counters

– For each new local event ei
k : LC(ei

k)= LC(ei
k-1)

+ 1

● Regarding Messages

● Sending a message M

– This is a new local event ei
k : LC(ei

k)= LC(ei
k-1)

+ 1

– M is timestamped with LC(ei
k)

● Receiving at Pj a message M(LC(ei
k))

– This is a new event ej
r

– LC(ej
r)= max(LC(ej

r-1),LC(ei
k))

+ 1

©Pr. Olivier Gruber

Logical Clocks

● By definition

● ei
k ⇾ ej

r implies LC(ei
k) < LC(ej

r)

● Usage

● LC(ei
k) < LC(ej

r) implies (⎤ ej
r ⇾ ei

k)

● That is (ei
k ⇾ ej

r) or (ei
k ∥ ej

r)

Example

LC(e1
1)=1

3

2 5

p1

p2

p3

LC(e1
2)=2 LC(e1

3)=3 LC(e1
4)=6 LC(e1

5)=7

LC(e2
2)=2 LC(e2

3)=3 LC(e2
4)=4 LC(e2

5)=5 LC(e2
6)=6

LC(e3
1)=1

LC(e3
2)=4

LC(e3
3)=5 LC(e3

4)=6

Look at LC(e3
1) < LC(e2

3)

It is a case where (e3
1 ∥ e2

3)

©Pr. Olivier Gruber

Totally Ordered Multicast

● Totally Ordered Multicast

● Using Lamport's logical clocks

● Design

● Between a group of N processes

– They must know each others (concept of a group)

– Each message from one process is multicasted to the entire group

– We assume FIFO and loss-less communication channels

● Each process:

– Each message carries its normal timestamp (Lamport)

● Build an ordered queue of messages based on the message timestamp
● Acknowledge each message to the group (multicasted ack message)

– Delivers a message only when

● The message has been acknowledged by all other processes in the group
● The message is at the top of the ordered queue

©Pr. Olivier Gruber

Totally Ordered Multicast

p1

p2

M
1
(10)

M
2
(66)

12=max(10,11)+1

10 M
1 n

68=max(66,67)+1

66 M
2 n

LC=68

LC=11

ACKs

11=10+1

67=66+1

©Pr. Olivier Gruber

Totally Ordered Multicast

p1

p2

M
1
(10)

M
2
(66)

12

10 M
1 n

68

66 M
2 n

LC=68

LC=11

77=max(66,76)+1

74=max(10,73)+1

66

n

 M
2

 M
1

n

10

LC=74

10 M
1 n

66 M
2 n

LC=76

10

n

 M
1

 M
2

n

66

LC=74
Reordered queue

X

©Pr. Olivier Gruber

Totally Ordered Multicast

p1

p2

M
1
(10)

M
2
(66)

12

68

77

74

10 M
1 n

66 M
2 y

LC=85

10

n

 M
1

 M
2

y

66

LC=78

Received all ACKs

©Pr. Olivier Gruber

Totally Ordered Multicast

10 M
1 y

66 M
2 y

LC=92

10

y

 M
1

 M
2

y

66

LC=97

Same order
in both queues

p1

p2

M
1
(10)

M
2
(66)

12

68

76-77

74

ACK
2
(M

1
(10))

ACK
1
(M

2
(66))

©Pr. Olivier Gruber

Totally Ordered Multicast

● Special Corner Case

● Two multicast could have the same logical clock at two processes

● Extends logical clocks with process identifiers,as decimals

– When we had:
● LC(e32

k) = 56 and LC(e24
k) = 56

– We now have

● LC(e32
k) = 56.32 and LC(e24

k) = 56.24
● Use this extension any time you need a total order on logical clocks

©Pr. Olivier Gruber

Totally-Ordered vs Causally-Ordered Multicast

● The newsgroup example

● We have a group, messages are multicasted

● Totally­ordered multicast

● Everyone in the group sees all messages in the same order

● Causally­ordered multicast

● Everyone sees the question first and answers next

● Answers may not be seen in the same order by everyone

● Questions asked in parallel can be seen in different orders too

©Pr. Olivier Gruber

Vector Clocks

● Vector Clock (Fidge and Mattern, 1988)

● A vector of logical clocks

– One entry per known process P
i

– VC[i] = max value of known LC(P
i
)

● Each event carries a vector clock

– It gives the history at various processes that the event depends on

● Each process P
i
 maintains a vector clock VC

i

– Maintains the logical clocks that the current state of P
i
depends on

p1

p2 1,1,0

1,2,0
1,0,0

0,0,0

0,0,0

1,0,0

1,2,0

2,2,0

Local state is now causally
dependent on states (1,0,0)

©Pr. Olivier Gruber

Causally-Ordered Multicast

● Causally Ordered Multicast

● Sending messages

– Increment local logical clock only regarding multicasting (no other events)

