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Abstract

This paper presents a new distributed process calculus,
called the M-calculus, that can be understood as a higher-
order version of the Distributed Join calculus with program-
mable localities. The calculus retains the implementable
character of the Distributed Join calculus while overcoming
several important limitations: insufficient control over com-
munication and mobility, absence of dynamic binding, and
limited locality semantics. The calculus is equipped with
a polymorphic type system that guarantees the unicity of
locality names, even in presence of higher-order communi-
cations — a crucial property for the determinacy of message
routing in the calculus.

1 Introduction

Among the process calculi which have been introduced over
the past decade to serve as a basis for a distributed and
mobile programming model, the Distributed Join calculus
[6, 5, 10] constitutes an interesting milestone. It provides
a distributed programming model with hierarchical fail-stop
localities, transparent mobility and communications, and it
can be efficiently implemented. The Distributed Join calcu-
lus, however, has several limitations:

e It offers insufficient control over communication and
process mobility, which is an issue in distributed en-
vironments where security is a primary concern. For
instance, it is not possible to prevent a locality from
migrating to another locality, except by forcing its fail-
ure. Also, once a resource (a Distributed Join calculus
definition) has been defined and communicated, it is
very difficult to prevent access to that resource or to
define the equivalent of a firewall [3].

e It does not support dynamic binding. In a distributed
programming model, it is important to provide both
local and remote equivalent of libraries or services, be-
cause of the cost, safety, and security considerations
that may apply. Thus, it should be possible to access
identically named libraries or services (like a print ser-
vice) at different sites. In the Distributed Join calculus
such a choice is not directly available since each defini-
tion is uniquely defined: every resource is permanently
bound to a single locality.

e It does not support the definition of localities with dif-
ferent semantics. For instance, localities in the Distrib-
uted Join calculus are defined to be fail-stop. While it

would be possible to change the semantics of the cal-
culus to accommodate different failure modes (such as
omission or byzantine failures), the question remains as
to how one can combine different failure modes within
the same calculus. Likewise, one could require a lo-
cality to be endowed with a particular form of access
control (e.g. restricting access to resources within a lo-
cality to principals appearing in an access control list).

The M-calculus presented in this paper is designed to
overcome the limitations of the Distributed Join calculus
while preserving some of its key features, notably, its con-
cept of hierarchical localities (which is crucial to deal with
security, migration, and failures), its notion of multiway syn-
chronization, and its implementable character.

Specifically, the main contributions of this paper are:

e the notion of programmable locality, that generalizes the
different concepts of locality found in the Distributed
Join calculus and other distributed process calculi;

e the conjunction of higher-order processes and hierar-
chical programmable localities to unify communication
and process migration, combining the possibility of
transparent routing as in the Distributed Join calculus
with fine-grained ambient-like control over information
exchange;

e the introduction of a passivation operator as a key
primitive for programming different forms of control
that can be exercised by localities;

e the definition of a type system that guarantees the de-
terminacy of the routing mechanism by ensuring that
every locality bears a unique name, even in presence of
higher-order communication.

A programmable locality in the M-calculus (or locality,
in brief) has a name and contains two processes: a con-
troller, which filters incoming and outgoing messages, and
a content. In order to apply the same control mechanisms
to remote communication and process migration, the latter
is just communication of a thunk, i.e. a frozen process. A
running locality may be frozen by its controller using the
passivation operator. This operator takes a function that
defines the operations to apply on the controller and con-
tent processes of a locality, such as sending them in a remote
message, discarding them, or modifying them.

The paper is organized as follows. Section 2 defines the
syntax and operational semantics of the M-calculus. Sec-
tion 3 introduces a type system that ensures the unicity of
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Figure 1: Syntax of the M-calculus
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Figure 2: Names

locality names. Section 4 gives an encoding of the Join cal-
culus that illustrate the versatility of the calculus. Section
5 discusses related work. Section 6 concludes the paper.

2 The M-calculus

We present in this section the M-calculus, introducing the
syntax and the semantics as we describe local communica-
tion, remote communication, control, and migration. The
syntax is summarized in figures 1 and 2.

Communication takes the form of an asynchronous,
channel-based, point-to-point exchange of messages, reflect-
ing the dominant mode of communication in current large
scale networks. Channels are called resources and we as-
sume there is an infinite countable set of resource names.
We let r range over this set. A local message is an applica-
tion of a resource name to a tuple of values V. Receivers
in the M-calculus are reaction rules composed of a multi-

E == ()| EV | PE | vnE | (E|P) | oP)[E]
| a(E)[P] | (P1,...,E,... , Pp)

Figure 3: Evaluation contexts
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Figure 4: Reduction: Computing Rules

way synchronization pattern (similar to the one proposed
informally by Milner for his “Polynomial m-calculus” and to
Join patterns), and of a guarded process. Every reaction
rule (riz1 | ... | rnZn > P) defines the resource names ri,

., rn. The formal parameters 77, ..., T, are tuples of
variables, and we assume there is an infinite countable set
of variables. The local communication rule is very similar to
the JOIN rule of the Join calculus, substituting message ar-
guments for formal arguments in the guarded process (rule
R.REs of figure 4). We remark that the reaction rule is
replicated: it does not disappear after reduction. We also
remark that a reaction rule does not bind its defined names.
New resource names are introduced and bound using a re-
striction operator vr.P.

