
Self-Protected System: an experiment

Noel Depalmaα, Benoit Claudelα, Renaud Lachaizeα, Sara Bouchenakβ,
Daniel Hagimontγ
αInstitut National Polytechnique de Grenoble, France
βUniversité Grenoble I, France
γInstitut National Polytechnique de Toulouse, France

E-Mail: {Noel.Depalma, Benoit.Claudel, Renaud.Lachaize, Sara.Bouchenak}@inria.fr,
Daniel.Hagimont@enseeiht.fr

The complexity of today's distributed computing environment is such that the presence of bugs and
security holes is statistically unavoidable. A very promising approach to this issue is to implement a
self-protected system, similarly to a natural immune system which has the ability to detect the
intrusion of foreign elements within the system.

We designed and implemented an autonomic system called Jade, which relies on software
component architectures to reconfigure applications according to observed events. The knowledge of
the application architecture can be used to detect foreign activities and to trigger counter-measures.
We described how this approach can be applied the provide self-protection for a clustered J2EE
application.

Keywords: Autonomic computing, self-protection, J2EE applications

1. Introduction
Enforcing the security of a computing system lies on some key capacities. First, as preventive

measures, it is important to define tight access control policies, so that hackers can hardly break into
the system and hide their tracks. Second, one should be able to distinguish suspicious activities from
the “normal” operation of the system. Third, once detected, the malicious processes must be stopped
in a comprehensive an efficient1 way. In addition, it is desirable to log the system’s activity with a
good amount of details (and protection/redundancy to prevent attackers from completely destroying
the logs), so that the full sequence and scope of malicious acts can be determined a posteriori, to
launch the appropriate recovery procedures and take new measures against future attacks.

Unfortunately, these goals are very hard to meet in practice, for several reasons.
• It is notoriously complex to specify and maintain access control policies that are

effective, globally consistent (across different programs and computers) and not overly
restrictive for users.

• The complexity of today’s software components (and their interactions) is such that the
presence of bugs and security holes is statistically unavoidable. This leaves the
opportunity for attackers to develop new hijacking techniques (“exploits”) at a very high
pace. Keeping up with the appropriate security patches requires a continuous vigilance.

• Detecting malicious activities within the system is, in general, far from trivial and relies
almost exclusively on human expertise. For this reason, most intrusions are only noticed
once much damage has been done.

1 That is, the “eradication procedure” should be quick and avoid as much as possible drastic

solutions (e.g. a complete reinstallation of the software) that would lead to system downtime.

Noel Depalma et al.

• Careful logging of the system’s activity under normal circumstances often leads to
unacceptable performance and tremendous need in terms of storage. Besides, extracting
crucial hints from the verbose logs is not obvious at all.

Overall, most problems stem from the fact that (human) administrators are unable to cope with the
amount of work required to properly secure a computing infrastructure at the age of the Internet.

We propose to address the above problems through the design and implementation of a self-
protection system. Our two main goals are to: (i) simplify the configuration (and reconfiguration) of
security components according to the knowledge of the system’s structure and operation and (ii) ease
the development of automated counter measures to various classes of attacks.

We have designed and implemented a prototype of autonomic management system (called Jade)
which has been successfully used to provide self-healing [2] and self-optimizing [11] capacities to a
clustered J2EE architecture. We are currently investigating the use of Jade to provide self-protection
capacities for the same application class.

The rest of the paper is structured as follows. Section 2 presents the self-protection approach.

Section 3 provides an overview of Jade, the autonomic management system that we implemented,
and it application to clustered J2EE applications. Section 4 describes a scenario which illustrates the
use of Jade to implement self-protection in a J2EE application. We overview related works in Section
5 and then conclude the paper.

2. Self-protection

2.1. Common security tools
This section briefly reviews the main tools and techniques currently used by security experts to

fight against intrusions. We make the distinction between different functions (protection filters,
detectors of suspicious activity, logging & backtracking tools) although many available solutions
integrate several of them.

Protection filters are used to restrict interactions among machines (or, more generally, distributed
processes/resources) to a given set of limited, well established set of patterns. For instance, a firewall
acts as a network filter that checks if any given packet can be forwarded according to its related
protocol, source/destination addresses and ports. Other examples include restricted rights for data
access or program execution, through the use of capabilities or ACLs (access control lists).

