
Projet PiCoq

Deliverable D5
December 2014

Much progress has been made in the formalization in Coq the equivalence
theory of HOcore, mostly by Petar Maksimović, a postdoctoral student recruited
in the Celtique team in December 2013, and Alan Schmitt. The current version
of the development is available at http://www.irisa.fr/celtique/aschmitt/
research/hocore/.

A report on this year’s work is attached.

http://www.irisa.fr/celtique/aschmitt/research/hocore/
http://www.irisa.fr/celtique/aschmitt/research/hocore/

HOCore in Coq

Mart́ın Escarrá, Maksimović Petar, Alan Schmitt

To cite this version:

Mart́ın Escarrá, Maksimović Petar, Alan Schmitt. HOCore in Coq. David Baelde; Jade Alglave.
Vingt-sixièmes Journées Francophones des Langages Applicatifs (JFLA 2015), Jan 2015, Le
Val d’Ajol, France. Actes des Vingt-sixièmes Journées Francophones des Langages Applicatifs
(JFLA 2015), <http://jfla.inria.fr/2015>. <hal-01099130>

HAL Id: hal-01099130

https://hal.inria.fr/hal-01099130

Submitted on 31 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01099130

HOCore in Coq

Martín Escarrá2 & Petar Maksimović1,3 & Alan Schmitt1

1: Inria
2: Universidad Nacional de Rosario

3: Mathematical Institute of the Serbian Academy of Sciences and Arts

Abstract

We consider a recent publication on higher-order process calculi [13] and describe how its main
results have been formalized in the Coq proof assistant. We highlight several important technical
issues that we have uncovered in the original publication. We believe these issues are not unique
to the paper under consideration and require particular care to be avoided. Our ultimate goal
is to show that it is possible to build a solid, high-confidence setting for formal reasoning on
higher-order process calculi.

1. Introduction
Computer-aided verification has reached a point where it can be applied to state-of-the-art research
domains, including compilers, programming languages, and mathematical theorems. Our goal is to
contribute to this growing effort by formalizing a recent paper on process calculi.

Our main motivation is the increasing complexity of proofs in this domain. Simply put, researchers
are forced to pay very close attention to a great number of details, some of which may remain implicit
or go unnoticed, leaving room for imprecision or errors in the proofs. To overcome such issues, we
argue a more formal treatment is needed. With our formalization, we strive for a deeper understanding
of the proving process and a precise exposition of the overlooked details. Moreover, we show that it is
possible to build a solid, high-confidence setting for formal reasoning on higher-order process calculi.

The paper that we are examining is [13], by Lanese et al. It introduces HOCore—a minimal
higher-order process calculus, which features input-prefixed processes, output processes, and parallel
composition. Its syntax is as follows:

P ::= a(x).P | a⟨P ⟩ | P ∥ P | x | 0.

HOCore is minimal, in the sense that it features only the operators strictly necessary for higher-
order communication. For one, there are no continuations following output messages. More
importantly, there is no restriction operator, rendering all channels global and the dynamic creation
of new channels impossible. The semantics of HOCore is presented in [13] in the form of a labeled
transition system and it is shown that HOCore is a Turing-complete calculus. On the other hand,
its observational equivalence is proven to be decidable. In fact, the main forms of strong bisimilarity
considered in the literature (contextual equivalence, barbed congruence, higher-order bisimilarity,
context bisimilarity, and normal bisimilarity [5, 12, 21, 25]) all coincide in HOCore. Moreover,
their synchronous and asynchronous versions coincide as well. It is thus possible to decide that
two processes are equivalent, yet it is impossible, in the general case, to decide whether or not they
terminate. In addition, the authors give in [13] a sound and complete axiomatization of observational
equivalence, and show that its decidability breaks in the presence of four static restrictions. Our

1

Escarrá, Maksimović, Schmitt

formalization focuses on the subset of [13] addressing the decidability of observational equivalence
and the coincidence of synchronous bisimilarities, but also includes an initial effort towards the
formalization of the soundness and completeness of the axiomatization of HOCore.

Our theorem prover of choice for this development is Coq [15]. Coq allows the user to describe
concepts such as mathematical theories or programming languages, state properties related to these
concepts, and verify that such properties hold. Proofs produced using Coq—and interactive theorem
provers in general—have a higher degree of reliability when compared to pen-and-paper proofs. They
rely on a trusted core—the code on which the theorem prover is based—upon which all subsequent
inferences are made. Coq supports inductive and co-inductive reasoning, offers a variety of tactics
to build proofs, provides a comprehensive library, and permits extraction of a certified program from
the constructive proof of its formal specification. Its typical applications include the formalization
of programming languages semantics (e.g., the CompCert compiler certification project [14]), the
formalization of mathematics (e.g., the formal proof of the four color theorem [8]), and teaching [18].

Contributions. We present a formalization of HOCore, both the calculus itself and its behavioral
theory. We first introduce the syntactic and semantic concepts of HOCore: processes, freshness of
variables and channels, structural congruence, and the labeled transition system (Section 2). We focus
in particular on how to model bound variables using the canonical approach of Pollack et al. [19]. We
then turn to the formalization of the various strong bisimilarities used in [13]: higher-order, context,
normal, open normal, and IO-bisimilarity (Section 3).

The main contributions of the paper are the formal proofs that these five bisimilarities coincide
and that they are decidable. We detail the errors, inaccuracies, and implicit assumptions made in the
pen-and-paper proofs, and show how to correct them (Section 4). These issues are not unique to the
paper under consideration, and require particular care to be avoided.

Finally, we strive to execute the formalization so as to preserve a high degree of both visual
and technical correspondence between the formulations of theorems and proofs on paper and their
counterparts in Coq. We also gained valuable insights into the interplay between the flexibility of
process calculi and the rigidity of a formal verification environment. We summarize what we have
learned in the process in Section 6.

The formalization of the calculus, in particular our choice of binding technology, and the
decidability of IO bisimilarity have been presented in [3]. They are recalled here so that the paper be
self-contained. This paper extends that work to cover all the results of [13] regarding bisimulations.

The complete formalization, available online,1 consists of approximately 4 thousands of lines of
code (kloc) of specification and 13 kloc of proofs. It was developed intermittently over a period of
three years by the three authors and Simon Boulier. In the rest of the paper, we use the symbols

as links to relevant definitions or lemmas in the online Coq code. Our Coq development heavily relies
on the TLC library, developed by Arthur Chargueraud.2 TLC is a general purpose Coq library that
offers many tactics for proof automation.