– Timestamp messages with its VC
i

● Receiving messages with a vector clock VC

– VC
i
[k] = max(VC

i
[i],VC[k]) for all k ≠ i

– No increment of local logical clock

p1

p2

p3 0,0,0

1,0,0

1,0,0

1,0,0

1,0,0

0,0,0

0,0,0 1,0,0
local delivery

©Pr. Olivier Gruber

Causally-Ordered Multicast

p1

p2

p3

delayed delivery

0,0,0

1,0,0 1,1,0

1,1,0
1,0,0

1,1,0

0,0,0 1,0,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

conflit

For a message M, received by P
r
 from P

s
, with vector clock VC

m

Delay delivery until

VC
m
[s] = VC

r
[s]+1

VC
m
[k] ≤ VC

r
[k] for all k ≠ s

no local-clock
increment

©Pr. Olivier Gruber

Causally-Ordered Multicast

p1

p2

p3 0,0,0

0,1,0 1,1,0

0,1,0
1,0,0

0,1,0

0,1,0 1,1,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

no conflict, deliver immediately

Notice that
we avoided all the acknowledgment messages

of the totally-ordered multicast

©Pr. Olivier Gruber

Causally-Ordered Multicast

● Example: newgroups

● We want to avoid response posts to appear before the original posts

p1

p2

p3 0,0,0

1,0,0 1,1,0

1,1,0
1,0,0

1,1,0

0,0,0 1,0,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

original post

response post response post arrives
before the original post

delay the response post
until we got the original post

©Pr. Olivier Gruber

Causally-Ordered Multicast

● Example: newsgroup

● But we don't need to order original posts...

p1

p2

p3 0,0,0

0,1,0 1,1,0

0,1,0
1,0,0

0,1,0

0,1,0 1,1,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

two independent posts, they don't have any order

©Pr. Olivier Gruber

Causally-Ordered Multicast

● Example - newsgroups

● Notice that we don't know for a fact if the message is a response or original post

● Middleware is blind to application-level semantics

p1

p2

p3 0,0,0

1,0,0 1,1,0

1,1,0
1,0,0

1,1,0

0,0,0 1,0,0

1,0,0

1,1,0

0,0,0

0,0,0

1,1,0

1,0,0

Only potential causality...
Blindly enforced by the middleware

delay delivery

©Pr. Olivier Gruber

Causally Ordered Multicast

p1

p2

p3

delayed delivery

0,0,0

1,0,0 1,2,0

1,2,0 1,0,0

1,2,0

0,0,0 1,0,0

1,0,0

1,2,0

0,0,0

0,0,0

1,2,0

1,0,0

For a message M
Received by P

r
 from P

s
with vector clock VC

Delay delivery until

VC[s] = VC
r
[s]+1

VC[k] ≤ VC
r
[k] for all k ≠ s

1,1,0

1,1,0

1,1,0

0,0,0

1,1,0

1,1,0

©Pr. Olivier Gruber

Point-to-Point Causality

● The Challenge of Point-to-Point Causality

● When should we deliver m4(8) ?

● Do we have to wait for m3(5)?

● How do we detect missing or delayed events?

● Undistinguishable situation from P
1
 perspective

e

e'

e"

p1

p2

p3

p4

m3(5)m2(3)

m4(8)

violates
causality

e
e"

e'

p1

p2

p3

p4

m2(3)

m4(8)

m3(5)

 (e2 ∥ e”3) and (e”3 ∥ e'4)
 (e2 ⇾ e”3) and (e”3 ⇾ e'4)

send (m) → send (m')

⇒ deliver (m) → deliver (m')

©Pr. Olivier Gruber

Example

● A simple loop:
int vals[]={0,1,2,3}
for (int i=1; i<vals.length;i++)

vals[i] = vals[i] + vals[i-1];

Distributed values: vals[i] on processus Pi
Distributed the computation

p1

p2

p3

p0

vals[2]= ...

vals[1]=...

m

m'

m“

send (m) → send (m') → send (m'')

⇒ deliver (m) → deliver (m') → deliver (m'')

The simple and correct design...

©Pr. Olivier Gruber

Example

● A simple loop:
int vals[]={0,1,2,3}
for (int i=1; i<vals.length;i++)

vals[i] = vals[i] + vals[i-1];

Distributed values: vals[i] on processus Pi
Distributed the computation

p1

p2

p3

p0

vals[2]= vals[2]+vals[1]

vals[1]

vals[1]=...

m vals[1]

m'

m“

send (m) → send (m') → send (m'')

⇒ deliver (m) → deliver (m') → deliver (m'')

You must have point-to-point causality
to be correct...

©Pr. Olivier Gruber

Example

● A simple loop:
int vals[]={0,1,2,3}
for (int i=1; i<vals.length;i++)

vals[i] = vals[i] + vals[i-1];

Distributed values: vals[i] on processus Pi

p1

p2

p3

p0

vals[2]= vals[2]+vals[1]

vals[1]

vals[1]=...

m

vals[1]

m'

m“

send (m) → send (m') → send (m'')

If not...
deliveri (m') → deliveri (m'') → deliveri (m)

⇒ incorrect execution!

