
©Pr. Olivier Gruber 1

Distributed Systems

Fundamentals – Part One

Professor Olivier Gruber

Université Joseph Fourier

Projet SARDES (INRIA et IMAG-LSR)

©Pr. Olivier Gruber 2

Message Basics

● Communication Architecture

● How do we name the destination of a message?

● How do we route the message to its destination?

Middleware

Middleware

processing

waiting

Client waiting

Server

service

Network

©Pr. Olivier Gruber 3

Message Basics

● Receive versus Deliver

● The middleware receives a message

● The middleware delivers a message to the application (process)

● Interface versus Semantics

● The interface is about what you can do

● The semantics is about what it means

receive
queue deliver

queue

network

application

middleware

©Pr. Olivier Gruber 4

Message Basics

● Socket Example

● An application programming interface (API)

– Asymmetric connection

● A server listens on a port
● A client connects to a server (IP address, port number)

– Symmetric data exchange

● A stream API for both sending and receiving data

bind listen accept read write close

connect write read close

Server

Client

connection

©Pr. Olivier Gruber 5

Message Basics

● Protocol properties

● UDP:

– Delivered when received, messages may be lost and received out of order

– Operating systems and network routers store and forward network packets

– Network packets are discarded on failures

● Transmission fails anywhere
– A router or the destination host is down for example
– Or a checksum error happens

● No one listen on the destination port number
● TCP:

– Same interface, but very different semantics

● FIFO: delivered in order
● Lossless: nothing is lost

– More complex and expensive implementation

● Based on ACK and retransmission of lost data

©Pr. Olivier Gruber 6

Discussing Naming

network

How do we name a destination?

How do we route a message?

©Pr. Olivier Gruber 7

Discussing Naming

● IP Naming

● IP addresses are names

– String of bits naming a host machine (192.168.2.100)

● IP addresses are not identities

– A machine may change IP addresses, it may have multiple IP address

– IP addresses may be reused (DCHP on a local network for example)

● IP Routing

● Addresses are special names providing physical access to an entity

● Access protocol using the address is the IP routing protocol

– On LANs:

● Physical layer directly provides this
– On WANs:

● It is a collaborative and distributed protocol
● Routers do exchange their routing tables to build up their routing knowledge

©Pr. Olivier Gruber 8

IP Network

Interconnecting Local Area Networks...
a distributed system for building distributed systems

router

router

router

router

Cross-network Routes

router

router

©Pr. Olivier Gruber 9

Discussing Names

● Human-friendly Names

● Addresses are good for machines but difficult for humans

● Layering name services... as we layer distributed systems

– Names over IP addresses (also names)

– DNS (Domain Name Service) over IP network

● Domain Naming Service

● Manage the mapping from names to addresses

● May be used for identity (unchanging name, changing IP)

How do we resolve a name?How do we resolve a name?

How do we scale to hundreds of millions of names?How do we scale to hundreds of millions of names?

How do we scale to millions of requests per day?How do we scale to millions of requests per day?

How do we scale to world-wide resolution?How do we scale to world-wide resolution?

How do we resist failures?How do we resist failures?

©Pr. Olivier Gruber 10

Internet Summary

● LANs support physical access

● Minimal access protocol, supported by hardware

● Distributed routing

● Routing across LANs

● Requires to exchange routing tables

● Domain Name System

● Built on IP addresses

● Needs IP routes to DNS servers

● Map hierarchical domain names to IP addresses

©Pr. Olivier Gruber 11

Introducing Identity

● Identity

● Refers to one and only one entity

● Each entity has only one identity

● Provides unambiguous addressing

● Easier aliasing through logical names maping to the identity

● Routing Challenge

● Internet names are location-dependent

– IP addresses or hierarchical names

– Even more true for URLs (include a web server address and a resource path)

– Helps routing (because names embed location information)

● Using identity, routing becomes a challenge

– Flat identifier space, no information about location

©Pr. Olivier Gruber 12

Routing with Identity

● A Simple Solution

● Using multicasting or broadcasting on a LAN

● Does not scale well on wide-area networks

● Peer-to-Peer Overlays

● Structured overlays

– We will look at Distributed Hash Tables

– Case study: Chord System

● Unstructured overlays

– We will look at random graphs

– Case study: CYCLON

©Pr. Olivier Gruber 13

Distributed Hash Tables

● Adopting Identity

● Entities are identified by m-bit keys

– The key space is usually 128 or 160 bits

● Entities may be anything

– Host, processes, files, etc.