2. Formalizing HOCore

2.1. Syntax

HOCore is a minimal higher-order process calculus, based on the core of well-known calculi such
as CHOCS [24], Plain CHOCS [26], and Higher-Order π-calculus [21, 22, 23]. The main syntactic
categories of HOCore are channels (a, b, c), variables (x, y, z), and processes (P,Q,R). Channels and

1http://www.irisa.fr/celtique/aschmitt/research/hocore/
2http://www.chargueraud.org/softs/tlc/

2

http://www.irisa.fr/celtique/aschmitt/research/hocore/
http://www.chargueraud.org/softs/tlc/

HOCore in Coq

variables are atomic, whereas processes are defined inductively.

P, Q ::= a⟨P ⟩ output process
| a(x).P input prefixed process
| x process variable
| P ∥ Q parallel composition
| 0 empty process

An input-prefixed process a(x).P awaits to receive a process, for example Q, on some channel
a; it then replaces every occurrence of the variable x in the process P with Q (similarly to a λ-
abstraction). An output process3 a⟨Q⟩ emits the process Q on channel a. Parallel composition
enables the interaction between the senders and the receivers.

The only binding in HOCore occurs for variables in input processes. We denote the free variables
of a process P by fv(P), and the bound ones by bv(P). In [13], processes are identified up to the
renaming of bound variables. Processes that do not contain free variables are closed whereas those
that do are open. If a variable x does not occur either free or bound within a process P , we say that
it is fresh with respect to that process, and denote this in the Coq development by x♯P . We denote
lists with the symbol ˜ : a list of variables is, for instance, denoted by x̃.

Structural congruence. The structural congruence relation, written ≡, is the smallest congruence
relation on processes for which parallel composition is associative, commutative, and has 0 as the
neutral element. In our formalization, we distinguish a single step of structural congruence from its
reflexive-transitive closure, denoted by ≡∗.

P ∥ Q ≡ Q ∥ P P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R P ∥ 0 ≡ P

Canonical representation of terms. The first step of our formalization addresses the treatment
of bound variables and α-conversion. We have opted for the locally named approach, as described
by Pollack et al. in [19]. In this approach, the set of variables is explicitly divided into two distinct
subsets: free (global) variables, denoted by X,Y, Z, and bound (local) variables, denoted by x, y, z.
The main idea is to dispense with α-equivalence altogether by calculating the value of a local variable
canonically at the time of its binding. For this calculation, we rely on a height function f , taking as
arguments the global variable X and the term P within which it is to be bound, and computing the
value of the corresponding local variable x. We then replace every occurrence of X with x in P .

As an illustration, let us examine the process a(x).(x ∥ x). This process is α-equivalent to the
process a(y).(y ∥ y), for any local variable y, and we would like to be able to choose a canonical
representative for this entire family of processes. To that end, we start from the process X ∥ X, where
the variable X is free, calculate x = fX(X ∥ X), and take this x to be our canonical representative.
In the following, we write a[X]f .P for a(fX(P)).[fX(P)/X]P .

The height function needs to meet several criteria so that it does not, for one, return a local
variable already used in a binding position around the global variable to be replaced, thus resulting
in a capture. We use the three criteria required by the authors in [19] that guarantee that the height
function is well-defined. (

) (

) (

) Although it is not strictly necessary to choose a particular height

function f that satisfies these criteria, it is important to demonstrate that such a function exists,
which we do, using the following function and representing local variables as integers. (

) (

)

fX(X) = 1 fX(y) = 0 fX(0) = 0

fX(Y) = 0 if X ̸= Y fX(a⟨P ⟩) = fX(P) fX(P ∥ Q) = max(fX(P), fX(Q))

3We will also refer to an output process as an output message or, more simply, a message.

3

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC03CanonicalLemmas.html#XHE
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC03CanonicalLemmas.html#XHF
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC03CanonicalLemmas.html#XHP
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC03CanonicalLemmas.html#GoodF
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC03CanonicalLemmas.html#f_is_good

Escarrá, Maksimović, Schmitt

fX(a(y).P) =

{
fX(P) if fX(P) = 0 or fX(P) > y

y + 1 otherwise

Adjusting the syntax. The separation of variables into local and global ones is reflected in the
syntax of processes

P, Q ::= a(x).P | a⟨P ⟩ | P ∥ Q | x | X | 0

which is encoded in Coq inductively as follows:

Inductive process : Set :=
| Send : chan -> process -> process
| Receive : chan -> lvar -> process -> process
| Lvar : lvar -> process
| Gvar : var -> process
| Par : process -> process -> process
| Nil : process.

In this definition, chan, lvar, and var are types representing channels, local variables, and global
variables, respectively.4 We can then define the substitution operation without any complications
arising from the renaming of variables. We write [Q/X]P for the substitution of the variable X

with the process Q in P , and [Q̃/X̃]P for the simultaneous substitution of distinct variables X̃ with
processes Q̃ in P . In this paper, we use the same notation for both operations; the Coq version uses
two distinct notations. (

) (

)

[P/X]X = P [P/x]x = P

[P/X]Y = Y if X ̸= Y [P/x]y = y if x ̸= y

[P/X]x = x [P/x]X = X

[P/X]0 = 0 [P/x]0 = 0

[P/X](Q ∥ R) = [P/X]Q ∥ [P/X]R [P/x](Q ∥ R) = [P/x]Q ∥ [P/x]R

[P/X]a⟨Q⟩ = a⟨[P/X]Q⟩ [P/x]a⟨Q⟩ = a⟨[P/x]Q⟩
[P/X]a(y).Q = a(y).[P/X]Q [P/x]a(y).Q = a(y).[P/x]Q if x ̸= y

[P/x]a(x).Q = a(x).Q

Well-formed processes. Given a height function f , we now define well-formed processes as
processes in which all local variables are bound5 and are computed using f . We refer to them as
wf-processes. We thus define the predicate wf that inductively characterize well-formed processes. (

)

Since all of the subsequent definitions, such as those of the labeled transition system, congruence,
and bisimulations, take into consideration wf-processes only, we define a dependent type corresponding
to wf-processes, by pairing processes with the proof that they are well-formed.

Record wfprocess : Set := mkWfP {proc :> process; wf_cond : wf proc}.