©Pr. Olivier Gruber

Logical Clocks – Not Enough

p1

p2

p3

Does not violate causality

2

0

0

0

1 2

1

3 4

4

5

send (m) → send (m')

⇒ deliveri (m) → deliveri (m')

2

©Pr. Olivier Gruber

Logical Clocks – Not Enough

p1

p2

p3

violates causality
the logical clocks do not carry any knowledge of late messages

NOT DISTINGUISHABLE FROM P3

2

0

0

0

1 2

1

3 4

4

5 6

send (m) → send (m')

⇒ deliveri (m) → deliveri (m')

©Pr. Olivier Gruber

Vector Clocks – Not Enough

● Causal execution if P
1
sent the first message to another process than P

3

● Not distinguishable from P
3
perspective

p1

p2

p3

Does not violate causality

2,0,0

0,0,0

0,0,0

0,0,0

1,0,0 2,0,0

2,2,0 2,3,0

2,3,0

2,2,1

1,1,0

1,0,0

©Pr. Olivier Gruber

Vector Clocks – Not Enough

p1

p2

p3

2,0,0

0,0,0

0,0,0

0,0,0

1,0,0 2,0,0

1,0,0

2,1,0 2,2,0

2,2,0

2,2,1 2,2,2

send (m) → send (m')

⇒ deliveri (m) → deliveri (m')

violates causality
the vector clocks do not carry any knowledge of late messages

NOT DISTINGUISHABLE FROM P3

©Pr. Olivier Gruber

Matrix Clocks

● Towards a more complete history

● Logical Clocks

– LCi = what Pi knows is just a number, used in a global order

● Vector Clocks

– VCi[j] = what Pi knows about Pj

● Matrix Clocks

– MCi[j, k] = what Pi knows about what Pj knows about Pk

©Pr. Olivier Gruber

Matrix Clocks

● Within a group of n process

● Each process Pi maintains a matrix clock MCi[n,n]

● Each event ei
k is timestamped with the matrix MCi

● Each message is timestamped with the matrix MC i

● Matrix definition

● MCi[j,k] = number of messages sent by Pj to Pk that Pi causally knows about

– A column k represents what a process Pk has received from other processes Pj that Pi knows about

● MCi[i,i] = local events (local logical clock)

 123
1 000
2 000
3 000

MCi[2,3]

MCi[3,1]

©Pr. Olivier Gruber

Matrix Clocks

● Matrix definition

● MCi[j,k] = number of messages sent by Pj to Pk that Pi causally knows about

● MCi[i,i] = local events (local logical clock)

p1

p2

p3

000
000
000

000
000
000

000
000
000

101
000
000

211
000
000

211
010
000

101
000
001

211
021
000

211
021
002

 123
1 000
2 000
3 000

MCi[1,3]
MCi[1,1]

©Pr. Olivier Gruber

Matrix Clocks – Rules

● Local Event:

● MCi[i,i] = MCi[i,i] + 1

● Sending a message from Pi towards Pk

● MCi[i,k] = MCi[i,k] + 1

● MCi[i,i] = MCi[i,i] + 1

p1

p2

p3

000
000
000

000
000
000

000
000
000

101
000
000

211
000
000

101
000
000

211
000
000

©Pr. Olivier Gruber

Matrix Clocks – Rules

● Delivery condition at Pk of a message from Pi timestamped with MCm

● ∀ p ≠ i and p ≠ k Mcm[p,k] == Mck[p,k]

● Mcm[i,k] == Mck[i,k]+1 (FIFO order on channel from Pi to Pk)

● Receiving a message timestamped with MCm from Pi at Pk

● MCk[p,q] = max(MCk[p,q],MCm[p,q]) with p ≠ k (Pk knows best what it received)

● MCk[k,k] = MCk[k,k] + 1 (increment local clock)

p1

p2

p3

000
000
000

000
000
000

000
000
000

101
000
000

211
000
000

211
010
000

101
000
001

⇒

⇒
101
000
000

211
000
000

©Pr. Olivier Gruber

Matrix Clock

p1

p2

p3

000
000
000

000
000
000

000
000
000

101
000
000

211
000
000

211
021
000

211
021
002

000
000
000

211
010
000

⇒
211
000
000

000
000
000

101
000
001

⇒

101
000
000

211
021
000 000

000
000

⇒

Missing message!
● ∀ p ≠ 2 and p ≠ 3 Mcm[p,3] == Mck[p,3]
● Mcm[2,3] == Mck[2,3]+1

delayed delivery...
211
021
000

● Delivery condition at Pk of a message from Pi timestamped with MCm

● ∀ p ≠ i and p ≠ k Mcm[p,k] == Mck[p,k]

● Mcm[i,k] == Mck[i,k]+1 (FIFO order on channel from Pi to Pk)

●

©Pr. Olivier Gruber

The Election Challenge

● Context

● A distributed system with N processes

– Processes know each others

● The knowledge of the static group
– A process does not know which process is running or down or failed

● No knowledge of the dynamic group (currently correct processes)
– Synchronous network (bounded delivery)

● Elect cooperatively one process to perform a certain task

– One process needs to be selected and only one

– All processes need to agree on which process is elected

● Necessary in many circumstances

– Mutual exclusion coordinator (centralized algorithm)

– Transaction commit (coordinator)

– Data replication

©Pr. Olivier Gruber

Election Algorithms

● Bully algorithm

● Processes are all uniquely identified

● There is a total order on process identifier

● For example, machine IP and local creation time

● Simple design

● Any process may initiate the election at any time

– A process P sends an ELECTION message to all processes with higher identifiers

– If no one responds, P wins the ELECTION

– Notify all processes of the new elected coordinator (process P)