Detectors (or scanners) examine elements of the system activity (contents/attributes of application-
level or network-level requests, files, …) and compare them against a library of patterns typical of
known attacks. If an intrusion is detected, an alarm notification is sent to the administrator. In
addition, scanners can also react themselves against the intrusion, but their action is usually limited in
scope (block offending request/packet, quarantine suspect resource) and context (no coordination
between the different servers). Thus, (quick) human intervention is generally required anyway for
further study and containment of the problem, especially if the suspicious activity was detected
within the internal network (suggesting that there is a breach in the main “frontier” with the outside
world).

Loggers record detailed (and possibly protected/redundant) data about the system activity so that
once an intrusion attempt has been detected, it is possible to determine the sequence of events that led
to the intrusion and the potential extent of the damage (e.g. data theft/loss). Backtracking tools can
help to automate parts of this process but human expertise is still required for an accurate
understanding of the attack.

As a summary, protection filters enforce a set of preventive access control measures, scanners try

to dynamically spot and block suspicious activity and logging tools allow an analysis of the system’s
recent life to initiate proper recovery and take new measures against future attacks of the same kind.

Self-protected system: an experiment
These tools are invaluable for system administrators. However, they are not powerful enough to

ensure good levels of security, for several reasons. First of all, most detectors can only protect the
system against known attacks. Therefore, pirates are always a length ahead with the resort to new
“exploits”, which are able bypass filters and scanners. Furthermore, human administrators are heavily
solicited by the alarms produced by the scanners. In particular, they are usually in charge of initiating
lots of actions, both for coordinated defense at the cluster scale (e.g. through reconfiguration of the
filters and scanners) and investigation (e.g. with backtracking tools). As a consequence, the human
resources still represent the main bottleneck of the security infrastructure, which tends to increase the
vulnerability window of a system exposed to a new kind of attack.

The purpose of our work is not to replace the existing tools but rather to provide a systematic
approach that allows more closely-coupled interactions between them, so that the cluster-wide,
coordinated reaction against an attack can become automated, and thus, more efficient.

2.2. The Self-protection Approach

Research on self-protection systems is a recent initiative, still in its prospective stage, and has been
emphasized by the more global calls for “Autonomic Computing” (AC), which also encompass
concerns about other dimensions such as (self-) configuration, optimization and repair (after failures).
This approach is notably inspired by the operation of the human body and has lead to the concept of
computer immune system (CIS), in the mid 1990s.

The main goal of natural immune systems is to protect a live being from dangerous foreign
pathogens. This mission relies on a key ability, the “sense of self” (SoS), that is, the capacity to detect
the intrusion of foreign elements within the “system” (in this case, the body), though the distinction
of self from nonself. Once an intruder is properly detected, measures can be taken to destroy it (or at
least contain its damages and progression). In the context of a computing system, nonself may
correspond to the activity of a malicious program or an unauthorized user.

Based on this analogy, Forrest et al. [5] determined the main design principles required to build
computer immune systems, which are summarized below.

• Autonomy: The immune system does not require (much) outside management or
maintenance. It autonomously classifies and eliminates attacks, i.e. it is able to recognize
previously seen attacks as well as new types of intrusions.

• Distributability: There is no central coordination, and, as a result, no single point of
failure within the immune system. This implies that no single component is essential and
that the incorrect behavior or death of some security components can be compensated by
repairing or creation of new components.

• Multi-layered: multiple layers with different mechanisms are combined to provide robust
and flexible facilities for security.

Inspired by these principles, we propose architectural patterns to improve the coordination
between the multiple elements which compose a security infrastructure. Our focus is not on the
development of new specific techniques for access control, intrusion detection or backtracking but
rather on the mechanisms that allow an efficient and flexible integration of these various tools within
a global, automated control process.

3. An overview of the Jade self-management system

3.1. Design of jade
We have adopted the overall organization proposed for autonomic computing [10]. An Autonomic

Manager implements a feedback control loop, which regulates a part of a system, called a Managed
Resource. In order to allow hierarchical control, an Autonomic Manager may itself play the part of a
Managed Resource.

Noel Depalma et al.

In order to be controllable, a Managed Resource needs to be equipped with a management

interface, which provides entry points for an Autonomic Manager. This interface should allow the
manager to observe and to change the state of the resource.