● Distributed Nodes

● Each node is responsible for managing certain keys

– A node store the resources for the keys it manages

● Each node is identified with a key

– From the same m-bit key space as resources

● Example: DNS on DHT

● Instead of using a hierarchy of servers for storing DNS records

● Use a distributed set of nodes and a DHT

● Compute key from the name, the resource is the DNS record

©Pr. Olivier Gruber 14

Distributed Hash Table

● Dynamic Set of Nodes

● Nodes may join or leave the DHT

– No global knowledge, synchronization or management

– No single point of failure

● Fully scalable

– Uniform distribution of resources across nodes

● Case Study: Chord System

● I. Stoica et al (2001)

– Chord, A Scalable Peer-to-Peer Lookup Service for Internet Applications

– IEEE-ACM Trans on Networking

– http://pdos.csail.mit.edu/chord/papers/paper-ton.pdf

http://pdos.csail.mit.edu/chord/papers/paper-ton.pdf

©Pr. Olivier Gruber 15

Chord - Basics

● Distributing Resources

● A resource with a key K
i
 is managed by a node with a key

N
k
 such as

– N
k
 is the smallest node key such as K

i
 ≤ N

k

– Such a node is called the succ(K
i
)

● Circle Representation

● Organizing keys on a circle

– From 0 to 2m-1

– Clock-wise

● The succ Relationship

– For a key K
i

– It is the next available node

– Clock-wise from key K
i

N1

N32

N14

N8
N56

N38
K24

K30

K10

K54

K38

succ

node with key 56

K38 resource with key 38

N56

©Pr. Olivier Gruber 16

Chord – Simple Lookup

N1

N32

N21

N14

m = 6, 2m = 64

Only 10 nodes and 5 keys in
the hash table

Example: starts in node N8,
looking up key K54.

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

node with key 56

K38 resource with key 38

K38

N56

©Pr. Olivier Gruber 17

Chord – Finger Table Principles

● Basic Idea

● When looking up a key at a node

– Looks for the successor of that key

– It is the node managing that key

● If the node does not know the successor of key

– It may know of one node that is closer on the ring

– That node should know more about the successor of the key

● Finger Tables

● One index of nodes per node

– Of at most m entries (for m-bit key space)

● For a node N
i
, the finger entries are computed as follows:

finger[k] = succ(N
i
 + 2k—1) mod 2m

©Pr. Olivier Gruber 18

Chord – Introducing Finger Tables

N1

N32

N21

N14

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

K38

DHT: m = 6, 2m = 64

Finger table for a node N
i

finger[k] = succ(N
i
 + 2k—1) mod 2m

with 1 k m≤ ≤

Finger Table for N8

N8+1 N14
N8+2 N14
N8+4 N14
N8+8 N21
N8+16 N32
N8+32 N42

1
2
3
4
5
6

©Pr. Olivier Gruber 19

Chord – Lookup with Finger Tables

N1

N32

N21

N14

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

K38

DHT: m = 6, 2m = 64

Looking up key 54, from N8

Finger Table for N8

9 N14
10 N14
12 N14
16 N21
24 N32
40 N42

1
2
3
4
5
6key 54

©Pr. Olivier Gruber 20

Chord – Lookup with Finger Tables

N1

N32

N21

N14

N8
N56

N51

N48

N42

N38

K24
K30

K10

K54

K38

Finger Table for N42

43 N48
44 N48
46 N48
50 N51
58 N1
10 N14

1
2
3
4
5
6

key 54

Finger Table for N51

52 N56
53 N56
55 N56
59 N1
3 N8
19 N21

1
2
3
4
5
6

key 54

(1) does not know the successor

(2) searches for the node that
immediately precedes
the looked up key

(1) knows the successor

©Pr. Olivier Gruber 21

Chord – Joining or Leaving

● Minimal Invariants

● Each node's successor is correctly maintained

● For every key K
i
, succ(K

i
) manages that key

● For simplicity, all nodes also maintain their predecessors

● Joining the Ring

● For a node with a key N
k

– Find through any node in the ring the succ(N
k
)

● Insert itself before that node in the ring

● Builds finger table, asking for succ(N
k
+2i-1) with i ∈ [1,m]