– If one of the process responds, it takes over the election process

● Upon receiving an ELECTION message

– Returns an OK message to indicate that it is alive and takes over the election

– If it is already holding an election process, just keep going

– If it is not already holding an election process, apply the algorithm above

©Pr. Olivier Gruber

Bully Algorithm

1

43

6 2

7 5

1

43

6 2

7 5

ok

1

43

6 2

7 5

ok

1

43

6 2

7 5

1

43

6 2

7 5
elected

©Pr. Olivier Gruber

Election Algorithms

● A ring algorithm

● N processes are organized as a ring overlay

● Synchronous network, loss-less and FIFO

1

43

6 2

7 5

©Pr. Olivier Gruber

Election Algorithms

● A ring algorithm

● Any process needing a coordinator

– Creates an ELECTION message with its own identity

– Sends a ELECTION message to the next node on the ring

● Loops on the overlay until it finds one successor alive
● If none are alive, it self-elects as a coordinator

● Any process receiving an ELECTION message

– Add its own identity to the message

– Forwards the message to the next node on the ring

– Loops on the overlay until it finds one successor alive

● First loop is done

– The ELECTION message comes back to the originator

● Elects the process with the highest identifier as the coordinator
– Circulate the COORDINATOR message notifying

● Who the coordinator is
● Who is in the overlay (removing failed processes)

©Pr. Olivier Gruber

Ring Algorithm

1

43

6 2

7 5

4

4
2

4
2

5

4
3

5

2

4
3

5

2
1

1

43

6 2

7 5

4
3

5

2
1

start

election

©Pr. Olivier Gruber

Discussing Failures

● Kinds of failures

● Messages may be lost or delayed enormously

– Impossible to detect the difference in practice

● Processes may fail

– Fail-stop

● Works correctly or not at all
● How do we differentiate between lost or delayed messages and failed process?

– Partially fail (algorithm failure, boundary condition, etc.)

● May accept message and make erroneous answers

● Impacts on previous algorithms

● Totally-ordered multicast blocks

● Causally-ordered multicast may partially block

● Elections support fail-stop processes with a synchronous assumption

– Synchronous assumption = known bound for message delivery

©Pr. Olivier Gruber 45

Definitions

● Failed System

● A system has failed when it does not behave according to its specification

– This is not a precise definition, it is system-dependent

– This assumes that the specification is complete and correct

● Black-box model

– A distributed system is a collection of collaborating parts

● Each part is considered a black-box from a failure model perspective
● We will call each part a component

– Failures are witnessed from outside

● A component does not behave according to its specification
● Example: it does not reply to messages

interface

©Pr. Olivier Gruber 46

Fault Tolerance

● Fault masking

● Faults are transparently recovered

– Enough redundancy and error checking

– Done real low in the architecture, often in hardware or in drivers

● Example:

– Memory parity errors and checksum recovery

– Redundant processing units and majority vote

– RAID disks

● Fault recovery

● Faults do happen and software components do fail

● To ensure good performance and long-term operation

– Failures must be detected

– Failures must be recovered from

● Classical approach

– Fail-stop, repair, and reinsert

©Pr. Olivier Gruber 47

Replicated Servers

● Goal

● High-availability servers, wanting to resist server failures

● Architecture

● For clients

– The model must be equivalent to a centralized server

● Replicated servers

– N servers resist up to N-1 concurrent failures

– Failed servers are repaired and re-inserted

– Assume fail-stop servers

● Two models

– Primary-based replication

– Active replication

©Pr. Olivier Gruber 48

Active Replication

● Each client sends its requests to all servers in parallel

● Each request has a sequence number (local for each client)

● For each request, the client waits for the first answer, drops the following ones

● All servers are equal

● They all process requests, only works with deterministic requests

● They all possess a copy of the data, all requests must be totally-ordered across servers

client

server-1

server-2

server-3

req(n)

wait

resp(n)

processing

req(n+1)

processing

wait

resp(n+1)

©Pr. Olivier Gruber 49

Active Replication

● Fault-tolerance

● Clients need to receive at least one answer (requires at least one correct server)

– Consider FIFO and lossless communications between clients and servers

● Requires fail-stop servers

– Do not send erroneous answers

● Repair and reinsert failed servers

– Required to preserve long-term fault-tolerance

client
req(n)

wait

resp(n)

S1

S2

S3

processing

processing

©Pr. Olivier Gruber 50

Active Replication

● Repair and reinsert failed servers

● Detect failures... false-positive may happen

● Recover the state, if lost or corrupted

● Requests it from another server

● Assert the state level

● For each client, it will be up to a certain request-id

client
req(n)

S1

S2

S3
n-1 n

n

state(n-1)

©Pr. Olivier Gruber 51

Active Replication

● Repair and reinsert failed servers

● We lost all requests up to n, but we don't know it

● We acquired state(n-1)

● While acquiring state, we lost req(n+1)

client
req(n) req(n+1)

n-1 n n+1

n+1n

state(n-1)

S1

S2

S3

©Pr. Olivier Gruber 52

Active Replication

● Repair and reinsert failed servers

● Having state(n-1), we can't process req(n+2)

– But we now know which requests we missed: req(n+1) and req(n+2)

● We request these missed requests from S3

– We process them on state(n-1)

– We are up to state(n+2) after that processing

client
req(n) req(n+1)

n-1 n n+1

n+1n

req(n+2)

n+2

n+2

req(n) & req(n+1)

state(n-1)

S1

S2

S3

n+2

©Pr. Olivier Gruber 53

Active Replication

● Repair and reinsert failed servers

● Back to normal...