The management interface needs to provide the following functions.
• Inspecting the contents of the managed resource, i.e. consulting any readable parameters;

reading the values of any probes attached to resource; if the managed resource is
composite (made of an assembly of parts), retrieving information on the structure of this
assembly.

• Deploying and (re)configuring the managed resource; if again the resource is composite,
modifying the structure of the assembly, e.g. dynamically inserting, rebinding, or
removing some of its parts (for instance inserting a probe, adding a node to a cluster,
etc.).

We propose to use a component model as a base for the implementation of Managed Resources.
The component model that we use is Fractal [4], which has the following benefits.

• It provides a uniform, adaptable, control interface that allows introspection (observing the
properties of the component) and dynamic binding (reconfiguring an assembly of
components).

• It defines a hierarchical composition model for components, allowing a sub-component to
be shared between enclosing components, at any level of granularity.

We use Fractal to wrap any managed resource in a component, thus providing a uniform
management interface for all these resources. This provides a means to:

• Managing legacy entities using a uniform model, instead of relying on resource-specific,
hand-managed, configuration files.

• Managing complex environments with different points of view. For instance, using
appropriate wrapping components, it is possible to represent the network topology, the
configuration of the J2EE middleware, or the configuration of an application on the J2EE
middleware.

• Adding a control behavior to the encapsulated legacy entities (e.g. monitoring,
interception and reconfiguration).

3.2. Self-management for J2EE applications

The above approach is illustrated in the case of a J2EE architecture. In this setting, an L5-switch
balances the requests between two Apache server replicas. The Apache servers are connected to two
Tomcat server replicas. The Tomcat servers are both connected to the same MySQL server.

Self-protected system: an experiment

Figure 1 – Component-based management

In the above figure, the vertical dashed arrows represent management relationships between
components and the wrapped software entities. In the legacy layer, the dashed lines represent
relationships (or bindings) between legacy entities, whose implementations are proprietary. These
bindings are represented in the management layer by component bindings (full lines in the figure).

Wrapping managed resources
In the management layer, all components provide the same (uniform) management interface for

the encapsulated resources, and the corresponding implementation is specific to each resource (e.g.,
in the case of J2EE, Apache, Tomcat, MySQL, etc.). The interface allows managing the reource’s
attributes, bindings and lifecycle.

Relying on this management layer, sophisticated administration programs can be implemented,
without having to deal with complex, proprietary configuration interfaces, which are hidden in the
wrappers. The management layer provides all the facilities required to implement such administration
programs:

• Introspection: The framework provides an introspection interface that allows observing
managed resources (MR). For instance, an administration program can inspect an Apache
MR (encapsulating the Apache server) to discover that this server runs on node1:port 80
and is bound to a Tomcat server running on node2:port 66. It can also inspect the overall
J2EE infrastructure, considered as a single MR, to discover that it is composed of two
Apache servers interconnected with two Tomcat servers connected to the same MySQL
server.

• Reconfiguration: The framework provides a reconfiguration interface that allows control
over the component architecture. In particular, this control interface allows changing
component attributes or bindings between components. These configuration changes are
reflected onto the legacy layer. For instance, an administration program can add or
remove an Apache replica in the J2EE infrastructure to adapt to the current load.

The implementation of the management layer relies on Fractal components which wrap the
administrated legacy software. More precisely, the Fractal component model allows management of:

• Attribute: An attribute is a configurable property of a component. The component's
interface exposes getter and setter methods for the attributes. A modification of a
component attribute is reflected to the legacy software attribute. For instance apache’s
port is reflected to the legacy Apache configuration file (httpd.conf).

Noel Depalma et al.

• Binding: The component's interface exposes methods for controlling bindings between
components. The configuration of bindings in the management layer is reflected to the
legacy software layer. For instance, by configuring a binding between an apache and a
tomcat component in the management layer, an Apache httpd may be connected to a
Tomcat server to which it delegates dynamic requests. The implementation of this
binding configures the worker.properties file in the legacy software.

• Life cycle: The component's interface exposes methods for controlling the component’s
execution. The basic lifecycle operations of a legacy system can be performed through
this lifecycle interface (e.g. starting and stopping the execution of a component). In the
case of apache, it is implemented by calling the Apache commands for starting/stopping a
server.