In the reduction rules introduced in figure 4, rule
R.CONTEXT uses evaluation contexts defined in figure 3,
and rule R.EQuIv uses structural equivalence. Structural
equivalence, =, is the smallest equivalence relation that sat-
isfies the rules given in Figure 5, where the parallel compo-
sition operator | for processes is taken to be commutative
and associative, with O as its neutral element. The struc-
tural rules comprise scope extrusion rules for the restriction
operator, standard rules for equivalence under a-conversion,
and congruence for evaluation contexts. Equivalence of two
processes P and Q up to a-conversion is noted P =, Q.
We recall that in vn.P, Az.P, and (r1z1 | ... | thZn > P),
the names and variables n, x, and z;; are bound in P. Free
names of a process P are defined as usual and written fn(P).
We recall that the defined names of a reaction rule (J > P)
are free.

As a communication example, we may write a reference
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Figure 5: Structural equivalence
cell process as in the Join calculus:
vs. (get(k) | s(st)>k(st) | s(st))
| (set(st') | s(st)>s(st')) | get(print) | set(3)
| s(0)

which may reduce to print(0) or print(3).

We now describe remote communication of asynchronous
messages. In many calculi, remote communication involves
two steps: resolving where to send the message, and send-
ing it. For instance, in the distributed Join calculus, every
channel is defined in at most one location and definitions
cannot move from one location to another. Thus a defined
channel name is unambiguously associated to the location
containing its definition. In the dynamic Join calculus [19],
the destination for a dynamic message is resolved accord-
ing to the channel name and the current position of the
message. In the Ambient calculus, an ambient migrates ac-
cording to the explicit capabilities that it expresses and its
local environment. The destination of a message in the Box-
m calculus [20] also depends on the immediate environment
of the message. In order to avoid restricting the calculus
to one particular semantics, we let the resolving step be a
part of the calculus: a remote message has the form a.rV,
where a is the explicit destination of the message, which
can be thus chosen by the programmer. We see that an ad-
dressed resource a.r is composed of an address (a locality
name), which may correspond to an IP address, and a re-
source name, which may correspond to a port number. This
construction is similar to the high-level c@a construct of No-
madic Pict [23]. The second step of remote communication
is the actual sending of the message to the remote locality.
This communication step might be direct independently of
the relative positions of the message and the destination, as
in the Join calculus, or it might involve several local steps,
following the structure of localities to reach the destination,
as in the Ambient calculus. We remark that these two mod-
els may coincide when considering a flat model of localities.

Just as in the Distributed Join calculus and in Ambient
calculi, we retain the idea of hierarchically organized local-
ities, a crucial feature for capturing the spatial and logical
partitioning of control in distributed systems. We assume
there is an infinite countable set of locality names, and we
let a, b range over this set. New locality names are intro-
duced and bound by the restriction operator va.P. To define
the routing rules, we write locs(P) for the multiset of un-
restricted active localities of P. This multiset is formally
defined in figure 7. In the rest of this paper, we say that a
process P is active in Q if @ is structurally equivalent to a

a(P | arV)[Q] = a(P | 7“7)[62] [R.A.CTRL.FINAL]

~ ~— [R.A.CoNT.FINAL]
o(P)Q | arV] = a(P)[Q [ V]

Nb € locs(P) U locs(Q) U {a;}
brV | a(P)[Q] — a(P | i(b,r,V))[Q]

[R.A.IN]

be locs(~Q) \ locs(P) b # a
a(P | b.rV)[Q] — a(P)[Q | b.rV]

[R.A.CtrL.T0.CONT]

b¢ locs(f) U locs(Q) b#a
a(P | brV)[Q] = a(P)[Q] | brV

[R.A.CTRL.T0.ENV]

b¢g lgcs(Q) b#a _
a(P)[Q | b.rV] — a(P | o(b,7,V))[Q]

[R.A.OuT|

Figure 6: Reduction: Routing Rules (Addressed Messages)

locs(vn.P) = locs(P) \ {n} locs(PQ) =
locs(a(P)[Q]) = a, locs(P), locs(Q) locs({(J>Q)) =0
locs(P | Q) = loc ( ), locs(Q) locs(([w = V1P, Q)) =
locs(pass V) = locs(V) =10

locs(0) = 0 locs(P1,... ,Py) =10

Figure 7: Active localities

process of the form E(P) for some evaluation context E. Lo-
calities in the M-calculus provide the means to enforce some
control on incoming and outgoing messages. This control
may be arbitrarily complex, may require maintaining some
state, and should be kept separate from the program run-
ning in the locality. For this reason, localities take the form
a(P)[Q] where a is the name of the locality, P is a process
controlling the locality and its interactions with the envi-
ronment, and @ is the content of the locality. The first role
of the controller is to filter incoming and outgoing messages.
To this end, we introduce two special resource names i and
o on which incoming and outgoing messages are intercepted
(rules R.A.IN and R.A.OuT in figure 6). On interception,
an incoming or outgoing message is split into three parts:
the destination address, the targeted resource, and the mes-
sage arguments. The controller should provide a reaction
rule for these filtering channels, implementing the desired
behavior. For instance, a locality that does not want to
block any message could contain the process Fwd in its con-
troller, where:

Fud % (i(z,y,2)>2.y 2) | (o(w,y,2)> 2.y 2)
We remark that this definition is stateless and relies on the
other routing rules to send the message to its final destina-
tion automatically: even though the routing is step by step,
it is not necessary to specify how to take each step. This is
much different from the Ambient calculus where an explicit
path to the target ambient needs to be given.