A wfprocess is a record with one constructor, mkWfP. This record contains two fields: a process,
named proc, and a proof that proc is well-formed, named wf_cond. This type is dependent because

4To be precise, chan and lvar are aliases for Coq’s type for natural numbers (nat), while var is the type for global
variables provided by the TLC library.

5Here we have a slight overloading of terminology when it comes to free and bound variables—while local variables
are intended to model the bound variables of the object language, they can still appear free with respect to our adjusted
syntax. For example, x is free in the process Lvar x, and we do not consider this process to be well-formed.

4

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC01Defs.html#subst
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC01Defs.html#lsubst
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC03CanonicalLemmas.html#wf

HOCore in Coq

the type of the second field (the type of a proof that proc is well-formed, i.e., wf proc) depends on
the value of the first field. The notation proc :> process is a coercion: it automatically transforms
a wfprocess into a process through the proc field when needed.

This approach allows us to directly reason about wf-processes without having to carry additional
hypotheses in lemmas or definitions. Each time a wf-process is constructed, however, we are required
to provide a proof of its well-formedness. To this end, we introduce well-formed counterparts for all
of the process constructors. For instance, to express parallel composition of wf-processes, we use the
following definition:

Definition wfp_Par (p q : wfprocess) :=
mkWfP (Par p q) (WfPar p q (wf_cond p) (wf_cond q)).

where the constructor WfPar is used to build the proof of well-formedness of parallel processes:

| WfPar : forall (p q : process), wf p -> wf q -> wf (Par p q).

Our initial development did not use dependent types, but instead relied on additional well-
formedness hypotheses for most lemmas. We found out that, in practice, it is much more convenient
to bundle processes and well-formedness together. We can, for instance, use Coq’s built-in notion of
reflexive relations without having to worry about relating non well-formed processes. Also, we can
define transitions and congruence directly on well-formed processes, thus streamlining the proofs by
removing a significant number of lines of code otherwise required to show that processes obtained and
constructed during the proofs are indeed well-formed.

2.2. Semantics

The original semantics of HOCore is expressed via a labeled transition system (LTS) applied to a
calculus with α-conversion. It features the following transition types: internal transitions P τ−−→ P ′,
input transitions P a(x)−−−→ P ′, where P receives on the channel a a process that is to replace a local
variable x in the continuation P ′, and output transitions P a⟨P ′′⟩−−−−−→ P ′, where P emits the process P ′′

on channel a and evolves to P ′. This LTS is not satisfactory because the input transition mentions
the name of its bound variable. For instance, the following transition needs to be prevented to avoid
name capture: x ∥ a(x).x a(x)−−−→ x ∥ x. To this end, side conditions are introduced and the entire
semantics is defined “up-to α-conversion” to make sure terms do not get stuck because of the choice
of a bound name. To obtain a simpler formalization, we restate it using abstractions.

Abstractions and agents. An agent A is either a process or an abstraction F . (

) An abstraction

can be viewed as a λ-abstraction inside a context. (

)

A ::= P | F F ::= (x).P | F ∥ P | P ∥ F

We call these abstractions localized, because the binder (x) does not move (the usual approach to
abstractions involves “lifting” the binder so that the abstraction always remains of the form (x).P).
Our approach, similar to the one in [27], allows us to avoid the recalculation of bound variables.

The application of an abstraction to a process, denoted by F •Q, follows the inductive definition
of abstractions. (

)

((x).P) •Q = [Q/x]P (F ∥ P) •Q = (F •Q) ∥ P (P ∥ F) •Q = P ∥ (F •Q)

5

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC04DefLTS.html#agent
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC04DefLTS.html#abstraction
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC04DefLTS.html#wfp_inst_Abs

Escarrá, Maksimović, Schmitt

Removal transitions. To simplify the definition of bisimulations that allow an occurrence of a free
variable to be deleted from related processes, we also add transitions X X−−→ 0, where a global variable
dissolves into an empty process.

The Labeled Transition System. The LTS consists of the following seven rules.

Inp a(x).P a−−→ (x).P Out a⟨P ⟩ a⟨P ⟩−−−−→ 0 Rem X X−−→ 0

Act1 If P α−−→ A, then P ∥ Q α−−→ A ∥ Q. Act2 If Q α−−→ A, then P ∥ Q α−−→ P ∥ A.

Tau1 If P a⟨P ′′⟩−−−−−→ P ′ and Q a−−→ F , then P ∥ Q τ−−→ P ′ ∥ (F • P ′′).

Tau2 If P a−−→ F and Q a⟨P ′′⟩−−−−−→ Q′, then P ∥ Q τ−−→ (F • P ′′) ∥ Q′.

In these rules, α denotes an arbitrary transition label. In Coq, we represent transitions inductively,
providing a constructor for each of the rules. (

) To illustrate, we present the constructors that

correspond to the rules Out and Rem.

| TrOut : forall a p, (transition (Send a p) (LabOut a p) (AP Nil))
| TrRem : forall X, (transition (Gvar X) (LabRem X) (AP Nil))

For better legibility of the code, we introduce a special notation for transitions.

Notation "{ p -- l ->> ap }" := (transition p l ap) (at level 60).

3. Formalizing Bisimulations
We present several forms of strong bisimilarity commonly used in higher-order process calculi and
describe their formalization in Coq. We first define a number of basic bisimulation clauses, as in [13].

Definition 1. A relation R on HOCore processes is:

• a variable relation, if when P R Q and P X−−→ P ′, there exists a process Q′, such that Q X−−→ Q′

and P ′ R Q′. (

)

• an input relation, if when P R Q and P a−−→ F , there exists an abstraction F ′, such that
Q a−−→ F ′, and for all global variables X fresh in P and Q, it holds that (F •X) R (F ′ •X). (

)

• an input normal relation, if when P R Q and P a−−→ F , there exists an abstraction F ′, such that
Q a−−→ F ′, and for all channels m fresh in P and Q it holds that (F •m⟨0⟩) R (F ′ •m⟨0⟩). (

)

• a τ -relation, if when P R Q and P τ−−→ P ′, then there exists a process Q′, such that Q τ−−→ Q′

and P ′ R Q′. (

)

• an output relation, if when P R Q and P a⟨P ′′⟩−−−−−→ P ′, then there exist processes Q′ and Q′′,
such that Q a⟨Q′′⟩−−−−−→ Q′, P ′ R Q′ and P ′′ R Q′′. (

)

