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Abstract

This paper presents a new distributed process calculus�
called the M�calculus� that can be understood as a higher�
order version of the Distributed Join calculus with program�
mable localities� The calculus retains the implementable
character of the Distributed Join calculus while overcoming
several important limitations� insu�cient control over com�
munication and mobility� absence of dynamic binding� and
limited locality semantics� The calculus is equipped with
a polymorphic type system that guarantees the unicity of
locality names� even in presence of higher�order communi�
cations � a crucial property for the determinacy of message
routing in the calculus�

� Introduction

Among the process calculi which have been introduced over
the past decade to serve as a basis for a distributed and
mobile programming model� the Distributed Join calculus
��� 	� 
�� constitutes an interesting milestone� It provides
a distributed programming model with hierarchical fail�stop
localities� transparent mobility and communications� and it
can be e�ciently implemented� The Distributed Join calcu�
lus� however� has several limitations�

� It o
ers insu�cient control over communication and
process mobility� which is an issue in distributed en�
vironments where security is a primary concern� For
instance� it is not possible to prevent a locality from
migrating to another locality� except by forcing its fail�
ure� Also� once a resource �a Distributed Join calculus
de�nition� has been de�ned and communicated� it is
very di�cult to prevent access to that resource or to
de�ne the equivalent of a �rewall ����

� It does not support dynamic binding� In a distributed
programming model� it is important to provide both
local and remote equivalent of libraries or services� be�
cause of the cost� safety� and security considerations
that may apply� Thus� it should be possible to access
identically named libraries or services �like a print ser�
vice� at di
erent sites� In the Distributed Join calculus
such a choice is not directly available since each de�ni�
tion is uniquely de�ned� every resource is permanently
bound to a single locality�

� It does not support the de�nition of localities with dif�
ferent semantics� For instance� localities in the Distrib�
uted Join calculus are de�ned to be fail�stop� While it

would be possible to change the semantics of the cal�
culus to accommodate di
erent failure modes �such as
omission or byzantine failures�� the question remains as
to how one can combine di
erent failure modes within
the same calculus� Likewise� one could require a lo�
cality to be endowed with a particular form of access
control �e�g� restricting access to resources within a lo�
cality to principals appearing in an access control list��

The M�calculus presented in this paper is designed to
overcome the limitations of the Distributed Join calculus
while preserving some of its key features� notably� its con�
cept of hierarchical localities �which is crucial to deal with
security� migration� and failures�� its notion of multiway syn�
chronization� and its implementable character�

Speci�cally� the main contributions of this paper are�

� the notion of programmable locality� that generalizes the
di
erent concepts of locality found in the Distributed
Join calculus and other distributed process calculi�

� the conjunction of higher�order processes and hierar�
chical programmable localities to unify communication
and process migration� combining the possibility of
transparent routing as in the Distributed Join calculus
with �ne�grained ambient�like control over information
exchange�

� the introduction of a passivation operator as a key
primitive for programming di
erent forms of control
that can be exercised by localities�

� the de�nition of a type system that guarantees the de�
terminacy of the routing mechanism by ensuring that
every locality bears a unique name� even in presence of
higher�order communication�

A programmable locality in the M�calculus �or locality�
in brief� has a name and contains two processes� a con�
troller� which �lters incoming and outgoing messages� and
a content� In order to apply the same control mechanisms
to remote communication and process migration� the latter
is just communication of a thunk� i�e� a frozen process� A
running locality may be frozen by its controller using the
passivation operator� This operator takes a function that
de�nes the operations to apply on the controller and con�
tent processes of a locality� such as sending them in a remote
message� discarding them� or modifying them�

The paper is organized as follows� Section � de�nes the
syntax and operational semantics of the M�calculus� Sec�
tion � introduces a type system that ensures the unicity of






P ��� process
� null process

j V value
j a�P ��P � locality
j P j P parallel composition
j PP application
j �P� � � � � P � tuple
j �n�P restriction
j ��� � V �P�P � conditional
j hJ �P i reaction rule
j pass V passivation

V ��� value
�� null value

j u name
j �V� � � � � V � tuple
j �x�P abstraction

J ��� Join pattern
rex message

j J j J synchronization

Figure 
� Syntax of the M�calculus

n ��� resolved name
r resource name

j a locality name

r ��� variable resource name
r resource name

j x variable

a ��� variable locality name
a locality name

j x variable

u ��� name
a variable locality name

j r variable resource name
j a�r located resource

� ��� name pattern
n resolved name

j any name

Figure �� Names

locality names� Section � gives an encoding of the Join cal�
culus that illustrate the versatility of the calculus� Section
	 discusses related work� Section � concludes the paper�

� The M�calculus

We present in this section the M�calculus� introducing the
syntax and the semantics as we describe local communica�
tion� remote communication� control� and migration� The
syntax is summarized in �gures 
 and ��

Communication takes the form of an asynchronous�
channel�based� point�to�point exchange of messages� re�ect�
ing the dominant mode of communication in current large
scale networks� Channels are called resources and we as�
sume there is an in�nite countable set of resource names�
We let r range over this set� A local message is an applica�

tion of a resource name to a tuple of values reV � Receivers
in the M�calculus are reaction rules composed of a multi�

E ��� � � � j EV j PE j �n�E j �E j P � j a�P ��E�

j a�E��P � j �P�� � � � �E� � � � � Pn�

Figure �� Evaluation contexts

��x�P �V � PfV�xg
�R�Beta�

match��� V �

��� � V �P�Q� � P
�R�If�Then�

�match��� V �
��� � V �P�Q� � Q

�R�If�Else�

a�pass V j P ��Q�� V a���P ����Q�
�R�Passiv�

hJ � P i � hr�fx� j � � � j rnfxn �P i
hJ �P i j r�fV� j � � � j rnfVn � hJ �P i j Pf

fVi�
fxi
g
�R�Res�

P � Q
E�P � � E�Q�

�R�Context�

P � P � P � � Q� Q� � Q
P � Q

�R�Equiv�

Figure �� Reduction� Computing Rules

way synchronization pattern �similar to the one proposed
informally by Milner for his �Polynomial ��calculus� and to
Join patterns�� and of a guarded process� Every reaction
rule hr�fx� j � � � j rnfxn �P i de�nes the resource names r��
� � � � rn� The formal parameters fx�� � � � � fxn are tuples of
variables� and we assume there is an in�nite countable set
of variables� The local communication rule is very similar to
the Join rule of the Join calculus� substituting message ar�
guments for formal arguments in the guarded process �rule
R�Res of �gure ��� We remark that the reaction rule is
replicated� it does not disappear after reduction� We also
remark that a reaction rule does not bind its de�ned names�
New resource names are introduced and bound using a re�
striction operator �r�P �

In the reduction rules introduced in �gure �� rule
R�Context uses evaluation contexts de�ned in �gure ��
and rule R�Equiv uses structural equivalence� Structural
equivalence� �� is the smallest equivalence relation that sat�
is�es the rules given in Figure 	� where the parallel compo�
sition operator j for processes is taken to be commutative
and associative� with � as its neutral element� The struc�
tural rules comprise scope extrusion rules for the restriction
operator� standard rules for equivalence under ��conversion�
and congruence for evaluation contexts� Equivalence of two
processes P and Q up to ��conversion is noted P �� Q�
We recall that in �n�P � �x�P � and hr�fx� j � � � j rnfxn �P i�
the names and variables n� x� and xij are bound in P � Free
names of a process P are de�ned as usual and written fn�P ��
We recall that the de�ned names of a reaction rule hJ �P i
are free�

As a communication example� we may write a reference

�



n �� fn�Q�

��n�P � j Q � �n�P j Q
�S�Nu�Par�

n �� fn�Q� � n �� a

a��n�P ��Q� � �n�a�P ��Q�
�S�Nu�Ctrl�

n �� fn�P � � n �� a

a�P ���n�Q� � �n�a�P ��Q�
�S�Nu�Cont�

P �� Q

P � Q
�S���

P � Q

E�P � � E�Q�
�S�Context�

Figure 	� Structural equivalence

cell process as in the Join calculus�

�
� �s� hget�k� j s�st� � k�st� j s�st�i

j hset�st�� j s�st� � s�st��i
j s���

�
A j get�print� j set���

which may reduce to print��� or print����
We now describe remote communication of asynchronous

messages� In many calculi� remote communication involves
two steps� resolving where to send the message� and send�
ing it� For instance� in the distributed Join calculus� every
channel is de�ned in at most one location and de�nitions
cannot move from one location to another� Thus a de�ned
channel name is unambiguously associated to the location
containing its de�nition� In the dynamic Join calculus �
���
the destination for a dynamic message is resolved accord�
ing to the channel name and the current position of the
message� In the Ambient calculus� an ambient migrates ac�
cording to the explicit capabilities that it expresses and its
local environment� The destination of a message in the Box�
� calculus ���� also depends on the immediate environment
of the message� In order to avoid restricting the calculus
to one particular semantics� we let the resolving step be a

part of the calculus� a remote message has the form a�reV �
where a is the explicit destination of the message� which
can be thus chosen by the programmer� We see that an ad�
dressed resource a�r is composed of an address �a locality
name�� which may correspond to an IP address� and a re�
source name� which may correspond to a port number� This
construction is similar to the high�level c�a construct of No�
madic Pict ����� The second step of remote communication
is the actual sending of the message to the remote locality�
This communication step might be direct independently of
the relative positions of the message and the destination� as
in the Join calculus� or it might involve several local steps�
following the structure of localities to reach the destination�
as in the Ambient calculus� We remark that these two mod�
els may coincide when considering a �at model of localities�

Just as in the Distributed Join calculus and in Ambient
calculi� we retain the idea of hierarchically organized local�
ities� a crucial feature for capturing the spatial and logical
partitioning of control in distributed systems� We assume
there is an in�nite countable set of locality names� and we
let a� b range over this set� New locality names are intro�
duced and bound by the restriction operator �a�P � To de�ne
the routing rules� we write locs�P � for the multiset of un�
restricted active localities of P � This multiset is formally
de�ned in �gure �� In the rest of this paper� we say that a
process P is active in Q if Q is structurally equivalent to a

a�P j a�reV ��Q�� a�P j reV ��Q�
�R�A�Ctrl�Final�

a�P ��Q j a�reV �� a�P ��Q j reV �
�R�A�Cont�Final�

b � locs�P � � locs�Q� � fag

b�reV j a�P ��Q�� a�P j i�b� r� eV ���Q�
�R�A�In�

b � locs�Q� n locs�P � b �� a

a�P j b�reV ��Q�� a�P ��Q j b�reV �
�R�A�Ctrl�To�Cont�

b �� locs�P � � locs�Q� b �� a

a�P j b�reV ��Q�� a�P ��Q� j b�reV �R�A�Ctrl�To�Env�

b �� locs�Q� b �� a

a�P ��Q j b�reV � � a�P j o�b� r� eV ���Q�
�R�A�Out�

Figure �� Reduction� Routing Rules �Addressed Messages�

locs��n�P � � locs�P � n fng locs�PQ� � 	
locs�a�P ��Q�� � a� locs�P �� locs�Q� locs�hJ �Qi� � 	
locs�P j Q� � locs�P �� locs�Q� locs���� � V �P�Q�� � 	
locs�pass V � � 	 locs�V � � 	
locs��� � 	 locs�P�� � � � � Pq� � 	