As localities form a tree, there is no notion of site as in
Nomadic Pict (a site can be modeled by a locality at a given
level in the tree) and the routing algorithm is part of our
semantics. It is however possible to express different routing
algorithms by forwarding messages from locality to locality
using some specified resource. One example of this is the
simulation of the dynamic Join calculus in the M-calculus
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Figure 8: Reduction: Routing Rules (Local Messages)

din(PQ) =0 din(vn.P) = din(P) \ {n}
din(Pi,...,Py) =0 din({r1|...|rg>P)) ={r1,... ,rq}
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Figure 9: Defined local names

in [18]. It is also possible to intercept and reroute messages
using the control mechanism, as shown in section 4.

A message present in the controller is considered as hav-
ing been controlled and may freely leave the controller (rules
R.A.CTRL.T0o.CoNT and R.A.CTRL.T0.ENV). When a
message has reached its final destination, it becomes a local
message (rules R.A.CTRL.FINAL and R.A.CONT.FINAL).
Local messages may move freely from controller to content
and vice versa (figure 8), depending on where the resource
is defined. To this end, we call defined local names the set
of resources that are defined in a given process without in-
specting sublocalities. This set is formally defined in figure
9. We give an example of transparent incoming message
routing in figure 10.

arV | b((i(d, r,v) > d.rv)) [ a((i(d, r,v) > dero))[(r = ... )] ]
- b((i(d,r,v) >d.rv) | i(a,r, ‘7))[ a((i(d,r,v)>d.rv))[(r =
= b((i(d,r,v) >d.rv) | a.r‘7) [ a((i(d,r,v)>drv)[(r = ...)]]
= b((i(d,,v) > drv)) | arV | a((i(d,r,v)>dro))[(r = ...)] ]
= b((i(d,r,v) >d.rv)) [ a((i(d, r,v) >d.rv) | i(a,T, V)[(r =
= b((i(d,r,v) >d.rv)) [ a((i(d, r,v) >d.Tv) | a.r";)[( =..9]
= b((i(d,r,v) > drv)) [ a((i(d, ryv) > dorv) | PV)[(r =...)] ]
= b((i(d,r,v) >d.rv)) [ a(({i(d, r,v) > drv))[(r = ...} | rV] ]

Figure 10: Remote communication example

One interesting feature when writing a reaction rule for
the filtering channels i and o is to be able to test the target
locality or resource. To this end, we introduce a simple name
matching operator ([u = V]P,Q), whose semantics (rules
R.IF.THEN and R.IF.ELSE in figure 4) rely on a match()
predicate, which is true only in the following cases:

match(_, V) match(n,n)

As in the Ambient calculus and the Join calculus, we pro-
vide a way to modify the tree structure of localities. How-
ever, we want to be able to control incoming and outgo-
ing localities at every locality boundary, as is possible with
remote communication. We thus unify migration and re-
mote communication by considering migration as the com-
munication of a frozen process. A frozen process is of the
form A.P, and may be unfrozen by applying it to the unit

value. We actually consider a generalization by embed-
ding a call by value A-calculus within our calculus (with the
usual 3 reduction rule R.BETA of figure 4). We use stan-
dard notational conventions: in a term Az.P or vn.P, the

scope extends as far to the right as possible; PQi...Qn
stands for (...(PQ1)...Qy), and Az1...ze.P stands for
AZ1....Axq.P, vny...ng.P stands for vn;....vng.P. We

also make use of the notation A.P to stand for a thunk Az.P,
with z not free in P.

The passivation primitive pass V', where V is a function
expecting a locality name and two frozen processes, is intro-
duced to freeze running processes. Passivation is the second
role of a controller: when evaluated in the controller of a lo-
cality a(pass V' | P)[Q)], the locality is split into three parts:
its name a, its frozen controller A.P, and its frozen content
A.Q. These parts are given as arguments to the function V:

a(pass V | P)[Q] = V a (A\.P) (A\.Q)

For instance, a function V =
recreates the passivated locality.

Locality mobility can be implemented using higher-order
messages and passivation (cf the go construct in the Join
calculus and ambients in and out capabilities). Locality
Q™ (a) below can be moved to a different locality:

Q"(a) = a(Fuwd|(gou>Go(u)))[Q]
Go(u) = pass Azpgq.(u.enter \.z(p())[g()])

Arpg.z(p())[g()] simply

A request gob, results in the passivation of the locality a
and its sending as a thunk to the resource enter of the lo-
cality named b. If the request comes from the outside of
the locality, the result is an objective form of move. If the
request comes from the content of the locality, the result is
a subjective form of move. The controller of locality b can
contain the process Enter below to allow the insertion of a
new locality in its content:

(enter fopass Axpq.z(p()la() | £O])

Passivation may also be used to implement various forms
of control on a locality. Locality Q°(a) below can be sus-
pended, resumed, dissolved (cf the open capability of ambi-
ents), and updated with a new controller (we note simply r
a message of the form r()):

Enter =

Q°(a) = wson.L(a,s,on)
Fuwd | (suspend | on> S(s))
L(a,s,on) = a /| |(resume|sf>R(f,on)) Q]
| (open>O) | (update f>U(f)) | on
S(s) = pass Azpq.z(p() | (sq))[0]
(fyon) = pass Azpq.z(p() | on)[f()]
O = passAzpq.q()
U(f) = pass Aepqa(f()la()]
As usual, we take the reduction relation for the M-

calculus, —, as the smallest relation that satisfies the rules
given in Figures 4, 6, and 8.