• an output normal relation, if when P R Q and P a⟨P ′′⟩−−−−−→ P ′, then there exist processes Q′ and
Q′′, such that Q a⟨Q′′⟩−−−−−→ Q′, and for all channels m fresh in P and Q and all global variables
X fresh in P ′′ and Q′′, it holds that (m[X]f .P

′′ ∥ P ′) R (m[X]f .Q
′′ ∥ Q′). (

)

6

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC04DefLTS.html#transition
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#var_relation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#in_relation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#in_normal_relation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#tau_relation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#out_relation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#out_normal_relation

HOCore in Coq

• an output context relation, if when P R Q and P a⟨P ′′⟩−−−−−→ P ′, then there exist processes Q′

and Q′′, such that Q a⟨Q′′⟩−−−−−→ Q′, and for all global variables X and processes S, such that
fv(S) ⊆ {X}, it holds that ([P ′′/X]S ∥ P ′) R ([Q′′/X]S ∥ Q′). (

)

• closed, if when P R Q and P a−−→ F , then there exist a process Q′ and an abstraction F ′, such
that Q a−−→ F ′, and for all closed processes R, it holds that (F •R) R (F ′ •R). (

)

Definition var_relation (R : RelWfP) : Prop :=
forall (p q : wfprocess), (R p q) ->

forall (X : var) (p' : wfprocess), {p -- LabRem X ->> (AP p')} ->
exists (q' : wfprocess), {q -- LabRem X ->> (AP q')} /\ (R p' q').

There are two main differences between these definitions and the ones presented in [13]. The first
one, as mentioned before, is the use of abstractions in place of variables in input transitions. The
second difference is found in the definition of a variable relation; we use the transition Rem, while
the one in [13] uses structural congruence:

• A symmetric relation R on HOCore processes is a variable bisimulation if when P R Q and
P ≡ x ∥ P ′, then there exists Q′ such that Q ≡ x ∥ Q′ and P ′ R Q′.

This particular change was motivated by the fact that we have chosen to define bisimulations
semantically, in terms of processes that are capable of executing transitions. In that context,
preserving the definition of a variable relation from [13] and involving structural congruence would be
inconsistent. Moreover, working under the hypothesis that two processes are structurally congruent
is very inconvenient, as their structure may be completely different.

Using these clauses, we define the five forms of strong bisimulation: higher-order (∼HO), context
(∼CON), normal (∼NOR), IO (∼o

IO), and open normal (∼o
NOR) bisimulations. Due to space restrictions, we

present here only the ones that differ from those in [13].

Definition 2. A relation R on HOCore processes is:

• an IO-bisimulation (∼o
IO) if it is symmetric, an input relation, an output relation, and a variable

relation; (

)

• an open normal bisimulation (∼o
NOR) if it is symmetric, a τ -relation, an input relation, an output

normal relation, and a variable relation. (

)

Definition IO_bisimulation (R : RelWfP) : Prop :=
(Symmetric R) /\ (in_relation R) /\ (out_relation R) /\ (var_relation R).

For each of these bisimulations, we also consider a corresponding bisimilarity, i.e., the union of
all corresponding bisimulations, and each of these bisimilarities is proven to be a bisimulation itself.
Bisimilarity can naturally be viewed as a co-inductive notion, but its co-inductive aspects can also be
expressed in a set-theoretic way, as follows:

Definition IObis (p q : wfprocess) : Prop :=
exists R, (IO_bisimulation R) /\ (R p q).

To compare the set-theoretic and the native Coq co-inductive versions of bisimilarity, we have
also defined the latter (

) and proven it equivalent to the set-theoretic one by using a variation of

7

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#out_context_relation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#closed_relation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#IO_bisimulation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#OpenNormal_bisimulation
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC21Coinductive.html#IObisC

Escarrá, Maksimović, Schmitt

Park’s principle [7]. We can use these two definitions interchangeably, depending on which one can
is easier to use in a given proof. For instance, the co-inductive definition is more convenient when
proving statements in which the candidate relations are very simple and follow the formulation of
the statement, as there is thus no need to supply the relation during the proof process. In the cases
where the candidate relations are more complicated, however, we find it more natural and closer to
the paper proofs to use the set-theoretic definition.

We also define the extensions of ∼HO, ∼CON, and ∼NOR to open processes by adding abstractions that
bind all free variables, and denote these extensions by ∼⋆

HO, ∼⋆
CON, and ∼⋆

NOR, respectively. (

) (

) (

)

Definition 3. Let R be a bisimilarity on closed HOCore processes. The extension of R to open
HOCore processes, denoted by R⋆, is defined by

R⋆= {(P,Q) : a[x1]f a[xn]f .P R a[x1]f a[xn]f .Q}

where fv(P) ∪ fv(Q) = {x1 . . . xn}.

Relations and Bisimilarities “up-to”. An important tool used in our development is the notion
that two processes P and Q are in a relation R up to another relation R′: assuming the processes are
related by R before a transition, they are related by R′RR′ after the transition.

More formally, we have the following (giving only one example definition in each category, the
remaining ones being formulated analogously).

Definition 4. A relation R on HOCore processes is:

• a τ -relation up to R′, if when P R Q and P τ−−→ P ′, there exists a process Q′, such that Q τ−−→ Q′

and P ′ R′RR′ Q′. (

)

• an IO-bisimulation up to R′ if it is symmetric, and if it is an input relation, an output relation,
and a variable relation up to R′. (

)

Further, we establish the following connection between bisimilarities and bisimilarities “up-to”,
illustrated here only for open normal bisimilarity, but holding for all five.
Lemma 1. Let R′ be an equivalence relation that is also an open normal bisimulation. Then, p ∼o

NOR q

if and only if p ∼o
NOR q up to R′. (

)

We mainly use this technique to reason up to structural congruence. We prove that structural
congruence is an equivalence relation (

), and that it is, for instance, an open normal bisimulation

(

). By Lemma 1, we may reason up to structural congruence to show that processes are open

normal bisimilar. This allows us to consider bisimulation candidates that are small, and use structural
congruence after a transition to get back in the candidate. Alternatively, one could close the candidate
relation under structural congruence, but this would yield much larger candidates, for which related
processes would have completely different structures and formal proofs would become much more
complicated.

Existential vs. Universal Quantification of freshness. The definitions of input, input normal,
and output normal relations all feature universal quantification on some channel and/or variable that
have to be fresh. The formalization in Coq has revealed that this condition leads to major problems
in a number of proofs, including the one for transitivity of open normal bisimilarity, the proof of
Lemma 1, and the proof of Lemma 7; these problems were not explicitly addressed in [13].