– We receive req(n+3), we have state(n+2)

● WARNING: there can be multiple clients...

– So we manage vectors of sequence numbers from clients

– So we need to totally order the requests on replicas

– We are only back to normal when we have received all request logs that we missed

client
req(n) req(n+1)

n-1 n n+1

n+1n

req(n+2)

n+2

n+2

req(n) & req(n+1)

state(n-1)

S1

S2

S3

n+2

req(n+3)

n+3

n+3

n+3

©Pr. Olivier Gruber 54

Replicated Servers

● Primary-base Replication

● One server is the primary, the others are backups

– The primary executes the client requests

– It updates locally one or more data items (x, y, ... , z)

– Updated data items (x,y,...,z) are replicated on backup servers

● Principle

– Primary waits for all acknowledgements from replicas

– All replicas (backup servers) are in the same state

client

Primary server

Backup server

Backup server

request

processing

ack

ack

wait

response

C

S1

S2

S3

updates

©Pr. Olivier Gruber 55

Primary-Based Replication

● Consistency Protocol (no failures)

● Primary sets the execution order

– Processing order of the requests

● Communication channels

– FIFO and loss-less

● Clients

– Receive only one response per request (from the primary)

client

Primary server

Backup server

Backup server

C

S1

S2

S3

n+1 n+2

updates updates

©Pr. Olivier Gruber 56

Primary-Based Replication

● Introducing Failures

● We keep FIFO and loss-less channels

● Both primary server and backup servers may fail

● We consider only fail-stop servers

● Overall Goal

● Keep all replicas consistent, despite failures

client

Primary server

Backup server

Backup server

request

processing

ack

ack

wait

response

C

S1

S2

S3
updates

©Pr. Olivier Gruber 57

Primary-Based Replication

● Primary Failure in

● Crash happens before the processing is over

– The client will time-out waiting for the response

– The client will lookup the new primary and retry

● This requires electing a new primary

– Which requires to know the group of live servers

client

Primary server

Backup server

Backup server

request

wait
C

S1

S2

S3

1

1

time-out
X

processing

©Pr. Olivier Gruber 58

Primary-Based Replication

● Primary Failure in

● Crash happens while sending out the updates to replicas

– The problem is that some replicas might see the updates, while others wont

● Atomicity has to be ensured

– Must get all updates or none

– All replicas get all the updates or none of them get any update

● If no replica received the updates

– It is equivalent to a failure in

client

Primary server

Backup server

Backup server

request

ack

wait
C

S1

S2

S3

1 2

2

1

time-out
X

updates

processing

©Pr. Olivier Gruber 59

Primary-Based Replication

● Assuming Atomicity

● All replicas received the updates

– All replicas are up-to-date

– Any replica may be elected as the new primary

● Client will still time-out and try again

– We must detect that the request has been processed already

– Each request needs a unique identity (sequence number on the failed primary)

– We need to remember the response for each request

client

Failed primary

New primary

Backup server

request

ack

ack

wait
C

S1

S2

S3

1 2

X

new primary
responds directly

time-out

processing

©Pr. Olivier Gruber 60

Primary-Based Replication

● Primary Failure in

● The client has received the response

● It will fail to contact the primary upon its next request

– It will time-out and lookup the newly elected primary

● Eventually back to a normal situation

– When the new primary is elected

client

primary
server

backup
servers

backup
servers

request

ack

ack

wait

response
C

S1

S2

S3

1 2 3

3

X
processing

©Pr. Olivier Gruber 61

Primary-Based Replication

● Backup Failures

● How many acknowledgements should a primary wait for?

● We need a way to detect that a node failed

client

primary
server

backup
servers

backup
servers

request

ack

wait

time-out

C

S1

S2

S3

x
i

X

processing

Does it work?

©Pr. Olivier Gruber 62

Discussing Fault Detection

● Synchronous Systems

● There is a bound on message delivery

– We have a Perfect Failure Detector (PFD)

● So we can say

– If the primary detects a backup has failed, it is failed, 100% sure

– But this is hardly the reality (example: network partitioning)

● Asynchronous Systems

● There is no bound on message delivery

● Impossibility proved by Fischer, Lynch and Paterson (FLP)

– In an asynchronous system with fail-stop processes

– There is no deterministic protocol to reach a consensus

M. J. Fischer, N. Lynch, M. S. Paterson. Impossibility of Distributed Consensus with one Faulty
Process, Journal of the Association for Computing Machinery, 32(2), pp. 374-382, April 1985
(publication initiale : Proc. 2nd ACM Principles of Database Systems Symposium, March 1983)

©Pr. Olivier Gruber 63

View Synchronous Multicast

● Basic idea

● A view is a consensus about live replicas

● New views are created as replicas may join, leave or fail

● Every one or no one in a view receives each message (atomicity guarantee)

● What for?