– Update other finger tables

● Potentially using background messages
– Transfer keys last

● Avoids not finding keys as long as finger tables are not correct

©Pr. Olivier Gruber 22

Chord – Updating Finger Tables

Updating the ith finger entry for a Node N
p

– If N
p
precedes N

k
by at least 2i-1

– If the current ith finger, N
f
, succeeds N

k

N
x

N
p

N
f

N
k

ith

2i-1

update_others(N
k
)

 for (i=1 to m)
 N

p
 = predecessor(2i-1)

 update_table(N
p
,N

k
,i)

update_table(N
p
, N

k
, i)

 N
f
= N

p
.finger[i]

 if N
k
∈ [N

p
,N

f
[

 N
p
.finger[i] = N

k

 N
p
= predecessor(N

p
)

 update_table(N
p
,N

k
,i)

finger[k] = succ(N
i
 + 2k—1) mod 2m

©Pr. Olivier Gruber 23

Chord Summary

● Distringuishing features

● Simplicity and provable correctness and performance

● Lookup Performance

● With high probability, we have O(log N) messages to lookup a key

– The average is therefore 0.5 log(N) messages (normally distributed keys)

● Finger Tables

– In a m-bit space of keys, traditional size is m entries

– Finger table size could be reduced to O(log N) instead of m

● Dynamic Behavior

● Joining and leaving the overlay ring

– First challenge is maintaining the minimum invariants

– Second challenge is maintaining finger tables

● Need no more than O(log2 N) with high probability
● Harder in the presence of faults

©Pr. Olivier Gruber 24

Unstructured Overlays

● Middleware Platform

● For highly dynamic environments

● Networks with potentially major failures

● Approach

● Based on random graph theory

– Each node maintains a list of neighbors

– Neighbors are randomly chosen

– Neighbor lists are exchanged

● Epidemic broadcast

– To find something, broadcast on the overlay

– With high-probability, it will be found quickly (just a few network hops)

3
0

7

2 9

5

1 6
4

2 knows { }3 1 6 9

©Pr. Olivier Gruber 25

Unstructured Overlays

● Case Study – Basic Shuffling

● Overlay network

– Edge cache of C entries

– Shuffle Length (SL) is smaller than C

● Periodic shuffle algorithm...

3
0

7

2 9

5

1 6
4

©Pr. Olivier Gruber 26

Shuffle Algorithm

● Randomly select SL edges from N
p
cache

● Select a random peer N
q
from this selection

● Replace N
q
 with N

p
in this set

● Exchange neighbors

● N
p
sends this set to N

q

● N
q
updates its cache with received edges

– Using empty slots first

– Re-using non-empty slots second

– N
q
sends back replaced edges to N

p

● N
p
updates its cache

– Discard entries to N
p
 and those already known

– Saves new edges using empty slots first

– Then reuse slots for edges sent to N
q

3
0

7

2 9

5

1 6
4

2 ⇾ 9 : {2,3,6}
2 ⇽ 9 : {0,5,7}

3
0

7

5

1 6 4

2 9

©Pr. Olivier Gruber 27

Unstructured Overlays

● What about Connectivity?

● Without failures, connectivity is always preserved

– No edges are lost, just exchanged

● Intuitively, this preserves connectivity
– Two sets of nodes cannot become disconnected

● Assume that we are down to one link between two sets of nodes (S
1
 and S

2
)

● Shuffling within S
i
 cannot lose this one link, just move it around

● Shuffling between S
1
and S

2
, just merely reverses the edge

● With failures, connectivity may be lost

– But this is true with all approaches in the presence of failures

– For example, a router failure may disconnect two networks

©Pr. Olivier Gruber 28

Unstructured Overlays

● Joining the Overlay

● A node needs just one node in the overlay

– Joining is just building a list of neighbors

– The new node needs to know some neighbor nodes

– Some other nodes in the overlay need to know the new node as neighbor

● Simple find and exchange approach

– Using the known node

– Achieve random walks to N distinct nodes

– For each of them, exchange one of their neighbors with the new node

– Set the new node neighbor list to that set of randomly chosen nodes

● Leaving the Overlay

● Nothing to do, just leave

– Provides high failure resistance

– When failing, a failed node cannot be ask to inform the overlay!