Transitivity provides the simplest example: assume P ∼ Q and Q ∼ R, where ∼ is a bisimulation
relying on a property on fresh variables. To show P ∼ R, one has to show the property holds for

8

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#HObisE
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#CONbisE
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#NORbisE
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#tau_relation_up_to
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#IO_bisimulation_up_to
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#ONORbis_up_to_ONORbis
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC10CongrLemmas.html#wfcgr_is_eq_rel
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC13Bisimulations.html#congr_ONORbisimulation

HOCore in Coq

every variable fresh in P and R. However, we do not know whether every such variable is fresh in Q,
so we cannot infer the property from P ∼ Q nor Q ∼ R. Using an existential approach would not
work either: the variable witness for P ∼ Q may differ from the one for Q ∼ R. The solution is to
show the universal and existential versions of the bisimulations coincide, use the existential version
for P ∼ R (we need to find a variable), and rely on the universal version for the hypotheses (allowing
to freely choose a variable to be fresh for P , Q, and R). Intuitively, the identity of fresh variables
does not matter: if one works, any will. We have shown this is the case for the IO, normal, and open
normal bisimilarity (

) (

) (

). To achieve this, we have shown that related processes have the same

multiset of free variables and the same multiset of channels used for input or output.
Again, as for bisimulations “up-to”, we could consider closing the candidate relation under variable

freshness, but this would again complicate the formal proof substantially. However, and much more
importantly, existentially-quantified IO-bisimulation cannot be avoided in the formalization of the
decidability procedure.

4. Formalizing Decidability & Coincidence of Bisimilarities
We now present the formalization of the bisimilarity decidability and bisimilarity coincidence theorems
of HOCore. We emphasize that, in order to arrive at those results, it was necessary to prove a
number of auxiliary lemmas about structural congruence, substitution, multiple substitution, and
transitions that were implicitly considered true in the original paper. Some of these lemmas were
purely mechanical, while others required a substantial effort. One of the latter is Lemma 2, presented
below and used later in the proof of Lemma 8. Although its correctness is intuitively clear—when
substituting several variables with empty messages, the substitution order does not matter—it required
a relatively complex proof by complete induction on the length of X̃.
Lemma 2. Let P be a wf-process, X̃ and X̃ ′ lists of variables, and M̃ and M̃ ′ lists of messages with
arguments 0. Further, let X̃ and X̃ ′ have no duplicate elements, and let the lengths of X̃ and M̃ ,
as well as the lengths of X̃ ′ and M̃ ′ be equal. Let (X̃, M̃) and (X̃ ′, M̃ ′), respectively, denote the list
of ordered pairs obtained by joining X̃ and M̃ , and X̃ ′ and M̃ ′. Finally, let us assume that for all
X ∈ fv(P) and arbitrary m, it holds that (X,m⟨0⟩) ∈ (X̃, M̃) if and only if (X,m⟨0⟩) ∈ (X̃ ′, M̃ ′).
Then, it also holds that [M̃/X̃]P = [M̃ ′/X̃ ′]P . (

)

IO-bisimilarity. The first bisimilarity we studied is IO-bisimilarity. Its simplicity lets us show
directly that not only it is a congruence, but that it is also decidable.
Lemma 3. The following properties concerning ∼o

IO hold:

1. ∼o
IO is a congruence: if P ∼o

IO P ′, then: (1) a[X]f .P ∼o
IO a[X]f .P

′; (

) (2) for all Q,

P ∥ Q ∼o
IO P ′ ∥ Q; (

) and (3) a⟨P ⟩ ∼o

IO a⟨P ′⟩. (

)

2. IO-bisimilarity and existential IO-bisimilarity coincide. (

)

3. IO-bisimilarity and IO-bisimilarity up to ≡∗ coincide. (

)

4. ∼o
IO is a τ -bisimulation. (

)

5. ∼o
IO is decidable. (

) (

)

To show decidability, we specify a brute force algorithm that tests every possible transition for the
two processes, up to a given depth. (

) As IO-bisimilarity testing always results in smaller processes

(there is no τ clause in this bisimilarity), we can show that this algorithm decides IO-bisimilarity, if
the depth considered is large enough (

) (

). This allows us to conclude:

9

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC14IObis.html#IObis_IObis_ex
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC17NORbis.html#NORbis_NORbis_ex
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#ONOR_ONOR_ex
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC09GVLemmas.html#wfp_Msubst_subst_subset
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC14IObis.html#IObis_congr_abs
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC14IObis.html#IObis_congr_par1
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC14IObis.html#IObis_congr_send
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC14IObis.html#IObis_IObis_ex
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC14IObis.html#IObis_up_to_cgr_IObis
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC14IObis.html#IObis_tau
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC22Decidability.html#IObis_constructive_decidable
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC22Decidability.html#IObis_decidable
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC22Decidability.html#bio_aux
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC22Decidability.html#bio_aux_ok1
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC22Decidability.html#bio_aux_ok2

Escarrá, Maksimović, Schmitt

Theorem IObis_constructive_decidable : forall p q, {p ≈ q} + {~(p ≈ q)}.

We should note here that the brute force algorithm would not be applicable to the definition of
IO-bisimilarity as stated in Definition 2, because we would need to consider universal quantification on
the fresh variable X in the case of an input transition. However, since we have proven the equivalence
of universally- and existentially-quantified IO-bisimilarities, it is sufficient to check bisimilarity for
only one arbitrary fresh X. More importantly, we strongly emphasize that, although the TLC library
is based on classical logic, the decidability procedure that we have formalized is fully constructive.

