
©Pr. Olivier Gruber 1

Distributed Systems

Olivier Gruber

Full-time Professor
Université Joseph Fourier

Senior Researcher (INRIA et IMAG-LSR)

©Pr. Olivier Gruber 2

Acknowledgments

● Prof. Sacha Krakowiak

● Used his lectures as a canvas

● Reference Book

● Research Articles

● Cited on various slides

Distributed Systems
Principles and Paradigms

Second Edition

Andrew Tanenbaum and Maarten Van Steen

©Pr. Olivier Gruber 3

This Year Outline

● Course Goals

● Understand architecture and design trade-offs

● Master core techniques and essential distributed algorithms

● Discuss existing systems and frameworks

● Today

● Background on distributed systems

©Pr. Olivier Gruber 4

Distributed Systems

● What are they?

● Collection of cooperative entities

● Humorous Definition from L. Lamport

● Highlights the cooperative nature of distributed systems

● States that failures occur and have consequences

A distributed system is one that stops you from getting any work done
when a machine you’ve never heard of crashes.

Leslie Lamport

©Pr. Olivier Gruber 5

Failure Examples

● September 11th, 2001

● Most businesses in the towers had only regular data backups

● No disaster recovery from replicated data

● Space Shuttle

● Four computers, many missions ended with only one left working...

● Ariane 501

● June 4th 1996, first launch of Ariane 5 fails: Ariane 5 explodes

http://www.cnes.fr/espace_pro/communiques/cp96/rapport_501/rapport_501_2.html

©Pr. Olivier Gruber 6

Distributed Systems

● Examples

● Networked workstations

– Only if there is software cooperation

– Either distributing processing or sharing data

● The World-Wide Web

– Where world-wide scalability is the challenge

– Client-server or peer-to-peer

● Cellular wireless networks (telephony)

– For voice and data, mobile devices

– Health monitoring of patients at home or travelling

©Pr. Olivier Gruber 7

Distributed Systems

● More Examples

● Embedded networks

– In planes or cars

● BMW Serie 7
● 4 networks, 70 computers
● 70% of car failures are computer-related (hardware and software)

– Sensor networks

● On-chip networks

– Distributed systems on chip

– Soon, more than 64 nodes interconnected on one silicium chip

– Moving away from consistent shared memory

– Operating system research goes toward distributed kernels (Barrel-fish)

©Pr. Olivier Gruber 8

Distributed Programming

● Message-Oriented Paradigm

● A message is a byte stream of known length

● Asymmetrical relationship

– Sender (client): build and send a message

– Receiver (server): wait and receive a message

● Relies on

– Naming scheme: names the destination of messages

– Routing scheme: routes messages to their destination

ReceiverSender

©Pr. Olivier Gruber 9

Distributed Programming

● Client-Server Basics

● A server provides a centralized decision point

● But also a single point of failure

● When the server fails, nothing works

Server

Client

request response

service

waiting

client

server

client

client

©Pr. Olivier Gruber

Distributed Programming

● Peer-to-Peer Architecture

● No more clients or servers, only identical peers

– No central decision point

– No single point of failure

● No global knowledge or synchronization

– Each peer is a Finite State Machine

peer peer

peer

peer

peer

Peer

Peer

Peer

lost...

dies...

©Pr. Olivier Gruber 11

Distributed Programming

● Humans or machines?

● It does not matter, we are talking about cooperative entities

● Let's discuss distributed systems through human cooperation

● Aliens invaded the Earth

● One human per cell

– No one can leave their cell

– There are no ways to communicate

– You have a tablet, to be ordered by Aliens

● After a while, you found a loophole

– You hacked your tablet to connect to maintenance robots that are passing by

– You discover that maintenance robots know about prisoner cells

– Your discover that maintenance robots know how to deliver a message to a cell

ReceiverSender

©Pr. Olivier Gruber 12

Distributed Programming

● How do you organize the community?

● How do you spread the knowledge?

● How do you build a naming service?

● If someone does not respond, what does it mean?

● How can you have conversation?

● Between two people first, then more than two

● How do you tell what time is it?

● You have a watch, but you know it drifts and it has been a while...

● How do you protect the naming system?

● Aliens wipe clean tablets at random

©Pr. Olivier Gruber 13

Distributed Programming

● How do you elect a watchman?

● Someone that monitors the health of a group of persons

● How do watchmen watch other persons?

● Who watches the watchman?

● How do you reach a consensus?

● Example: who will try to escape first...

©Pr. Olivier Gruber 14

Discussing some Challenges

● Scalability

● Scale in number of nodes or users

– From a few nodes to thousands of nodes...

– The Web... millions of nodes... such as Gnutella with 50 million peers

● Scale geographically

– Physical network capabilities are a concern

● The speed of light can't be changed...
– Limited bandwith and high latency

● Latency is more of a problem than bandwidth for distributed systems
– Unreliable:

● The larger the system, the more probable are faults
● Loss of messages, partitioning, failed nodes...

©Pr. Olivier Gruber 15

Discussing some Challenges

● Failures

● Failures occur and must be handled

– No longer possible to ignore faults (the simple life of crash-restart processes)

– Distributed systems are about cooperation and must survive partial failures

● Fault-tolerance is expensive

– More complex algorithms, more messages exchanged, use of stable storage, etc.

● What failure model?

– The simpler world of fail-stop entities

● Detect, repair, reinsert...
– The real world of byzantine failures

● No all entities are well-behaved (compromised systems for e.g.)
● Bugs often introduce byzantine failures

©Pr. Olivier Gruber 16

Conclusion

● Course Content

● Fundamentals on both client-server and peer-to-peer architectures

● Course Goals

● Prepare you to use and design distributed systems

● Why? Because they are the very fabric of our computer systems

● Course Philosophy

● Learn individual techniques/algorithms

● Apply them to solve concrete problems in practical sessions

● Master them by combining and evolving them

©Pr. Olivier Gruber 17

Conclusion

● Advices

● This course is for all students

– Network knowledgeable: Do not assume you already know, you will be proved wrong

– Not network knowledgeable: Do not assume that this lecture is not for you

● There is a progression in given lectures

– Get lost in the beginning and it will be hard on you.

● Learn as you go, benefit fully from practical sessions

– The lectures will not be repeated in practical sessions

– Practical sessions are representative of the final exam

– The exam will be about evolving and combining core techniques

● Attend or not attend...

– Stay in bed at your own risk, slides are not self-contained

● Take notes, you will need them when you prepare for the exam
– Do not expect to master this course in two days the week before the exam

● Especially that software projects are demanding this final year
● They finish right when you prepare for your exams

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