● So we can finish the design of primary-based replication

● This multicast is not specific to replication, it can be used for other purposes

● Next Steps

● Explain what is the View Synchronous Multicast

● Explain how to use it for primary-based replication

● Discuss consensus that is the foundation of the view mechanism

©Pr. Olivier Gruber 64

View Synchronous Multicast

● Principles

● Consider a group of replicas x
i
, for a data item x, noted g

x

● Consider a sequence of views v
i
(g

x
), v

i+1
(g

x
), ... v

i+n
(g

x
)

– Each view represents a new state of the group

– A new view is created everytime a node joins or leaves (includes failure)

● Assume a node timestamps its messages with the current view

– Let tk(i) be the local time at which replica x
k
 delivers the view v

i
(g

x
)

– From tk(i), any message that x
k
sends is timestamped with i, noted m(i)

– This remains true until x
k
 delivers the view v

i+1
(g

x
)

Server S
k

manages x
k

v
i
(g

x
)

m
t
(i) m

t+1
(i) m

t+2
(i)

v
i+1

(g
x
)

m
t+3

(i+1) m
t+4

(i+1)

©Pr. Olivier Gruber 65

View Synchronous Multicast

● Correctness Rule

● Given a view v
i
(g

x
) and a message m(i)

● All replicas in v
i
(g

x
) ∩ v

i+1
(g

x
) must either

– all deliver m(i) before delivering v
i+1
(g

x
)

– or none of them delivers m(i)

x1

x2

x3

x4

m(i)

vi=(x1, x2, x3, x4) vi+1=(x1, x2, x4)

m(i)

correct

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

not correct

vi=(x1, x2, x3, x4)

©Pr. Olivier Gruber 66

View Synchronous Multicast

vi=(x1, x2, x3, x4)

x1

x2

x3

x4

m(i)

vi=(x1, x2, x3, x4) vi+1=(x1, x2, x4)

m(i)

vi=(x1, x2, x3, x4) vi+1=(x1, x2, x4)

m(i)

vi=(x1, x2, x3, x4) vi+1=(x1, x2, x4)

m(i)

correct correct

not correct not correct

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

©Pr. Olivier Gruber 67

Primary-Based Replication

● Replica Consistency Conditions

● If we have a failure detector (producing the views)

● And we have a mechanism to ensure view synchronous multicasts

● Then we have consistent replicas

● Is that enough?

● View synchronous multicast is not enough

– It provides reliable multicast

– Hence atomic updates across correct replicas

● After failure at replica x
i

– Replica x
i
is repaired and needs to re-join

– Its state needs to be brought up to date

vi=(x1, x2, x3, x4)

vi+1=(x1, x2, x4)

m(i)

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3 ?

©Pr. Olivier Gruber 68

Primary-Based Replication

● State Transfers

● To re-join, replica x
p
forces a new view v

i+1
(g

x
)

– Replica x
p
is added v

i+1
(g

x
)

– Any correct replica x
q
can send its state to x

p

● It sends its state when it delivers the new view v
i+1

(g
x
)

– From the time it delivers v
i+1

(g
x
)

● Replica x
p
 has to delay delivering all messages m(i+1)

● Until it receives its new state from x
q

vi-n-1=(x1, x2, x3, x4)

vi-n=(x1, x2, x4)

m(i)

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3 ?

vi=(x1, x2, x4)

vi+1=(x1, x2, x3, x4)

state transfer

delayed but ordered delivery

©Pr. Olivier Gruber 69

Primary-Based Replication Recap

● Dynamic group of servers

● Any server may fail, but not all of them (at least one must be alive at all time)

● Failed servers are reinserted

● Primary server is elected

● Primary server process and answers client requests

● Backup servers are only sent the updates

● Work for both deterministic and non-deterministic applications

● Clients see the primary failures, they have to switch to a new primary

● Clients do not see failures of backup servers

● Primary uses a view synchronous multicast

● Based on a consensus of which servers are correct

● Ensure the atomicity of updates (all backup servers have identical states)

● Can be built on an imperfect failure detector

©Pr. Olivier Gruber 70

Active Replication Recap

● Dynamic group of servers

● Any server may fail, but not all of them (at least one must be alive at all time)

● Failed servers are reinserted

● No election is necessary

● All servers execute the requests and have a complete copy of the data

● All requests from clients must be totally-ordered on all servers

● Only works with deterministic computations

©Pr. Olivier Gruber 71

Consensus

● Definition

● Given a set of processes P
1
,...,P

n

● Initially, each process P
i
proposes a value V

i

● If the consensus protocol terminates, we have

– Agreement: All correct processes decide the same value

– Integrity: each process decides at most once

– Validity: the decided value is one of the proposed ones

– Decision: if at least one correct process starts the consensus, all correct processes eventually decide a
value

● A process is correct

– If it is not failed

– If it has never failed (assuming a failed process may be restarted)

● A notion that only applies within the start-end bounds of the consensus protocol