General Properties of Bisimilarities. Next, we turn to properties of the other bisimilarities that
are required to show they all coincide.
Lemma 4. P ∼⋆

HO Q if and only if for all closed R̃, [R̃/X̃]P ∼HO [R̃/X̃]Q, where X̃ = fv(P) ∪ fv(Q).
(Lemma 4.13 of [13]). (

)

While the proof of this claim takes only several lines on paper, its Coq version amounts to more
than three hundred lines of code, requiring a number of auxiliary lemmas that appear evident in a
pen-and-paper context. These lemmas mostly deal with with permutations of elements inside a list
and the treatment of channels in the “opening” of ∼HO.
Lemma 5. The following properties concerning ∼NOR and ∼⋆

NOR hold:

1. Normal bisimilarity and existential normal bisimilarity coincide. (

)

2. P ∼⋆
NOR Q if and only if there exists a list M̃ of messages on distinct, fresh channels, each

carrying 0 and such that [M̃/X̃]P ∼NOR [M̃/X̃]Q, where X̃ = fv(P) ∪ fv(Q). 6 (

)

Lemma 6. The following properties concerning ∼o
NOR hold:

1. Open normal and existential open normal bisimilarity coincide. (

)

2. Open normal bisimilarity and open normal bisimilarity up to ≡∗ coincide. (

)

3. If P ∼o
NOR Q, then P and Q have the same multiset of variables and channels. (

) (

)

The last claim is proven using induction on the combined measure m(P) that takes into account
both the structural size of P (s(P)) and the number of output actions in it (o(P)). This is necessary
since an additional input process is produced in the output normal bisimulation clause of ∼o

NOR. Thus,
in the induction step, the size of the process cannot be guaranteed to decrease. However, the number
of output actions becomes smaller, and the combined measure suffices.

Coincidence of Bisimilarities in HOCore. We finally present the formalization of the
coincidence of bisimilarities. First, we address one of the two most technically challenging lemmas of
the development (Lemma 4.15 of [13]) (

) (

).

Lemma 7. If (m[X]f .P
′) ∥ P ∼o

NOR (m[X]f .Q
′) ∥ Q for some fresh m, then P ∼o

NOR Q and P ′ ∼o
NOR Q′.

Proof. In order to show the first part of the lemma, we show that the relation

S=
∞∪
j=1

(P, Q) :

 ∏
k∈1..j

mk[Xk]f .Pk

 ∥ P ∼o
NOR

 ∏
k∈1..j

mk[Xk]f .Qk

 ∥ Q

6The proof of this claim, unlike its ∼HO counterpart, requires the use of the equivalence between normal and existential

normal bisimilarity.

10

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC15HObis.html#HObisE_equiv
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC17NORbis.html#NORbis_NORbis_ex
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC17NORbis.html#NORbisE_equiv
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#ONOR_ONOR_ex
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#ONORbis_up_to_cgr_ONORbis
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#sizeX_ONORbis
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#sizeCh_ONORbis
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#lemma415a
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#lemma415b

HOCore in Coq

is an existential ∼o
NOR-bisimulation, where {Pi}∞1 , {Qi}∞1 are arbitrary processes, {mi}∞1 are channels

fresh with respect to P , Q, {Pi}∞1 , and {Qi}∞1 , and each variable Xi is fresh with respect to Pi and
Qi. The proof proceeds as in [13], by examining possible transitions of P and showing that these
transitions are matched by Q. To this end, we study processes of the form (

∏
k∈1..j mk[Xk]f .Pk) ∥ P

(

), proving several lemmas about their properties in relation to transitions and structural congruence.

The original proof silently relies on the use of existentially-quantified open normal bisimilarity and
up-to structural congruence proof techniques for this bisimilarity (up-to techniques are proven, but
only for IO-bisimilarity). These assumed results were not trivial to formally establish.

For the second part of the lemma, we have determined that it is not necessary to formalize the
informal, highly intuitive procedure to consume open-normal-bisimilar processes, as presented in [13].
Instead, it is sufficient to proceed by induction on m(P) and make use of the already proven first part,
reducing the formal proof to a technical exercise. Moreover, we believe that the formalization of such
a consumption procedure would have been very difficult and would require a substantial amount of
time and effort. This illustrates the insights one can gain through formal proving when it comes to
proof understanding and simplification.

We are now ready to state and prove the coincidence of bisimilarities.

Theorem 1. The five strong bisimilarities in HOCore coincide.

Proof. We prove the following implications, the direct corollary of which is our goal: (1) ∼o
IO implies

∼⋆
HO (

); (2) ∼⋆

HO implies ∼⋆
CON (

); (3) ∼⋆

CON implies ∼⋆
NOR (

); (4) ∼⋆

NOR implies ∼o
NOR (

); (5) ∼o

NOR
implies ∼o

IO (

).

The only major auxiliary claim that needs to be proven here is that an open normal bisimulation also
satisfies the output relation clause; this is an immediate consequence of Lemma 7.

In addition, we have proven that IO-bisimilarity is correct with respect to barbed congruence (

),

which, given Theorem 1, means that the forms of bisimilarity that we are considering are all correct
w.r.t. barbed congruence. The other direction (completeness) involves properties of asynchronous
bisimulations that remain to be formalized.

Next, we focus on the lemma that corresponds to the right-to-left direction of Lemma 4.14 of [13],
stating that higher order bisimilarity implies IO-bisimilarity. Interestingly, this claim was included
in [13] although it is not necessary to prove the coincidence of bisimilarities. Its proof was the most
challenging to formalize, and this formalization has led us to several important insights.
Lemma 8. ∼⋆

HO implies ∼o
IO.

Discussion. It is sufficient to prove that the relation R = {(P,Q) | [M̃/X̃]P ∼⋆
HO [M̃/X̃]Q} is an

IO-bisimulation, where X̃ and M̃ are, respectively, lists of variables and messages carrying 0 on fresh
channels. We show R is an input (

), an output (

), and a variable relation (

). The proofs of all

three cases in [13] share the same structure that relies on the application of both directions of Lemma
4.

First, the unguarded variables7 are substituted with processes of the form m⟨0⟩. Then, the
remaining free variables are substituted with arbitrary closed processes R̃, using Lemma 4 left-to-
right to show that the result is still in R. Next, the processes do a transition, and it is proposed to
apply Lemma 4 right-to-left to conclude. This last step is not justified, as we now explain. The main
idea is to show that the bisimulation diagrams are closed under multiple substitution, i.e., that for all
processes P and Q, all global variables X, and all closed processes R̃, given [R̃/X̃]P ∼HO [R̃/X̃]Q and
[R̃/X̃]P α−−→ [R̃/X̃]P ′, there exists a Q′ such that [R̃/X̃]Q α−−→ [R̃/X̃]Q′ and [R̃/X̃]P ′ ∼HO [R̃/X̃]Q′.

7Variables that appear in an execution context, i.e., variables that are not “guarded” by an input.