Self-repair and self-optimizing
One important autonomic administration behavior we consider in Jade is self-optimization. Self-

optimization is an autonomic behavior which efficiently maximizes resource utilization to meet the
end user needs with no human intervention required. Jade aims at autonomously
increasing/decreasing the number of replicated resources used by the application when the load
increases/decreases. This has the effect of efficiently maximizing resource utilization (i.e. no resource
overbooking).

To this purpose, a QoS manager uses sensors to measure the load of the system. These sensors can
probe the CPU usage or the response time of application-level requests. The QoS manager also uses
actuators to reconfigure the system. Thanks to the generic design of Jade, the actuators used by the
QoS manager are themselves generic, since increasing/decreasing the number of resources of an
application is implemented as adding/removing components in the application structure.

Besides sensors and actuators, the QoS manager makes use of an analysis/decision component
which is responsible for the implementation of the QoS-oriented self-optimization algorithm. This
component receives notifications from sensors and, if a reconfiguration is required, it increases the
number of resources by allocating new necessary and available nodes. It then deploys those software
resources on the new nodes and adds them to the existing application structure, just by creating the
associated components on these nodes. Symmetrically, if the resources allocated to an application are
under-utilized, the QoS manager performs a reconfiguration to remove some replicas and release
their resources.

Another autonomic administration behavior we consider in Jade is self-repair. In a replication-based
system, when a replicated resource fails, the service remains available thanks to replication.
However, we aim at autonomously repairing the managed system by replacing the failed replica by a
new one. Our current aim is to deal with fail-stop faults. The implemented repair policy rebuilds the
failed managed system as it was prior to the occurrence of the failure. To this purpose, the failure
manager uses sensors that monitor the health of the used resources through probes installed on the
nodes hosting the managed system; these probes are implemented using heartbeat techniques. The
failure manager also uses a specific component called the System Representation. The System
Representation component maintains a representation of the current architectural structure of the
managed system, and is used for failure recovery. One could state that the underlying component
model could be used to dynamically introspect the current architecture of the managed system, and
use that structure information to recover from failures. But if a node hosting a replica crashes, the
component encapsulating that replica is lost; that is why a System Representation mechanism is
necessary. This representation is reflects the current architectural structure of the system (which may
evolve); and is reliable in the sense that it is itself replicated to tolerate faults. The System
Representation is implemented as a snapshot of the whole component architecture.

Besides the system representation, the sensors and the actuators, the failure manager uses an
analysis/decision component which implements the autonomic repair behavior. It receives
notifications from the heartbeat sensors and, upon a node failure, makes use of the System
Representation to retrieve the necessary information about the failed node (i.e., software resources

Self-protected system: an experiment
that were running on that node prior to the failure and their bindings to other resources). It then
allocates a new available node and redeploys those software resources on the new node. The System
Representation is then updated according to this new configuration.

A more detailed description and evaluation of self-optimization and self-repair in Jade is available

in [2].

4. Self-protection with Jade for J2EE applications

4.1. Architecture-based sense of self
As mentioned in Section 2.2, the “sense of self” (SoS) is the capacity to detect the intrusion of

foreign elements within the administrated system though the distinction of self from nonself.
As we have seen in the overview of the Jade system, we aim at providing a component-based

architectural representation of the administrated environment in order to enable observations and
reconfigurations. The architecture of the application provides a notion of sense of self, as it defines
the components which are supposed to be running on the machines and the communication channels
which may be used by these components. Any execution which does not take place within these
components or communication channels is considered nonself.

The design of Jade also follows the design principles of immune systems (presented in
Section 2.2):

• Autonomy: The self-protection policy which may be defined with Jade does not have to
know much about the attacks it may have to face. It can detect abnormal behaviors, that is
those which are nonself (which don't comply with the architecture of the application). In
our scenario, we detect intrusions as nonself behaviors. For instance, if an application
attempts to use a not-declared communication channel (binding), an alarm event is raised,
which will triggers a counter-measure.

• Distributability: There is no single point of failure to security. Any node can detect an
abnormal execution, on the local machine or as an incoming request from another node.
In our scenario, each node is responsible for the detection of nonself incoming
communications.

• Multi-layered: Jade allows for the combination of many security techniques. Many
detection and counter-measure mechanisms can me added by wrapping existing tools,
deploying and configuring them. In our scenario, we wrap a firewall to detect nonself
communications.