3 Type system

The routing rules for addressed messages in Figure 6 rely
on locality names and active localities. Locality names thus



T u= type
A process type
| o value type
o = value type
unit unit type
| « plain type variable
| dom(w) name type
| o1,...,0¢ tuple type
| o—r71 function type
| {o)a plain resource
| (o) sendable resource
w = locality name variable
a locality name
| 0 name type variable
| 0 no such locality
A n= locality name multiset
0 empty multiset
| p multiset variable
| 0 name type variable
| a locality name
| AA multiset union
s u= Vadp.o type scheme

Figure 11: Types: Syntax

play the role of addresses in the M-calculus. However, to
faithfully mirror the situation in current wide area networks,
and to allow for an effective implementation of the calculus,
one must ensure the determinacy of the final destination of
a remote message by ensuring that no two active localities
may bear the same name. Unfortunately, it is not possible
to obtain this property by syntactic means only. In fact,
even a simple type system will not do because of the higher-
order features of the calculus. In presence of the passivation
operator, one must indeed be careful of the effects of func-
tions on locality names. For instance, if a resource twice is
defined as (twice f> f() | f()), then a passivation instruction
of the form pass Az pq.(twice A.z(p())[¢()]) may lead to the
illicit duplication of the passivated cell.

To enforce the unicity of active locality names, we in-
troduce the following type system. The grammar for types
is given in Figure 11. We remark that terms in the M-
calculus are partitioned in two kinds: processes and expres-
sions. This distinction is difficult to expose while relying
only on the syntax, mainly because of functional application
(the result of an application may either be an expression or
a process), but the intuition behind this partition is that
processes may be put in parallel, and include messages, lo-
calities, controller and content of localities, whereas expres-
sions may reduce to values and include functions, tuples,
names. We formalize this partition by making a distinction
among types 7 between process types A and value types o.
Process types are multisets of locality names, representing
an upper bound of the localities that may be or become
active in the process. Value types represent the value the
expression may eventually reduce to. They include function
types ¢ — 7, tuple types o, the unit type, and types for
names. Resource names have type (o)a or (o)} if they ex-
pect an argument of type o (which may be a tuple) and
if a message on this resource name leads to the creation of
localities A. A resource name with the type (o){ may be

received and used for further input, as in the creation of
a reaction rule (create z>(z() > a(0)[0])), where create may
have the type ({unit)])y. Locality names have type dom(w),
where w may either be a locality name a, a name type vari-
able d, or the empty set (). Intuitively, a locality name a has
singleton type dom(a), a variable x may have type dom(d),
and no name may have type dom(f)) (this last type is needed
for technical reasons). Name type variables § reflect term
variables x that may be instantiated to locality names, as
in (create(x)> 2 (0)[0]) where create may be given the type
Vd.{dom(d)}s.

Multisets A include locality names a, name type vari-
ables §, multiset variables p, the empty multiset @, and
unions of multisets A, A’. The basic intuition to guaran-
tee the unicity of names of active localities in a process P
is to type a process P with a multiset A. If this multiset
happens to be a set, then we prove that every active locality
bears a unique name.

We use V&gﬁ.a to denote a type scheme where plain type

variables &, name type variable § and multiset variables p
are generalized. We use [ to range indifferently over these
different type variables.

In what follows, we consider an extended syntax for the
M-calculus, where new resource names are required to be
annotated by their type scheme, in order to specify whether
the resource has a plain resource type (which may be poly-
morphic) or if it has a sendable resource type (which cannot
be polymorphic for safety reasons).

The intersection operation between multisets, N, is the
standard intersection on multisets (taking the smallest num-
ber of occurrences in both multisets). The inclusion relation
C between multisets is also the standard one. By A — A/
we denote the multiset which is composed of the elements of
A (locality names or multiset variables) after removing each
element of A’. For instance p, p,a,b,b — p,a,a,b = p,b.

We now define a subtyping relation < (where o and o’
are tuples of the same size n):

A<A & ACA
F<o <« (Ui < U;)ie[l..n]
unit < unit c—>717<0d -7 « o <ocand7T <7
dom(w) < dom(w)  (o)a < (o')ar = o' <oand A< A
a<a oa <o - A & ¢ <ocand A <A
(X <@} ()X <(o)ar & o <oand A <A
(U)ZSO”*}A’ < o <ocand A <A/

The intuition behind the subtyping relation is that it is
safe (with regard to the unicity of locality names) to replace
a process that includes more active localities with a process
that includes fewer active localities. It is also safe to replace
a function by a resource name if the types agree (a resource
name may be used to send a message, by functional applica-
tion, but it can also be used to create an addressed resource
name). It is finally also safe to replace a plain resource name
by a sendable resource name (sendable resource names may
be used for message sending, but they can also be used to
instantiate variables that are defined names of a Join pat-
tern).

We remark that sendable resource types have no subtype,
except themselves. This is necessary for type safety since,
unlike [24], we do not distinguish between input and output
types.