Figure �� Active localities

process of the form E�P � for some evaluation context E� Lo�
calities in the M�calculus provide the means to enforce some
control on incoming and outgoing messages� This control
may be arbitrarily complex� may require maintaining some
state� and should be kept separate from the program run�
ning in the locality� For this reason� localities take the form
a�P ��Q� where a is the name of the locality� P is a process
controlling the locality and its interactions with the envi�
ronment� and Q is the content of the locality� The �rst role
of the controller is to �lter incoming and outgoing messages�
To this end� we introduce two special resource names i and
o on which incoming and outgoing messages are intercepted
�rules R�A�In and R�A�Out in �gure ��� On interception�
an incoming or outgoing message is split into three parts�
the destination address� the targeted resource� and the mes�
sage arguments� The controller should provide a reaction
rule for these �ltering channels� implementing the desired
behavior� For instance� a locality that does not want to
block any message could contain the process Fwd in its con�
troller� where�

Fwd
def

� hi�x� y� z� � x�y zi j ho�x� y� z� � x�y zi

We remark that this de�nition is stateless and relies on the
other routing rules to send the message to its �nal destina�
tion automatically� even though the routing is step by step�
it is not necessary to specify how to take each step� This is
much di
erent from the Ambient calculus where an explicit
path to the target ambient needs to be given�

As localities form a tree� there is no notion of site as in
Nomadic Pict �a site can be modeled by a locality at a given
level in the tree� and the routing algorithm is part of our
semantics� It is however possible to express di
erent routing
algorithms by forwarding messages from locality to locality
using some speci�ed resource� One example of this is the
simulation of the dynamic Join calculus in the M�calculus

�



r �� dln�P � r � dln�Q�

a�P j reV ��Q�� a�P ��Q j reV �
�R�L�Ctrl�To�Cont�

r � dln�P � r �� dln�Q�

a�P ��Q j reV � � a�P j reV ��Q�
�R�L�Cont�To�Ctrl�

Figure �� Reduction� Routing Rules �Local Messages�

dln�PQ� � 	 dln��n�P � � dln�P � n fng
dln�P�� � � � � Pq� � 	 dln�hr� j � � � j rq � P i� � fr�� � � � � rqg
dln�a�P ��Q�� � 	 dln�P j Q� � dln�P � � dln�Q�
dln���� � V �P�Q�� � 	 dln�pass V � � 	
dln��� � 	 dln�V � � 	

Figure �� De�ned local names

in �
��� It is also possible to intercept and reroute messages
using the control mechanism� as shown in section ��

A message present in the controller is considered as hav�
ing been controlled and may freely leave the controller �rules
R�A�Ctrl�To�Cont and R�A�Ctrl�To�Env�� When a
message has reached its �nal destination� it becomes a local
message �rules R�A�Ctrl�Final and R�A�Cont�Final��
Local messages may move freely from controller to content
and vice versa ��gure ��� depending on where the resource
is de�ned� To this end� we call de�ned local names the set
of resources that are de�ned in a given process without in�
specting sublocalities� This set is formally de�ned in �gure
�� We give an example of transparent incoming message
routing in �gure 
��

a�reV j b
�
hi�d� r� v� � d�rvi

��
a�hi�d� r� v� � d�rvi��hr � � � � i�

�
� b

�
hi�d� r� v� � d�rvi j i�a� r� eV �

��
a�hi�d� r� v� � d�rvi��hr � � � � i�

�
� b

�
hi�d� r� v� � d�rvi j a�reV �� a�hi�d� r� v� � d�rvi��hr � � � � i�

�
� b

�
hi�d� r� v� � d�rvi

��
a�reV j a�hi�d� r� v� � d�rvi��hr � � � � i�

�
� b

�
hi�d� r� v� � d�rvi

��
a�hi�d� r� v� � d�rvi j i�a� r� eV ���hr � � � � i�

�
� b

�
hi�d� r� v� � d�rvi

��
a�hi�d� r� v� � d�rvi j a�reV ��hr � � � � i�

�
� b

�
hi�d� r� v� � d�rvi

��
a�hi�d� r� v� � d�rvi j reV ��hr � � � � i�

�
� b

�
hi�d� r� v� � d�rvi

��
a�hi�d� r� v� � d�rvi��hr � � � � i j reV �

�

Figure 
�� Remote communication example

One interesting feature when writing a reaction rule for
the �ltering channels i and o is to be able to test the target
locality or resource� To this end� we introduce a simple name
matching operator ��� � V �P�Q�� whose semantics �rules
R�If�Then and R�If�Else in �gure �� rely on a match��
predicate� which is true only in the following cases�

match� � V � match�n� n�

As in the Ambient calculus and the Join calculus� we pro�
vide a way to modify the tree structure of localities� How�
ever� we want to be able to control incoming and outgo�
ing localities at every locality boundary� as is possible with
remote communication� We thus unify migration and re�
mote communication by considering migration as the com�
munication of a frozen process� A frozen process is of the
form ��P � and may be unfrozen by applying it to the unit

value� We actually consider a generalization by embed�
ding a call by value ��calculus within our calculus �with the
usual 	 reduction rule R�Beta of �gure ��� We use stan�
dard notational conventions� in a term �x�P or �n�P � the
scope extends as far to the right as possible� PQ� � � � Qn

stands for �� � � �PQ�� � � � Qn�� and �x� � � � xq�P stands for
�x�� � � � �xq�P � �n� � � � nq �P stands for �n�� � � � �nq�P � We
also make use of the notation ��P to stand for a thunk �x�P �
with x not free in P �

The passivation primitive pass V � where V is a function
expecting a locality name and two frozen processes� is intro�
duced to freeze running processes� Passivation is the second
role of a controller� when evaluated in the controller of a lo�
cality a�pass V j P ��Q�� the locality is split into three parts�
its name a� its frozen controller ��P � and its frozen content
��Q� These parts are given as arguments to the function V �

a�pass V j P ��Q� � V a ���P � ���Q�

For instance� a function V � �xpq�x�p����q��� simply
recreates the passivated locality�

Locality mobility can be implemented using higher�order
messages and passivation �cf the go construct in the Join
calculus and ambients in and out capabilities�� Locality
Qm�a� below can be moved to a di
erent locality�

Q
m�a� � a�Fwd j hgou �Go�u�i��Q�

Go�u� � pass �x p q��u�enter ��x�p����q����

A request go b� results in the passivation of the locality a
and its sending as a thunk to the resource enter of the lo�
cality named b� If the request comes from the outside of
the locality� the result is an objective form of move� If the
request comes from the content of the locality� the result is
a subjective form of move� The controller of locality b can
contain the process Enter below to allow the insertion of a
new locality in its content�

Enter � henter f � pass �xp q�x�p����q�� j f���i

Passivation may also be used to implement various forms
of control on a locality� Locality Qo�a� below can be sus�
pended� resumed� dissolved �cf the open capability of ambi�
ents�� and updated with a new controller �we note simply r
a message of the form r�� ��

Qo�a� � �s on�L�a� s� on�

L�a� s� on� � a

�
� Fwd j hsuspend j on � S�s�i

j hresume j s f �R�f� on�i
j hopen �Oi j hupdate f �U�f�i j on

�
A �Q�

S�s� � pass �xp q�x�p�� j �s q�����

R�f� on� � pass �xp q�x�p�� j on��f���

O � pass �xp q�q��

U�f� � pass �xp q�x�f����q���

As usual� we take the reduction relation for the M�
calculus� �� as the smallest relation that satis�es the rules
given in Figures �� �� and ��

� Type system

The routing rules for addressed messages in Figure � rely
on locality names and active localities� Locality names thus

�



	 ��� type
� process type

j 
 value type


 ��� value type
unit unit type

j � plain type variable
j dom�w� name type
j 
�� � � � � 
q tuple type
j 
 � 	 function type
j h
i� plain resource

j h
i�� sendable resource

w ��� locality name variable
a locality name

j � name type variable
j 	 no such locality

� ��� locality name multiset
	 empty multiset

j � multiset variable
j � name type variable
j a locality name
j ��� multiset union

s ��� 
e�e�e��
 type scheme

Figure 

� Types� Syntax

play the role of addresses in the M�calculus� However� to
faithfully mirror the situation in current wide area networks�
and to allow for an e
ective implementation of the calculus�
one must ensure the determinacy of the �nal destination of
a remote message by ensuring that no two active localities
may bear the same name� Unfortunately� it is not possible
to obtain this property by syntactic means only� In fact�
even a simple type system will not do because of the higher�
order features of the calculus� In presence of the passivation
operator� one must indeed be careful of the e
ects of func�
tions on locality names� For instance� if a resource twice is
de�ned as htwice f � f�� j f��i� then a passivation instruction
of the form pass �xp q��twice��x�p����q���� may lead to the
illicit duplication of the passivated cell�

To enforce the unicity of active locality names� we in�
troduce the following type system� The grammar for types
is given in Figure 

� We remark that terms in the M�
calculus are partitioned in two kinds� processes and expres�
sions� This distinction is di�cult to expose while relying
only on the syntax� mainly because of functional application
�the result of an application may either be an expression or
a process�� but the intuition behind this partition is that
processes may be put in parallel� and include messages� lo�
calities� controller and content of localities� whereas expres�
sions may reduce to values and include functions� tuples�
names� We formalize this partition by making a distinction
among types 
 between process types 	 and value types ��
Process types are multisets of locality names� representing
an upper bound of the localities that may be or become
active in the process� Value types represent the value the
expression may eventually reduce to� They include function
types � � 
 � tuple types e�� the unit type� and types for
names� Resource names have type h�i� or h�i�� if they ex�
pect an argument of type � �which may be a tuple� and
if a message on this resource name leads to the creation of
localities 	� A resource name with the type h�i�� may be

received and used for further input� as in the creation of
a reaction rule hcreate x �hx�� � a������ii� where create may
have the type hhuniti�a i�� Locality names have type dom�w��
where w may either be a locality name a� a name type vari�
able �� or the empty set �� Intuitively� a locality name a has
singleton type dom�a�� a variable x may have type dom����
and no name may have type dom��� �this last type is needed
for technical reasons�� Name type variables � re�ect term
variables x that may be instantiated to locality names� as
in hcreate�x�� x������i where create may be given the type
���hdom���i��

Multisets 	 include locality names a� name type vari�
ables �� multiset variables 
� the empty multiset �� and
unions of multisets 	�	�� The basic intuition to guaran�
tee the unicity of names of active localities in a process P
is to type a process P with a multiset 	� If this multiset
happens to be a set� then we prove that every active locality
bears a unique name�

We use �e�e�e
�� to denote a type scheme where plain type

variables e�� name type variable e� and multiset variables e

are generalized� We use 	 to range indi
erently over these
di
erent type variables�

In what follows� we consider an extended syntax for the
M�calculus� where new resource names are required to be
annotated by their type scheme� in order to specify whether
the resource has a plain resource type �which may be poly�
morphic� or if it has a sendable resource type �which cannot
be polymorphic for safety reasons��

The intersection operation between multisets� �� is the
standard intersection on multisets �taking the smallest num�
ber of occurrences in both multisets�� The inclusion relation
� between multisets is also the standard one� By 	 �	��
we denote the multiset which is composed of the elements of
	 �locality names or multiset variables� after removing each
element of 	�� For instance 
� 
� a� b� b� 
� a� a� b � 
� b�

We now de�ne a subtyping relation 	 �where e� and e��
are tuples of the same size n��

� � �� � � 
 ��

e
 � e
� � �
i � 
�i�
i�����n�

unit � unit 
 � 	 � 
� � 	 � � 
� � 
 and 	 � 	 �

dom�w� � dom�w� h
i� � h
�i�� � 
� � 
 and � � ��

� � � h
i� � 
� � �� � 
� � 
 and � � ��

h
i�� � h
i�� h
i�� � h
�i�� � 
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The intuition behind the subtyping relation is that it is
safe �with regard to the unicity of locality names� to replace
a process that includes more active localities with a process
that includes fewer active localities� It is also safe to replace
a function by a resource name if the types agree �a resource
name may be used to send a message� by functional applica�
tion� but it can also be used to create an addressed resource
name�� It is �nally also safe to replace a plain resource name
by a sendable resource name �sendable resource names may
be used for message sending� but they can also be used to
instantiate variables that are de�ned names of a Join pat�
tern��

We remark that sendable resource types have no subtype�
except themselves� This is necessary for type safety since�
unlike ����� we do not distinguish between input and output
types�

We de�ne the symmetric t and u operators on types
in �gure 
� �other possible cases not listed are unde�ned��
	� t	� is de�ned as the multiset where the multiplicity of
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Figure 
�� De�nition of t and u
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Figure 
�� Typed Contexts

each name a is taken to be the max of the multiplicities in
	� and 	�� and 	� u 	� is de�ned as the multiset where
the multiplicity of each name a is taken to be the min of the
multiplicities in 	� and 	� �it is the usual intersection on
multisets��

We use 
 and its decorated variants to denote type en�
vironments� i�e� �nite mappings between names and type
schemes� We de�ne the set of free plain type variables ftv��
as usual� We de�ne the set of free multiset variables fsv��
and the set of free name type variables fwv�� as follows�

fsv�	� � 	 fwv�	� � 	
fsv��� � f�g fwv��� � 	
fsv��� � 	 fwv��� � f�g
fsv�a� � 	 fwv�a� � 	

fsv������ � fsv��� � fsv���� fwv������ � fwv��� � fwv����

We let the set of free variables fv�� be the union of ftv���
fsv��� and fwv��� Type judgments take the following form�
where C is an M�context extended with a typed hole� as
de�ned in Figure 
�� 
 
 C � 
 and 
 
 P � 
 �

We write fun��� 
� for either � � 
 � h�i� � or h�i
�
� �in

the latter two cases� 
 is necessarily a process type 	�� We
write chan���	� for either h�i� or h�i���

In order to correctly type the i and o resources� we
consider only type environments with the following asso�
ciations�

i � 
����hdom���� h�i�� �i� � o � 
����hdom���� h�i�� �i�

Both the i and o resources expect a locality name �the
destination of the message�� the targeted resource expecting
an argument of type � and creating localities 
� and an
argument of type �� A message on such a channel potentially
creates localities 
�

The type system is de�ned by the rules in Figure 
��
They make use of the Inst operator� that takes a type
scheme and returns a type where the generalized plain type

variables� multiset variables� and name type variables have
been instantiated to types� multisets� and locality names or
name type variables respectively�

Typing rule Joinmay seem complex but is the usual typ�
ing rule for Join patterns� the guarded process is typed in an
environment extended with the formal parameters� and the
result is checked to create fewer localities than advertised
by the resource types� Every de�ned resource name that
is a variable is checked to have a sendable resource type in
the environment� The additional hypotheses check that the
type schemes associated with the resources are consistent
with the typing environment� following the usual rules of
the Distributed Join calculus� no generalized variable may
occur free in the environment nor be shared by two resources
in a Join pattern� In rule Pass� the passivation function is
checked to have a type that is a subtype of a function ex�
pecting a locality name and two thunks� The name type
variable � in the locality name type represents the name of
the passivated cell� Each thunk type includes a multiset vari�
able 
� or 
� representing the active localities of the thunk�
These three variables are intuitively generalized by check�
ing that they do no occur in the typing environment �they
will respectively be substituted by the name of the passi�
vated locality and by the active localities of the controller
and content� that are unknown when typing the primitive��
The type of the whole passivation construct is simply the
type of the result of the passivation function� removing the
name of the passivated locality and the multiset variables
since the locality is passivated�

The soundness of the our type system is characterized
by the following de�nitions and theorems�

De�nition ��� �Well�formed typing environment�
A typing environment 
 is well�formed if and only if �
� 


only contains associations of the form r � �e	�h�i�� r � h�i���
and a � dom�a�� and ��� we have fn�
� � dom�
��

Lemma ��� �Subject reduction for �� Let 
 
 P � 

be a typing derivation with 
 well�formed� If P � P �� then
there exists a typing derivation 
 
 P � � 
 �

Theorem � �Subject reduction� Let 
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 � 	 
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 ��
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Figure 
�� Typing rules

De�nition ��� �Failure� A locality a�P ���Q�� is said to be
free and active in P if it is active in P and if it is not under
a scope restriction for a�

A process P has failed if and only if there is some process
P � active in P containing at least two free and active local�
ities bearing the same name�

Theorem � �Progress� Let 
 
 P � 	 be a typing deriva�
tion with 
 well�formed� If 	 is a set containing only locality
names� then the process P has not failed�

Most of the complexity of the subject reduction proof
is alleviated by distinguishing name variables x from name
type variables �� greatly simplifying the substitution lemma�
Complete proofs are available in the draft of the long version
of this paper �
���

Our notion of progress deals only with the unicity of
active locality names� Since our type system is very close
to type systems for the ��calculus and the Distributed Join
calculus� this progress property can be easily extended to
more usual guarantees�

We now discuss the power and limits of our type system�
Linearity� Since our type system aims at enforcing

the linearity of names of active localities� we describe how
this feature interacts with functions �or resources� that are
not linear� First of all� our system guarantees the linearity
of names of localities that are active �as described in theo�
rem ��� Relaxing the linearity constraint for localities that

are not active yields a much simpler type system �e�g� our
system allows the typing of ��a������ j a������ as long as
this function is not applied�� We also require linearity of
a newly introduced locality name in the process under the
scope restriction �rule Nu�Dom� since the introduced name
should not occur in the type�� We recall that the type of
a process is a conservative approximation of the active lo�
calities it may contain� In the following� we only consider
processes that are active�

Consider for instance the following function �x�x�� j x���
This function takes a frozen process and runs it twice� It is
perfectly reasonable to apply it to a frozen process that does
not release localities with free names� as in� ��x�x�� j x������
or ��x�x�� j x������a�a������� In these cases� the function
has type �unit � �� � �� The type system would reject
applying this function to the thunk ��a�������

A function �x�x��� that only runs a process� can be given
the type �unit � 	� � 	� Since functions never have
polymorphic types� one can instead consider a resource run
de�ned as hrun�x� � x��i� Such a resource can be given the
type �
�hunit� 
i�� it simply recreates the active localities
frozen in its argument� The check that these localities do
not interfere with currently active localities is done when
typing a message on run� We remark that our use of multiset
variables is very similar to row variables described in �
	��

Subtyping� Subtyping is explicitly used in typing rule
App� Returning to the example of the run resource above�
this resource can receive a frozen process as argument� as
in �run��a��������� It can also receive a resource name� as

�



in �run createa� with hcreatea�� � a������i� since hunitia 	
unit � a�

The subtyping used in typing rule Join gives some �ex�
ibility when de�ning a resource� since the type of the re�
source gives an upper bound on the localities that may
be created� For instance� the special channel i has type
���
�hdom���� h�i�� �i�� Typical de�nitions for this channel
are hi�d� r� args� � d�r argsi� which simply sends the mes�
sage� and hi�d� r� args���i� which discards it� The typing of
the second de�nition relies on the fact that this de�nition of
i does not create all the localities it is allowed to�

Dependent Types and Polymorphism� Our type sys�
tem does not allow dependent types� but simulates them
using polymorphism and name type variables �type vari�
ables that represent locality names�� since locality names
may occur in types� For instance the resource new in
the de�nition hnew�x� � x������i may be given the poly�
morphic type ���hdom���i�� it expects any locality name
and creates a locality with this name� Our solution is
less powerful than dependent types� since it does not al�
low the typing of ��f�f a j f b���x�x�������� How�
ever� polymorphism is powerful enough to let us type
de�nitions of the form� hcreate�x� p� q� � x�p����q���i� with
create ���
�
��hdom���� unit � 
�� unit � 
�i������� �

Passivation� One limitation of our type system comes
from the passivation operator� Consider for instance the
following process� a �pass �xpq�x����b�������� �b�������� The
pass operator freezes locality a and respawns it� discarding
its controller and content� but adds a locality b in its content�
Since the locality b that is added is �rst discarded� one would
expect this process to be well typed� This is not the case
because the locality b is active� and may be sent somewhere
else �see for instance the migration example in section ���
This is why the process pass �xpq�x����b������� has type b�
this process creates an active locality b� independently of
the controller and content that are passivated� On the other
hand� the process pass �xpq�x�p����q��� has type � �it only
recreates a locality that has been passivated� and the follow�
ing process is well typed� a �pass �xpq�x�p����q���� �b��������

	 Simulating the Distributed Join calculus

Since the M�calculus is a direct o
spring of the Distributed
Join calculus� a translation of a Distributed Join calculus
process into an M�calculus process is relatively straightfor�
ward� Such a translation is interesting to present� however�
because it illustrates the versatility of programmable local�
ities� In the following� we only consider Join processes with
no free names� We proceed in three steps� in order to account
for the fact that resource names are introduced with their
types in the M�calculus� and that message routing requires
the messages to be annotated with address information�

The �rst step consists in typing the Distributed Join cal�
culus process� and annotating every local Join calculus de�n�
ition with the channel names �along with their type schemes�
and location names it de�nes� We write def �D�n� � s�� nq �
sq� a�� � � � � ar� in � � � the result of the �rst translation step of
def D in P if dn�D� � fn�� � � � � nqg�fa�� � � � arg and if the
channel names ni have type schemes si after generalization�
By de�nition of the types of the Distributed Join calculus�
the si are of the form �e��he
i� We suppose that these type
schemes have no free type variables� and we transform them
immediately in M�calculus type schemes� writing hi� instead
of hi�

The second translation step consists in annotating every
channel name that is not a variable with the locality where
its de�nitions reside� To do this� we rely on the fact that
in the Distributed Join calculus� the only locality in which
a de�nition may eventually be dissolved is the syntactically
enclosing locality� This property is a direct consequence of
the de�nition of migration� the only way to have processes
migrate in the Distributed Join calculus is by locality migra�
tion� Thus de�nitions cannot be separated from the locality
where they syntactically occur� For reasons of space� we do
not formally present the algorithm used in this second step�
which is roughly of the following form� for every channel
name that is not in a Join pattern� �nd the enclosing def

binder for this name� then �nd the name of the syntacti�
cally enclosing locality� and prepend the locality name to
the channel name�

The third step is the translation to the M�calculus itself�
We represent a location of the Distributed Join calculus a� � �
by a locality a�PJ �� � � with�

PJ � Fwd j hadd f �Add�f�i j hgo �b� �� �Send�b� ��i

Add�f� � pass �xpq�x�p����q�� j f���

Send�b� �� � pass �xpq��b�add ��x�p����q�� j �����

Wemay type the resource add with the type �
�hunit � 
i�
that expects a thunk and frees it� and the resource go with
the type ��
�hdom���� unit � 
i�� that expects a local�
ity name and a frozen continuation that it will eventually
spawn�

Writing �� � �� for the translation operator� we have�

��b�n�� � b�n ��b�� � b
��x�� � x ����� � �

��P j Q�� � ��P �� j ��Q�� ����� � �

��go b�P �� � go�b� ����P ��� ��D�D��� � ��D�� j ��D���
��b �D � P � �� � b�PJ ����D�� j ��P ���
��mhn�� � � � � nqi�� � ��m�����n���� � � � � ��nq ���
��n�hfx�i j � � � j nqhfxqi �P �� � hn�hfx�i j � � � j nqhfxqi � ��P ��i
��def �D�n� � s�� � � � � nq � sq� a�� � � � � ar� in P �� �

�n� � s�� � � � � nq � sq��a�� � � � � ar���D�� j ��P ��

Note that our translation is not entirely faithful with re�
spect to migration� since in the distributed Distributed Join
calculus migration does not occur if the target locality is a
sublocality of the moving one� In order to detect these cases�
we would need a more complex translation�

We now extend the previous translation to the Distrib�
uted Join calculus with failures� To do this� we only need to
change the translation of a locality� replacing the PJ con�
troller by the following PJF �a� controller�

PJF � Fwd

j hadd f �Add�f�i
j hgo �b� �� �Send�b� ��i
j hhalt �Halti
j hping �y� n� � y ��i

Add�f� � pass �xpq�x�p����q�� j f���
Send�b� �� � pass �xpq��b�add ��x�p����q�� j �����

Halt � pass �xpq� x

�
B�

hping �y� n� � n ��i
j hadd f �Add�f�i
j hi �d�m� v� �P �m�v�i
j ho �d�m� v� � �i

�
CA �q���

P �m�v� � ��ping � m�m v� ��add � m�m v����

Thus� when a locality has failed� it prevents all outgoing
messages from leaving the failed locality� no sublocality may
send a message outside� Similarly� with respect to incoming
messages� a failed locality only accepts messages sent on ping
or on add for itself or its sublocalities� Messages on ping are

�



emitted locally� and will be subsequently reduced by the new
de�nition for ping� that will answer saying the sublocality
has failed� Messages on add will add the migrating location
to the current locality� thereby cutting it from the rest of
the world�

We remark that the sublocalities of the failing one are
still active� but they cannot communicate with the outside
world� This translation strongly relies on the interception
of routed messages by controller processes�


 Related work

Several distributed process calculi have been proposed in the
recent years� but they all have shortcomings as distributed
programming models�

� Ambient calculi� such as the original Mobile Ambients
��� and the subsequent variants �Safe Ambients ���� Safe
Ambients with Passwords �
��� Boxed Ambients ����
Controlled Ambients ��
��� provide a simple model of
hierarchical localities with �ne�grained control over lo�
cality moves and communications� but their basic mo�
bility primitives �the in and out capabilities� require a
��party atomic handshake which makes them costly to
implement in a distributed setting as illustrated by the
implementation of Mobile Ambients in the Distributed
Join calculus �����

� Higher�order process calculi such as as Facile�CHOCS
and D�� ���� model process mobility via higher�order
communication and remote process execution� but lack
an explicit notion of locality to account for potential
failures or to provide a basis for access control� Fur�
thermore� they do not allow for a running process to
be migrated to a di
erent locality� unless the process
has been explicitly de�ned to allow for such a migra�
tion�

� Variants of the �rst�order asynchronous ��calculus with
explicit localities such as the Distributed Join calculus
�	� 
��� Nomadic Pict ����� DiTyCo �

�� or the ��l�
calculus �
�� feature process migration primitives �go in
the Distributed Join calculus� spawn in the ��l�calculus�
migrate in Nomadic Pict� but lack su�cient control
over resource access and process migration�

Compared to these works� theM�calculus has several dis�
tinguishing features� Its notion of programmable locality al�
lows the de�nition of di
erent forms of locality within the
same calculus� In contrast� the calculi above� or even calculi
such as Klaim �
�� 
�� �that uses generative communication
as its basic form of communication�� or ATF ��� �that consid�
ers distributed ��phase transactions as processes�� consider
only a single form of locality� In distributed calculi� many
alternatives exist when it comes to combine communication
and localities� At one extreme lies the fully transparent com�
munication of the Distributed Join calculus� where messages

�Recent work on a distributed abstract machine for Safe Ambients
����� just reinforces this point� The distributed implementation of am�
bients proposed there does away with the problem by implementing
the in and out capabilities locally �by using cocapabilities and single�
threadedness	� and interpreting the open capability as a move to the
implicit location of the parent ambient� In this interpretation� ambi�
ents no longer characterize the physical distribution of a computation�
which defeats the original intent of the calculus� Furthermore� work
on Boxed Ambients successfully argues against the open capability�

are routed directly to the target locality� At the other ex�
treme lies Mobile Ambients� where communication is purely
local to an ambient and remote communication must use
migration primitives and explicitly encoded routes to de�
liver an ambient message� The Seal calculus ���� and Boxed
Ambients lie between these two extremes by providing the
ability to communicate across one locality boundary� In the
M�calculus� we still provide transparent routing but allow
messages to be intercepted each time they cross a locality
boundary� Finally� one may remark that there are strik�
ing similarities between controlling migration on one hand�
and controlling communication on the other hand� For this
reason� we take the further step to merge the two aspects�
by considering a higher�order calculus� In our setting� mi�
gration becomes communication of a thunk or passivated
process�

With respect to the type system� Yoshida and Hennessy�s
work on D��� a higher�order distributed process calculus
��	�� is closest to our own� D�� allows the communication
of processes as thunks� In this regard� it is similar to the
M�calculus� There are however several important di
erences
that we now detail� The two calculi take a di
erent approach
to the determinacy of communication� As in the Join cal�
culus� the D�� calculus adopts a �channel locality� invari�
ant� which ensures a channel or resource is only present in
one locality� In the M�calculus� resources of the same name
can be present in di
erent localities in order to allow for dy�
namic binding� The M�calculus therefore relies on addressed
resources� where a resource name is annotated with a lo�
cality name� to ensure the determinacy of message routing�
The �unicity of locality names� invariant in theM�calculus is
more complex to ensure than the �channel locality� invariant
in the D�� calculus� This is due to the passivation operator
in the M�calculus� This operator has no counterpart in the
D�� calculus� where the only way to obtain a thunk �frozen
process� is by either specifying it� or by receiving it� The
ability to passivate an active process� as in theM�calculus� is
powerful but it makes the type system more complex� as the
type of the passivation operator depends on some type infor�
mation of the passivated process� As in the D�� calculus� a
process in the M�calculus has a type that gives information
on its behavior �its interface for the D��� its active localities
for the M�calculus�� More precisely� the type of a term is a
conservative approximation of the value or process it may
become� Thus locality errors in D�� and multiple locality
de�nitions in the M�calculus only lead to type errors if the
faulty process may eventually become active� Both systems
also have a form of dependent types� but they are dealt with
di
erently� In the D���calculus� name variables can occur in
types and can be bound in types� yielding dependent types�
In the M�calculus� the dependency between input and out�
put of a resource �channel� is represented as a type variable
�which may stand for a locality name� that is generalized�
According to the type of the argument� the type variables
of the type scheme of a resource are instantiated to the cor�
rect values� and the type of a message is thus dependent
on the type of the argument� In order to simplify the type
system of the M�calculus� we allow cell names in the types
but not name variables� We use instead name type vari�
ables� which provide us with a cleaner distinction between
types and names� The advantage of dependent types ap�
pears when considering partial application� if the result of
an application is a function that has a dependent type� this
function may still be applied to several frozen processes hav�
ing di
erent types� which is impossible when relying on �rst

�



order polymorphism� However� previous work on the typing
of the Join calculus and our experience with programming in
JoCaml showed us that �rst order polymorphism is useful�
well�understood� and powerful enough when using Join pat�
terns� Finally� both the D�� calculus and the M�calculus al�
low input on channels that were received previously� but the
D�� uses �ner input�output types for channels that could
be adapted to our setting�

� Conclusion and future work

We have presented in this paper the M�calculus� a higher�
order distributed process calculus� and an associated type
system that statically enforces the unicity of locality names�
a crucial invariant for the determinacy of �nal destination
for remote messages� The M�calculus constitutes a non�
trivial and powerful extension of the Join calculus �	� 
��
with call�by�value higher�order functions� programmable lo�
calities� and dynamic binding�

The possibility to de�ne� within the same calculus� dif�
ferent kinds of localities� with non�trivial behavior� is an
important requirement for a realistic foundation of distrib�
uted mobile programming� While the M�calculus still falls
short of meeting key requirements for advanced distributed
programming �e�g� support for transactional behavior�� we
believe it constitutes an important step�

To validate the implementable character of the M�
calculus� we have de�ned and implemented a distributed
abstract machine for it ���� and� in order to prove the cor�
rectness of our abstract machine� we are working on an an�
notated lower�level calculus that makes the routing and pas�
sivation reduction rules more local� In parallel� we are de�n�
ing notions of observables in order to compare� using oper�
ational equivalences� the annotated calculus to the original
calculus� and to study the correctness of the translations
from distributed calculi to the M�calculus�
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