4.2. Scenario

We describe in this Section a simple scenario which aims at illustrating the implementation of

sense of self protection policies on top of the Jade system. This scenario is currently under
development.

We consider a security flaw which allows attackers to execute arbitray code in one tier of the

deployed J2EE architecture. An example of such a flaw is the Apache Chunked Encoding Overflow
as defined in [1]:

Apache Web Server contains a flaw that allows a remote attacker to execute arbitrary code. The
issue is due to the mechanism that calculates the size of "chunked" encoding not properly interpreting
the buffer size of data being transferred. By sending a specially crafted chunk of data, an attacker
can possibly execute arbitrary code or crash the server.

Therefore, exploiting this security flaw (or anyone such), an attacker can gain control on a
machine running this Apache server and subsequently attempt to attack other machines. Notice that

Noel Depalma et al.

this flaw can be exploited even if the Apache server is placed behing a firewall. Our assumption is
that attackers will always find a way to bypass statically defined protection barriers.

In order to detect nonself execution, we place a firewall on each machine involved in the J2EE

architecture, as illustrated in Figure 2.

Figure 2 – Self-protection scenario

The firewall software is wrapped in a component, so that it can be deployed and configured by

Jade (similarly as the other software resources). Each firewall is configured so that it will only accept
requests issued by machines which have a declared binding pointing to it. For instance, firewall on
Node4 will only accept requests from Node2 and Node3. The firewalls are automatically configured
according to the deployed J2EE architecture.

Moreover, each firewall is configured to behave as a intrusion detector. When the J2EE
architecture is deployed, the communication ports used to connect the J2EE tiers are chosen
randomly, which makes it more difficult for an attacker to exploit legal bindings. And an attempt to
use/scan an unbound port is detected by the firewall to raise an alarm event.

Therefore, the configuration of the firewalls only enable requests which follows legal bindings and
illegal requests raise an alarm. Therefore, the deployment and configuration of firewalls allows
detecting (some of) the nonself behaviors.

Whenever an alarm is raised, different counter-measures can be executed:

• the machine (in the cluster) which issued the request can be isolated from the J2EE
architecture and replaced by another one (as in the repair algorithm). The reconfiguration
of the architecture also reconfigures the firewalls accordingly.

• a message can be sent to the human administrator to take any additional measure.
• an analyze of logs on the different tiers can eventually allow to find the remote machine

which issued the web request (on the global J2EE web server), thus allows a
reconfiguration of the firewall placed in front of the overall J2EE architecture (on Node1)
to deny access from this remote machine.

5. Related work

Defining computer immune systems is a major trend in self-protected system. This approach has been
described by Forrest [5] and Kephart [9]. The basic idea behind immune systems is to distinguish
legal (self) behaviors from illegal (nonself) ones (typically virus, worm, sql injection …).

Self-protected system: an experiment
Forest describes a sense of self in the case of Unix processes by identifying sequences of system call
which provide a compact signature for self, distinguishing self from non-self behaviors. This system
requires to build up a database of normal behavior for each program of interest.
Kephart describes an anti-virus system where detectors are based on the immune system analogy and
are able to find unknown virus. Furthermore, when a new virus is found, its signature is spread across
the network to all other protected computers. Our work is in the same vein, but we propose to exploit
the knowledge of the architecture of the application to detect non-self activities.

Self-cleansing system [8] is another solution to build self-protected software. This pessimist
approach makes the assumption that all intrusions cannot be detected and blocked. Therefore, the
system is considered to be compromised after a certain time. The control loop used by this system
periodically re-installs a part of the system from a secure storage.

An important property for self-protected system is the ability to mask important knowledge such as
the system’s structure, software versions, user’s data files... The Secure Distributed Storage[6] (SDS)
is such a system that secures data by spreading and crypting them across multiple computers. A file is
sliced in multiple crypted data chunks. Thus, if a computer is compromised, the hacker can only get
the incomplete data stored on the computer. In our scenario, the connection ports which are used to
implement bindings between components are randomly chosen, thus making it more difficult for an
attacker to exploit legal bindings. In our approach, hiding (as much as possible) the architecture of
the application is also a crucial issue.