We define the symmetric LI and M operators on types
in figure 12 (other possible cases not listed are undefined).
Aj U A is defined as the multiset where the multiplicity of



a,Ala, A" =a,(AUA")
p,AlUp, A" =p, (AUA")
0,AUHA =4,(AUA

AUA =AA fANA =0
unit Llunit = unit

dom(w) LI dom(w) % dom(w)

alda =«

(o1,...,on)U(0),...,00) =(c1Uo),... ,onUop)
c—oTU -7 =(cnd') = (ruT)
()au(o')ar = (oMo’ ) Auar
()alo’ = A'=(cNd’) = (ALA)
(O’)ZU(U)}—(U)Z
(U)ZU(O”>A,:<0’HU’>AHAI ifo#£d or A#£A
(@)A U (0)ar = (@ Mo’ ) aLar
(U)XUU’*}A,:(UHU’)*}(AUA’)

a,AMa, A" =a,(ANA")

P, AT, A =p,(ATTA)

0,ATIA" =6, (AMA!
ANA' =0ifANA =0

unit Munit = unit

dom(w) M dom(w) % dom(w)

alla=«a
(0—17 '70—n)m(0-,17' 70—1,1) (Ulmo-llv -70'71'_'0-1,1)
c—o71No’ -7 =(cUd) = (r017)
(@)a (o) ar = (o U ) Anar
(eYaMo’ = A" =(cUd')anar
(U)Z Mo’ = (U)z if (o z <o

Figure 12: Definition of LI and M

7 | vr:s.C | va.C | Xx.C | a(C)[Q]
a(P)[C] | (C|P) | (P|C) | passC | (CQ)
(PC) | (lw=CIP,Q) | ([w=V]C,P)
(u=VIP,C) | (JoC) | (Pr,...,C,...,Py)

Figure 13: Typed Contexts

each name a is taken to be the maz of the multiplicities in
A; and Az, and A; M A, is defined as the multiset where
the multiplicity of each name a is taken to be the min of the
multiplicities in A; and A, (it is the usual intersection on
multisets).

We use I and its decorated variants to denote type en-
vironments, i.e. finite mappings between names and type
schemes. We define the set of free plain type variables ftv8
as usual. We define the set of free multiset variables fsv
and the set of free name type variables fuwu() as follows:

fsv(0) =0 Jwv(@) =0
fsu(p) = {p} fuv(p) =0
fsv(0) =0 fuwv(d) = {6}
fsv(a) =0 fwv(a) =0
fsu(A,A) = fsu(A) U fsu(A')  fwu(A,A") = fwv(A) U fwu(A')

We let the set of free variables fu() be the union of ftu(),
fsu(), and fwv(). Type judgments take the following form,
where C' is an M-context extended with a typed hole, as
defined in Figure 13: T C:7and '+ P : 7.

We write fun(o;7) for either 0 — 7, (o), or (o)} (in
the latter two cases, 7 is necessarily a process type A). We
write chan(a;A) for either (o)A or (o) %.

In order to correctly type the i and o resources, we
consider only type environments with the following asso-
ciations:

i:Vadp.(dom(d),(a)p, ), ; o0 :Vadp.(dom(d),(a),,a),

Both the i and o resources expect a locality name (the
destination of the message), the targeted resource expecting
an argument of type a and creating localities p, and an
argument of type a. A message on such a channel potentially
creates localities p.

The type system is defined by the rules in Figure 14.
They make use of the Inst operator, that takes a type
scheme and returns a type where the generalized plain type

variables, multiset variables, and name type variables have
been instantiated to types, multisets, and locality names or
name type variables respectively.

Typing rule JOIN may seem complex but is the usual typ-
ing rule for Join patterns: the guarded process is typed in an
environment extended with the formal parameters, and the
result is checked to create fewer localities than advertised
by the resource types. Every defined resource name that
is a variable is checked to have a sendable resource type in
the environment. The additional hypotheses check that the
type schemes associated with the resources are consistent
with the typing environment, following the usual rules of
the Distributed Join calculus: no generalized variable may
occur free in the environment nor be shared by two resources
in a Join pattern. In rule PAss, the passivation function is
checked to have a type that is a subtype of a function ex-
pecting a locality name and two thunks. The name type
variable § in the locality name type represents the name of
the passivated cell. Each thunk type includes a multiset vari-
able p1 or p> representing the active localities of the thunk.
These three variables are intuitively generalized by check-
ing that they do no occur in the typing environment (they
will respectively be substituted by the name of the passi-
vated locality and by the active localities of the controller
and content, that are unknown when typing the primitive).
The type of the whole passivation construct is simply the
type of the result of the passivation function, removing the
name of the passivated locality and the multiset variables
since the locality is passivated.

The soundness of the our type system is characterized
by the following definitions and theorems.

Definition 3.1 (Well-formed typing environment)

A typing environment I is well-formed if and only iof (1) T
only contains associations of the form r :VB.(o)a, r: (o)X,
and a : dom(a), and (2) we have fn(l") = dom(T).

Lemma 3.2 (Subject reduction for =) Let ' - P : 7
be a typing derivation with T' well-formed. If P = P’, then
there exists a typing derivation '+ P’ : 1.

Theorem 1 (Subject reduction) LetT'F P : 7 be a typ-
ing derivation with T' well-formed. If P — P', then there

!

erists a type 7' such that ' <1 and TP : 7',



w:s=VB.oeT o0 = Inst(s) fn(ran(6)) C dom(T")

TFu:of [Nawe] 'Fo:0 [N T'F () :unit [Vorp]
I'F a:dom(w) 'k r: chan(o; A)
PH(-:7):7 [Proc.Hove] F'Far:0—> A [AppE]
P+z:0FP:7 z & dom(T) (o) C dom(T") Tk P; : oy)€ltd]
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'Fva.P:A—-a [Nu.Dow]
'k V:oy with oy =dom(d) — (unit — A1) — fun(unit — Az; A)
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C+Z1:01+...48n:on - P: A Vie[lL.n].Binfu(l) =0

(F0)%, € )<t

[TEST]

A <A, Ay (&) N dom(T) =0
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Figure 14: Typing rules
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Definition 3.3 (Failure) A locality a(P')[Q'] is said to be
free and active in P if it is active in P and if it is not under
a scope restriction for a.