● Non-responding neighbors are just forgotten by the overlay

©Pr. Olivier Gruber 29

Unstructured Overlays

● Broadcast Routing

● Routing is done through broadcasting on the overlay

● Is it efficient?

– One may be afraid of very long paths

● Kevin Bacon Truth

● Kevin Bacon: a somewhat known movie actor

● Anyone in the world would have a link to him in at most six hops!

● Unstructured Overlays do Better

● Stable overlay

– Average distance around 3 and 4 hops

● Convergence in the presence of updates

– Converges on WANs between 7 to 14 minutes

– For overlays of 100,000 nodes

©Pr. Olivier Gruber 30

CYCLON

● Enhanced Shuffling

● Introducing the age of edges in the overlay network

● Enhanced Algorithm (done at N
p
)

– Increase ages by one of all neighbors when shuffling

– Create a set of SL edges from N
p
cache

● Select the oldest edge (refers to N
q
) from N

p
cache

● Random select SL-1 neighbors from N
p
cache

● Replace N
q
 edge with N

p
edge (with age zero) in this edge set

● Exchange neighbors

– Same as before

– N
q
does not adjust ages within its cache

©Pr. Olivier Gruber 31

CYCLON – Connectivity Study

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

Experiment: 100,000 nodes, cache sizes=20, 50, 100

©Pr. Olivier Gruber 32

CYCLON – Connectivity Tolerance

● Tolerance to Node Removals

● 100,000 nodes

● Search minimum number of removals to cause partitioning

● Discussion

● Above cache size 100

– Overlay is totally robust

● Above cache size 20

– Above 80% of removals

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

©Pr. Olivier Gruber 33

CYCLON – Dynamic Behavior

● Dangling Links

● Because node may fail or leave

– No special message when a node leaves

● Optimized dangling link removal (age of edges)

● Experiment

● 100,000 nodes

● 50,000 nodes removed at once

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

©Pr. Olivier Gruber 34

CYCLON – Path Length

● Path Length

● Average shortest path

– The average number of edges between any two nodes

– Represent the overall efficiency of the overlay

● Number of network hops to reach a node from another node
● Directly related to the cost of disseminating information or searching for information
● Gives an idea for setting communication timeouts

● Experiment

– 100,000 nodes, shuffle period T

● Typical shuffling period should be larger than twice the average network latency
● Over wide area networks, period of 10s is good

– During a period, all nodes have shuffled exactly once

● Questions:

– What will be the average shortest path?

– How long will it take to converge to that value?

©Pr. Olivier Gruber 35

CYCLON – Path Length Convergence

● Small Shortest Average Path

● From an initial chain topology (linked list)

● Converges to an average around 3 and 4

● Equivalent to random graphs (the reference)

● Fast Convergence

● Within 40 to 80 periods

● Between 7 and 14 mn (WAN)

periods

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

©Pr. Olivier Gruber 36

CYCLON – Convergence and Shuffle

● Initial Topologies

● Chain: linked nodes

● Star: one central hub

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

©Pr. Olivier Gruber 37

CYCLON – Path Length

● Path Length and Cache Sizes

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

©Pr. Olivier Gruber 38

CYCLON – Connectivity

● Degrees

● Out-Degree

– Number of outgoing edges

● In-Degree

– Number of incoming edges

● Importance

● Failure robustness

– Appearance of massively connected hubs versus somewhat isolated nodes

● Indication of epidemic spread

– Variations in degree induce irregular epidemic spread

● Load balancing

– Both regarding CPU and bandwith

©Pr. Olivier Gruber 39

CYCLON – Connectivity

● Cyclon Degrees

● Out: fixed, this is the cache size

● In: variable

● Discussion

● Same number as random

● Smaller deviation

● Better design

Source: Voulgaris et al
CYCLON, Inexpensive Membership Management for unstructured P2P overlays, 2005

©Pr. Olivier Gruber 40

CYCLON - Bandwith

● Bandwith Considerations

● Bandwith needed for gossip messages

● Related to both the shuffle period and the size of the gossip information

● Fine Tuning

● Gossip message

– Per entry (10bytes): One IP address, a port number, an age

– Message size = 10 * ShuffleLength

● Shuffle Period

– During each period, each node initiates a shuffle exactly once

● Choice

– ShuffleLength = 8

– ShufflePeriod = 10s

● Bandwith per node

– Extremely low: 32 bytes per second (256bps)

– Practival even over traditional modems (56kbps)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