11

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC18ONORbis.html#iter_abs_par
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#IObis_HObisE
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#HObisE_CONbisE
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#CONbisE_NORbisE
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#NORbisE_ONORbis
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#ONORbis_IObis
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC20Barbed.html#IObis_correct
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#in_R_HO_IO
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#out_R_HO_IO
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC19Coincide.html#var_R_HO_IO

Escarrá, Maksimović, Schmitt

Then, the idea is to apply Lemma 4 right-to-left to obtain P ′ ∼⋆
HO Q′. This is accomplished by first

showing that there exists an S, such that [R̃/X̃]Q α−−→ S and [R̃/X̃]P ′ ∼HO S, and then showing
that there exists a Q′, such that S = [R̃/X̃]Q′. The crucial mistake is that Q′ here depends on R̃,
unless proven otherwise. Thus, the requirement for a unique Q′ with a universal quantification on R̃
of Lemma 4 right-to-left is not satisfied, and the lemma cannot be applied.

Our initial attempt at this proof followed this approach, which failed when Coq refused to let us
generalize R̃ since Q′ depended on it. We thus proceeded differently, by first substituting every free
variable with processes of the form m⟨0⟩, using Lemma 4 left-to-right to show that we remain in the
relation. We then applied Lemma 2 and another auxiliary lemma (

) to finish the proof.

To conclude this summary, we note another error that we have discovered in Section 6.1 of [13],
that concerns the axiomatization of HOCore. Namely, in the proof of the cancellation lemma:

For all processes P,Q,R, if P ∥ R ∼o
IO Q ∥ R, then also P ∼o

IO Q.

the authors attempt to re-use the proof from [16], that proceeds by induction on the sum of sizes of
P , Q, and R. However, this is not possible, as that proof was designed for a calculus with operators
structurally different than the ones used in HOCore. Instead, we need to use the candidate relation
R, parameterized by a natural number n, such that P R Q at level n if and only if there exists a
process R such that s(P) + s(Q) + s(R) ≤ n and P ∥ R ∼o

IO Q ∥ R, and prove that this candidate
relation is an IO-bisimulation.

5. Related Work
We first discuss alternative approaches to the handling of binding and α-conversion, starting from
Nominal Isabelle [28, 11, 30]. This extension of the Isabelle proof assistant features nominal datatypes
that represent α-equivalence classes. It has been used successfully in a number of research efforts
concerning formalization of various calculi that feature binders [17, 2, 29], and taking advantage of
it would probably reduce the size of our development. However, since one of our main results is
the formalization of the decidability procedure for IO-bisimulation, and since stating decidability in
Isabelle is not a trivial task, we have ultimately opted to use Coq.

The locally nameless approach [1, 6] is the one most similar to the one we are using. There,
variables are also split into two categories—local and global—but local variables are calculated by
using de Bruijn indices instead of a height function. We find this approach to be both equally
viable and equally demanding—freshness and well-formedness would both have to be defined, albeit
differently, the proofs would retain their level of complexity, and the amount of code required would
not be reduced substantially.

In the Higher-Order-Abstract-Syntax (HOAS), binders of the meta-language are used to encode
the binding structure of the object language. In some settings, HOAS can streamline the development
and provide an elegant solution for dealing with α-conversion, but in the case of process calculi it
also brings certain drawbacks. As stated in [10], there are difficulties with HOAS in dealing with
metatheoretic issues concerning names, especially when it comes to the opening of processes, to the
extent that certain meta-theoretic properties that involve substitution and freshness of names inside
proofs and processes cannot be proven inside the framework and must be postulated instead.

In light of everything previously stated in this section and since HOCore does not have a restriction
operator, we have decided to use the canonical locally named approach [19] for variables bound by the
input operator. We have not yet considered more general approaches for name binding, such as [20].
In fact, our development may easily be adapted to other models for binders, as long as binders remain
canonical (α-convertibility is equality).

12

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC09GVLemmas.html#wfp_GV_Msubst_cp

HOCore in Coq

We now turn to works related to the formalization of process calculi and their properties. To the
best of the authors’ knowledge, there have been no formalizations of the higher-order π-calculus so far.
There are, however, many formalizations of the π-calculus in various proof assistants, including Coq,
such as [9] (where the author uses de Bruijn indices) and [10] (where the authors use HOAS). The
work closest to ours is the recently published formalization in Isabelle of higher-order Psi-calculi [17],
an extension to the higher-order setting of [2]. We have developed our own formalization because we
wanted to stay as close to the paper proofs as possible, in particular when it came to the handling of
higher-order and the definitions of the many bisimulations involved. Although we feel that translating
HOCore and its bisimulations into a higher-order psi-calculus constitutes a very interesting problem,
it is beyond the scope of this paper.

A preliminary version of this paper has appeared in [3]. It contained the initial results of the effort,
which included the locally nameless technique for dealing with binders, the correction of the semantics,
and the results on decidability. With respect to that version, the contributions of this paper are the
new and more solid treatment of well-formed processes as records, the proof of the coincidence of
bisimilarities, and the discovery and correction of several errors and imprecisions made in [13].

Finally, we have not fully used the automation that Coq offers. In particular, we could benefit
from integrating recent libraries that manipulate binary relations algebraically [4].

6. Lessons Learned and Conclusions
The formalization of HOCore in Coq has given us a deeper understanding of both the calculus itself and
the level of precision required for proving properties of bisimulations. We have identified one major flaw
in the proofs, namely the improper generalization of an hypothesis in the proof of Lemma 8. This flaw
was particularly insidious, as it was due to a lapse in the tracking of the context inside which a property
is derived. Such tracking is precisely where proof assistants excel. We have also identified two missing
results required by some lemmas. The first concerns existentially-quantified bisimulations: certain
properties of bisimulations cannot be proven if the variables or channels featured in freshness conditions
of bisimulation clauses are universally quantified. We solved this by introducing bisimulations with
existential quantification and showing they are equivalent to the universally quantified ones. We have
also discovered that existentially-quantified bisimulations are necessary for the formulation of the
decidability procedure. The second missing result is about the transitivity of bisimulations, required
to prove that open normal and existential open normal bisimilarities coincide. Proving transitivity is
not a trivial claim that required the use of reasoning on bisimulations up to structural congruence,
which was also missing for some bisimilarities.

Nevertheless, we were able to prove the decidability of IO-bisimilarity, the main coincidence
theorem, and their supporting lemmas. We found that some of the lemmas of the paper are actually
not needed, such as Lemma 8. Additionally, we significantly simplified some proofs. For instance, the
proof of Lemma 7 (Lemma 4.15 in [13]) does not require the consumption procedure described in [13];
induction on the combined measure m(P) is sufficient and more elegant.