©Pr. Olivier Gruber 72

Consensus

● Starting a Consensus

● Not included in the consensus protocol itself

– Initially, each process P
i
proposes a value V

i

● Different possible approaches

– It could be at regular intervals or well-know times

● Beware of clock skewing...
– It could be by broadcasting to the processes

● But be really careful about the properties of this broadcast
● Only those receiving the message will be part of the consensus

● Communication Channels

● Processes are connected through communication channels

– Channels are FIFO and loss-less

● We will consider synchronous and asynchronous systems

– Delivery time is bounded or not

● We will consider only fail-stop system

– Byzantine failures are too complex

©Pr. Olivier Gruber 73

Consensus

● Reliable Broadcast

● A foundation mechanism

● A process P
i
 broadcast a message to all processes P

j
, including itself

● Reliable Broadcast Properties

● Agreement: if one correct process delivers a message, all correct processes eventually deliver
m

● Validity: if one correct process broadcast a message m, all correct processes eventually deliver
the message

● Integrity:

– A broadcasted message is delivered at most once

– A delivered message must have been broadcasted

Eventually: Delivery will happen in finite time

©Pr. Olivier Gruber 74

Reliable Broadcast

● Protocol

Broadcast a message, noted m

Timestamp m with a sequence number, noted seq(m)

Identify sender, noted sender(m)

Send m to all processes, including sender(m)

Deliver a broadcasted message at a process P
i

Receive the message m (from the communication channel)

If the message has been delivered, just drop it

If this is the first time P
i
receive m and sender(m) is not P

i

Send m to all processes (but process P
i
)

Deliver message m

©Pr. Olivier Gruber 75

Reliable Broadcast

● Discussion

● Nothing is said about the order of delivery

● Atomicity property

– All correct processes eventually receive a broadcasted message

– Or none of them receive it

● Remarks

● It is this atomicity about a global knowledge (the message m) that allows to reason and make
progress about a consensus

● The algorithm is not optimized, better protocols exist, but the protocol shows it is possible to
achieve a reliable broadcast under our assumptions

V. Hadzilacos , S. Toueg, Fault-Tolerant Broadcast and Related Problems, in S. Mullender (ed.),
Distributed Systems (2nd edition), Addison-Wesley, 1993

©Pr. Olivier Gruber 76

Reliable Broadcast

● Proof

● Agreement:

– If one process delivers a message m, it finished sending the message to all other processes prior to
delivering it

– Since communication channels are loss-less, all correct processes will eventually receive the message and
deliver it (unless they crash, in which case they are not correct any more)

● Validity:

– If a correct process has broadcasted a message (the broadcast pseudo code was executed) the message
was sent to all processes

– Since the sender is correct (it is not failed and didn't fail), it eventually delivered the message and because
of the agreement above all correct processes also delivered the message

● Integrity

– By the very structure of the algorithm

– Only sent messages are received and already delivered messages are ignored

©Pr. Olivier Gruber 77

Consensus

● Hypothesis

● Loss-less communication channels

● No node and no process failures

● Coordinator Solution

● Each process sends its value to the coordinator

● When the coordinator has all the values, it
picks one (on whatever criterium) and sends
that value to all processes

● When receiving the value, all processes decide
the same value

decide

decidedecide

coordinateur

choose (d) d

 d

P
1

P
2

P
3

v
1

v
2

v
3

©Pr. Olivier Gruber 78

Consensus

● Same Hypothesis

● Loss-less communication channels

● No node and no process failures

● Symmetric Solution

● All processes are equivalent

● Each process broadcasts its initial value to all
other processes

● When a process has received all the values, it
picks one using an agreed upon algorithm

● All processes have all the same values, the
same decision algorithm, they will decide the
same value

decide

decide

P
1

P
2

P
3

v
1 v

2

v
3

©Pr. Olivier Gruber 79

Consensus

● New Hypothesis

● Loss-less communication channels

● Fail-stop processes

● Synchronous system

● Symmetric Solution

● Same symetric solution

● Wait for values only for a maximum delay

● The maximum delay can be estimated (synchronous
system)

● Passed that delay, we know that if we didn't get a
message, the sender has failed

● True only if the sending of the initial values are
somewhat coordinated

decide

max
delay

P
1

P
2

P
3

v
1 v

2

v
3

©Pr. Olivier Gruber 80

Consensus

● Moving to Asynchronous Systems

● We are facing FLP...

● Different Approaches

● Partially synchronous systems

– Dwork, Lynch, Stockmeyer (1988)

● Non-deterministic algorithms

– Rabin (1983)

● Best-effort approaches

– Paxos Algorithm (Lamport 1989), even adaptable to byzantine failures

– Use imperfect fault-detectors like Chandra and Toueg (1991)

©Pr. Olivier Gruber 81

Best-Effort Consensus

● One Study Only

● Only looking at the use of imperfect fault detectors

● Basic idea:

– The FLP impossibility relies on the inability to know if some process has failed or if the message we are
waiting for is late, delayed in transit

– Having a fault detector, even imperfect, is enough to avoid the FLP impossibility and make reaching a
consensus possible

● Remember:

– Loss-less communication channels (messages will eventually arrive)

– Asynchronous system (no bound on message delivery time)

©Pr. Olivier Gruber 82

Imperfect Failure Detectors

● Completeness

● Strong Completeness: eventually, every process that crashes is permanently suspected by
every correct process

● Weak Completeness: eventually, every process that crashes is permanently suspected by some
correct process

● Accuracy

● Strong Accuracy: no process is suspected before it crashes

● Eventual Strong Accuracy: eventually, correct processes are not suspected by any correct
process.