When a system is compromised, another important function is the ability to restore the system in a
trusted state. File system snapshots can successfully restore system’s data when an intrusion is
detected. However this solution also rollbacks legal data modifications induced by users. The Taser
system [7] provides the file system with a selective self-recovery capability. Taser logs all file system
access for each process. If a process is compromised, Taser computes illegal access for each file and
is able to rollback illegal modification. However if a dependency is found between an illegal and a
legal access (e.g: a legal read operation after a compromised write operation), Taser requires a human
intervention. A similar approach could be followed to restore the database tier in J2EE application
whenever a nonself activity performed database modifications.

6. Conclusions
Today's distributed computing environments are increasingly complex and difficult to

administrate. This complexity is such that the presence of bugs and security holes is statistically
unavoidable. Therefore, access control policies become very difficult to specify and to enforce.

A very promising approach to deal with this issue is, following the autonomic computing vision, to
design a self-protected system which is able to distinguish legal (self) from illegal (nonself)
behaviors. The detection of an illegal behavior triggers a counter-measure to limit the exploitation of
the intrusion and prevent further intrusions.

In this vein, we have designed and implemented a system called Jade which allows the definition
of autonomous administration programs. Jade relies on a component model for wrapping the
administrated resources and provides support for the definition of autonomic managers which capture
significant event and trigger relevant actions. Jade has been successfully used to implement self-
optimization and self-healing autonomic policies for clustered J2EE applications.

In this paper, we investigated the application of Jade features to implement self-protection for
J2EE applications. We showed how the knowledge of the (component-based) architecture of the
administrated application can be exploited to implement a notion of self. In our scenario, firewalls are
automatically deployed on every nodes and configured according to the deployed J2EE architecture.
These firewalls allow detecting (some) non-self behaviors and taking adequate counter-measures.

This work is at a preliminary stage, but opens many perspectives. It only detects some of the
potential non-self behaviors. For instance, we plan to investigate the definition of detectors for SQL
injection attacks [3] based on an analysis of the logs generated by the administrated software
components.

Noel Depalma et al.

7. References

[1] Apache Chunked Encoding Overflow, June 2002 - http://www.osvdb.org/838

[2] S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, A. Mos, N. Depalma, V.
Quema, J.-B. Stefani, Architecture-Based Autonomous Repair Management: An
Application to J2EE Clusters, 24th IEEE Symposium on Reliable Distributed
Systems (SRDS), Orlando, Florida, October 2005.

[3] S. W. Boyd and A. D. Keromytis, Sqlrand: Preventing sql injection attacks,
International Conference on Applied Cryptography and Network Security (ACNS),
pages 292--302, 2004.

[4] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma and J.-B. Stefani, An Open
Component Model and its Support in Java, International Symposium on Component-
based Software Engineering, Edinburgh, Scotland, may 2004.

[5] S. Forrest, S. A. Hofmeyr, and A. Somayaji, Computer immunology,
Communications of the ACM, 40(10) :88–96, 1997.

[6] J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin, Secure distributed storage and
retrieval, Theoretical Computer Sciences, 243(1-2) :363--389, 2000.

[7] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, The taser intrusion recovery
system, twentieth ACM symposium on Operating systems principles, pages 163--
176, New York,NY, USA, 2005. ACM Press.

[8] Y. Huang and S. Arun, Self-cleansing systems for intrusion containment, Workshop
on Self-Healing, Adaptive and self-MANaged Systems (SHAMAN), 2002.

[9] J. O. Kephart, A biologically inspired immune system for computers, Fourth
International Workshop on the Synthesis and Simulation of Living Systems, pages
130–139, Cambridge,MA, US, 1994. MIT Press.

[10] J. O. Kephart, D. M. Chess, The Vision of Autonomic Computing, IEEE Computer
Magazine, Volume 36, Number 1, 2003.

[11] C. Taton, S. Bouchenak, F. Boyer, N. De Palma, D. Hagimont, A. Mos, Self-
Manageable Replicated Servers, VLDB Workshop on Design, Implementation, and
Deployment of Database Replication, Trondheim, Norway, August 2005.

http://www.osvdb.org/838

	Introduction
	Self-protection
	Common security tools
	The Self-protection Approach

	An overview of the Jade self-management system
	Design of jade
	Self-management for J2EE applications

	Self-protection with Jade for J2EE applications
	Architecture-based sense of self
	Scenario

	Related work
	Conclusions
	References