As a side effect of our precise treatment of bound variables, we have detected and corrected an
error in the original semantics of HOCore, making it more streamlined in the process. Labels for input
transitions no longer mention the variable to be substituted, but instead evolve to an abstraction. Since
we do not need to lift the binders, we have decided to make these abstractions local. We have also
introduced the operation that deletes a variable as a transition in the LTS, removing a special case in
the definition of the bisimulations and avoiding the use of structural congruence.

In fact, many choices made during the formalization were guided by the intent to avoid structural
congruence. Although it is very convenient to be able to freely change the structure of a process,
doing so interferes with local reasoning. There were cases, however, where we could not avoid it,
in particular when proving properties of normal bisimulation. In those cases, we have used “up-

13

Escarrá, Maksimović, Schmitt

to structural congruence” techniques to keep the bisimulation candidates small enough. We have
discovered that the discord between the rigid syntax of a formal process and the intuition that it
models a “soup” where processes can freely move around and interact with each other made the
formalizations of some of the proofs more difficult than anticipated.

We also proved that the co-inductive and set-theoretic definitions of IO-bisimilarity are equivalent,
and used them depending on the complexity of the candidate relation at hand.

As for further work, our immediate aim is to formalize the results presented in Section 6 of [13],
pertaining to the soundness and completeness of the axiomatization of HOCore. At this point, we
have the proof of the existence and uniqueness of prime decomposition of processes (

), as well as

an initial description of processes in normal form (

) and a proof that normalization terminates (

).

Afterwards, we plan to extend the formalization of HOCore with name restriction, before tackling
more complex features such as passivation.

In conclusion, we hope that the experience described in this paper will serve as a motivational step
towards a more systematic use of proof assistants in the domain of process calculi.

Bibliography
[1] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering formal

metatheory. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), pages 3–15. ACM, Jan. 2008.

[2] J. Bengtson and J. Parrow. Psi-calculi in isabelle. In Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics, TPHOLs ’09, pages 99–114, Berlin,
Heidelberg, Aug. 2009. Springer-Verlag.

[3] S. Boulier and A. Schmitt. Formalisation de hocore en coq. In Actes des 23èmes Journées
Francophones des Langages Applicatifs, Jan. 2012.

[4] T. Braibant and D. Pous. Deciding kleene algebras in coq. Logical Methods in Computer Science,
8(1):1–42, 2012.

[5] Z. Cao. More on bisimulations for higher order pi-calculus. In Proc. of FoSSaCS’06, volume 3921
of LNCS, pages 63–78. Springer, 2006.

[6] A. Charguéraud. The locally nameless representation. Journal of Automated Reasoning, pages
1–46, 2011. 10.1007/s10817-011-9225-2.

[7] E. Gimenez. A Tutorial on Recursive Types in Coq, 1998. Technical Report No. 0221.

[8] G. Gonthier. A computer-checked proof of the four colour theorem. Available on-line at: http:
//research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf, September 2004.

[9] D. Hirschkoff. A full formalisation of pi-calculus theory in the calculus of constructions. In
Proceedings of the 10th International Conference on Theorem Proving in Higher Order Logics,
volume 1275, pages 153–169. Springer, Aug. 1997.

[10] F. Honsell, M. Miculan, and I. Scagnetto. pi-calculus in (co)inductive-type theory. Theoretical
Computer Science, 253(2):239–285, Feb. 2000.

[11] B. Huffman and C. Urban. A new foundation for nominal isabelle. In M. Kaufmann and
L. C. Paulson, editors, Interactive Theorem Proving, First International Conference, ITP 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings, pages 35–50. Springer, 2010.

14

http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC23PrimeDecomposition.html#prime_decomposition_unique
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC24NormalForms.html#normal_form
http://www.irisa.fr/celtique/aschmitt/research/hocore/coqhtml/HOC24NormalForms.html#normalization_stops
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf

HOCore in Coq

[12] A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited. Log.
Meth. Comput. Sci., 1(1):1–22, 2005.

[13] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness and decidability of
higher-order process calculi. Information and Computation, 209(2):198–226, Feb. 2011.

[14] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115,
2009.

[15] The Coq development team. The Coq proof assistant reference manual, 2014. Version 8.4.

[16] R. Milner and F. Moller. Unique decomposition of processes. Theor. Comput. Sci., 107(2):357–
363, 1993.

[17] J. Parrow, J. Borgström, P. Raabjerg, and J. Åman Pohjola. Higher-order psi-calculi.
Mathematical Structures in Computer Science, FirstView:1–37, 3 2014.

[18] B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjoberg, and B. Yorgey.
Software Foundations. Electronic textbook, 2013.

[19] R. Pollack, M. Sato, and W. Ricciotti. A canonical locally named representation of binding.
Journal of Automated Reasoning, pages 1–23, May 2011. 10.1007/s10817-011-9229-y.

[20] N. Pouillard and F. Pottier. A fresh look at programming with names and binders. In Proceedings
of the fifteenth ACM SIGPLAN International Conference on Functional Programming (ICFP
2010), pages 217–228, Sept. 2010.

[21] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms.
PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci., 1992.

[22] D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computation,
131(2):141–178, dec 1996.

[23] D. Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theor. Comput. Sci.,
167(2):235–274, 1996.

[24] B. Thomsen. A calculus of higher order communicating systems. In Proc. of POPL’89, pages
143–154. ACM Press, 1989.

[25] B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis, Imperial College,
1990.

[26] B. Thomsen. Plain CHOCS: A second generation calculus for higher order processes. Acta Inf.,
30(1):1–59, 1993.

[27] A. Tiu and D. Miller. Proof search specifications of bisimulation and modal logics for the pi-
calculus. ACM Transactions on Computational Logic (TOCL), 11:13:1–13:35, January 2010.

[28] C. Urban. Nominal techniques in isabelle/hol. J. Autom. Reasoning, 40(4):327–356, 2008.

[29] C. Urban, J. Cheney, and S. Berghofer. Mechanizing the metatheory of LF. ACM Trans. Comput.
Log., 12(2):15, 2011.

[30] C. Urban and C. Kaliszyk. General bindings and alpha-equivalence in nominal isabelle. In
G. Barthe, editor, Programming Languages and Systems - 20th European Symposium on
Programming, ESOP 2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings,
pages 480–500. Springer, 2011.

15