● Weak Accuracy: some correct process is never suspected

● Eventual Weak Accurary: eventually, some correct process is never suspected by any correct
process

©Pr. Olivier Gruber 83

Imperfect Failure Detectors

● Practical Choice

● Strong Completeness: eventually, every process that crashes is permanently suspected by
every correct process

● Eventual Weak Accurary: eventually, some correct process is never suspected by any correct
process

● Simple Design

● Each process q periodically sends a message q-is-alive

– If a process p times-out without receiving anything from q

● It adds q to a list of suspected processes (failed)
– If a process p realizes it erroneously suspected q

● It removes the process q from the suspected list
● It increments the time-out for that process q

– Trying to safeguard against the same mistake...
● Does it work?

©Pr. Olivier Gruber 84

Imperfect Failure Detectors

● Does it work? Nope.

● If it really did, FLP impossibility would not stand!

● But it is enough in practice...

● As we grow the timeout

– More and more likely that a correct process will be considered live

● So we achieved eventual weak accuracy...
● But no theoritical proof, just practical behavior of real systems

– Longer will be the delay before we consider a failed process

● So we endanger strong completeness

Strong Completeness: eventually, every process that crashes is permanently suspected by every
correct process

Eventual Weak Accurary: eventually, some correct process is never suspected by any correct
process

©Pr. Olivier Gruber 85

Consensus Protocol

● Hypothesis

● Strong completeness and eventual weak accuracy

● Uses a reliable broadcast noted R-broadcast(m)

● Want to resist F failures, we need (2F+1) processes

● Principle

● Tries to reach a consensus in multiple rounds

● For each round, we try one process as the coordinator

– If it reaches a consensus, we are done

– If not, we try the next process as a coordinator

● We rotate between correct processes as long as we don't have a consensus

– Eventually, we will reach one (depending on faults and accuracy of our fault detector)

– No guarantee in any bounded time !

©Pr. Olivier Gruber 86

Consensus Protocol

● Per Round

● We have four phases

– Phase 1: all processes send to the coordinator their estimate of the consensus

– Phase 2: the coordinator waits until it has a majority of estimates, picks one as the new estimate and
broadcast that new estimate

– Phase 3: all processes receive the new estimate and acknowledge that new estimate to the coordinator

– Phase 4: the coordinator waits for a majority of acknowledgements and then decide for that last estimate
that it reliably broadcast

● If anything fails to happen that way, we go for another round.

– The coordinator may suspect a majority of processes to have failed

– A process may suspect the coordinator to have fail and not acknowledge the new estimate

– The coordinator may suspect a majority of processes to have failed while waiting for the
acknowledgements of the last estimate

©Pr. Olivier Gruber 87

Consensus Protocol
upon propose(v) // processus pi

r:=0 // current round
t:=0 // last round where v was updated
while not decided do

c := (r mod N) + 1 // pc is the coordinator
send (vote, r, v, t) to pc // N is the number of processes

if i = c then // only happens at the coordinator
wait until (receive (vote, r, v', t') from (Ν+1)/2 non-suspected processes)
maxt := largest t' received
v := some v' received with t' = maxt
send (propose, r, v) to all // v is the new proposed consensus

wait until (receive (propose, r, v') from pc or c is suspected)
if a (propose, r, v') message was received then

v := v' ; t := r // Update proposed consensus
send (ack) to pc // Acknowledge proposal

else send (nack) to pc // pi suspects the coordinator

if i = c then // only happens at the coordinator
wait until (receive ack or nack messages from (Ν+1)/2 non-suspected processes)

 if all are ack then R-broadcast(decide, v)
 r := r + 1 // try another round...

upon R-deliver (decide, v') // Deliver procedure of the reliable broadcast
 if not decided then

decide(v')
decided := true

phase 1

phase 3

phase 4

phase 2

©Pr. Olivier Gruber 88

Consensus Protocol

● Remarks

● If we want to consider crash-recovery, we need a modified protocol

● So we achieved consensus with

– Strong completeness

– Eventual weak accuracy

– We tolerate (n/2)-1 failures

– Number of rounds is finite, but not bounded

● Can we do better?

– Nope, our assumptions are the weakest that solves the consensus

– Chandra, Hadzilacos, Toueg (1996)

M. Aguilera, W. Chen, S. Toueg. Failure detection and consensus in the crash-recovery model,
Proc 12th Int. Symp. on Distributed Computing, 1998

©Pr. Olivier Gruber 89

Conclusion

● Replication

● We have seen two basic models (primary-based and active)

● In synchronous and failure-free systems

– It is rather easy

– With fail-stop processes, it is harder

● In asynchronous system

– With fail-stop processes, it is complex

● Byzantine failures are a research topic for all practical purposes

● Consensus

● Equivalent to View Synchronous Multicast

● Also equivalent to totally-ordered and reliable multicast

● So both primary-based and active replication need consensus

● Consensus is a core challenge of asynchronous distributed systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