A process P has failed if and only if there is some process
P’ active in P containing at least two free and active local-
ities bearing the same name.

Theorem 2 (Progress) Let ' P : A be a typing deriva-
tion with T' well-formed. If A is a set containing only locality
names, then the process P has not failed.

Most of the complexity of the subject reduction proof
is alleviated by distinguishing name variables z from name
type variables §, greatly simplifying the substitution lemma.
Complete proofs are available in the draft of the long version
of this paper [17].

Our notion of progress deals only with the unicity of
active locality names. Since our type system is very close
to type systems for the A-calculus and the Distributed Join
calculus, this progress property can be easily extended to
more usual guarantees.

We now discuss the power and limits of our type system.

LINEARITY. Since our type system aims at enforcing
the linearity of names of active localities, we describe how
this feature interacts with functions (or resources) that are
not linear. First of all, our system guarantees the linearity
of names of localities that are active (as described in theo-
rem 2). Relaxing the linearity constraint for localities that

are not active yields a much simpler type system (e.g. our
system allows the typing of X.a(0)[0] | a(0)[0] as long as
this function is not applied). We also require linearity of
a newly introduced locality name in the process under the
scope restriction (rule Nu.Dow, since the introduced name
should not occur in the type). We recall that the type of
a process is a conservative approximation of the active lo-
calities it may contain. In the following, we only consider
processes that are active.

Consider for instance the following function Az.z() | z().
This function takes a frozen process and runs it twice. It is
perfectly reasonable to apply it to a frozen process that does
not release localities with free names, as in: (Az.z() | z())A.0
or (Az.z() | z())A.va.a(0)[0]. In these cases, the function
has type (unit — ) — 0. The type system would reject
applying this function to the thunk X.a(0)[0].

A function Az.z(), that only runs a process, can be given
the type (unit — A) — A. Since functions never have
polymorphic types, one can instead consider a resource run
defined as (run(z)>z()). Such a resource can be given the
type Vp.(unit — p),: it simply recreates the active localities
frozen in its argument. The check that these localities do
not interfere with currently active localities is done when
typing a message on run. We remark that our use of multiset
variables is very similar to row variables described in [15].

SUBTYPING. Subtyping is explicitly used in typing rule
App. Returning to the example of the run resource above,
this resource can receive a frozen process as argument, as
in (run X.a.(0)[0]). It can also receive a resource name, as



in (runcreate,) with (create.()>a(0)[0]), since (unit), <
unit — a.

The subtyping used in typing rule JOIN gives some flex-
ibility when defining a resource, since the type of the re-
source gives an upper bound on the localities that may
be created. For instance, the special channel i has type
Vadp.(dom(d), (@), a),. Typical definitions for this channel
are (i(d,r,args)>d.r args), which simply sends the mes-
sage, and (i(d,r,args)>0), which discards it. The typing of
the second definition relies on the fact that this definition of
i does not create all the localities it is allowed to.

DEPENDENT TYPES AND POLYMORPHISM. Our type sys-
tem does not allow dependent types, but simulates them
using polymorphism and name type variables (type vari-
ables that represent locality names), since locality names
may occur in types. For instance the resource new in
the definition (new(z)>z(0)[0]) may be given the poly-
morphic type Vd.(dom(d))s: it expects any locality name
and creates a locality with this name. Owur solution is
less powerful than dependent types, since it does not al-
low the typing of (A\f.f a | f b)(Az.z(0)[0]). How-
ever, polymorphism is powerful enough to let us type
definitions of the form: (create(z,p,q)>z(p())[g()]), with
create :Vép1p2.(dom(d), unit — pr,unit — p2)s,p;,p0-

PAsSSIVATION. One limitation of our type system comes
from the passivation operator. Consider for instance the
following process: a (pass Azpq.z(0)[b(0)[0]]) [6(0)[0]]. The
pass operator freezes locality a and respawns it, discarding
its controller and content, but adds a locality b in its content.
Since the locality b that is added is first discarded, one would
expect this process to be well typed. This is not the case
because the locality b is active, and may be sent somewhere
else (see for instance the migration example in section 2).
This is why the process pass Azpq.z(0)[b(0)[0]] has type b:
this process creates an active locality b, independently of
the controller and content that are passivated. On the other
hand, the process pass Azpq.z(p())[g()] has type @ (it only
recreates a locality that has been passivated) and the follow-
ing process is well typed: a (pass Azpq.z(p())[g()]) [b(0)[0]].

4 Simulating the Distributed Join calculus

Since the M-calculus is a direct offspring of the Distributed
Join calculus, a translation of a Distributed Join calculus
process into an M-calculus process is relatively straightfor-
ward. Such a translation is interesting to present, however,
because it illustrates the versatility of programmable local-
ities. In the following, we only consider Join processes with
no free names. We proceed in three steps, in order to account
for the fact that resource names are introduced with their
types in the M-calculus, and that message routing requires
the messages to be annotated with address information.
The first step consists in typing the Distributed Join cal-
culus process, and annotating every local Join calculus defin-
ition with the channel names (along with their type schemes)
and location names it defines. We write def (D;ni : s1,nq :
8¢,01,...,ar) in ... the result of the first translation step of
def D in P if dn(D) = {n1,... ,nqtU{a1,...a,} and if the
channel names n; have type schemes s; after generalization.
By definition of the types of the Distributed Join calculus,
the s; are of the form Va.(7). We suppose that these type
schemes have no free type variables, and we transform them
immediately in M-calculus type schemes, writing () instead

of ().

The second translation step consists in annotating every
channel name that is not a variable with the locality where
its definitions reside. To do this, we rely on the fact that
in the Distributed Join calculus, the only locality in which
a definition may eventually be dissolved is the syntactically
enclosing locality. This property is a direct consequence of
the definition of migration: the only way to have processes
migrate in the Distributed Join calculus is by locality migra-
tion. Thus definitions cannot be separated from the locality
where they syntactically occur. For reasons of space, we do
not formally present the algorithm used in this second step,
which is roughly of the following form: for every channel
name that is not in a Join pattern, find the enclosing def
binder for this name, then find the name of the syntacti-
cally enclosing locality, and prepend the locality name to
the channel name.

The third step is the translation to the M-calculus itself.
We represent a location of the Distributed Join calculus af -]
by a locality a(PJ)[-] with:

PJ = Fuwd | (add f>Add(f)) | (go (b,k)>Send(b,k))
Add(f) = pass Azpg.z(p()lg() | £O
Send(b,k) = pass Azpg.(b.add X\.z(p())[q() | k()])

We may type the resource add with the type Vp.(unit — p),
that expects a thunk and frees it, and the resource go with
the type Vdp.(dom(d),unit — p),, that expects a local-
ity name and a frozen continuation that it will eventually

spawn.
Writing [ - ] for the translation operator, we have:
[o.n] = bn ] = b
[zx] = = [o] = o
1ol = IP111Ql [T] - o
lgobi Pl = go(b AIP) DD = [D]|[D]
[b1D: P11 = (PP IPI]
[m(nr, ... sng)l = [l sfgl)
[n1(@1) | .. [ ng(zq) > Pl = (n1(@1) | . .. [ ng(xq) > [P]
[def (D;ny : s1,... ,nq : Sqya1,... ,ar) in P] =
VN1 :81,...,Nq : Sq.va1,...,ar.[D]|[P]

Note that our translation is not entirely faithful with re-
spect to migration, since in the distributed Distributed Join
calculus migration does not occur if the target locality is a
sublocality of the moving one. In order to detect these cases,
we would need a more complex translation.

We now extend the previous translation to the Distrib-
uted Join calculus with failures. To do this, we only need to
change the translation of a locality, replacing the PJ con-
troller by the following PJF(a) controller:

PJF = Fud
| (add f Add(f))
| (go (b,k)>Send(b, k))
| (halt> Halt)
| (ping (y,m)>y ()

)
Add(f) = pass Azpg.z(p())[g() | F()]
Send(b,k) = pass Azpg.(b.add A.z(p())[q() | ()])
(ping (yyz) >n ()
Halt = pass Azpq.z I 2?‘237{; u)dg;()zv,, v)) [q0)]
) | (o (d,m,v) =0)
P(m,v) = ([ping =m]m v,([add = m]m v,0))

Thus, when a locality has failed, it prevents all outgoing
messages from leaving the failed locality: no sublocality may
send a message outside. Similarly, with respect to incoming
messages, a failed locality only accepts messages sent on ping
or on add for itself or its sublocalities. Messages on ping are



emitted locally, and will be subsequently reduced by the new
definition for ping, that will answer saying the sublocality
has failed. Messages on add will add the migrating location
to the current locality, thereby cutting it from the rest of
the world.

We remark that the sublocalities of the failing one are
still active, but they cannot communicate with the outside
world. This translation strongly relies on the interception
of routed messages by controller processes.

5 Related work

Several distributed process calculi have been proposed in the
recent years, but they all have shortcomings as distributed
programming models:

e Ambient calculi, such as the original Mobile Ambients
[3] and the subsequent variants (Safe Ambients [9], Safe
Ambients with Passwords [12], Boxed Ambients [2],
Controlled Ambients [21]), provide a simple model of
hierarchical localities with fine-grained control over lo-
cality moves and communications, but their basic mo-
bility primitives (the in and out capabilities) require a
3-party atomic handshake which makes them costly to
implement in a distributed setting as illustrated by the
implementation of Mobile Ambients in the Distributed
Join calculus [7].!

e Higher-order process calculi such as as Facile/ CHOCS
and Dz [24] model process mobility via higher-order
communication and remote process execution, but lack
an explicit notion of locality to account for potential
failures or to provide a basis for access control. Fur-
thermore, they do not allow for a running process to
be migrated to a different locality, unless the process
has been explicitly defined to allow for such a migra-
tion.

e Variants of the first-order asynchronous w-calculus with
explicit localities such as the Distributed Join calculus
[5, 10], Nomadic Pict [23], DiTyCo [11], or the my-
calculus [1], feature process migration primitives (go in
the Distributed Join calculus, spawn in the 7i;-calculus,
migrate in Nomadic Pict) but lack sufficient control
over resource access and process migration.

Compared to these works, the M-calculus has several dis-
tinguishing features. Its notion of programmable locality al-
lows the definition of different forms of locality within the
same calculus. In contrast, the calculi above, or even calculi
such as Klaim [13, 14] (that uses generative communication
as its basic form of communication), or ATF [4] (that consid-
ers distributed 2-phase transactions as processes), consider
only a single form of locality. In distributed calculi, many
alternatives exist when it comes to combine communication
and localities. At one extreme lies the fully transparent com-
munication of the Distributed Join calculus, where messages

LRecent work on a distributed abstract machine for Safe Ambients
[16], just reinforces this point. The distributed implementation of am-
bients proposed there does away with the problem by implementing
the in and out capabilities locally (by using cocapabilities and single-
threadedness), and interpreting the open capability as a move to the
implicit location of the parent ambient. In this interpretation, ambi-
ents no longer characterize the physical distribution of a computation,
which defeats the original intent of the calculus. Furthermore, work
on Boxed Ambients successfully argues against the open capability.

are routed directly to the target locality. At the other ex-
treme lies Mobile Ambients, where communication is purely
local to an ambient and remote communication must use
migration primitives and explicitly encoded routes to de-
liver an ambient message. The Seal calculus [22] and Boxed
Ambients lie between these two extremes by providing the
ability to communicate across one locality boundary. In the
M-calculus, we still provide transparent routing but allow
messages to be intercepted each time they cross a locality
boundary. Finally, one may remark that there are strik-
ing similarities between controlling migration on one hand,
and controlling communication on the other hand. For this
reason, we take the further step to merge the two aspects,
by considering a higher-order calculus. In our setting, mi-
gration becomes communication of a thunk or passivated
process.

With respect to the type system, Yoshida and Hennessy’s
work on DA, a higher-order distributed process calculus
[25], is closest to our own. Dz allows the communication
of processes as thunks. In this regard, it is similar to the
M-calculus. There are however several important differences
that we now detail. The two calculi take a different approach
to the determinacy of communication. As in the Join cal-
culus, the D7 calculus adopts a “channel locality” invari-
ant, which ensures a channel or resource is only present in
one locality. In the M-calculus, resources of the same name
can be present in different localities in order to allow for dy-
namic binding. The M-calculus therefore relies on addressed
resources, where a resource name is annotated with a lo-
cality name, to ensure the determinacy of message routing.
The “unicity of locality names” invariant in the M-calculus is
more complex to ensure than the “channel locality” invariant
in the D7 calculus. This is due to the passivation operator
in the M-calculus. This operator has no counterpart in the
Dm calculus, where the only way to obtain a thunk (frozen
process) is by either specifying it, or by receiving it. The
ability to passivate an active process, as in the M-calculus, is
powerful but it makes the type system more complex, as the
type of the passivation operator depends on some type infor-
mation of the passivated process. As in the DwA calculus, a
process in the M-calculus has a type that gives information
on its behavior (its interface for the D7), its active localities
for the M-calculus). More precisely, the type of a term is a
conservative approximation of the value or process it may
become. Thus locality errors in DrA and multiple locality
definitions in the M-calculus only lead to type errors if the
faulty process may eventually become active. Both systems
also have a form of dependent types, but they are dealt with
differently. In the Dz A-calculus, name variables can occur in
types and can be bound in types, yielding dependent types.
In the M-calculus, the dependency between input and out-
put of a resource (channel) is represented as a type variable
(which may stand for a locality name) that is generalized.
According to the type of the argument, the type variables
of the type scheme of a resource are instantiated to the cor-
rect values, and the type of a message is thus dependent
on the type of the argument. In order to simplify the type
system of the M-calculus, we allow cell names in the types
but not name variables. We use instead name type vari-
ables, which provide us with a cleaner distinction between
types and names. The advantage of dependent types ap-
pears when considering partial application: if the result of
an application is a function that has a dependent type, this
function may still be applied to several frozen processes hav-
ing different types, which is impossible when relying on first



order polymorphism. However, previous work on the typing
of the Join calculus and our experience with programming in
JoCaml showed us that first order polymorphism is useful,
well-understood, and powerful enough when using Join pat-
terns. Finally, both the Dn A calculus and the M-calculus al-
low input on channels that were received previously, but the
D7 uses finer input-output types for channels that could
be adapted to our setting.

6 Conclusion and future work

We have presented in this paper the M-calculus, a higher-
order distributed process calculus, and an associated type
system that statically enforces the unicity of locality names,
a crucial invariant for the determinacy of final destination
for remote messages. The M-calculus constitutes a non-
trivial and powerful extension of the Join calculus [5, 10]
with call-by-value higher-order functions, programmable lo-
calities, and dynamic binding.

The possibility to define, within the same calculus, dif-
ferent kinds of localities, with non-trivial behavior, is an
important requirement for a realistic foundation of distrib-
uted mobile programming. While the M-calculus still falls
short of meeting key requirements for advanced distributed
programming (e.g. support for transactional behavior), we
believe it constitutes an important step.

To validate the implementable character of the M-
calculus, we have defined and implemented a distributed
abstract machine for it [8], and, in order to prove the cor-
rectness of our abstract machine, we are working on an an-
notated lower-level calculus that makes the routing and pas-
sivation reduction rules more local. In parallel, we are defin-
ing notions of observables in order to compare, using oper-
ational equivalences, the annotated calculus to the original
calculus, and to study the correctness of the translations
from distributed calculi to the M-calculus.
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